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Abstract Fuzzy Logic, introduced by Zadeh along with his introduction of fuzzy
sets, is a continuous multi-valued logic system. Hence, it is a generalization of the
classical logic and the classical discrete multi-valued logic (e.g. Łukasiewicz’
three/many-valued logic). Throughout the years Zadeh and other researches have
introduced extensions to the theory of fuzzy setts and fuzzy logic. Notable exten-
sions include linguistic variables, type-2 fuzzy sets, complex fuzzy numbers, and
Z-numbers. Another important extension to the theory, namely the concepts of
complex fuzzy logic and complex fuzzy sets, has been investigated by Kandel et al.
This extension provides the basis for control and inference systems relating to
complex phenomena that cannot be readily formalized via type-1 or type-2 fuzzy
sets. Hence, in recent years, several researchers have used the new formalism, often
in the context of hybrid neuro-fuzzy systems, to develop advanced complex fuzzy
logic-based inference applications. In this chapter we reintroduce the concept of
complex fuzzy sets and complex fuzzy logic and survey the current state of com-
plex fuzzy logic, complex fuzzy sets theory, and related applications.
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1 Introduction

The development of computers and the related attempt to automate human rea-
soning and inference have posed a challenge to researchers. Humans, and in many
cases machines, are not always operating under strict and well defined two-valued
logic or discrete multi-valued logic. Their perception of sets and classes is not as
crisp as implied by the traditional set and class theory. To capture this perception,
L. A. Zadeh has introduced the theory of fuzzy sets and fuzzy logic [1–7]. The
seminal paper [1],1 published by Zadeh in 1965, ignited tremendous interest among
a large number of researchers. Following the introduction of the concepts of fuzzy
logic and set theory, several researchers, [8–10], have established an axiomatic
framework for these concepts.

The five decades that followed Zadhe’s pioneering work have produced exten-
sive research work and applications related to control theory [11, 12], artificial
intelligence [7, 13–15], inference, and reasoning [16, 17]. In recent years, fuzzy
logic has been applied in many areas, including fuzzy neural networks [18],
neuro-fuzzy systems and other bio-inspired fuzzy systems [19], clustering [20–22],
data mining [13, 23, 24], and software testing [25, 26]. In 1975 Zadeh introduced
the concept of linguistic variable and the induced concept of type-2 (type-n) fuzzy
sets [3, 27–30]. Other notable extensions to the theory of fuzzy sets and fuzzy logic
include complex fuzzy numbers [31], and Z-numbers [32].

Many natural phenomena are complex and cannot be modelled using
one-dimensional classes and/or one-dimensional variables. For example, in pattern
recognition, objects can be represented by a set of measurements and are regarded
as vectors in a multidimensional space. Often, it is not practical to assume that this
multidimensional information can be represented via a simple combination of
variables and operators on one-dimensional clauses. Specifically, consider a set of
values where each value is a member of a fuzzy set. This set, referred to as fuzzy set
of type-2, cannot be compactly represented by basic operations on fuzzy sets of
type-1 [3, 27–30]. This type of sets however, can be represented via complex
classes presented next.

Another important extension to the theory of fuzzy logic and fuzzy sets, namely
complex fuzzy logic (CFL) and complex fuzzy sets (CFS), has been developed by
Kandel and his coauthors [10, 33–36]. Moses et al. introduced an aggregation of
two fuzzy sets into one complex fuzzy set [33]. Next, Ramot et al. introduced the
concept of a complex degree of membership represented in polar coordinates,
where the amplitude is the degree of membership of an object in a CFS and the role
of the phase is to add information which is generally related to spatial or temporal
periodicity in the specific fuzzy set defined by the amplitude component. They used
this formalism along with the theory of relations to establish the concept of CFL.
Finally, Tamir et al. developed an axiomatically-based CFL system and used CFL

1The first documented reference by Zadeh to the concepts of Fuzzy Mathematics appeared in a
1962 paper.
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to provide a new and general formalism of CFS. These formalisms significantly
enhance the expressive power of type-1 and type-2 fuzzy sets [30, 37]. The suc-
cessive definitions of the theory of CFL and CFS represent an evolution from a
relatively naïve and restricted practice to a sound, well founded, practical, and
axiomatically-based form. In recent years, several researchers have used the new
formalism, often in the context of hybrid neuro-fuzzy systems to develop advanced
complex fuzzy logic-based inference applications.

There is a substantial difference between the definitions of complex fuzzy
numbers given by J. Buckley [31, 38–41] and the concept of complex fuzzy sets or
complex fuzzy logic. Buckley is concerned with generalizing the number theory
while the CFL and CFS theories are concerned with the generalization of fuzzy set
theory and fuzzy logic [10, 42, 43]. Complex fuzzy numbers have been utilized in
several numerical applications [44–46]. Yet, the concept of a complex fuzzy
number is different from the concept of complex fuzzy sets or complex fuzzy
classes. Recently, Zadeh introduced the concept of Z-numbers. A Z-number,
Z = ðA,BÞ, is an ordered pair of two fuzzy numbers. In this context A, provides a
restriction on a real-valued variable X and B is a restriction on the degree of
certainty that X is A [32]. Nevertheless, this concept is used to qualify the reliability
of fuzzy quantities rather than to define complex fuzzy sets [10, 36].

The present chapter includes an introduction to the succession of definitions of
CFL and CFS, concentrating on the axiomatic-based approach. In addition, the
chapter includes a survey the current state of research into complex fuzzy logic,
complex fuzzy set theory, and related applications.

The rest of the chapter is organized in the following way: Sect. 2 introduces the
axiomatic-based theory of fuzzy set and fuzzy logic. Section 3 surveys the theory of
complex fuzzy logic and complex fuzzy sets, concentrating on the
axiomatically-based formulation of the theories. Section 4 includes a survey of
recent developments in the theory and applications of CFL and CFS. Finally,
Sect. 5 presents conclusions and directions for further research.

2 Fuzzy Logic and Set Theory

In 1965, L.A. Zadeh introduced the theory of fuzzy sets, where the degree of
membership of an item in a set can get any value in the interval [0, 1] rather than the
two values f∉, ∈ g [1]. Additionally, he introduced the notion of fuzzy logic [1–4].
Fuzzy logic is a continuous (analog) multi-valued extension of classical logic where
propositions can get truth values in the interval [0, 1], and are not limited to one of
the two values {True, False} (or {0, 1}) [17]. These concepts can be considered as
an extension of the multi-valued logic proposed by Łukasiewicz [47]. The intro-
duction of the concepts of fuzzy sets and fuzzy logic was followed by extensive
research into fuzzy systems and their applications, related theories, and extensions
of the concept [1–4, 6, 13, 17, 19, 22, 26, 48–53]. One direction of research has
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concentrated on the formulation of an axiomatically-based foundation of fuzzy sets
and fuzzy logic [8–10, 54–63]. This is described next.

2.1 Axiomatic Fuzzy Logic

Several researchers presented an axiomatically-based formulation of fuzzy logic and
fuzzy set theory [8–10, 55, 56, 58]. In this section we briefly review an axiomatic
framework that is founded on the basic fuzzy propositional and predicate logic
(BL), along with the fuzzy Łukasiewicz (Ł) and fuzzy product (Π) logical systems
[8–10, 55, 56, 58]. We refer to the propositional logic system as ŁΠ and to the first
order predicate fuzzy logic system as ŁΠ∀.

Propositional Fuzzy Logic

Several axiom-based logical systems have been investigated [8–10, 55, 56, 58].
Běhounek et al. ([8]) use the ŁΠ/ ŁΠ∀ as the basis for the definition of fuzzy class
theory (FCT). Our definition of complex propositional logic presented in Sect. 3
[10, 36], closely follows ŁΠ, the system used by Běhounek et al. For clarity, we
reintroduce some of the important notions, notations, and concepts from that paper.

A fuzzy proposition P can get any truth value in the real interval [0, 1], where ‘0’
denotes “False,” and ‘1’ denotes “True”. Furthermore, the relation ≤ , over the
interval ½0, 1� implies a monotonically increasing ordering on the truth values
associated with the proposition. A fuzzy interpretation of a proposition P is an
assignment of a fuzzy truth value to P. Let P, Q and R denote fuzzy propositions
and let iðRÞ denote the fuzzy interpretation of R. Table 1, includes the basic con-
nectives of ŁΠ. Table 2 includes connectives that can be derived from the basic
connectives. The constant 0 is assumed and the constant 1 can be derived from 0
and the basic connectives.

Table 1 Basic ŁΠ
connectives

Operation Interpretation

Ł-Implication iðP→ LQÞ=minð1, 1− iðPÞ+ iðQÞÞ
Π-Implication iðP→∏QÞ=minð1, iðPÞ=iðQÞÞ
Π-Conjunction iðP⊗QÞ= iðPÞ ⋅ iðQÞ

Table 2 Derived ŁΠ
connectives

Operation Interpretation

Ł-Negation ið′PÞ=1− iðPÞ
Π-Delta ΔðiðPÞÞ=1 if iðPÞ=1 else ΔðiðPÞÞ=0
Equivalence iðP↔QÞ= iðP→ LQÞ⊗iðQ→ LPÞ
P ⊖ Q iðP ⊖ QÞ=maxð0, iðPÞ− iðQÞÞ
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Běhounek et al. use the basic and derived connectives along the truth constants
and the following set of axioms [8]:

(1) The Łukasiewicz set of axioms
(2) The product set of axioms
(3) The Łukasiewicz Delta axiom
(4) The Product Delta axiom
(5) The axiom:

R ⊗ (P ⊖ Q)↔ LðR⊗PÞ ⊖ ðR⊗QÞ ð1Þ
The rules of inference are:

(1) Modus ponens
(2) Product necessitation.

Reference [8] includes several theorems that follow from the definition of ŁΠ
propositional fuzzy logic. In the next section, we define the ŁΠ first order predicate
fuzzy logic (ŁΠ∀).

First Order Predicate Fuzzy Logic

Following the classical logic, the ŁΠ first order predicate fuzzy logic, referred to as
ŁΠ∀, extends the ŁΠ propositional fuzzy logic. The primitives include constants,
variables, arbitrary-arity functions and arbitrary-arity predicates. Formulae are
constructed using (1) the basic connectives defined in Table 1; (2) derived con-
nectives, such as the connectives presented in Table 2; (3) the truth constants;
(4) the quantifier ∀ and (5) the identity sign “=”. The quantifier ∃ can be used to
abbreviate formulae derived from the basic primitives and connectives. A fuzzy
interpretation of a proposition Pðx1, . . . , xnÞ over a domain M is a mapping that
assigns a fuzzy truth value to each n-tuple of elements of M As in the case of ŁΠ,
we closely follow the system used in ref. [8].

Assuming that y can be substituted for x in P and x is not free in Q the following
axioms are used:

(1) Instances of the axioms of ŁΠ obtained through substitution
(2) Universal axiom I:

ð∀xÞPðxÞ→PðyÞ ð2Þ

(3) Universal axiom II:

ð∀xÞðP→ LQÞ→ LðP→ Lð∀xÞQÞ ð3Þ

(4) Identity axiom I:

x= x ð4Þ
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(5) Identity axiom II:
ðx= yÞ→ΔðPðxÞ↔PðYÞÞ ð5Þ

Modus ponens, product necessitation, and generalization are used for inference.
In the next section, we define propositional and first order predicate CFL.

2.2 Axiomatic Fuzzy Class Theory

The axiomatic fuzzy logic can serve as a basis for establishing an axiomatic FCT.
Several variants of FCT exists, most of them use a similar approach and mainly
differ in the selection of the logic base. Another difference between various
approaches is the selection of class theory axioms [64]. Běhounek et al. present and
analyze a few variants of FCT. Ref. [8] presents an ŁΠ∀ based FCT.

3 Complex Fuzzy Logic and Set Theory

The first formalization of complex fuzzy sets and complex fuzzy logic investigated
by Kandel and his coauthors [35, 65] is a special case of the formalism presented by
Tamir et al. [10]. Hence, in this section only two formalisms for complex fuzzy sets
and complex fuzzy logic are considered: (1) the formal definitions provided by
Ramot et al. [33], (2) the generalization of these concepts developed by Tamir et al.
[10, 36, 43, 66].

3.1 Complex Fuzzy Sets (Ramot et al. [33] )

This section reviews the basic concepts and operations of complex fuzzy set as
defined by Ramot et al. [34, 67]. According to Ramot et al., a complex fuzzy set
S on a universe of discourse U is a set defined by a complex-valued grade of
membership function μsðxÞ [33, 34]:

μsðxÞ= rsðxÞejωsðxÞ ð6Þ

where j=
ffiffiffiffiffiffiffiffi
− 1

p
. The function μsðxÞ maps U into the unit disc of the complex plane.

This definition utilizes polar representation of complex numbers along with con-
ventional fuzzy set definition; where rsðxÞ, the amplitude part of the grade of
member-ship, is a fuzzy function defined in the interval [0, 1]. On the other hand,
ωsðxÞ is a real valued function standing for the phase part of the grade of
membership.
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In the definition provided by Ramot, the absolute value, or the amplitude part of
the membership grade, behaves in the same way as in traditional fuzzy sets. Its
value is mapped into the interval [0, 1]. On the other hand, the phase component of
the expression is not a fuzzy function; it is a real valued function that can get any
real value. Furthermore, the grade of membership is not influenced by the phase.
The phase role is to add information which is generally related to spatial or tem-
poral periodicity in the specific fuzzy set defined by the amplitude component. For
example, fuzzy information related to solar activity along with crisp information
that relates to the date of measurement of the solar activity [33]. Another example
where complex fuzzy set has an intuitive appeal comes from the stock market.
Intuitively, the periodicity of the stock market along with fuzzy set based estimate
of the current values of stocks can be represented by a complex grade of mem-
bership such as the one proposed by Ramot. The amplitude conveys the information
contained in a fuzzy set such as “strong stock” while the phase conveys a crisp
information about the current phase in the presumed stock market cycle.

Following the basic definition of complex-valued grade of membership function
Ramot et al. define the basic set operations such as complement, union, and
intersection. Each of these operations is defined via a set of theorems [42].

3.2 Complex Fuzzy Logic (Ramot et al. [34])

There are several ways to define fuzzy logic, fuzzy inference, and fuzzy logic
system (FLS). One of these ways is to use fuzzy set theory to define fuzzy relations,
and then define logical operations, such as implication and negation, as well as
inference rules, as special types of relations on fuzzy sets. Alternatively, fuzzy logic
can be formalized as a direct generalization of classical logic. Under this “tradi-
tional” approach, notions that relate to the syntax and semantics of classical logic,
such as propositions, interpretation, and inference are used to define fuzzy logic.
Although the relations-based definition can be carefully formalized, it is generally
less rigorous than the traditional approach.

Ramot et al. use the first approach [34]. They use the definition of complex fuzzy
relations to define complex fuzzy logic via the definition of logical operations.
Additionally, Ramot et al. restrict complex fuzzy logic to propositions of the form
‘X is A’ , where X is a variable that receives values x from a universal set U and A is
a complex fuzzy set on U. They use this type of propositions to introduce impli-
cations of the form ‘if X is A then Y is B’ . Finally, they use modus ponens to
produce a complex fuzzy inference system. Clearly their approach is limited due to
two facts: (1) they rely on complex fuzzy sets and relations to define CFL and
(2) their fuzzy inference system is limited to propositions on complex fuzzy sets.
These limitations are resolved via the axiomatically-based approach presented in
the next section.
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3.3 Generalized Complex Fuzzy Logic (Tamir et al. [10])

This section presents the generalized form of complex fuzzy logic investigated by
Tamir et al. [10].

Propositional and First Order Predicate Complex Fuzzy Logic

A complex fuzzy proposition P is a composition of two propositions each of which
can accept a truth value in the interval ½0, 1�. In other words, the interpretation of a
complex fuzzy proposition is a pair of truth values from the Cartesian interval
½0, 1� × ½0, 1�. Alternatively, the interpretation can be formulated as a mapping to
the unit circle. Formally a fuzzy interpretation of a complex fuzzy proposition P is
an assignment of fuzzy truth value of the form iðprÞ + j ⋅ iðpiÞ or of the form
iðrðpÞÞejσiðθðpÞÞ, where σ is a scaling factor in the interval ð0, 2π�, to P.

For example, consider a proposition of the form “x… A… B…,” along with the
definition of a linguistic variables and constants. Namely, a linguistic variable is a
variable whose domain of values is comprised of formal or natural language words
[3]. Generally, a linguistic variable is related to a fuzzy set such as
fvery young male, young male, old male, very old maleg and can get any value
from the set. A linguistic constant has a fixed and unmodified linguistic value, i.e. a
single word or phrase from a formal or natural language.

Thus, in a proposition of the form “ x … A … B … ,” where A and B are
linguistic variables, iðprÞ ðiðrðpÞÞÞ can be assigned to the term A and
iðpiÞ ðiðθðpÞÞÞ can be assigned to term B .

Propositional CFL extends the definition of propositional fuzzy logic and first
order predicate CFL extends the notion of first order predicate fuzzy logic. Nev-
ertheless, since propositional CFL is a special case of first order predicate CFL, we
only present the formalism for first order predicates CFL here.

Tables 3 and 4 present the basic and derived connectives of ŁΠ∀ CFL. In
essence, the connectives are symmetric with respect to the real and imaginary parts
of the predicates.

Table 3 Basic ŁΠ∀ CFL connectives

Operation Interpretation

L-Implication iðP→ L QÞ=minð1, 1− iðprÞ+ iðqrÞÞ+ j ⋅minð1, 1− iðpiÞ+ iðqiÞÞ
Π-Implication iðP→∏ QÞ=minð1, iðprÞ=iðqrÞ+ j ⋅minð1, iðpiÞ=iðqiÞÞ
Π-Conjunction iðP ⊗ QÞ= iðprÞ ⋅ iðqrÞÞ+ j ⋅ ðiðpiÞ ⋅ iðqiÞÞ

Table 4 Derived ŁΠ∀ CFL connectives

Operation Interpretation

L-Negation ið′PÞ=1+ j1− iðPÞ
Π-Delta ΔðiðPÞÞ= if ði(PÞÞ=1+ j1 else Δ ði(PÞÞ=0+ j0
Equivalence iðP↔ QÞ= iðPr → L QrÞ ⊗ iðQr → L PrÞ+ j ⋅ iðPi → L QiÞ⊗ iðQi → L PiÞ
P ⊖ Q iðP ⊖ QÞ=maxð0, iðprÞ− iðqrÞÞ+ j ⋅maxð0, iðpiÞ− iðqiÞÞ
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Following classical logic, ŁΠ∀ CFL extends, ŁΠ CFL. The primitives include
constants, variables, arbitrary-arity functions and arbitrary-arity predicates. For-
mulae are constructed using the basic connectives defined in Table 3, derived
connectives such as the connectives presented in Table 4, the truth constants, the
quantifier ∀ and the identity sign = The quantifier ∃ can be used to abbreviate
formulae derived from the basic primitives and connectives. A fuzzy interpretation
of a proposition Pðx1 , . . . , xnÞ=Prðx1 , . . . , xnÞ+ j . Piðx1 , . . . , xmÞ over a
domain M is a mapping that assigns a fuzzy truth value to each (n-tuple) × (m-
tuple) of elements of M. As in the case of ŁΠ fuzzy logic, we closely follow the
system used in ref [8].

The same axioms used for first order predicate fuzzy logic are used for first order
predicate complex fuzzy logic; Modus ponens as well as product necessitation, and
generalization are the rules of inference.

Complex Fuzzy Propositions and Inference Examples
Consider the following propositions:

1. P(x) ≡ “x is a destructive hurricane with high surge”
2. Q(x) ≡ “x is a destructive hurricane with fast moving center”

Let A be the term “destructive hurricane.” Let B be the term “high surge,” and
let C be the term “fast moving center.” Hence, P is of the form: “x is a A with B”
and Q is of the form “x is A with C” In this case, the terms “destructve hurricane,”
“high surge,” and “fast moving center,” are values assigned to the linguistic vari-
ables A,B,Cf g. Furthermore, the term “destructve hurricane” can get fuzzy truth
values (between 0 and 1) or fuzzy linguistic values such as: “catastriphic,” “dev-
astating,” and” disastrous.” Assume that the complex fuzzy interpretation (i.e., the
degree of confidence or complex fuzzy truth value) of P is pr + jpi, while the
complex fuzzy interpretation of Q is qr + jqi. Thus, the truth value of “x is a dev-
astating hurricane” is pR, the truth value of “x is in a high surge” is pi, the truth
value of “ x is a catastriphic huricane” is qr, and the truth value of “x is a fast
moving center” is qi, Suppose that the term “moderate” stands for “non –

destructive” which stands for “NOT destructive,” the term “low” stands for “NOT
high,”, and the term “slow” stands for “NOT fast.” In this context, NOT is inter-
preted as the fuzzy negation operation. Note that this is not the only way to define
these linguistic terms and it is used to exemplify the expressive power and the
inference power of the logic. Then, the complex fuzzy interpretation of the noted
composite propositions is:

(1) f ′P
� �

= ð1− prÞ+ jð1− pIÞ
That is, ′P denotes the proposition:
“x is a moderate hurricane with a low surge.” The confidence level in ′P is
ð1− prÞ+ jð1− piÞ; where the fuzzy truth value of the term “x is a non –

destructive hurricane,” is ð1− prÞ and the fuzzy truth value of the term “low
surge,” is ð1− piÞ.
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(2) ′P→ ′Q=minð1, qr − prÞ+ j×min 1, qi − pIð Þ
Thus, ′P→ ′Q

� �
denotes the proposition: If “x is a moderate hurricane with a

low surge”
THEN x is a moderate huricane with low moving center.” The truth values of
individual terms, as well as the truth value of ′P→ ′Q are calculated according
to Table 1.

(3) f P⊕′Q
� �

=maxðpr, 1− qrÞ+ j×maxðpi, 1− qiÞ.
That is, P⊕′Q

� �
denotes a proposition such as: “x is a destructive hurricane

with high surge” OR
“x is a moderate huricane with slow moving center” The truth values of
individual terms, as well as the truth value of P⊕′Q are calculated according to
Table 1.

(4) f ′P⊗Q
� �

=minð1− pr, qrÞ+ j×minð1− pi, qiÞ
That is, ′P⊗Q

� �
denotes the proposition “x is a moderate hurricane with low

surge” AND “x is a destructive huricane with fast moving center.”
The truth values of individual terms, as well as the truth value of ′P⊗Q are
calculated according to Table 1.

Complex Fuzzy Inference Example
Assume that the degree of confidence in the proposition R= ′P defined above is

rr + jri. Let S= ′Q and assume that the degree of confidence in the fuzzy impli-
cation T =R→ S is tr + jti. Then, using Modus ponens

R
R→ S
S

one can infer S with a degree of confidence min rr, trð Þ+ j×min ri, tið Þ.
In other words if one is using:
“x is a non – destructive hurricane with a low surge”
IF “x is a non – destructive hurricane with a low surge” THEN
“x is non – destructive huricane with slow moving center”
“x is non – destructive huricane with slow moving center.”

Hence, using Modus ponens one can infer:
“x is moderate hurricane with slow moving center.” with a degree of confidence

of min rr, trð Þ+ j×min ri, tið Þ.

3.4 Generalized Complex Fuzzy Class Theory
(Tamir et al. [10])

The axiomatic fuzzy logic can serve as a basis for formal FCT. Similarly, axiomatic
based complex fuzzy logic can serve as the basis for formal definition of complex
fuzzy classes. In this section we provide a formulation of complex fuzzy class
theory (CFCT) that is based on the logic theory presented in Sect. 3.3.
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The main components of FCT are:

(1) Variables

(a) Variables denoting objects (potentially complex objects)
(b) Variables denoting crisp sets, i.e. a universe of discourse and its subsets
(c) Variables denoting complex fuzzy classes of order 1
(d) Variables denoting complex fuzzy classes of order n, that is, complex

fuzzy classes of complex fuzzy classes of order n-1.

(2) The LΠ∀ CFL system along with its variables, connectives, predicates, and
axioms as defined in Sect. 3.3.

(3) Additional predicates

(a) A binary predicate ∈ x,Γð Þ denoting membership of objects in complex
fuzzy classes and/or in crisp sets

(4) Additional Axioms

(a) Instances of the comprehension schema (further explained below)

ð∃ΓÞΔð∀xÞðx∈Γ↔P xð ÞÞ ð7Þ

Where x is a complex fuzzy object, Γ is a complex fuzzy class, and PðÞ is
a complex fuzzy predicate.

(b) The axiom of extensionality

∀xð ÞΔ x∈Γ↔ x∈Ψð Þ→Γ=Ψ ð8Þ

Where, x is a complex fuzzy object, Γ is a complex fuzzy class, and PðÞ is a
complex fuzzy predicate.

Note that a grade of membership is not a part of the above specified terms; yet it
can be derived or defined using these terms.

The comprehension schema is used to “construct” classes. It has the basic form
of: ð∀xÞðx∈Γ↔P xð ÞÞ. Intuitively, this schema refers to the class Γ of all the
objects x that satisfy the predicate PðÞ. Instances of this schema have the generic
form:ð∃ΓÞð∀xÞðx∈Γ↔P xð ÞÞ. Associated with this schema are comprehension
terms of the form: ∈ fxjP xð Þ↔P yð Þg. The Δ operation introduced in Eq. 8 is used
to produce precise instances of the extensionality schema and ensure the conser-
vatism of comprehension terms.

Fixing a standard model over the CFCT enables the definition of commonly used
terms, set operations, and definitions, as well as proving CFCT theorems. Some of
these elements are listed here:

(1) The complex characteristic function χx∈Γ ≡ χΓ and the grade of membership
function μx∈Γ ≡ μΓ
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(2) Complex class constants, α-cuts, iterated complements, and primitive binary
operations, such as union, intersection etc. These operations are constructed
using the schema OP Γð Þ≡ fxjP x∈Γð Þg. Table 5 lists some of these elements.

(3) Uniform and supreme relations defined in ref. [8] enable the definition of fuzzy
class relations such as inclusion

(4) Theorems, primitive fuzzy class operations, and fuzzy class relations [8].

Following the axiomatically-based definition of grade of membership, Eqs. (9-
11) can be used as a basis for the definition of “membership grade based” com-
plement, union, and intersection.

Complex Fuzzy Classes and Connectives Examples
In order to provide a concrete example, we define the following complex fuzzy

classes using the comprehension schema. Let the universe of discourse be the set of
all the stocks that were available for trading on the opening of the New York stock
exchange (NYSE) market on January 5, 2015 along with a set of attributes related
to historical price performance of each of these stocks.

Consider the following complex propositions:
P(x) ≡ “x is a volatile stock in a strong portfolio”
Q(x) ≡ “x is a stock in a decline trend in a strong portfolio”

Then, the proposition: ð∃ΓÞΔð∀xÞðx∈Γ↔ P xð Þ⊗Q xð Þð Þ, where x is any member
of the universe of discourse, defines a complex fuzzy class Γ that can be “described”
as the class of “volatile stocks in a decline trend in strong portfolios.” On the other
hand, the proposition ð∃ΓÞΔð∀xÞðx∈Γ↔ ′P xð Þ∨Q xð Þ� �

, where x is any member of
the universe of discourse, defines a complex fuzzy class Γ that can be “described” as
the class of “non – volatile stocks in a decline trend in strong portfolios.”

3.5 Pure Complex Fuzzy Classes

Often it is useful to define complex fuzzy sets via membership functions rather than
through axioms. To this end, Tamir et al. have introduced the concept of pure
complex fuzzy sets [42]. This concept is reviewed in this section.

Table 5 Derived primitive class operations

Term Symbol P Comments

Empty complex class Θ 0
Universal complex class Φ 1
Strict complement \Γ ∼ ∼ stands for Gödel (G) negation
Complex class
intersection

∩ ⊕ ⊕ stands for a G, Ł, or Π conjunction T-norm

Complex class union ∪ ∨ ∨ stands for a G, Ł, or Π disjunction
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The Cartesian representation of the pure complex grade of membership is given
in the following way:

μ V , xð Þ= μr Vð Þ+ jμi zð Þ ð9Þ

Where μr Vð Þ and μi zð Þ, the real and imaginary components of the pure complex
fuzzy grade of membership, are real value fuzzy grades of membership. That is,
μr Vð Þ and μi zð Þ can get any value in the interval ½0, 1�. The polar representation of
the pure complex grade of membership is given by:

μ V , xð Þ= rðVÞejσϕðzÞ ð10Þ

Where r Vð Þ and ϕ zð Þ, the amplitude and phase components of the pure complex
fuzzy grade of membership, are real value fuzzy grades of membership. That is,
they can get any value in the interval ½0, 1�. The scaling factor σ is in the interval
ð0, 2π�. It is used to control the behavior of the phase within the unit circle
according to the specific application. Typical values of σ are f1, π

2 , π, 2πg.
The main difference between pure complex fuzzy grades of membership and the

complex fuzzy grade of membership proposed by Ramot et al. [33, 34] is that both
components of the membership grade are fuzzy functions that convey information
about a fuzzy set.

4 Recent Developments in the Theory and Applications
of CFL and CFS

In this section we review recent literature on complex fuzzy logic and complex
fuzzy sets. First we review papers that enhance the theoretical basis of CFL/CFS.
Next, we outline some of the recent reports on CFL/CFS related applications.

4.1 Advances in the Theoretical Foundations of CFL/CFS

Yager et al. have presented the idea of Pythagorean membership grades and the
related idea of Pythagorean fuzzy subsets [68]. They have focused on the negation
operation and its relationship to the Pythagorean Theorem. Additionally, they
examined the basic set operations for the case of Pythagorean fuzzy subsets. Yager
et al. further note that the idea of Pythagorean membership grades can provide an
interesting semantics for complex number-valued membership grades used in
complex fuzzy sets.

Greenfield et al. ([69]) have compared and contrasted the FCS formalism pro-
posed by Ramot et al. ([33]) as well as the “innovation of pure complex fuzzy sets,
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proposed by Tamir et al. ([42])” with type-2 fuzzy sets [30, 37]. They have con-
centrated on the rationales, applications, definitions, and structures of these con-
structs. In addition, they have compared pure complex fuzzy sets with type-2 fuzzy
sets in relation to inference operations. They have concluded that complex fuzzy
sets and type-2 fuzzy sets differ in their roles and applications. They have identified
similarities between pure complex fuzzy sets and type-2 fuzzy sets; but concluded
that type-2 fuzzy sets were isomorphic to pure complex fuzzy sets.

Apolloni et al. propose to define and manage a complex fuzzy set by computing
its membership function using a few variables quantized into a few elementary
granules and elementary functions connecting the variables [70].

Guosheng et al. have introduced three complex fuzzy reasoning schemes:
Principal Axis, Phase Parameters, and Concurrence Reasoning Scheme [49]. They
have demonstrated that a variety of conjunction operators and implication operators
can be selected to compose the corresponding instances of complex reasoning
schemes.

Guangquan et al. have investigated various operation properties of complex
fuzzy relations [71]. They have defined a distance measure for evaluating the
differences between the grades as well as the phases of two complex fuzzy relations.
Furthermore, they have used the distance measure to define δ-equalities of complex
fuzzy relations. Finally, they have examined fuzzy inference in the framework of δ-
equalities of complex fuzzy relations.

Tamir et al. have proposed a complex fuzzy logic (CFL) system that is based on
the extended Post multi-valued logic system (EPS) of order p>2, and have dem-
onstrated its utility for reasoning with fuzzy facts and rules. The advantage of this
formalism is that it is discrete. Hence, it better fits real time applications, digital
signal processing, and embedded systems that use integer processing units.

4.2 Applications of CFL/CFS

A group of researchers working along with Dick have developed the concept of
Adaptive Neuro Fuzzy Complex Inference System (ANCFIS) and explored related
applications by integrating complex fuzzy logic into Adaptive Neuro Fuzzy
Complex Inference System (ANFIS) [72].

Man et al. have extended the concept of ANFIS and introduced ACNFIS [73].
They have applied ANCFIS in time series forecasting. They compared ACNFIS to
three commonly cited time series datasets and demonstrated that ACNFIS was able
to accurately model relatively periodic data.

An extension of this work, including synthetic time series and several real-world
forecasting problems, is presented by Zhifei et al. [74]. They have found that
ANCFIS performs well on these problems and is also very parsimonious. Their
work demonstrates the utility of complex fuzzy logic on real-world problems.

Aghakhani et al. have developed an online learning algorithm for ACNFIS and
applied it to time series prediction [75]. Their experimental results show that the
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online technique is comparable to existing results, although slightly inferior to the
off-line ANCFIS results.

Yazdanbaksh et al. applied ANCFIS to the problem of short-term forecasts of
Photovoltaic power generation [76]. They compared ANFIS and radial basis
function networks against ANCFIS. Their experimental results have demonstrated
that the ANCFIS based approach was more accurate in predicting power output on
a simulated solar cell. Additionally, in a recent paper Yazdanbaksh et al. presented a
recommended approach to determining input windows that balances the accuracy
and computation time [77].

Another group that is active in exploring CFL/CFS applications is led by Li [14,
78]. Li et al. have proposed a novel complex neuro-fuzzy autoregressive integrated
moving average (ARIMA) computing approach and applied it to the problem of
time-series forecasting [79]. They have found that their new formalism, referred to
as CNFS-ARIMA, has excellent nonlinear mapping capability for time-series
forecasting.

Additionally, Li et al. have presented a neuro-fuzzy approach using complex
fuzzy sets (CNFS) for the problem of knowledge discovery [80]. They have devised
a hybrid learning algorithm to evolve the CNFS for modeling accuracy, combining
artificial bee colony algorithm and recursive least squares estimator method. They
have tested the CNFS based approach in knowledge discovery through experi-
mentation, and concluded that the proposed approach outperforms comparable
approaches.

Another application of CNFS presented by Li et al. is adaptive image noise
cancelling [81]. Two cases of image restoration have been used to test the proposed
approach and have shown a good restoration quality. Additionally, Li et al. have
presented a hybrid learning method that enables efficient and quick CNFS con-
vergence procedure and applied the hybrid learning based CNFS to the problem of
function approximation [14, 81]. They have concluded that the CNFS shows much
better performance than its traditional neuro-fuzzy counterpart and other compared
approaches.

Ma et al. applied complex fuzzy sets to the problem of multiple periodic factor
prediction (MPFP) [46]. They have developed a product-sum aggregation operator
(PSAO), which is a set of complex fuzzy sets. PSAO has been used to integrate
information with uncertainty and periodicity. Next, they have developed a
PSAO-based prediction (PSAOP) method to generate solutions for MPFP prob-
lems. The experimental results indicate that the proposed PSAOP method effec-
tively handles the uncertainty and periodicity in the information of multiple periodic
factors simultaneously and can generate accurate predictions for MPFP problems.

Tamir et al. have considered numerous applications of CFL [24, 36, 43, 66, 82,
83]. They have introduced several soft computing based methods and tools for
disaster mitigation [24] and epidemic crises prediction [83]. Additionally, they have
demonstrated the potential use of complex fuzzy graphs as well as incremental
fuzzy clustering in the context of complex and high order fuzzy logic systems.
Additionally, they have developed an axiomatic based framework for discrete
complex fuzzy logic and set theory [66].
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In [82] Tamir et al. have presented a complex fuzzy logic based inference system
used to account for the intricate relations between software engineering constraints
such as quality, software features, and development effort. The new model con-
centrates on the requirements specifications part of the software engineering pro-
cess. Moreover, the new model significantly improves the expressive power and
inference capability of the soft computing component in a soft computing based
quantitative software engineering paradigm.

5 Conclusion

We have reviewed the theoretical basis of complex fuzzy logic and complex fuzzy
sets and the current state of related applications. We have surveyed the research
related to the underlying theory as well as recent applications of the theory in
complex fuzzy based algorithms and complex fuzzy inference systems.

The concepts of complex fuzzy logic and complex fuzzy sets have undergone an
evolutionary process since they were first introduced [35]. The initial definitions
were practical but somewhat naïve and limited [33, 34, 65, 67]. The introduction of
axiomatically based approach ([10, 36, 43]) has enabled extending the concepts,
maintaining practicality, and providing a solid foundation for further theoretical
development. Several applications of the new theories have emerged; based on
recent reports this area of applications is gaining momentum.

There are numerous fields where fuzzy concepts interact in intricate ways, which
can be effectively captured by the semantics of FCL FCS, pure complex fuzzy
classes, and discrete signals. We plan to investigate some of these concepts in the
near future. Of particular interest are multimedia signals. Often, these signals are
represented using complex functions. On the other hand, due to noise, the pro-
cessing of such signals might require using complex fuzzy logic. We plan to assess
the utility of CFS, CFL, and complex fuzzy sets to the processing of signals in
certain noisy situations.
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