
..

~I

o-1 Edited by N. Rishe, S. Navathe, and D. Tal

A postconference publication based upon the
proceedings of PARBASE-90, held in
Miami Beach, Florida. on March 6- 9, 1990

·~ ., ' . ':..- ~ -- . - _....___ ·~ -... - ·- - -

·~ IEEE Computer Soc1ety Press + The Institu te of Electrical and Electronics Eng1neers. Inc

Parallel Architectures
Edited by N. Rishe, S. Navathe, and D. Tal

A postconlerence publication based on
the proceedings of PARBASE-90, held 1n

Miami Beach, Florida, March 6-9, 1990

Sponsored by . .
Florida International Umvers1ty .

in cooperation with IEEE and Eurom1cro

1951-1991

'm)
IEEE Computer Soci~ty ~ress

Los Alamitos, California

Washington • Brussels • Tokyo

..

Parallel Merging on Shared and Distributed Memory Com te
P.J. Varnum, B.R. Iyer, and D.J. Haderle pu rs · · · · · · 231

The Extended G-Network, A Fault-Tolerant lnterconnecti
Network for the Multiprocessors . . . on

J . Wu and E.B. Fernandez · · · · · · · · · · · · · · · · · · . .. 250

Performanc~ Anal~sis of a Cache-Coherent Multiprocessor
Based on Hierarchical Multiple Buses .

Q. Yang · · · · · · · · · · · · · · ·260

D~sign and ~~ysis of Multiple-Bus Arbiters with
Different Pnonty Schemes

Q. Yang and R. Rqja · 276

Author Index
........... 296

viii

~~--------------

ON PARALLEL ARCHITECTURES

Doron Tal*, Naphtali Rishe*, Sham Navathe**, and Scott Graham*

*School of Computer Science
Florida International University

University Park. Miami , FL 33199
Telephone: (305) 348-2025. 348-2744

FAX : (305)-348-3549; E-mail: rishen@fiu.edu

**College of Computing
Georgia Institute of Technology

Atlanta. Georgia 30332

Abstract

This paper discusses parallel computer system composed of rightly coupled pro
cessors rhar ca11 coordi11are ro accomplish a cot~currmr solurio11 of a commo11
rask. Secrio11 2 presems parameters rhar are frequemly used ro classify parallel
computer architectures. We nl.w de[111r the cnt~crpt of gra11ulnriry a11d dismss
irs effect 011 parallel computer architectures. Usi11g Flynn's classification, Sec
lion 3 presents those archiucwres rhar follow SIMD (Single l11srrucrion Multi
ple Data) pri11ciples. 111 Section 4 we preu111 MIMD (Multiple lrrsrrucrion Mul
tiple Data) architecture types.

About the authors

Doron Tal is Assistant Professor of Computer Science at the Florida International Universi ty.
His Ph.D. is from the Ben Gourion University. Tal's expertise is in parallel architectures.

Naphtali Rishe is Associate Professor of Computer Science at the Florida International Univer
sity. His Ph.D. is from Tel Aviv University. Rishe's expertise is in databases: design. semantic
modeling. implementation, languages. parallel architectures.

Sham kant Navathe is Professor at U1e College of Computing. Georgia Institute of Teclmology.
Atlanta. His expertise is in database conversion. logical database design. database modeling.
distributed database allocation, and database integration. Navathe"s Ph.D. is from the Univer
sity of Michigan.

Scott Gral1am is a Ph.D. student in Computer Science at the Florida International University.

This research has been supJx•ncd 111 pan by a grant from the Florida High Technology and Indus·
try Council

0-8186-9166-2191 /0000/0001$01 .00 ri:l 1991 IEEE

2 Parallel Architectures

1. Introduction

Parallel computer architectures arc currenUy an area of intense research activity. This is evident
by the wide variety of new computer architectures thai have been introduced in U1e last decade.

There has always been a need fur fas t. high perfonuance machines. In fact. in many applica
tions such as weather forecasting. fluid dynamics. simulations. and anificial intelligence. U1e
demand for high performance has always exceeded the current capability. One computer perfor
mance measurement can be described as a two dimensional graph where the switching device's
speed is plollcd along one axis and the amount of parallelism is plolled on U1e other one. Since
U1e switching speed is limited (the propagation speed can not be faster than U1e speed of light).
parallelism is len as a major hope for computational speedup.

In the course of computer history. many diverse research areas have been characterized as paral
lel computation. Fony years ago. ariUm1etic operations which processed words instead of bits
were U10ught of as parallel computations. More recenUy. low-level parallel mechanisms
[Duncan-901 have been introduced to auempt 10 make the processor execute the current instruc
tion fa~ler. Examples of this work include: overlapping processor work with auxiliary proces
sors (1/0. tenninal display. communications. etc.); providing concurrent execution of some
arithmetic and logic operations by using several independent functional units; using multipro
gramming and time sharing IO provide a higher degree of resource sharing; and minimizing U1e
transition to the next instruction by using instruction pipelining. Such a pipeline can be
described as a flow line of stations that operate simultaneously. where each station always per
fonns U1e same function (such as decode. fetch. etc.) on the stream of instructions that passes
U1rough the station. This is also called instruction lookahead. Most of U1esc speedup eiTons
revolve around making the conventional von Neumaru1 machine work more eniciently by con
tinually attacking the bolllenecks inherent in the von Neumann architecture. Almost all contem
porary commercial machines arc equipped with the features listed above. but arc still considered
In he sequential machines.

Currently. U1c tcnn parallel computation is associated with new architectures such as pipelined
computers. array processors. and multiprocessor systems. It is evident that there is no univer
sally accepted dichotomy between parallel computer systems and the conventional computer
systems. which we would like lo exclude from our definition. We deline a pamllel computer
system as one composed of tightly coupled processors t11at can coordinate to accomplish tl1c
concurrent solution of a common task. Distributed computing systems arc excluded from Utis
definition since the processors arc loosely coupled. Distributed systems typically have diiTcrcnl
problems U1an those of parallel systems. since each of U1e processors is autonomous and may
refuse a request for service. All of U1c extended uniprocessor machines arc also excluded from
our definition. ll1is rcpon is devoted to a survey of parallel computer architectures which fit our
delinition.

2. Architecture Classification

Most sequential machines "fit" into a clearly delined architectural model or paradigm: a com
bination of U1e proverbial von Neumann machine with the more recent additions of vinual
memory. direct access media. interrupt structures. concurrent 1/0. and so forth . Unfonunately
this is not so for parallel machines. whose developments have taken either no clear direction. or
many diiTcrent directions (e.g. pipclining [Ramamoonhy-771. connection machine [Hillis-85).
systolic arrays [Kung-821. array processors [Padegs-88). data flow machines [Dc1mis-80.
Arvind-84. Trcleaven-82). etc.). We need a detailed classification scheme which will

D. Tal, N. Rishe, S. Navathe, and S. Graham

characterize all computer architectures. In the literature we can find several classification
schemes !Hayes-88. llwang-841. However. Flynn's classification fFlynn-66.Flynn:72l lS the
most widely used . Flynn's taxonomy fHwang-841 is based on the mulupllCity of mstructlon
streams and data streams. The following four categones arc g1ven:

1. Single lnstmctirm Sin!ilr Data (SIS D) computer organization (Figure 2.1 (a)). Thi s is the
classical uniprocessor architectural paradigm. It may incl.ude parallel mechan1sms (e.g.
pipelining, overlapped CPU and 1/0 operations). though 11 IS excluded from our dehmuon

2.

of parallel computer architectures.
IS

Figure 2.1 (a) SISD Organization

Single Instruction Multiple Data (SIMD) computer organization (Fig.urc 2.1 (b)). Each
processor executes u1e same instruction simultaneously on 1ts o--:n d11Terent set of data .
Typically. multiple processors (or processing clements) ar~ s~perv1scd by a common con
trol unit. An interconnection network allows the tranSmiSSIOn of operands between tl1e

processors.

DS
Prl

LJS

Memory

Modules

DS
L---+1 Pm t+---+1

IS

Figure 2.1 (b) SIMD Organi1.ation

3

3. Multiple lnstructian Single Data (MISD) computer organization (Figure 2.1 (c)). TI1is or
ganization involves several processors. each of which is controlled by a separate control
unit. The processors concurrently execute different instrucllo~s on a smgle stream of data.
This structure has never been implemented and IS cons1dercd 1mpracucal.

4 Parallel Architectures

4.

DS

IS

IS

Memory

Modules

IS

DS

Figure 2.1 (c) MISO Organization

Multiple Instruction Multiple Data (MIMD) . .
the MIMO computer organization several computc~ orgamzatJon (Figure 2. 1 (d)). In
structions on diverse data Th'ts o' . . processors stmultaneously execute different in-
f · rgamzat10n also mclud d' 'b

I all the data strcan1s arc derived 1 es tstn utcd computer systems
. au onomously from disio· t ·
sets of shared memories), then we actuall 1 . ' 111 memones (or diSJOIIlt sub
pic SISDs). y lave mdepcndent umprocessor systems (multi -

·~-----------------

D. Tal, N. Rishe, S. Navatlze, and S. Graham 5

OS IS

OS IS

Memory

Modules

IS

Figure 2.1 (d) MIMO Organization

It is quite interesting that any SIMO computer system can emulate a MIMO system by execut
ing an interpreter and vice versa . Both SIMO and MIMO computer organizations constitute t11c
type of parallel architectures t11at we arc interested in.

The above discussion is too general and may not reveal t11c wealth and variety of parallel archi
tectures that arc currenUy available. Therefore. we employ one more parameter: granularity.
When speaking about concurrency in parallel computer systems. one should carefully distin
guish between the different granularity levels at which the concurrency is implemented [Tabak-
90] . Granularity is discussed in the next sub-section.

This discussion is incomplete without mentioning some ot11er parameters U1at arc frequently
employed to classify par.Uiel architectures.

I. Synchronous ~·s. asynchronous operation. Synchronous parallel architectures coordinate
t11cir concurrent operations in lockstep. whereas asynchronous architectures do not. Usu
ally, the syn~hmnil~Uion is implemented U>ing a global clock or a common control unit.
Synchronous parallel architectures arc easier to program and to control because the pro
grammer is not responsible for coordination. However, Utis is achieved at t11c price of
some inflexibility and overhead. The slowest operation dctcm1ines the duration of an
operation cycle. SIMO machines arc typicall y synchronous.

2. Frng's c/a.\',llfin mon (degree ol paralkli>m). The number of bits that can he pruccsscd
within a unit of time. is the degree of maximum parallelism [Hwang-84, Bacr-80. Feng-
77]. For example. a computer system U1at consists of M processors each with a bit lcngU1
of N can process M•N bits concurrently.

3. llandler's classificarion. Wolfgang Handler ha~ proposed a classification scheme ba~ed
on six independent parameters {llwang-84, Bacr-80. Handlcr-771 : (a) the number of

6 Parallel Architectures

processors; (b) the number of ALUs (or processing clements) under !he control of a pro
cessor; (c) the word length; (d) the number of pipeline stages in each ALU; (c) U1e number
of ALUs that can be pipeli ned; (f) the number of processors that can be pipelined.

2.1. Granularity of Parallelism

1llc parallel computation of a problem is done by partitioning the problem into sub-problems.
each of which is perfonned separately. Granularity is defined as the "size·· of a piece of code
obtained by partitioning a problem. The granularity of parallelism varies greatly. At one
extreme is the coarsest grain, the conventional von Neumann machines which arc multipro
cessed in a way such that each processor runs only its own processes. These processors may be
symmetric (wi th each one running the same types of processes) or asymmetric (e.g. one may run
a device handler only and reside in the device controller). As we move to finer-grained parallel
ism. we get multiple processors operati ng on the same process or pieces of a process. The
smaller U1csc pieces. the finer the granularity. The smallest possible pieces of a process arc its
primitive instructions. so at the smallest level of granularity we assign a processor to each
instruction. As the granularity gets finer. some classical sequential algorithms become dis
placed by linear or near linear ones (e.g. those for systolic sorting or matrix multiplication).

Tile partitioning of a problem with running time T into N sub-problems (each running on a
separate processor) docs not always reduce the running time to T/N. Usually. as N becomes
larger. the utilization rat io geL~ smalle r. We arc generall y confronted wiU1 the fo llowing prob
le ms as we introduce finer and fir!Cr granularity solutions to concurrency;

1. Data dependency. Not all sub-problems (processes) can be running at the san1c time
because of data dependency. As granularity becomes finer. data dependency usually
becomes more of a problem.

2. lmerprocess commwrication. The need for more processes to communicate increases an
already crowded communication bandwidth and may lead to new bottlenecks. At the
finest grain, each instruction execution is involved with receiving input operands and pro·
ducing a result operand which usually has to be sent to one or more processors.

3.

4.

5.

Processor allocation. Processor allocation and dcallocation algorithms arc required. As
granularity becomes finer. each processor's computation thread becomes shorter. Hence.
the allocation overhead becomes more critical.

Concurrency exploitation. Programs must be rewritten or rearranged to reveal and exploit
maximum concurrency during execution.

Races a11d comemion. Since several processors have to share resources. synchronization
schemes such as semaphores or message based primitives may be required .

6. 110. Even if we achieve a massive degree of parallelism, we sti ll have to handle the 1/0
bottleneck. Traditional l/0 structures arc sequential and can not keep pace with the pro·
ccssors · perfom1ancc.

TI!esc problems give rise to two questions. Is it cost-effective to have all of U1at parallel and
possibly redundant computing hardware waiting around in abeyance so that maximum con
currency wi ll be achieved whenever possible? What is the best granularity and architectural
approach for maximizing computing speed and cost effectiveness?

D. Tal, N. Rishe, S. Navathe, and S. Graham

TI!C number and the diversity of the existing architectural concepts shows that the answers for

these questions have not yet been dctcm1ined.

3. SIMD Architectures

3.1. Pipeline Architectures

TI!C name pipeline stems from an analogy with a typical industry assembly lin~ in w~ch the
work to be done is broken into small pieces which arc perfonned m an overlapprng fash.ion . A
part of U1c work is done at each station and a final result is obtained only after an item has
passed through the entire pipeline. Since the pipeline stages must work together to process and
forw ard data, they arc triggered synchronously. The time required to perfom1 one stage of the
pipeline is called U1c stage cycle. Thc lengU1 of a pipeline 's stage cycle is detcnnined by its
slowest stage. If the pipeline is saturated. the execution time is not a function of the total pro

cessing time. but rather one of the stage cycle .

Pipelines arc classified into two primary categories: arithmetic pipeline~ and instmction pipe ·
lines. Arithmetic pipelines arc used to implement complex anthrnctrc operatrons such as
noating-point or vector operations. Ins tructi on pipelining refers to panitioning instructions into
several parts which c;m each be executed in an overlapped fashron wrth parts of other rnstruc
tions . Simple fonns of boU1 categories can be fou nd in almost any convcnuonal computer.

An example of a typical instruction pipeline and its execution timing diagram is shown in Fig·
urc 3. 1. 111e pipeline timing of Figure 3. 1.b is characteristi c of assembly lines. Theoreticall y.
in a pipeline like that shown in Figure 3. 1. the instruction cycle can be reduced to ~nc: fourth of
U1c original one . However. such a speedup may not be achieved due to any combrnatron of the
following difficulties: conditional branches. intcmrpts. structural hazards (ovc rla~d cxccutron
of all possible instruction combinations may not be supponed by the hardware). lrmrtauon on

instruction fetch rate . and data dependency.

Of'ERASIJS ~ EX[(1JJ10N ~
FElt"! liNG

(a) Instruction pipeline execution.

7

8 Parallel Architectures

FACILITY

EX I I I 2 I 3 4

or I I
I
I 2

I :4 I 3

ID I I :2 : 3 :4 I

IF I 2 I 3 I 4 I '---'-----'.-..._____.__ _____ TIME

(b) Space-l ime diagram.

Figure 3. 1. Linear instruction pipeline.

Vector pipelines fall into U1c category of SIMD machines. Vector pipelines arc charactcrhcd by
high level operations which operate on one-dimensional vectors of data. The addition of two
vectors is an example of such an operation. This kind of vector operat ion is equivalent to an
entire loop of scalar operations. Currently, two primary types of vector pipelines exist: register
IO register vector pipelines where all vector operations (excluding store and load operations) arc
performed among registers, and memory lo memory vector pipelines where special memory
buffers arc used instead of registers 10 hold the vector operands. Examples uf U1c register to
register type include the CRA Y - I [Russell-78). U1c CRA Y -2 [CRA Y-85] , and the Fujitsu VP-
200 [Lubeck-85]. The CDC's machines arc examples of the memory to memory type.

3.2. Array Processor Architectures

An array processor is a regularly connected array of processing clcmcnL~ . l11c processors
operate simultaneousl y ami synchronously under the control of one central unit. A typical array
processor is shown in Figure 3.2. Generally speaking. an array processor may also have a
slightly diiTcrcnt configuration where U1c individual processors access U1c memory modules
through an alignn1cnt nclwoiX. The control unit broadcasts a single instruction to be executed
by each of the processing clements on its own data stream . Each processing clement can per
fomlthe instruction slightly differently or can skip the instruction. Usually.the array processor
is allachcd to a host computer U1rough the control unit. Such array processors arc suitable for
solving very structured problems involved with vector computations. In order to take full
advantage of the parallelism embedded in the architecture, the programmer must be aware of U1e
computer's architecture while designing a progran1 's algoriUun and while allocating the
program's data. l11crcforc. such arrays arc most often used in scient i fic and special applica
tions.

·---------------------------

D . Tal, N. Rislre, S. Navatlre, a11d S. Graham

I Conlml Unit I

~ ~-··· ~ LM LM

I lntcrconncclion NctwoiX I
Figure 3.2. Array Processor.

The ILLIAC IV (Bamcs-681 is an example of a typical array processor. It has a central control
unit and 64 processing clements. Ead1 of the processing clements has six registers and a local
memory for the siUragc of distributed data. Essential ly. each processing clcmcnl is an ariUl
mctic logic unit.

3.3. Fine Grained Array Processo rs

A particularly interesting extension lo array processors rcsulicd in the connection machine
[Hilli s-85. Hillis-87[. l11c connection machine is a fine-grained machine which consists of tens
of thousands of simple processing clements. Each of the processing clements has a small local
memory and a one hil wide arithmetic logic unit. The array processor is connected to a typical
super-mini von Neumann machine front-end which originates U1c instructions IO be executed by
U1e connection machine's processing clcmcnls. Sixteen processors arc connected in a grid. l l1c
processor groups arc interconnected in the pallcm of a Boolean n-cube. As in a convenlional
SIMD machine, an instruction is broadcast to all U1c processing clements via an instructi on bus.
Conccplually, the connection machine designers made further steps toward the implementation
of a general purpose machine by introducing the vi rtual processor concept and a general purpose
communication system. The wmmunicalion system allows any processor to communicate " iU1
any other processor using a send instruction which passes a message to U1c other processor 's
local memory. The virtuali1.a1ion is implemented using a controller that interposes itself
between U1c front end (host) machine and the array processor. l11e virtualization concept makes
the efficient execution of an arbitrari ly sized program feasible and allows the number of proces
sors in the system to he expanded. <No mailer how many phrsical prnccssor.; we have. U1cre i'
always an algoriUm1 that will need more processors.) The connection machine is scalable:
more physical processors can be added without having to change the program . The connection
machine works cmcicnUy for massive data parallelism applications. llowcvcr, if the algorithm
is characterized by many scalar operations (control parallelism) U1e perfom1ancc may converge

to that of a SISD machine.

9

10 Parallel Archicectures

3.4. Associative Array Processors

Some of the SlMD array processors (e.g. PEPE (Crane-72], STARAN [Batcher-741) have been
built around associative memories. and arc called associative array processors . Associative
memory is in a sense an active memory, since its storage cells are provided with special logical
capabilities. Simple logic and arithmetic operations can be performed in the memory cells
themselves, allowing parallel searches and comparisons to be made. "The pieces of data stored
in an associative memory are accessed by their contents instead of by their addresses. The
characteristics of associativity and parallel processing allow associative array processors to
access a large amount of information very quickly. They are considered effective in several
applications in the area of information processing, in particular those applications involved with
massive se~hes of very large databases. In addition, they can be used in applications such as
weather forecasting computation and signal processing.

Associative processors can be classified into four categories [Hayncs-82] : fully parallel, bit
serial . word serial. and block oriented. Tite first category is characterized by having a logical
unit in each memory cell which allows for full parallelism capability. This approach is simple.
attractive and allows the highest performance. However. its implementation is very expensive
and is impractical for large memories. In bit serial processors, a memory operation is applied
on one bit column across a large number of words. Each bit column is selected by a special
control unit and will be used in subsequent operations. Word serial processors implement a
search loop in hardware. Block oriented processors are a hybrid st ructure of the first two
categories and provide a trade ofT between the high cost of the fully parallel associative processor
and the relatively slow operation of U1c bit serial associative processor.

3.5. Systolic Arrays

Systolic arrays have characteristics of both S!MD and M!MD architecture types. However, we
choose to describe systolic arrays here in order to highlight their synchronous operation. which
usually charactcri7.cs SIMD machines. Wavefront arrays [Kung-87] were stimulated by systolic
array research and are a special case of systolic arrays where asynchronous operation has been
favored. Systolic architectures arc typically large, regular arrays of s imple processors. These
processors operate in parallel. passing data between themselves continuously and synchronously
in a fixed, regular pattern. TI1e most striking aspect of the systolic concept is its alternative to
the von Neumann approach of instruction execution. As illustrated in Figure 3.3.a [Kung-82].
using the von Neumann approach the instruction is fetched from memory and decoded. the
operands are fetched , and an execution takes place yielding an operand which will be stored in
memory again. In Ute systolic approach (Figure 3.3.b) data is pumped steadily through the array
of cells wiUtout any memory reference. Planar systolic arrays with 11

2 processors can often
implement 0 (11 3) algorithms in 0(11) time . The device clliciency is bounded below by a con
stant that is independent of n : U1e array makes maximally c!licient usc of each processor up to a
constant factor. lt is able to do tltis because tl1e now of data through the intercormcction net
work is fixed. so there is no control overhead and optimized since very few processors ever idly
wait for operands. Systolic arrays arc generally hard-coded. but it is possible to program them
on the fly. Systolic arrays arc widely used as optimal solutions to many practical computational
problems such as signal processing and matrix computation [Moore-87]. The technology favors
U1c use of a few simple identical processing clements intercormccted in a regular pattern yield
ing a short communication path and an economical VLSI design and implementation.
Advances in YLSI technology have made it possible to locate U1cse processors in physical

·--------------------------------~
D. Tal, N. Ris/ze, S. Navache, and S. Graham

proximity. eliminating significant inter-chip delays. H must be pointed out that systolic arrays
have some weaknesses, such as their inellicient handlmg of complex data structures and non
scalar operands, and the limitation that only a narrow set of problems can be mapped onto a par

ticular systolic array.

a. b.

Figure 3.3. a. Titc von Neumaru1 approach. b. The systolic approach.

4. MIJ\10 Architectures

4.1. Multiprocessor Architectures

II

A multiprocessor compute r is defined as one which employs at least two independent processors
which operate under a combined control and which share memory modulcs.VO chan~ds. and
an interconnection network. TI1c intcrcormcction network has a cructal role m dctcrmm~ng U1c
multiprocessor computer's perfom1ancc. We usc the interconnection network to classtfy the
multiprocessor into Uucc main categories: time shared busses. crossbar swttch systems. and

multistage networks.

Bus oriented systems contain one or more busses which cormcct all the processors and memo':
modules. The simplest and lca.~ t expensive is a single-bus system. It IS totally pass1ve and IS

scalable. Components (processors and memory modules) can easily be add':d to or removed
from u1e bus. Since all the functional units share a common bus. a mcchan1sm ?1ust be pro
vided to resolve bus contention. Among the methods used to resolve bus contention arc stauc
and fixed priorities. FIFO (First In First Out) queues. daisy chaining. and centralized _bus con
trollers. Unfortunately , U1e single bus sutrers from two primary drawbacks: the contenllon prob
lem degrades system perfonnancc and may lead to a bottleneck. and a bus fa1lure would be
catastrophic to the system. Examples of a single common bus system an: t11c IBM Stretch.

Univac Larc. CDC 6600. etc. [Enslow-77]

Multibus systems overcome U1esc drawbacks. Tite bus is no longer the single_ critical com
ponent. The contention problem is relieved because more Utan one mtercormccuon can be set
up at a time. Multibus systems do have their own set of prob~ems .. The syste~ complexity IS

increased because extra logic is needed and because the mult1bus mtcrconnecuon sub:system
becomes an active device . Multiport capability is also required for all of the system s com
ponents. The 1108 Uni vac [Enslow-77 (is an example of a multipart. multibus system .

12 Parallel Architectures

1lle crossbar switch is the oplimal solution for the contention problem. In a crossbar switch
system, all the components an: physically interconnected via crosspoint switches. Provided that
no two accesses involve the same component. the contention problem is completely alleviated.
1lle crossbar system is charactcri1.cd by si mple protocols and high hardware complexity. This
system is the antithesis of the single common bus approach. The crossbar switch is impractical
for a large number of components. If a system contains N components, it needs 2N crossbar
switch units. The Alliant multiprocessor system [AUiant-88] uses a crossbar switch between its
processors and the cache memory •nouulcs.

A multistage networic is a general representation for switching nctworics. In order to understand
the net wort's operation we must first introduce U1e principles of a simple crossbar switch. TI1e
crossbar switch is the basic clement of any multistage networic. Figure 4.1 shows all of Ux: pos
sible interconnections of a 2x2 swi tch. If both inputs require a connection to the san1c output.
U1cn one request has to he uelaycd or rcjc<:tcd . In such a switch. the perfom•an<:c is limited by
the switch setup time. The perfom1ancc can be improved by using a buffer.

c c
00 01

II ~ 01 11 ~ 01

12 02 12 02

Straight Lower Broadcast

c c
10 11

11 ~ 01 II =8= 01

12 02 12 02

Upper Broadcast Exchange

Figure 4 . 1. A 2x2 swi tch and all of its possible interconnections

A switching network that connects N inputs to M outputs is called an NxM switching network.
It is composed of one or more stages of switching elements. Figure 4.2 [Haycs-88] shows an
exan1ple of a U1rce stage 8x8 switching nctworic. One of the basic requirements for a multistage
nctworic is U1e full access property: each pmccssor can be interconnected to any other processor.
1lle network shown in Fi j!urc 4.2 has that property. A nctworic which allows for the

D. Tal, N . Rishe, S . Navathe, and S . Graham

interconnection of any processor pair that is not currently interconnected without resetting the
nctworic is called a non-blocking nctworic. The switching networic shown in Figure 4.2 is a
blocking network which can lead to communication delays. Among the popular interconnec
tions in multistage nctwo!Xs arc Banyan [Gokc-73] and shuffle [Sicgcl-85].

One of the most common methods of implementing parallelism is through the usc of a multipro
cessor architecture. These architectu res are the traditional design for parallel computers which
arc based on scvcrdl coordinated von Neumann processors, each of which handles a portion of a
problem. This approach entails memory access connicts and high hardware and software over
head for processor synchronization and allocation.

10

II

12

13

14

15

16

17

Figure 4.2. Three stage switching nctworic.

4.2. Data Flow Architectures

00

01

0 2

03

04

05

06

07

Tix: data now model is a radical change and an alternative to the classical sequential instruction
execution in the von Ncwnann approach. In the data How model all the instructions are con
sidered as independent entities which can each be executed as an independent concurrent action
whenever each instruction has its input data. The data now model of computation is based on
two principles:

13

14

I.

Parallel Archirecrures

A>)'nchrolly. All operations arc cxc~ulctl when and only when the required oper.mds arc
available.

2. Functio11aliry. All operations arc functions : there arc no side effects.

The lirst principle provides for an execution mechanism in which data values pass through data
now graphs as tokens and in which an nrcration is triggered whenever all of the required input
tokens arc present at a node in Ute graph. The second principle implies that any enabled opera
tions can be executed in any order or concurrently.

y y
before after

Figure 4.3. Data now principles .

Titc data now principles arc illu>tratcd in Figure 4 .3. Large circles represent instructions,
arrows represent arcs between instructions. and black circles represent data tokens. For an
instruct ion to be enabled. tokens must be present at each input arc. Any enabled operato r can be
lired by removing one input token from each input arc, applying the specified function to Ute
data. and placing the tokens labeled with the resulting value on the output arcs.

Figure 4.4 shows an example data flow graph which implements the computation of
Z=(X+ Y)•(X- Y). In Utis example, one computation by the graph can produce a value on arc Z,
while a new computation on new values on arcs X and Y is ready to begin in a pipeline fashion .

D . Tal, N. Rishe, S . Navathe, and S. Graham

X

z

y

Figure 4.4 . A data now graph which implements Lhc computation of Z=(X+ YJ•(X- Y)

11tc data now concept is very attractive because control is distributed out to Ute level of opera
tions on scalar operands and parallelism in execution flows naturally as operands become avail
able, thus following an algorithm's natural paralleli sm. Unfortunately, some problems have
plagued the data now concept since its inception:

I. A method to control and support a large amount of interproccssor communication is
needed.

2. The handling of arrays, data structures. and large static data bases. is often inemcient.
especially in ring architectures.

3. The law or granularity lurthcr impacts an already crowded communication band" idUt.

4. Tite absence of explicit storage imposes serious overttead problems such as U1e need to cir-
cul ate storage constants and literals.

5. Operand accumulation causes storage and retrieval congestion.

6. Tite data -driven philosophy prevents look ahead and ins truction overlap parallelism.

7. A process' data now graph representation is limited to Ute size of Ute physical program
storage.

5. Summary

We have shown a large number of different parallel architccturd.l solutions. Many of these solu
tions arc dimcull to compare because of Uteir differences in granularity. algorithmic approach .
hardware implementations. and applicability in different problem situations. Howeve r. this dis
cussion has tried to cover most ol Ute existing architectural concepts and to explain how Utey

15

16 Parallel Architectures

wo r1c . In the following chapters we find novel proposals for parallel architecture paradigms.
We hope that t11e review that has been conducted here will help the reader examine these propo
sals in a clearer light.

Rererences

(Alliant-88] Alliant FX!Series Product Summary, Alliant Computer Systems Cor., 1988.

(Arvind-84] Arvind, D. E. Culler, "Why Dataflow Architectures", The 4th Jerusalem Confer-
ence on Information Technology, pp. 27-32. 1984.

(Baer-801 J. L. llaer. Compurer System Archirecrure, Computer Science Press. Rockville. MD.
1980.

(Bames-68] G.H. Barnes, R.M. Brown. M. Kato, D.J. Kuck, D.L. Slotnick, and R.A.
Stokes, "The llliac IV Computer" , IEEE Transactions on Computers, Vol. C-17, No.8,
pp. 746-757, 1968.

(Batcher-74(K.E. Satcher. "'STARAN Parallel Processor System Hardware", Proceedings
AFIPS 1974 Nationl11 Compurer Conference, ,Vol. 43, AFIPS Press, Montvale, N.J ., pp.
17-22, 1974.

[Crane-72] B.A. Crane, M.J. Gilmartin, J.H. Huttenho!T and R.R. Shively, "PEPE Computer
ArchiteEture", IEEE COMPCON, pp. 57-60, 1972.

[CRA Y -85] CRAY-2 Compurer System Functional Description, Publication HR-2000, Cray
Research, Inc., Mendota Heights. MN, 1985.

(Dennis-SO] J. B. Dennis. "Data Row Supercomputer", IEEE Computer, Vol. 13, No. II , pp.
48-56, 1980.

[Duncan-90] R. Duncan, "A Survey of Parallel Computer Architectures", IEEE Computer,
Vol. 23. No. 2, pp. 5-16, 1990.

(Enslow-77] P.H. Enslow JR. " Multiprocessor Organization- A Survey", Computing Surveys,
Vol. 9, No. I, pp. 103- 130, 1977.

[Feng-77) T. Feng, " An Overview of Parallel Processors and Processing··, Computing Surveys,
Vol. 9. No. I, pp. 1-2, 1977.

[Aynn-66] M . J. Aynn, "Very High Speed Computing Systems", Proceedings, IEEE, Vol.
54. No. 12. pp. 1901-1909. 1966

(Aynn-72 1 M. J. Aynn. "Some Computer Organizations and Their Effectiveness", IEEE
Transactions on Computers, Vol. C-2 1, No. 9. pp. 948-960, 1972.

[Goke-73] R. Goke and G.J . Lipovski, "Banyan Networks for partitioning on Multiprocessor
Systems'', Proceedings of th e first Annual Symposium on Computer Architecture, pp. 2 1-
30, 1973.

(Handler-77) W. Handler, "The Impact of Classification Schemes on Computer Architecture",
Proceedings. Int. Conference on Parallel Processing, pp. 7-15, 1977.

[Hayes-88) J . P. Hayes. Computer Architecture and Organization, 2nd. ed. , McGraw-Hill , NY,
1988.

D. Tal, N. Rishe, S. Navathe, and S. Graham

(Haynes-82) L.S. llaynes, R.L. Lau, D.P. Siewiorek, D.W. Mizell, "A Survey of Highly
Parallel Computing", IEEE Computer, Vol. 15, No. I, pp. 9-24, 1982.

(Hillis-85) W. D. Hillis, The Connection Machine, The MIT Press in Artificial Intell igence,
U.S.A., 1985.

[Hillis-87) W.O. Hillis, "Tite Connection Machine " , Scientific American, Vol. 75, No.3, pp.
86-93, 1987

(Hwang-84) K. Hwang, F. A. Briggs, Computer Architecture and Parallel Processing.
McGraw-Hill , NY, 1984.

(Kung-82) H.T. Kung. "Why Systolic Architectures?" , IEEE Computer, Vol. 15, No. I, pp.
37-46, 1982.

(Kung-871 S.Y. Kung. S.C. Lo. S.N. Jean, and J.N. Hwang," Wavefront Array Processors
Concept to Implementation", IEEE Computer, Vol. 20, No. 7, pp. 18-33. 1987.

[Lubeck-85] 0 . Lubeck. J. Moore, and R. Mendez, "A benchmar1c comparison of three super
computers: Fujitsu VP-200. Hitachi S810!20. and CRAY X-MP/2 ' ', IEEE Computu, Vol.
18, No. I, pp. 10-29. 1985.

[Moore-87) W. Moore, A. McCabe, R. Urquhart eds .. Systolic Arrays, Adam Hilger, Bristol
England, 1987.

(Padegs-88] A. Padegs. B. B. Moore. R. M. Smith, and W. Buchholz, "The IBM Sys
tem/370 Vector ArchiteciUre: Design Considerations", IEEE Transactions on Computers,
Vol. 37, No.5 , pp. 509-520, 1988.

(Ramamoorthy-77] C.V. Ramamoorthy. "A Pipel ine Archilccture", Computing Surveys. Vol.
9,No.l.pp.61 - 102,(1977J.

(Russcll-78] R.M. Russell, "The Cray-1 Computer System", Communication of th~ ACM, Vol.
21, pp. 63-72, 1978.

(Siegel-85] H.J . Siegel , Interconnection Networks for Large-Scale Parallel Processing. Lex
ington Books, D.C. Heath and Co .. Lexington. MA, 1985.

[Tabak-90] D. Tabak, Multiprocessors, Prentice-Hall, Englewood OiiTs, NJ, 1988.

[Trelcaven-82] P.C. Treleaven. D.R. Brownbridge, and R.P. Hopkins, "Data-Driven and
Demand-Driven Com puler Architecture", Computing Surveys. Vol. 14, No. I. pp. 93-142,
1982.

17

