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Abstract Epidemical crisis prediction is one of the most challenging examples
of decision making with uncertain information. As in many other types of crises,
epidemic outbreaks may pose various degrees of surprise as well as various degrees
of “derivatives” of the surprise (i.e., the speed and acceleration of the surprise).
Often, crises such as epidemic outbreaks are accompanied by a secondary set of
crises, which might pose a more challenging prediction problem. One of the unique
features of epidemic crises is the amount of fuzzy data related to the outbreak that
spreads through numerous communication channels, including media and social
networks. Hence, the key for improving epidemic crises prediction capabilities is in
employing sound techniques for data collection, information processing, and decision
making under uncertainty and exploiting the modalities and media of the spread of the
fuzzy information related to the outbreak. Fuzzy logic-based techniques are some of
the most promising approaches for crisis management. Furthermore, complex fuzzy
graphs can be used to formalize the techniques and methods used for the data mining.
Another advantage of the fuzzy-based approach is that it enables keeping account of
events with perceived low possibility of occurrence via low fuzzy membership/truth-
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values and updating these values as information is accumulated or changed. In this
chapter we introduce several soft computing based methods and tools for epidemic
crises prediction. In addition to classical fuzzy techniques, the use of complex fuzzy
graphs as well as incremental fuzzy clustering in the context of complex and high
order fuzzy logic system is presented.

1 Introduction

In the context of this Chapter, the term epidemical (or epidemic) referrers to a disease
which spreads widely and attacks many persons at the same time. An epidemical
crisis is an epidemic that spreads very fast and affects numerous people in different
countries and continents. In this sense, the term epidemical crisis and pandemic are
almost synonyms.

Epidemical crisis prediction (ECP) is a special case of disaster prediction and
management (DPM). DPM is one of the most challenging examples of decision
making under uncertain information. One of the main issues related to ECP/DPM
is the amount of a priori information available, i.e., the amount of surprise affiliated
with the epidemical crisis as well as the risk and devastation that follow the crisis
outbreak. A closer look at these parameters shows that the velocity and acceleration
(and higher derivatives) of these parameters are highly important. Another important
aspect includes secondary adverse effects (i.e., secondary epidemical crises) that are
triggered by the initial disaster.

One of the main concerns about epidemical crises is the amount of surprise that
accompanies the outbreak. Emergencies may produce a wide range of surprise levels.
The terror attack of 9/11 is an example of a disaster with very high level of surprise.
On the other hand the landfall of a hurricane in Florida in the middle of a hurricane
season is not as surprising.

Even in the extreme cases where the nature of the disaster is known, preparedness
plans are in place, and analysis, evaluation, and simulations of the disaster manage-
ment procedures have been performed, the amount and magnitude of “surprises”
that accompany the real disaster pose an enormous demand. In the more severe
cases, where the entire disaster is an unpredicted event, the disaster management and
response system might fast run into a chaotic state. Hence, the key for improving
disaster preparedness and mitigation capabilities is in employing sound techniques
for data collection, information processing, and decision making under uncertainty.

Analysis of epidemical crises presents three types of challenges: the first is the
ability to predict the occurrence of epidemical crises, the second is the need to produce
a preparedness plan, and the third is the actual real time response activities related
to providing remedies for a currently occurring disaster.

As a special case of DPM, ECP is a highly challenging example of decision making
under uncertain information. Epidemical outbreaks might pose various degrees of
surprise as well as various degrees of the “derivatives” of the surprise. One of the
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unique features of epidemical crises is the amount of fuzzy data related to an outbreak
that spreads through numerous communication channels and social networks.

The key for improving epidemical crises prediction and management capabilities
is in employing sound techniques for data collection, information processing, and
decision making under uncertainty and in exploiting the modalities and media of
the spread of the fuzzy information related to the outbreak. Hence, fuzzy logic-
based techniques are some of the most promising approaches for crisis management.
Furthermore, complex fuzzy graphs can be used to formalize the techniques and
methods used for the data mining. Another advantage of the fuzzy-based approach is
that it enables keeping account of events with perceived low possibility of occurrence
via low fuzzy membership/truth-values and updating these values as information is
accumulated or changed.

In this chapter we introduce several soft computing based methods and tools
for epidemical crises prediction. In addition to classical fuzzy techniques, the use
of complex fuzzy graphs as well as incremental fuzzy clustering in the context of
complex and high order fuzzy logic systems is presented.

The rest of this chapter elaborates on some of the important aspects of ECP and
DPM, concentrating on the related uncertainty which can be addressed via fuzzy
logic-based tools as well as the geospatial-temporal analytics/Big Data aspects of
the problem. Section 2 provides the background, Sect. 3 provides an overview of
several fuzzy logic-based tools for ECP, and Sect. 4 concludes and proposes future
research.

2 Background

The topic of predicting epidemical crises falls under the more general subject of dis-
aster prediction management and mitigation (DPM). In this section, we discuss DPM
(Sect. 2.1) and elaborate on some of the distinguishing factors of ECP (Sect. 2.2). In
addition, we describe the geospatial-temporal analytics of the correlation of envi-
ronmental factors and incidence of disease and report on a set of tools and concept
demonstrations that show the solvability of Big Data problems involving geospatial
data correlated with publically available medical data.

Epidemical crises occur with different degrees of unpredictability and severity,
which are manifested in two main facets. First, the actual occurrence of the pandemics
might be difficult (potentially impossible) to predict. Second, regardless of the level
predictability of the crisis, it is very likely that it will be accompanied by secondary
effects. Hence, epidemical crises are a major source of “surprise” and uncertainty and
their mitigation and management require sound automatic and intelligent handling
of uncertainty.

Often, the stakeholders of ECP programs are classifying the unpredictability
of epidemical crises as two types of unknowns: unknown unknowns and known
unknowns. The first type of unknowns (unknown unknowns) is often referred to
by the metaphor of a black swan, coined by Taleb [30, 31], while the second type
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of unknowns (known unknowns) is referred to as a gray swan. Arguably, however,
there is no such animal as a black swan and every swan is a gray swan depending
on the amount of surprise it carries and the potential devastation associated with it.
In almost all the cases of epidemical crises recorded so far there was some a priori
information concerning the disaster yet this information was filtered, ignored, or just
did not pass a threshold of being classified as significant.

2.1 Severity and Predictability of Epidemical Crises

In his excellent books [30, 31], Nassim Nicholas Taleb describes the following
features of blackswan events:

1. The blackswan is an outlier; lying outside of the space of regular expectations.
2. It has very low predictability and it carries an extremely adverse impact.
3. The unknown component of the event is far more relevant than the known

component.
4. Finally, we can explain the event post factum and through those explanations

make it predictable in retrospect.

In this sense, the black swan represents a class of problems that can be referred
to as the “unknown unknowns.” However, a thorough investigation of many of the
events that are widely considered as black swans, e.g., the September 11, 2001 attack
in NYC, shows that there had been available information concerning the evolving
event; yet, this information did not affect the decision making and response prior to
the attack. Hence, the term “not connecting the dots” is often used to describe these
phenomena. This brings to the forefront the problem of predicting the occurrence
of epidemical crises. More important is the issue of identifying (and not ignoring)
anomalies.

This suggests that the term black swan is a bit too extreme and one should consider
using the term gray swan where the gray level relates to the level of surprise. A gray
swan represents an unlikely event that can be anticipated and carries an extremely
adverse impact. In this respect, gray swans represent a two dimensional spectrum
of information. The first dimension represents the predictability of the event where
black swans are highly unpredictable and white swans are the norm. The second
dimension represents the amount of adverse outcome embedded in the event; with
black swans representing the most adverse outcomes. Consequently, the black swan
is a special case of a gray swan.

To further elaborate, one type of unpredictability relates to a set of events that can
be considered as known unknowns. For example, a hurricane occurring in Florida
during the hurricane season should not surprise the responsible authorities. Moreover,
often, there is a span of a few days between the identification of the hurricane and the
actual landfall. Regardless, even a predictable hurricane landfall carries numerous
secondary disastrous events that are hard to predict.

We refer to these secondary events as second generation gray swans. Second
generation swans are generated and/or detected while the disaster is occuring. The
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collapse of the Twin Towers in 9/11 is an example of a second-generation gray
swan. A gray swan might (and according to the Murphy laws is likely to) spawn
additional gray swans. Generally, second generation swans evolve late and fast.
Hence, they introduce a more challenging detection problem and require specialized
identification tools, such as dynamic clustering. Detecting relatively slow evolving
[first generation] gray swans before the disaster occurs and relatively fast evolving
second generation gray swans requires an adequate set of uncertainty management
tools.

The following is a partial list of well-known gray swans, each of which has a
different degree of surprise as well as different degree of severity.

1. Philippines typhoon disaster
2. Bangladeshi factory collapse
3. Iceland volcano eruption
4. Fukushima—tsunami followed by nuclear radiation and risk of meltdown of

nuclear facilities in the area
5. HIV, HSV2, Swine, SARS, and West Nile Virus infection outbreaks
6. 9/11 NYC attack followed by the collapse of the Twin Towers
7. Financial Markets’ falls (1987, 2008), Madoff’s fraud
8. The 1998 fall and bailout of Long-Term Capital Management L.P. hedge fund
9. Yom Kippur War

10. December 7, 1941—Pearl Harbor
11. Assassinations of Lincoln, Kennedy, Sadat, and Rabin

Fuzzy logic is one of the suggested tools that can help create a better understand-
ing of ECP tools, including, but not limited to, intelligent robotics, learning and
reasoning, language analysis and understanding, and data mining. Hence, research
in fuzzy logic and uncertainty management is critical for producing a successful ECP
programs.

Recently, the academic community and government agencies have effected
spurring growth in the field of data mining in Big Data systems.These advances are
beginning to find their way into ECP programs and are redefining the way we address
potential disaster and mitigate the effects of epidemical crises. Nevertheless, acad-
emia, industry, and governments need to engage as a unified entity to advance new
technologies as well as apply established technologies in preparation and response
to the specific emerging problems of epidemical crises.

2.2 Epidemical Crises Information Spread

Predicting the epidemical outbreak is an important component of the management
and mitigation of a pandemic. It can enable early setup of a mitigation plan. Never-
theless, the fact that an epidemical crisis is somewhat predictable does not completely
reduce the amount of surprise that accompany the actual occurrence of the crisis.
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Hence, any mitigation plan, that is, a set of procedures compiled in order to address
the adverse effects of epidemical crises, should be flexible enough to handle addi-
tional surprises related to secondary adverse effects of the epidemical crisis. Finally,
the real time ramification program is the actual set of procedures enacted and exe-
cuted as the epidemical crisis occurs. There are two preconditions for successful
remedy of epidemical crisis affects. First, the authorities/leadership have to attempt
following the original mitigation plan as close as possible while instilling a sense of
trust and calmness in the people that experience the crisis and the mitigation provider
teams. Second, and as a part of their leadership traits, the authorities must possess
the ability to adapt their remedy procedures to the dynamics of the epidemical crisis,
potentially providing effective improvisations aimed at handling secondary disas-
trous events that evolve from the main disaster. A simple example for such events
is looting and violence that might accompany a major disaster. For this end, fast
automatic assessment of the dynamics is paramount.

One of the distinguishing features of pandemics’ outbreaks is the modalities of
sharing information in communication and social networks. Often, due to the panic
that accompanies outbreaks there is an explosion of data which is characterized by
large amount of information and high “velocity” and higher derivatives of velocity
of information spread. Using the current terminology to describe the phenomenon:
pandemic news are likely to become viral. Notably, many countries would try to
completely ban, control, or limit, the news spread. But experience show that these
attempts are not likely to be fruitful: citizens of these countries can still find numerous
ways to spread the information through social networks. Hence, data mining in
electronic versions of newspapers and related media as well as in social networks is an
important cyber warfare ammunition. In addition, it is well known (but not published)
that many national security agencies are digitizing “hard forms” of publicly available
information of other countries such as newspapers. These might be related to official,
semi-official, or private media-outlets. This media, however, is easier to control by a
country that is trying to conceal an epidemical outbreak. One interesting pattern in
this situation is the appearance of a few news reports at the beginning of the outbreak,
followed by acceleration in reports, followed by a complete seizure of these reports
due to a discovery of the news by the country’s leaders, followed by a complete ban
on this news.

Interestingly, there is another cyber source of information which relates to restric-
tions that a country might put on travelers entering the country. For example, during
the SARS pandemic several countries has required that people entering the country
would go through a fast automatic screening of body temperatures.

2.3 Geospatial-Temporal Analytics of Correlation
of Environmental Factors and Incidence of Disease

We have developed tools and concept demonstrations that show the solvability of
Big Data problems involving geospatial data correlated with publically available
medical data. We bring the Big Data approach to geospatial epidemiology, a field of
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study focused on describing and analyzing geographic variations of disease spread,
considering demographic, environmental, behavioral, socioeconomic, genetic, and
infectious risk factors [8]. Our work in this area assists the development of the
related field of personalized medicine by correlating clinical, genetic, environmental,
demographic, and other background geospatial data.

Our TerraFly GeoCloud [18] system combines several diverse technologies and
components in order to analyze and visualize geospatial data. In this system, a user can
upload a spatial dataset and display it using the TerraFly Map API [26]. Datasets can
be subsequently analyzed using various functions, such as Kriging, a geo-statistical
estimator for unobserved locations, and Spatial Clustering, which involves the group-
ing of closely related spatial objects. Various analysis functions related to spatial
epidemiology have been integrated into TerraFly GeoCloud. Analysis functions can
be used by selecting the appropriate dataset and function in the interface menu, along
with the variables to be analyzed. TerraFly GeoCloud then processes the data and
returns a result that can be visualized on the TerraFly Map or on a chart. Results
displayed on the map include a legend, which identifies certain range values by
color. Certain visualizations are interactive, allowing additional information to be
displayed.

Our Spatial Epidemiology System provides four kinds of API algorithms for
data analysis and results visualization, based on the TerraFly GeoCloud System:
(1) disease mapping (mortality/morbidity map, SMR map); (2) disease cluster deter-
mination (spatial cluster, HotSpot analysis tool, cluster and outlier analysis); (3)
geographic distribution measurement (mean central, median central, standard dis-
tance, distributional trends); and (4) regression (linear regression, spatial auto-
regression). The system is interfaced with our Health Informatics projects [4, 13,
25, 27–29, 40, 43].

We work on tools and methodologies that will assist in operational and analytical
Health Informatics. The TerraFly Geospatial Analytics System (http://terrafly.com)
demonstrates correlation of location to environment-related disorders, enabling clin-
icians to more readily identify macro-environmental exposure events that may alter
an individual’s health. It also enables applications in targeted vaccine and disease
management, including disease surveillance, vaccine evaluation and follow-up, intel-
ligent management of emerging diseases, cross-analysis of locations of patients and
health providers with demographic and economic factors, personalized medicine,
and other geospatial and data-intensive applications.

3 Tools for Predictions and Evaluations of Fuzzy Events

Fuzzy logic-based techniques are some of the most promising approaches for ECP.
The advantage of the fuzzy-based approach is that it enables keeping account on
events with perceived low possibility of occurrence via low fuzzy membership/truth-
values and updating these values as information is accumulated or changed. Numerous
fuzzy logic-based algorithms can be deployed in the data collection, accumulation,

http://terrafly.com
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and retention stage, in the information processing phase, and in the decision making
process. In this section we describe several possible fuzzy tools to try and predict
epidemical crises and cope with evolving epidemical crises via sound ECP programs.
We consider the following fuzzy logic-based tools:

1. Fuzzy switching mechanisms
2. Fuzzy expectation and variance
3. Fuzzy relational databases (FRDB), fuzzy data-mining and fuzzy social network

architectures (FSNA)
4. Neuro Fuzzy-based Logic, and Systems
5. Complex and multidimensional fuzzy Sets, Logic, and Systems
6. Complex fuzzy graphs
7. Dynamic and incremental fuzzy clustering

3.1 Making Decisions with no Data

As an example for this idea we use the fuzzy treatment of the transient behavior
of a switching system and its static hazards [12]. Perhaps the major reason for the
ineffectiveness of classical techniques in dealing with a static hazard and obtaining
a logical explanation of the existence of a static hazard lies in their failure to come to
grips with the issue of fuzziness. This is due to the fact that the hazardous variable
implies imprecision in the binary system, which does not stem from randomness
but from the lack of a sharp transition between members in the class of input states.
Intuitively, fuzziness is a type of imprecision that stems from a grouping of elements
into classes that do not have sharply defined boundaries—that is, where there is no
sharp transition from membership to non-membership. Thus, the transition of a state
has a fuzzy behavior during the transition time.

Any fuzzy-valued switching function can be expressed in disjunctive and con-
junctive normal forms, in a similar way to two-valued switching functions. A
fuzzy-valued switching function over n variables can be represented by a mapping
f : [0, 1]n → [0, 1] . We define a V-fuzzy function as a fuzzy function f (x) such
that f (ξ) is a binary function for every binary n-dimensional vector ξ . It is clear
that a V-fuzzy function f induces a binary function F such that F : [0, 1]n → [0, 1]
determined by F(ξ) = f (ξ) for every binary n-dimensional vector ξ .

If a V-fuzzy function f describes the complete behavior of a binary combinational
system, its steady-state behavior is represented by F , the binary function induced by
f . Let f (x) be an n-dimensional V-fuzzy function, and let ξ and ρ be adjacent binary
n-dimensional vectors. The vector T ρ

ξ j
is a static hazard of f iff f (ξ) = f (ρ) �=

f (T ρ
ξ j

).

If f (ξ) = f (ρ) = 1 then T ρ
ξ j

is a 1-hazard. If f (ξ) = f (ρ) = 0 then T ρ
ξ j

is a 0-hazard. If f is V-fuzzy and T ρ
ξ j

is a static hazard, then f (T ρ
ξ j

) has a perfect

fuzzy value, that is, f (T ρ
ξ j

) ∈ (0, 1). Consider the static hazard as a malfunction
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represented by an actual or potential deviation from the intended behavior of the
system. We can detect all static hazards of the V-fuzzy function f (x) by considering
the following extension of Shannon normal form. Let f (x̄), x̄ = (x1, x2, ..., xn), be
a fuzzy function and denote the vector

(x1, x2, x j−1, x j+1, ..., xn) by x j .

By successive applications of the rules of Fuzzy Algebra, the function f (x) may
be expanded about x j as follows:

f (x) = x j f1(x j ) + x̄ j f2(x j ) + x j x̄ j f3(x j ) + f4(x j ),

where f1, f2, f3, and f4 are fuzzy functions. It is clear that the same expansion holds
when the fuzzy functions are replaced by B-fuzzy functions of the same dimension.
Let ξ and ρ be two adjacent n-dimensional binary vectors that differ only in their
j th component. Treating ξ j as a perfect fuzzy variable during transition time implies
that T ρ

ξ j
is a 1-hazard of f iff f (ξ) = f (ρ) = 1 and f (T ρ

ξ j
) ∈ [0, 1). We show that

the above conditions for the vector T ρ
ξ j

to be 1-hazard, yielding the following result:

Theorem 1 ([12]): The vector T ρ
ξ j

is a 1-hazard of the B-fuzzy function f (x) given
above iff the binary vector ξ j is a solution of the following set of Boolean equations:

f1(x j ) = 1, f2(x j ) = 1, f4(x j ) = 0.

Proof

State 1: ξ j = 1 and ξ j = 0 imply f1(ξ
j ) + f4(ξ

j ) = 1.
State 2: ξ j = 0 and ξ j = 1 imply f2(ξ

j ) + f4(ξ
j ) = 1.

Transition state: ξ j ∈ (0, 1) [which implies ξ j ∈ (0, 1)], and thus:

0 ≤ max{min[ξ j , f1(ξ
j )], min[ξ j , f2(ξ

j )], min[ξ j , ξ , f3(ξ
j )], f4(ξ

j )} < 1.

It is clear from the transition state that f4(ξ j ) cannot be equal to one, and thus:

f4(ξ
j ) = 0, f1(ξ

j ) = f2(ξ
j ) = 1.

Several items must be pointed out. The system is not a fuzzy system. It is a
Boolean system. The modeling of the system as a fuzzy system is due to the lack
of knowledge regarding the behavior of x j during the transition. It is providing us
with a tool to make decisions (regarding the Boolean values of f1, f2 and f4) with
no data whatsoever regarding x j . Thus, we were able to make non-fuzzy decisions
in a deterministic environment with no data.
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3.2 Fuzzy Expectation and Variance

Ordinarily, imprecision and indeterminacy are considered to be statistical, random
characteristics and are taken into account by the methods of the Probability Theory.
In real situations, a frequent source of imprecision is not only the presence of random
variables, but the impossibility, in principle, of operating with exact data as a result of
the complexity of the system, or the imprecision of the constraints and objectives. At
the same time, classes of objects that do not have clear boundaries appear in the prob-
lems; the imprecision of such classes is expressed in the possibility that an element
not only belongs or does not belong to a certain class, but that intermediate grades
of membership are also possible. The membership grade is subjective; although it is
natural to assign a lower membership grade to an event that have a lower probability
of occurrence. The fact that the assignment of a membership function of a fuzzy set is
“non-statistical” does not mean that we cannot use probability distribution functions
in assigning membership functions. As a matter of fact, a careful examination of the
variables of fuzzy sets reveals that they may be classified into two types: statistical
and non-statistical.

Definition 1 ([12]): Let B be a Borel field (σ -algebra) of subsets of the real line �.
A set function µ(·) defined on B is called a fuzzy measure if it has the following
properties:

1. µ(Φ) = 0 (Φ is the empty set);
2. µ(�) = 1;
3. If α, β ∈ B and α ⊂ β then µ(α) ≤ µ(β);
4. If {α j | 1 ≤ j < ∞} is a monotonic sequence, then

lim
j→∞[µ(α j )] = µ[ lim

j→∞(α j )].

Clearly, Φ,� ∈ B; also, if {α j | 1 ≤ j < ∞, α j ∈ B} is a monotonic sequence
then lim

j→∞(α j ) ∈ B. In the above definition, (1) and (2) mean that the fuzzy measure is

bounded and nonnegative, (3) means monotonicity (in a similar way to finite additive
measures used in probability), and (4) means continuity. It should be noted that if
� is a finite set, then the continuity requirement can be deleted. (�, B,µ) is called
a fuzzy measure space; µ(·) is the fuzzy measure of (�, B). The fuzzy measure
µ is defined on subsets of the real line. Clearly, µ[χA ≥ T ] is a non-increasing,
real-valued function of T when χA is the membership function of set A. Throughout
our discussion, we use ξ T to represent {x | χA(x) ≥ T } and µ(ξ T ) to represent
µ[χA ≥ T ], assuming that the A set is well specified. Let χ A: � → [0, 1] and
ξ T = {x | χA(x) ≥ T }. The function χA is called a B-measurable function if
ξ T ∈ B,∀T ∈ [0, 1]. Definition 2 introduces the fuzzy expected value (F EV ) of
χA when χA ∈ [0, 1]. Extension of this definition when χA ∈ [a, b], a < b < ∞, is
presented in [12].
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Definition 2 ([12]): Let χA be a B-measurable function such that χA ∈ [0, 1]. The
fuzzy expected value (FEV ) of χA over a set A, with respect to the measure µ(·),
is defined as

(
sup

T ∈ [0, 1]
)

{min[T,µ(ξ T )]}, where ξ T = {x | χA(x) ≥ T }. Now,

µ{x | χA(x) ≥ T } = f A(T ) is a function of the threshold T . The actual calculation
of FEV(χA) then consists of finding the intersection of the curves T = f A(T ). The
intersection of the two curves will be at a value T = H , so that FEV(χA = H ∈
[0, 1]. It should be noted that when dealing with the FEV(η) where η ∈ [0, 1], we
should not use a fuzzy measure in the evaluation but rather a function of the fuzzy
measure, η′, which transforms η under the same transformation that χ and T undergo
to η and T ′, respectively. In general the FEV has the promise and the potential to be
used as a very powerful tool in developing ECP technologies.

3.3 Fuzzy Relational Databases and Fuzzy Social Network
Architecture

The FRDB model which is based on research in the fields of relational databases
and theories of fuzzy sets and possibility is designed to allow representation and
manipulation of imprecise information. Furthermore, the system provides means
for “individualization” of data to reflect the user’s perception of the data [42]. As
such, the FRDB model is suitable for use in fuzzy expert system and other fields of
imprecise information-processing that model human approximate reasoning such as
FSNA [15, 19].

The objective of the FRDB model is to provide the capability to handle imprecise
information. The FRDB should be able to retrieve information corresponding to
natural language statements as well as relations in FSNA. Although most of these
situations cannot be solved within the framework of classical database management
systems, they are illustrative of the types of problems that human beings are capable
of solving through the use of approximate reasoning. The FRDB model and the FSNA
model retrieve the desired information by applying the rules of fuzzy linguistics to
the fuzzy terms in the query.

The FRDB as well as the FSNA development [15, 19, 42] were influenced by the
need for easy-to-use systems with sound theoretical foundations as provided by the
relational database model and theories of fuzzy sets and possibility. They address
the following issues:

1. representation of imprecise information,
2. derivation of possibility/certainty measures of acceptance,
3. linguistic approximations of fuzzy terms in query languages,
4. development of fuzzy relational operators (IS, AS...AS, GREATER, ...),
5. processing of queries with fuzzy connectors and truth quantifiers,
6. null-value handling using the concept of the possibilities expected value,
7. modification of the fuzzy term definitions to suit the individual user.
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The FRDB and the FSNA are collections of fuzzy time-varying relations which
may be characterized by tables, graphs, or functions, and manipulated by recognition
(retrieval) algorithms or translation rules.

As an example, let us take a look at one of these relations, the similarity relation.
Let Di be a scalar domain, y ∈ Di . Then s(x, y) ∈ [0, 1] is a similarity relation with
the following properties: Reflexivity: s(x, x) = 1; Symmetry: s(x, y) = s(y, x);
Θ-transitivity: where Θ is most commonly specified as max-min transitivity. If,
y, z ∈ U , then s(x, z) ≥ max(y ∈ Di ) min(s(x, y), s(y, z)). Another example is
the proximity relation defined below. Let Di be a numerical domain and , y, z ∈ Di .
Here p(x, y) ∈ [0, 1] is a proximity relation that is reflexive, and symmetric with
transitivity of the form p(x, z) ≥ max(y ∈ Di )p(x, y) ∗ p(y, z).

The generally used form of the proximity relations is p(x, y) = e−β|x−y|, where
β > 0. This form assigns equal degrees of proximity to equally distant points. For
this reason, it is referred to as the absolute proximity in the FRDB and FSNA models.
Similarity and proximity are used in evaluation of queries of the general form: “Find
X such that X.A � d ” Where X.A is an attribute of X, d ∈ D is a value of attribute
A defined on the domain D, and � is a fuzzy relational operator. Clearly, both FRDS
and FSNA may have numerous applications in epidemical outbreak prediction.

In many ECP/DPM programs the amount of information is determined by the
amount of the uncertainty—or, more exactly, it is determined by the amount by
which the uncertainty has been reduced; that is, we can measure information as the
decrease of uncertainty. The concept of information itself has been implicit in many
ECP models. That is, both as a substantive concept important in its own right and as
a consonant concept that is ancillary to the entire structure of ECP.

3.4 Neuro-Fuzzy Systems

The term Neuro-Fuzzy systems refers to combinations of artificial neural networks
and Fuzzy logic. Neuro-Fuzzy systems enable modeling human reasoning via fuzzy
inference systems along with the modeling of human learning via the learning and
connectionist structure of neural networks. Neuro-Fuzzy systems can serve as highly
efficient mechanisms for inference and learning under uncertainty. Furthermore,
incremental learning techniques can enable observing outliers and the Fuzzy infer-
ence can allow these outliers to coexist (with low degrees of membership) with
“main-stream” data. As more information about the outliers becomes available, the
information, and the derivatives of the rate of information flow, can be used to iden-
tify potential epidemical crises that are hidden in the outliers. The classical model of
Neuro-Fuzzy systems can be extended to include multidimensional Fuzzy logic and
inference systems in numerical domains and in domains characterized by linguistic
variables.

Assuming that people form opinions that are fuzzy and that the information
exchange between people influences the opinion formation, the opinion formation
process is naturally modeled by structures such as fuzzy coupled map networks
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and fuzzy and neuro-fuzzy networks [35–39]. In these networks of information
aggregation and personal and collective opinion formation, interesting dynamic
processes that eventually produce self-organization in structured opinion groups is
developed [35, 39].

3.5 Complex Fuzzy Systems

Several aspects of the ECP program can utilize the concept of complex fuzzy logic
[7, 12, 14, 23, 24, 32–34, 41].

Complex fuzzy logic can be used to represent the two-dimensional information
embedded in the description of an epidemical crisis; namely, the severity and uncer-
tainty. In addition, inference based on complex fuzzy logic can be used to exploit
the fact that variables related to the uncertainty that is a part of epidemical crises are
multi-dimensional and cannot be readily defined via single dimensional clauses con-
nected by single dimensional connectives. Finally, the multi-dimensional fuzzy space
defined as a generalization of complex fuzzy logic can serve as a media for clustering
of epidemical crisis information in a linguistic variable-based feature space.

Tamir et al. introduced a new interpretation of complex fuzzy membership grade
and derived the concept of pure complex fuzzy classes [32]. This section introduces
the concept of a pure complex fuzzy grade of membership, the interpretation of this
concept as the denotation of a fuzzy class, and the basic operations on fuzzy classes.

To distinguish between classes, sets, and elements of a set we use the following
notation: a class is denoted by an upper case Greek letter, a set is denoted by an upper
case Latin letter, and a member of a set is denoted by a lower case Latin letter.

The Cartesian representation of the pure complex grade of membership is given
in the following way:

μ(V, z) = μr (V ) + jμi (z),

where μr (V ) and μi (z), the real and imaginary components of the pure complex
fuzzy grade of membership, are real value fuzzy grades of membership. That is,
μr (V ) and μi (z) can get any value in the interval [0, 1]. The polar representation of
the pure complex grade of membership is given by:

μ(V, x) = r(V )e jσφ(z),

where r(V ) and φ(z), the amplitude and phase components of the pure complex
fuzzy grade of membership, are real value fuzzy grades of membership. That is, they
can get any value in the interval [0, 1]. The scaling factor σ is in the interval [0, 2π ].
It is used to control the behavior of the phase within the unit circle according to the
specific application. Typical values of σ are {1, π

2 , π, 2π}. Without loss of generality,
for the rest of the discussion in this section we assume that σ = 2π .
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The difference between pure complex fuzzy grades of membership and the com-
plex fuzzy grade of membership proposed by Ramot et al. [23, 24] is that both
components of the membership grade are fuzzy functions that convey information
about a fuzzy set. This entails different interpretation of the concept as well as a dif-
ferent set of operations and a different set of results obtained when these operations
are applied to pure complex grades of membership. This is detailed in the following
sections.

3.5.1 Complex Fuzzy Class

A fuzzy class is a finite or infinite collection of objects and fuzzy sets that can be
defined in an unambiguous way and comply with the axioms of fuzzy sets given
by Tamir and Kandel [33] and the axioms of fuzzy classes given by [3, 6]. While a
general fuzzy class can contain individual objects as well as fuzzy sets, a pure fuzzy
class of order one can contain only fuzzy sets. In other words, individual objects
cannot be members of a pure fuzzy class of order one. A pure fuzzy class of order
M is a collection of pure fuzzy classes of order M − 1. We define a Complex Fuzzy
Class Γ to be a pure fuzzy class of order one, i.e., a fuzzy set of fuzzy sets. That is,
Γ = {Vi }∞i=1; or Γ = {Vi }N

i=1 where Vi is a fuzzy set and N is a finite integer. Note
that despite the fact that we use the notation Γ = {Vi }∞i=1 we do not imply that the
set of sets {Vi } is enumerable. The set of sets {Vi } can be finite, countably infinite,
or uncountably infinite. The use of the notation {Vi }∞i=1 is just for convenience.

The class Γ is defined over a universe of discourse U . It is characterized by a
pure complex membership function μΓ (V, z) that assigns a complex-valued grade
of membership in Γ to any element z ∈ U . The values that μΓ (V, z) may receive
lie within the unit square or the unit circle in the complex plane, and are in one of
the following forms:

μΓ (V, z) = μr (V ) + jμi (z),

μΓ (z, V ) = μr (z) + jμi (V ),

where μr (α) and μi (α), are real functions with a range of [0, 1].
Alternatively:

μΓ (V, z) = r(V )e jθφ(z),

μΓ (z, V ) = r(z)e jθφ(v),

where r(α) and and φ(α), are real functions with a range of [0, 1] and θ ∈ (0, 2π ].
In order to provide a concrete example we define the following pure fuzzy class.

Let the universe of discourse be the set of all the pandemics that hit the U.S. (in any
time in the past) along with a set of attributes related to the pandemic, such as spread
mechanism, speed of spread, symptoms, etc. Let Mi denote the set of pandemics that
hit the U.S. in the last i years. Furthermore, consider a function ( f1) that associates
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a number between 0 and 1 with each set of pandemics. For example, this function
might reflect the severity of the pandemics in terms risk to affected people. In addition,
consider a second function ( f2) that associates a number between 0 and 1 with each
specific epidemic. For example, this function might denote the incubation time of
the relevant micro-organisms. The functions ( f1, f2) can be used to define a pure
fuzzy class of order One. A compound of the two functions in the form of a complex
number can represent the degree of membership in the pure fuzzy class of “high risk
pandemics”in the set of pandemics that have occurred in the last 10 years.

Formally, let U be a universe of discourse and let 2U be the powerset of U . Let
f1 be a function from 2U to [0, 1] and let f2 be a function that maps elements of U
to the interval [0, 1]. For V ∈ 2U and z ∈ U define μΓ (V, z) to be:

μΓ (V, z) = μr (V ) + jμi (z) = f1(V ) + j f2(z)

Then, μΓ (V, z) defines a pure fuzzy class of order one, where for every V ∈ 2U ,
and for every z ∈ U, μΓ (V, z), is the degree of membership of z in V and the degree
of membership of V in Γ . Hence, a complex fuzzy class Γ can be represented as the
set of ordered triples: Γ = {V, z, μΓ (V, z) | V ∈ 2U , z ∈ U }

Depending on the form of μΓ (α) (Cartesian or polar), μr (α), ìi (α), r(α), and
φ(α) denote the degree of membership of z in V and/or the degree of membership of
V in Γ Without loss of generality, however, we assume that μr (α) and r(α) denote
the degree of membership of V in Γ for the Cartesian and the polar representa-
tions respectively. In addition, we assume that μi (α) and φ(α) denote the degree of
membership of z in V for the Cartesian and the polar representations respectively.
Throughout this chapter, the term complex fuzzy class refers to a pure fuzzy class
with pure complex-valued membership function, while the term fuzzy class refers to
a traditional fuzzy class such as the one defined by [3].

Degree of Membership of Order N

The traditional fuzzy grade of membership is a scalar that defines a fuzzy set. It
can be considered as degree of membership of order 1. The pure complex degree of
membership defined in this chapter is a complex number that defines a pure fuzzy
class. That is, a fuzzy set of fuzzy sets. This degree of membership can be considered
as degree of membership of order 2 and the class defined can be considered as a pure
fuzzy class of order 1. Additionally, one can consider the definition of a fuzzy set
(a class of order 0) as a mapping into a one-dimensional space and the definition of
a pure fuzzy class (a class of order 1) as a mapping into a two-dimensional space.
Hence, it is possible to consider a degree of membership of order N as well as a
mapping into an N -dimensional space. The following is a recursive definition of a
fuzzy class of order. Note that part 2 of the definition is not really necessary, it is
given in order to connect the terms pure complex fuzzy grade of membership and
the term grade of membership of order 2.
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Definition 3 ([32]):

(1) A fuzzy class of order 0 is a fuzzy set; it is characterized by a degree of mem-
bership of order 1 and a mapping into a one dimensional space.

(2) A fuzzy class of order 1 is a set of fuzzy sets. It is characterized by a pure
complex degree of membership. Alternatively, it can be characterized by a degree
of membership of order Two and a mapping into a two-dimensional space.

(3) A fuzzy class of order N is a fuzzy set of fuzzy classes of order N − 1; it is
characterized by a degree of membership of order N + 1 and a mapping into an
(N + 1)-dimensional space.

Generalized Complex Fuzzy Logic

A general form of a complex fuzzy proposition is: “x ...A...B...” where A and B are
values assigned to linguistic variables and ‘...’ denotes natural language constants.
A complex fuzzy proposition P can get any pair of truth values from the Cartesian
interval [0, 1]×[0, 1] or the unit circle. Formally a fuzzy interpretation of a complex
fuzzy proposition P is an assignment of fuzzy truth value of the form pr + j pi ,
or of the form r(p)e jθ(p), to P . In this case, assuming a proposition of the form
“x ...A...B...,” then pr (r(p)) is assigned to the term A and pi (θ(p)) is assigned to
the term B.

For example, under one interpretation, the complex fuzzy truth value associated
with the complex proposition:

x is a young person that lives close to the north pole of jupiter

can be 0.1 + j0.5. Alternatively, in another context, the same proposition can be
interpreted as having the complex truth value 0.3e j0.2. As in the case of traditional
propositional fuzzy logic, we use the tight relation between complex fuzzy classes /
complex fuzzy membership to determine the interpretation of connectives. For exam-
ple, let C denote the complex fuzzy set of “young people that live close to the north
pole of jupiter,” and let fc = cr + jci , be a specific fuzzy membership function of
C , then fc can be used as the basis for interpretations of P . Next we define several
connectives along with their interpretation.

Table 1 includes a specific definition of connectives along with their interpretation.
In this table, P, Q and S denote complex fuzzy propositions and fS denotes the
complex fuzzy interpretation of S. We use the fuzzy Łukasiewicz logical system as

Table 1 Basic propositional fuzzy logic connectives

Operation Interpretation

Negation f (′ P) = 1 + j1 − f (P)

Disjunction f (P ⊕ Q) = max(pR, qR) + j × max(p1, q1)

Conjunction f (P ⊗ Q) = min(pR, qR) + j × min(p1, q1)

Implication f (P −→ Q) = min(1, 1 − pR + qR) + j × min(1, 1 − p1 + q1)
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the basis for the definitions [5, 9]. Hence, the max t-norm is used for conjunction
and the min t-conorm is used for disjunction. Nevertheless, other logical systems,
such as Gödel fuzzy systems, can be used [5, 20].

The axioms used for fuzzy logic are used for complex fuzzy logic, and Modus
ponens is the rule of inference.

Complex Fuzzy Propositions and Connectives Examples

Consider the following propositions(P, Q, and S respectively):
P: “x is a young person that lives close to the north pole of Jupiter”.
Q: “x has elevated body temperature with a severe headach”.
S: “x is closely monitored due to high risk of acquiring the pandemic”.

Let A be the term “young person,” and let B denote the term “close to the
north pole of Jupiter.” Furthermore, let C be the term “elevated body temperature,”
(alternatively, the term “high fever” can be used) and let D denote the term “severe
headache” Hence, P is of the form: “x is a A that B,” and Q is of the form “ x is C
with D.” In this case, the terms “young person,” “ close to the north pole of Jupiter,”
“high fever,” and “severe headache” are values assigned to linguistic variables. Fur-
thermore, a term such as “headache,” can get fuzzy truth values (between 0 and 1)
or fuzzy linguistic values such as “minor,” “mild,” and “severe,” (the terms “that,”
and “with,” are linguistic constants). Assume that the complex fuzzy interpretation
(i.e., degree of confidence or complex fuzzy truth value) of P is pr + j pi , while
the complex fuzzy interpretation of Q is qr + jqi . Thus, the truth value of “x is a
young person,” is pR , and the truth value assigned to “x lives close to the north pole
of Jupiter,” is pi . The truth value of “x has high fever.” is qr , and the truth value of
“x has a severe headach,” is qi , Suppose that the term “old” stands for “not young,”
the term “far,” stands for “not close,” the term “low,” stands for “not high,” and the
term “no headache” denotes the negation of “severe headache.” In a similar way,
S is of the form: “x is E due to F,” where the complex fuzzy interpretation of S is
sr + jsi . Note that this is not the only way to define these linguistic terms and it is
used to exemplify the expressive power and the inference power of the logic. Then,
the complex fuzzy interpretation of the following composite propositions is:

(1) f (′ P) = (1 − pr ) + j (1 − pI )

That is, ′ P denotes the proposition
“x is an old person that lives close to the north pole of Jupiter”.
The confidence level in ′ P is (1 − pr ) + j (1 − pi ); where the fuzzy truth value
of the term “x is an old person,” is (1 − pr ) and the fuzzy truth value of the term
“...lives far ...,” is (1 − pi )

(2) f (P ⊕ ′Q) = max(pr , 1 − qr ) + j × max(pi , 1 − qi ).

That is, (P ⊕ ′Q) denotes the proposition
“x is a young person that lives close to the north pole of Jupiter”. OR
“x has low fever and no headach”. The truth values of individual terms, as well
as the truth value of P ⊕ ′Q are calculated according to Table 1.
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(3) f (′ P ⊕ Q) = min(1 − pr , qr ) + j × min(1 − pi , qi ).

That is, (′ P ⊕ Q) denotes the proposition
“x is an old person that lives far from the north pole of Jupiter”. AND
“x has high fever and severe headach”. The truth values of individual terms, as
well as the truth value of ′ P ⊕ Q are calculated according to Table 1.

(4) Let the term R stand for (P ⊕ Q), (the complex fuzzy interpretation of R is
rr + jri .) then, R −→ S = min (1, 1 − rr + sr ) + j×min (1, 1 − ri + sr )

Thus, (R −→ S) denotes the proposition
IF “x is a young person that lives close to the north pole of Jupiter”. AND
“x has high fever and severe headach”.
THEN
“x is closely monitored due to high risk of acquiring the pandemic disease”. The
truth values of individual terms, as well as the truth value of are calculated according
to Table 1.

Complex Fuzzy Inference Example

Assume that the degree of confidence in the proposition R defined above is rr + jri ,
and assume that the degree of confidence in the fuzzy implication T = R −→ S is
tr + j ti . Then, using Modus ponens

R

R −→ S

S

one can infer S with a degree of confidence min(rr , tr ) + j × min(ri , ti ).
In other words if one is using:
“x is a young person that lives close to the north pole of Jupiter”
AND “x has high fever and severe headach”.
IF
“x is a young person that lives close to the north pole of Jupiter”
AND “x has high fever and severe headach”.
THEN
“x is closely monitored due to high risk of acquiring the pandemic”.
“x is closely monitored due to high risk of acquiring the pandemic”.
Hence, using Modus ponens one can infer:
“x is closely monitored due to high risk of acquiring the pandemic disease”. with a
degree of confidence of min(rr , tr ) + j × min(ri , ti ) .

3.6 Fuzzy Graph Theory

Graph theory and in specific fuzzy graph theory can be used for deriving algorithms
for early identification of pandemic outbreaks. In this section we provide the basic
definitions and list some of the relevant algorithms. A literature search performed
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has revealed inconsistencies in the definitions. For this reason, we review some of
the definitions of non-fuzzy graphs and provide a detailed and precise definition of
the basic terms related to fuzzy graphs.

3.6.1 Non-fuzzy Graphs

A directed graph G is a tuple of the form G = (V, E, ϕ), where V is a set referred
to as the set of vertices. E is a set of edges, and ϕ is a function ϕ: E → V × V ,
such that for every e ∈ E, ϕ(e) = (u, v) , where u ∈ V and v ∈ V . We assume that
V ∩ E = ∅ and in general, we use the form e = (a, b) to denote a specific edge that
is “said” to connect the vertices a and b. For an undirected graph, both e1 = (u, v)
and e2 = (v,u) are in the domain/range of ϕ. A relation E ⊆ V × V can be used
as an implicit definition of an undirected graph with a set of vertices V and a set of
edges E . A weighted graph G is a quintuple G = (V, E, ϕ, w1, w2), where V, E ,
and ϕ are defined before and w1 : V → R; w2 : E → R; are functions thatmap
vertices and or edges to the set of real numbers R (it is possible but less common to
assign complex weights to vertices and edges).

We list some of the important terms and algorithms related to non-fuzzy graphs.
These terms and algorithms can be found in numerous textbooks [2]. The funda-
mental terms related to graphs are the order of the graph, the order of a vertex, and
the connectedness of the graph. Other fundamental terms related to graphs are com-
plete graphs, planner graphs and simple graphs, sub-graphs, spanning sub-graphs,
cliques, paths, cycles, tours, connectivity, Euler tours, Euler cycles, Hamiltonian
tours, Hamiltonian cycles, forests, and trees. The fundamental algorithms applied to
weighted graphs are: (1) finding the shortest path between vertices, (2) finding the
minimum spanning tree, (3) identifying maximal cliques, (4) finding the minimal
Euler tour/cycle and (5) finding the minimal Hamiltonian tour/cycle. In this context,
short, max and min might relate to the number of vertices/edges or the sum of weights
of the relevant vertices/edges.

3.6.2 Fuzzy Graphs

A fuzzy directed graph G is a quadruple of the form Ĝ = (V̂ , σ, Ê, ϕ), where
V̂ is a set referred to as the set of vertices and Ê ⊆ V̂ × V̂ is a set of edges,
σ : V̂ → [0, 1] is a mapping (function) from V̂ to [0, 1] ( i.e., σ is the assignment
of degrees of membership to members of V̂ ), and ϕ: Ê → [0, 1] is a function that
maps elements of the form e ∈ Ê = (u, v), to [0, 1] (i.e., ϕ is the assignment of
degrees of membership to members of Ê), where u ∈ V̂ and v ∈ V̂ . We assume
that V̂ ∩ Ê = ∅ and in general, we use the form e = (a, b) to denote a specific
edge that is “said” to connect the vertices a and b. For an undirected graph, both
e1 = (u, v) and e2 = (v,u) are in the domain of ϕ. A weighted fuzzy graph G is an
sextuple Ĝ = (V̂ , σ, w1 Ê, ϕ, w2), where V̂ , E, σ , and ϕ are as defined previously,
w1: V̂ → R; and w2: Ê → R are functions that map vertices and or edges to the
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set of real numbers R (it is possible but less common to assign complex weights to
vertices and edges).

Following these definitions, a fuzzy graph is a special case of a non-fuzzy weighted
graph. Hence, many of the algorithms applied to weighted graphs might be of interest
when fuzzy graph and their semantics are considered. Moreover, without loss of
generality, we can assume that weights represented by real numbers are normalized
to the range of [0, 1]. In this case the vertices and/or the edges can be represented
via a complex number representing the degree of membership of the vertex/edge in
the graph. Clearly, a non-weighted fuzzy graph is a special case of a “regular” fuzzy
graph. Fuzzy graphs were used in neuro-fuzzy models of information propagation
and aggregation, including opinion formation [37, 39]. In the next section we provide
important definitions related to complex fuzzy graphs.

3.6.3 Complex Fuzzy Graphs

A complex fuzzy directed graph G̃ is a quadruple of the form G̃ = (Ṽ , σ, Ẽ, ϕ),
where Ṽ is a complex fuzzy set referred to as the set of vertices and Ẽ ⊆ Ṽ × Ṽ
is a complex fuzzy set of edges, σ : Ṽ → [0, 1] × [0, 1] is a mapping from Ṽ to
[0, 1] × [0, 1] (i.e., σ is the assignment of a complex degrees of membership to
members of Ṽ ), and ϕ: Ẽ → [0, 1] × [0, 1] is a function that maps elements of
the form e ∈ Ẽ = (u, v), to [0, 1] × [0, 1] (i.e., ϕ is the assignment of complex
degrees of membership to members of Ẽ), where u ∈ Ṽ and v ∈ Ṽ . We assume
that Ṽ ∩ Ẽ = ∅ and in general, we use the form e = (a, b) to denote a specific
edge that is “said” to connect the vertices a and b. For an undirected graph, both
e1 = (u, v) and e2 = (v,u) are in the domain of ϕ. Note that the use of complex
fuzzy logic is a very strong “tool” that enables dealing with the edges/vertices as
carrying complex fuzzy membership values. Hence, it enables exploiting the features
of complex fuzzy set theory, complex fuzzy set theory, and complex fuzzy inference.
In general, one can use the two components of the complex number assigned to
vertices/edges as denoting complex fuzzy information. Alternatively one can use on
of the two components as a real fuzzy value and the second component as a weight.
To illustrate we provide the following example.

Complex Fuzzy Graph Example

Consider a pandemic that adversely affects “young” people that live in the “north”
part of Jupiter. The main initial symptoms of the pandemic disease are: (1) “high”
fever, (2) “severe” headaches. Many of the affected people are starting to post status
and queries to a social network. While they do not clearly disclose infection, their
status/queries might be indicative of a pandemic outbreak. Furthermore, assume
that Bob, who is 27 years old and lives “close” to the north pole of Jupiter, sends a
“Twitter�” type of message to Alice, who is 57 years old and lives in the same area.
The message reads “Staying home today.” Alice responds with “What’s wrong?”
Bob response is “I have a headache and a bit of fever”. Figure 1 depicts some of this
information in a complex fuzzy graph.
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A B

Fig. 1 A complex fuzzy graph representing pandemic related communication

In this graph the vertex ‘B’ represents Bob along with its degree of membership in
a complex fuzzy class. The vertex ‘A’ represents the same for Alice and the directed
edge from Bob to Alice represents the part of the communication between Bob and
Alice where Bob reveals his membership in yet another complex fuzzy class. This
type of graphs can be used to represent information, actions, and inference.

3.6.4 Complex Fuzzy Graphs’ Features and Algorithms

The order of a complex fuzzy graph G̃ is the cardinality of Ṽ (denoted as |Ṽ |). The
order of a vertex in G̃ is the number of edges incident to the vertex. Other terms
related to complex fuzzy graphs are complete graphs, planner graphs and simple
graphs, sub graphs, spanning sub-graphs, cliques, paths, cycles, tours, Euler tours,
Euler cycles, Hamiltonian tours, Hamiltonian cycles, forests, and trees. The funda-
mental algorithms applied to complex fuzzy graphs are: (1) finding the shortest path
between vertices, (2) finding the minimum spanning tree, (3) identifying maximal
cliques, (4) finding the minimal Euler tour/cycle, and (5) finding the minimal Hamil-
tonian tour/cycle. In this context, short, max and min, might relate to the number of
vertices/edges or the sum of weights of the relevant vertices/edges. These terms and
algorithms are derived from their definitions in the context of non-fuzzy graphs [2]
and fuzzy graphs [22]. We are currently working on the extension of these algorithms
to complex fuzzy graphs. One interesting and relevant example is finding the maxi-
mal complex fuzzy clique in a complex fuzzy graph. In this example, we expand the
work reported in [22] and use a neuro-fuzzy system as a “tool” for addressing the
problem.

3.7 Dynamic and Incremental Fuzzy Clustering

Clustering is a widely used mechanism for pattern recognition and classification.
Fuzzy clustering (e.g., the Fuzzy C-means) enables patterns to become members
of more than one cluster. Additionally, it enables maintaining clusters that rep-
resent outliers through low degree of membership. These clusters would be dis-
carded in clustering of hard (vs. Fuzzy) data. Incremental and dynamic clustering
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(e.g., the incremental Fuzzy ISODATA) enable the clusters’ structures to change as
information is accumulated. Again, this is a strong mechanism for enabling identifi-
cation of unlikely events without premature discarding of these events. The clustering
can be performed in a traditional feature space composed of numerical measurements
of feature values. Alternatively, the clustering can be performed in a multidimensional
Fuzzy logic space where the features represent values of linguistic variables The com-
bination of powerful classification capability, adaptive and dynamic mechanisms, as
well as the capability to consider uncertain data, maintain data with low likelihood
of occurrence, and use a combination of numerical and linguistic values makes this
tool, one of the most promising tools for predicting epidemical crisis outbreaks. We
currently conduct research on dynamic and incremental fuzzy clustering and it is evi-
dent that the methodology can serve as a highly efficient tool for identifying outliers.
We plan to report on this research in the near future.

4 Conclusion

In this chapter, we have outlined features of epidemical crises outbreaks. We have
shown that an important challenge related to an epidemical crisis is the identification
of slow-evolving uncertain events that points to the potential of occurrence of the
crisis before it occurs and of fast-evolving data concerning the secondary effect of
epidemical crises after the occurrence of primary crisis. We have outlined a set of
fuzzy logic-based tools that can be used to address these and other challenges related
to ECP.

Recent epidemical crises are showing that there is still a lack of technology-based
tools, particularly specific decision-support tools, for addressing epidemical crises,
mitigating their adverse impact, and managing crisis response programs.Additional
activities that will assist in ECP programs include [17]:

1. Accelerated delivery of technical capabilities for ECP
2. Preparation for an uncertain future
3. Development of world-class science, technology, engineering and mathematics

(STEM) capabilities

On top of these important tasks, one should never forget that in the development
of ECP programs we do not have the luxury of neglecting human intelligence [16].
In any fuzzy event related to a gray swan, investigation after the fact reveals enough
clear data points which had been read correctly but had not been treated properly.

In the future, we intend to investigate the ECP utility of several additional fuzzy
logic-based tools including:

1. Value-at-Risk (VaR) under fuzzy uncertainty
2. Non-cooperative fuzzy games
3. Fuzzy logic-driven web crawlers and web-bots
4. Fuzzy Expert Systems and Fuzzy Dynamic Forecasting
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Finally, we plan to expand our research on complex fuzzy graphs and their
applications, complex fuzzy logic-based neuro-fuzzy systems, and research on incre-
mental and dynamic fuzzy clustering. These research threads are expected to provide
significant advancement to our capability to identify and neutralize (as much as pos-
sible) primary and secondary adverse effects of epidemical crises.
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