"

T — .
~—PARALLEC-ARCHITECTURES =
Edited by N. Rishe, S. Navathe, and D. Tal Para| |e| ArCh itectures

Edited by N. Rishe, S. Navathe, and D. Tal

(\“‘ A postconference gublication based on
the proceedings of ARBASE-90, held in
Miami Beach, Florida, March 6-9, 1990

..
(./" H
Sponsored by

Florida International University
in cooperation with |IEEE and Euromicro

A posthnference publication based upon the
prpce_edmgs of PARBASE-90, held in
Miami Beach, Florida, on March 6-9, 1990

1951-1991

" . ;
. | Ao 2
| i

IEEE Computer Society Press
Los Alamitos, California

Washington e Brussels e Tokyo

IEEE Comput XS
@ puter Society Press The Institute of Electrical and Electronics Engineers, Inc

Parallel Merging on Shared and Distribu
ted M
P.J. Varman, B.R. Iyer, and D.dJ. Hazierleemory IR w2 v =

The Extended G-Network, A Fault-T, .
Network for the M“mPPOCem:s olerant Interconnection

i et <y Pormades DT FEERA LA amn e SR A Cn v 250
Performance Analysis of a Cache Cohe: i
¢ - t M

Based on Hierarchical Multiple Buses re . s

Q Fing @ PO i m s e s .260
Design and Analysis of Multiple-Bu Arbi i
Different Priority Schemes . p s % .s. Hers with

0 Pangandle By~ "7 " "N R S e kS K € e S 276
AuthorIndex.

.............................. 296

viii

ON PARALLEL ARCHITECTURES

Doron Tal*, Naphtali Rishe*, Sham Navathe**, and Scott Graham*

*School of Computer Science
Florida International University
University Park, Miami, FL 33199
Telephone: (305) 348-2025, 348-2744
FAX: (305)-348-3549; E-mail: rishen@fiu.edu

**College of Computing
Georgia Institute of Technology
Atlanta, Georgia 30332

Abstract

This paper discusses parallel computer system composed of tightly coupled pro-
cessors that can coordinate to accomplish a concurrent solution of a common
task. Section 2 presents parameters that are frequently used to classify parallel
computer architectures. We also define the concept of granularity and discuss
its effect on parallel computer architectures. Using Flynn's classification, Sec-
tion 3 presents those architectures that follow SIMD (Single Instruction Multi-
ple Data) principles. In Section 4 we present MIMD (Multiple Instruction Mul-

tiple Data) architecture rypes.

About the authors

Doron Tal is Assistant Professor of Computer Science at the Florida Interational University.
His Ph.D. is from the Ben Gourion University. Tal's expertise is in parallel architectures.
Naphtali Rishe is Associate Professor of Computer Science at the Florida Intemational Univer-
sity. His Ph.D. is from Tel Aviv University. Rishe's expertise is in databases: design, semantic
modeling, implementation, languages, parallel architectures.

Shamkant Navathe is Professor at the College of Computing, Georgia Institute of Technology,
Atlanta. His expertise is in database conversion, logical database design, database modeling,

distributed database allocation, and database integration. Navathe's Ph.D. is from the Univer-

sity of Michigan.
Scott Graham is a Ph.D. student in Computer Science at the Florida International University.

This rescarch has been supported 1n part by a gramt from the Florida High Technology and Indus-

try Council

0-8186-9166-2/91/0000/0001$01.00 © 1991 IEEE

FENEITEE)

2 Parallel Architectures

1. Introduction

Parallel computer architectures are currently an area of intense research activity. This is evident
by the wide variety of new computer architectures that have been introduced in the last decade.

There has always been a need for fast, high performance machines. In fact, in many applica-
tions such as weather forecasting, fluid dynamics, simulations, and artificial intelligence, the
demand for high performance has always exceeded the current capability. One computer perfor-
mance measurement can be described as a two dimensional graph where the switching device's
speed is plotted along one axis and the amount of parallelism is plotted on the other one. Since
the switching speed is limited (the propagation speed can not be faster than the speed of light),
parallelism is left as a major hope for computational speedup.

In the course of computer history, many diverse research areas have been characterized as paral-
lel computation. Forty years ago, arithmetic operations which processed words instead of bits
were thought of as parallel computations. More recently, low-level parallel mechanisms
[Duncan-90] have been introduced to attempt to make the processor execute the current instruc-
tion faster. Examples of this work include: overlapping processor work with auxiliary proces-
sors (I/O, terminal display, communications, erc.); providing concurrent execution of some
arithmetic and logic operations by using several independent functional units; using multipro-
gramming and time sharing to provide a higher degree of resource sharing; and minimizing the
transition to the next instruction by using instruction pipelining. Such a pipeline can be
described as a flow line of stations that operate simultancously, where each station always per-
forms the same function (such as decode, fetch, erc.) on the stream of instructions that passes
through the station. This is also called instruction lookahead. Most of these speedup cfforts
revolve around making the conventional von Neumann machine work more efficiently by con-
tinually attacking the bottlenccks inherent in the von Neumann architecture. Almost all contem-
porary commercial machines are equipped with the features listed above, but are still considered
1o be sequential machines.

Currently, the term parallel computation is associated with new architectures such as pipelined
computers, array processors, and multiprocessor systems. It is evident that there is no univer-
sally accepted dichotomy between parallel computer systems and the conventional computer
systems, which we would like to exclude from our definition. We define a parallel computer
system as one composed of tightly coupled processors that can coordinate to accomplish the
concurrent solution of a common task. Distributed computing systems are excluded from this
definition since the processors are loosely coupled. Distributed systems typically have different
problems than those of parallel systems, since each of the processors is autonomous and may
refuse a request for service. All of the extended uniprocessor machines are also excluded from
our definition. This report is devoled to a survey of parallel computer architectures which fit our
definition.

2. Architecture Classification

Most sequential machines **fit"" into a clearly defined architectural model or paradigm: a com-
bination of the proverbial von Neumann machine with the more recent additions of virtual
memory, direct access media, interrupt structures, concurrent 1/0, and so forth. Unfortunately
this is not so for parallel machines, whose developments have taken either no clear direction, or
many diflerent directions (e.g. pipelining [Ramamoorthy-77], connection machine [Hillis-85],
systolic arrays [Kung-82], array processors [Padegs-88), data flow machines [Dennis-80,
Arvind-84, Trelcaven-82), etc.). We nced a detailed classification scheme which will

characterize all computer architectures.
schemes [Hayes-88, Hwang-84].
most widely used. Flynn's taxonomy [Hwang-

D. Tal, N. Rishe, S. Navathe, and S. Graham 3

In the literature we can find several classification
However, Flynn's classification [Flynn-66, Flynn-72] is Q\c
84] is based on the multiplicity of instruction

streams and data streams. The following four categories are given:

1.

Single Instruction Single Data (SISD) computer nrgani{alion (Figure 2.1 (a)). 'l_'his‘ is the
cla.%sical uniprocessor architectural paradigm. It may include parallel mcchamsm§ '(ej.g.
pipelining, overlapped CPU and 1/0 operations), though it is excluded from our definition
of parallel computer architectures.

IS DS
CU Pr MM

Figure 2.1 (a) SISD Organization

le Instruction Multiple Data (SIMD) computer organization (Figurc 2.1 (b)). Each
1 simultancously on its own diffcrent set of data.
¢ supervised by a common con-
ission of operands between the

Sing : .
processor exccultes the same instruction s
Typically, multiple processors (Or processing elements) ar
trol unit. An interconnection network allows the transm

Processors.
DS
Prl
DS
IS pPr2
CuU Memory
‘ Modules
.
DS
Pm
IS J

Figure 2.1 (b) SIMD Organization

Multiple Instruction Single Data (MISD) computer _org:'mizmion (Figure 2.1 (c)). TTllhl(:(r‘i
ganization involves several processors, cach of wh@h is cpnlmllcd b-y a scparate LFZ
unit. The processors concurrently execute different ms.lmcuo.ns on a.smglc stream of data.
This structure has never been implemented and is considered impractical.

4

=l

Parallel Architectures

DS

IS
’—*—1 CU1 Prl IS
>
IS
—T Cu2 Pr2 5
Memory
. o Modules '
IS
cus 5
DS

Figure 2.1 (c) MISD Organization

Muly, 1 i

m:&;ﬁ{)ﬂiz"m"" Mululfle pam (MIMD) computer organization (Figure 2.1 (d

e 3:5::: grgamzal'lun. scv.cral.pmcessors simultaneously execute d}ﬂcm)r:i in

ey “ma}l ata. T’l.us Organization also includes distributed computer system .

thoglehe ;ncmnlr?ca;;c :;nVCd autonomously from disjoint memories (or disjoi}r,ll su;.
S S), then we actuall i i ulti-

ey ally have independent uniprocessor systems (multi-

In

D.Tal, N. Rishe, S. Navathe, and S. Graham 5

IS DS IS
CUl Prl

IS DS IS
Cu2 Pr2

Memory
X Modules | .

IS DS IS

Cu3 Pm

Figure 2.1 (d) MIMD Organization

It is quite interesting that any SIMD computer system can emulate a MIMD system by execut-
ing an interpreter and vice versa. Both SIMD and MIMD computer organizations constitute the
type of parallel architectures that we are interested in.

The above discussion is 100 general and may not reveal the wealth and variety of parallel archi-
tectures that are currently available. Therefore, we employ one more parameter: granularity.
When speaking about concurrency in parallel computer systems, one should carefully distin-
guish between the different granularity levels at which the concurrency is implemented [Tabak-
90]. Granularity is discussed in the next sub-section.

This discussion is incomplete without mentioning some other parameters that are frequently
employed to classify parallel architcctures.

L.

9

Synchronous vs. asynchronous operation. Synchronous parallel architectures coordinate
their concurrent operations in lockstep, whereas asynchronous architectures do not. Usu-
ally, the synchronization is implemented using a global clock or a common control unit.
Synchronous parallel architectures are casier to program and to control because the pro-
grammer is not responsible for coordination. However, this is achicved at the price of
some inflexibility and overhcad. The slowest operation determines the duration of an
operation cycle. SIMD machines are typically synchronous.

Feng's classification (degree of parallelism). The number of bits that can be processed
within a unit of time, is the degree of maximum parallelism [Hwang-84, Baer-80, Feng-
77). For example, a computer system that consists of M processors each with a bit length
of N can process M*N bits concurrently.

Handler's classification. Wolfgang Handler has proposed a classification scheme based
on six indcpendent paramcters [Hwang-84, Bacr-80, Handler-77]: (a) the number of

6

Parallel Architectures

processors. (b) the number of ALUs (or processing elements) under the control of a pro-
cessor; (c) the word length; (d) the number of pipeline stages in each ALU; (¢) the number
of ALUs that can be pipelined; (f) the number of processors that can be pipelined.

2.1. Granularity of Parallelism

The parallel computation of a problem is done by partitioning the problem into sub-problems,
cach of which is performed separately. Granularity is defined as the *‘size’" of a piece of code
obtained by partitioning a problem. The granularity of parallelism varies greatly. At one
extreme is the coarsest grain, the conventional von Neumann machines which are multipro-
cessed in a way such that each processor runs only its own processes. These processors may be
symmetric (with each one running the same types of processes) or asymmetric (e.g. one may run
a device handler only and reside in the device controller). As we move to finer-grained parallel-
ism, we get multiple processors operating on the same process or pieces of a process. The
smaller these pieces, the finer the granularity. The smallest possible pieces of a process are its
primitive instructions, so at the smallest level of granularity we assign a processor to each
instruction. As the granularity gets finer, some classical sequential algorithms become dis-
placed by linear or near linear ones (e.g. those for systolic sorting or matrix multiplication).

The partitioning of a problem with running time T into N sub-problems (each running on a
separate processor) does not always reduce the running time to T/N. Usually, as N becomes
larger, the utilization ratio gets smaller. We are generally confronted with the following prob-
lems as we introduce finer and finer granularity solutions to concurrency:

1. Data dependency. Not all sub-problems (processes) can be running at the same time
because of data dependency. As granularity becomes finer, data dependency usually
becomes more of a problem.

2. Interprocess communication. The nced for more processes to communicate increases an
already crowded communication bandwidth and may lead to new bottlenecks. At the
finest grain, each instruction execution is involved with receiving input operands and pro-
ducing a result operand which usually has to be sent to one or more processors.

3. Processor allocation. Processor allocation and deallocation algorithms are required. As
granularity becomes finer, each processor's computation thread becomes shorter. Hence,
the allocation overhead becomes more critical.

4. Concurrency exploitation. Programs must be rewritten or rearranged to reveal and exploit
maximum concurrency during execution.

5. Races and contention. Since several processors have to share resources, synchronization
schemes such as semaphores or message based primitives may be required.

6. /0. Even if we achieve a massive degree of parallelism, we still have to handle the 1/O
bottleneck. Traditional 1/0 structures are sequential and can not keep pace with the pro-
cessors’ performance.

These problems give rise to two questions. Is it cost-effective to have all of that parallel and
possibly redundant computing hardware waiting around in abeyance so that maximum con-
currency will be achieved whenever possible? What is the best granularity and architectural
approach for maximizing computing speed and cost effectiveness?

D.Tal, N.Rishe, S. Navathe, and S. Graham

The number and the diversity of the existing architectural concepts shows that the answers for
these questions have not yet been determined.

3. SIMD Architectures

3.1. Pipeline Architectures

The name pipeline stems from an analogy with a typical industry assembly line in wh!ch the
work o be done is broken into small picces which are performed in an overlapping fashion. A
part of the work is done at each station and a final result is obtained only after an item has
passed through the entire pipeline. Since the pipeline stages must work together to process and
forward data, they are triggered synchronously. The time required to perform one s}agc of mc
pipeline is called the stage cycle. The length of a pipeline’s stage cycle i§ determined by its
slowest stage. If the pipeline is saturated, the exccution time is not a function of the total pro-
cessing time, but rather one of the stage cycle.

Pipelines are classified into two primary categories: arithmetic pipelines and imt‘ructjon pipe-
lincs. Arithmetic pipclines are used to implement complex arithmetic operations 'such‘ as
floating-point or vector operations. Instruction pipelining refers to partitioning mslrucUQns into
several parts which can each be executed in an overlapped fashion with parts of other instruc-
tions. Simple forms of both categories can be found in almost any conventional computer.

An example of a typical instruction pipeline and its execution timing diagram is shown iq Fig-
ure 3.1. The pipeline timing of Figure 3.1.b is characteristic of assembly lines. Theoretically,
in a pipeline like that shown in Figure 3.1, the instruction cycle can be reduced to ‘onc'-founh of
the original one. However, such a speedup may not be achieved due to any combination of fhc
following difficulties: conditional branches, interrupts, structural hazards (ovcrlappgd f:xcicullon
of all possible instruction combinations may not be supported by the hardware), limitation on
instruction fetch rate. and data dependency.

V T] NSTRUCT N OPERANDS
INSTRUCTION INSTRUCTION OF EXECUTION

FETCHING DECODING FETCHING

(a) Instruction pipeline exccution.

7

-

8

Parallel Architectures
FACILITY
T : | T
EX 111213 4
¥] [i
OF Vi 12 3.3 4
T : H ' T
ID 1l 218 14
1 T T T
IF |1 1213141
1 1 I A1 e TlhiE

(b) Space-time diagram.
Figure 3.1. Linear instruction pipeline.

Vector pipelines fall into the category of SIMD machines. Vector pipelines are characterized by
high level operations which operate on one-dimensional vectors of data. The addition of two
vectors is an example of such an operation. This kind of vector operation is equivalent to an
entire loop of scalar operations. Currently, two primary types of vector pipelines exist: register
to register vector pipelines where all vector operations (excluding store and load operations) are
performed among registers, and memory to memory vector pipelines where special memory
buffers are used instead of registers to hold the vector operands. Examples of the register 1o
register type include the CRAY-1 [Russcll-78], the CRAY-2 [CRAY-85], and the Fujitsu VP-
200 [Lubeck-85). The CDC's machines are examples of the memory to memory type.

3.2. Array Processor Architectures

An array processor is a regularly connccted array of processing elements. The processors
operale simultancously and synchronously under the control of one central unit. A typical array
processor is shown in Figure 3.2. Generally speaking, an array processor may also have a
slighdy different configuration where the individual processors access the memory modules
through an alignment network. The control unit broadcasts a single instruction to be executed
by each of the processing clements on its own data stream. Each processing element can per-
form the instruction slightly differently or can skip the instruction. Usually, the array processor
is attached to a host computer through the control unit. Such array processors are suitable for
solving very structured problems involved with vector computations. In order to take full
advantage of the parallelism embedded in the architecture, the programmer must be aware of the
computer's architecture while designing a program’s algorithm and while allocating the
pmgram‘s data. Therefore, such arrays are most often used in scientific and special applica-
tions.

D.Tal,N. Rishe, S. Navathe, and S. Graham 9

Control Unit

Pr Pr Pr

LM LM LM

Interconnection Network

Figure 3.2. Array Processor.

The ILLIAC IV [Bames-68] is an example of a typical array processor. It has a central control
unit and 64 processing clements. Each ol the processing elements has six registers and a local
memory for the storage of distributed data. Essentially, each processing clement is an arith-
metic logic unit.

3.3. Fine Grained Array Processors

A particularly intcresting extension to array processors resulted in the connection machine
[Hillis-85, Hillis-87). The connection machine is a fine-grained machine which consists of tens
of thousands of simple processing elements. Each of the processing elements has a small local
memory and a one bit wide arithmetic logic unit. The array processor is connected to a typical
super-mini von Neumann machine front-end which originates the instructions to be exccuted by
the connection machine's processing clements. Sixteen processors are connected in a grid. The
processor groups are interconnected in the patten of a Boolean n-cube. As in a conventional
SIMD machine, an instruction is broadcast (o all the processing elements via an instruction bus.
Conceptually, the connection machine designers made further steps toward the implementation
of a general purpose machine by introducing the virtual processor concept and a general purpose
communication system. The communication sysiem allows any processor 10 communicate with
any other processor using a send instruction which passes a message to the other processor’s
local memory. The virtualization is implemented using a controller that interposes itsclf
between the front end (host) machine and the array processor. The virtualization concept makes
the efficient execution of an arbitrarily sized program feasible and allows the number of proces-
sors in the system 1o be expanded. (No matier how many physical processors we have. there is
always an algorithm that will need more processors.) The connection machine is scalable:
more physical processors can be added without having to change the program. The connection
machine works cfficicntly for massive data parallclism applications. However, if the algorithm
is characterized by many scalar operations (control parallelism) the performance may converge
1o that of a SISD machine.

10 Parallel Architectures

3.4. Associative Array Processors

Some of the SIMD array processors (e.g. PEPE [Crane-72], STARAN [Batcher-74]) have been
built around associative memories, and are called associative array processors. Associative
memory is in a sense an active memory, since its storage cells are provided with special logical
capabilities. Simple logic and arithmetic operations can be performed in the memory cells
themselves, allowing parallel searches and comparisons to be made. The pieces of data stored
in an associative memory are accessed by their contents instead of by their addresses. The
characteristics of associativity and parallel processing allow associative array processors o
access a large amount of information very quickly. They are considered effective in several
applications in the area of information processing, in particular those applications involved with
massive searches of very large databases. In addition, they can be used in applications such as
weather forecasting computation and signal processing.

Associative processors can be classified into four categories [Haynes-82]: fully parallel, bit
serial, word serial, and block oriented. The first category is characterized by having a logical
unit in each memory cell which allows for full parallelism capability. This approach is simple,
attractive and allows the highest performance. However, its implementation is very expensive
and is impractical for large memories. In bit serial processors, a memory operation is applied
on one bit column across a large number of words. Each bit column is selected by a special
control unit and will be used in subsequent operations. Word serial processors implement a
search loop in hardware. Block oriented processors are a hybrid structure of the first two
categories and provide a tradeoff between the high cost of the fully parallel associative processor
and the relatively slow operation of the bit serial associative processor.

3.5. Systolic Arrays

Systolic arrays have characteristics of both SIMD and MIMD architecture types. However, we
choose to describe systolic arrays here in order to highlight their synchronous operation, which
usually characterizes SIMD machines. Wavefront arrays [Kung-87] were stimulated by systolic
array research and are a special case of systolic arrays where asynchronous operation has been
favored. Systolic architectures are typically large, regular arrays of simple processors. These
processors operate in parallel, passing data between themselves continuously and synchronously
in a fixed, regular pattern. The most striking aspect of the systolic concept is its alternative to
the von Neumann approach of instruction execution. As illustrated in Figure 3.3.a [Kung-82],
using the von Neumann approach the instruction is fetched from memory and decoded, the
operands are fetched, and an execution takes place yielding an operand which will be stored in
memory again. In the systolic approach (Figure 3.3.b) data is pumped steadily through the array
of cells without_any memory reference. Planar systolic arrays with n“ processors can often
implement O (n 3) algorithms in O(n) time. The device efficiency is bounded below by a con-
stant that is independent of n: the array makes maximally efficient use of each processor up to a
constant factor. It is able to do this because the flow of data through the interconnection net-
work is fixed, so there is no control overhead and optimized since very few processors ever idly
wait for operands. Systolic arrays are generally hard-coded, but it is possible to program them
on the fly. Systolic arrays are widely used as optimal solutions to many practical computational
problems such as signal processing and matrix computation [Moore-87]. The technology favors
the use of a few simple identical processing elements interconnected in a regular pattemn yield-
ing a short communication path and an economical VLSI design and implementation.
Advances in VLSI technology have made it possible to locate these processors in physical

D.Tal, N. Rishe, S. Navathe, and S. Graham Tl

proximity. eliminating significant inter-chip delays. It must be pointed out that systolic arrays
have some weaknesses, such as their inefficient handling of complex data structures and non-
scalar operands, and the limitation that only a narrow set of problems can be mapped onto a par-
ticular systolic array.

o[| T2

a. b.

Figure 3.3. a. The von Neumann approach. b. The systolic approach.

4. MIMD Architectures

4.1. Multiprocessor Architectures

A multiprocessor computer is defined as one which employs at least two independent processors
which operate under a combined control and which share memory mndulcs‘AI/O chanfchIS. and
an interconnection network. The interconnection network has a crucial role in dctcrmmxlng the
multiprocessor computer's performance. We use the interconnection nclwo_rk to classify the
multiprocessor into three main categories: time shared busses, crossbar switch systems, and
multistage networks.

Bus oriented systems contain one or more busses which connect all the processors an(.i memory
modules. The simplest and least expensive is a single-bus sysiem. It is totally passive and is
scalable. Components (processors and memory modules) can easily be addc.d to or removed
from the bus. Since all the functional units share a common bus, a mechanism rlnusl be pro-
vided to resolve bus contention. Among the methods used to resolve bus conlcnpon are static
and fixed priorities, FIFO (First In First Out) queues, daisy chaining, and centralized 'bus con-
trollers. Unfortunately, the single bus suffers from (wo primary drawbacks: the cqmcnnon prob-
lem degrades system performance and may lead to a bottlencck, and a bus failure would be
catastrophic to the system. Examples of a single common bus system are the IBM Stretch,
Univac Larc, CDC 6600, etc. [Enslow-77]

Multibus systems overcome these drawbacks. The bus is no longc_r the singlc' critical com-
ponent. The contention problem is relieved because more than one interconnection can bc set
up at a lime. Multibus systems do have their own set of problems. The syslch complexity is
increased because extra logic is nceded and because the multibus interconnection sub:syslcm
becomes an active device. Multiport capability is also required for all Qf the system's com-
ponents. The 1108 Univac [Enslow-77] is an cxample of a multiport, multibus system.

12 Parallel Architectures

The crossbar switch is the optimal solution for the contention problem. In a crossbar switch
system, all the components are physically interconnected via crosspoint switches. Provided that
no two accesses involve the same component, the contention problem is completely alleviated.
The crossbar system is characterized by simple protocols and high hardware complexity. This
system is the antithesis of the single common bus approach. The crossbar switch is impractical
for a large number of components. If a system contains N components, it nceds 2V crossbar
switch units. The Alliant multiprocessor system [Alliant-88] uses a crossbar switch between its
processors and the cache memory modules.

A multistage network is a general representation for switching networks. In order to understand
the network's operation we must first introduce the principles of a simple crossbar switch. The
crossbar switch is the basic clement of any multistage network. Figure 4.1 shows all of the pos-
sible interconnections of a 2x2 switch. If both inputs require a connection to the same output,
then one request has 1o be delayed or rejected. In such a switch, the performance is limited by
the switch setup time. The performance can be improved by using a bufTer.

C C

00 01
Il 01 11 Ol
12 02 12 02

Straight Lower Broadcast

& c

10 11
In — —— Ol 11 0l
2 02 12 —— 02

Upper Broadcast Exchange

Figure 4.1. A 2x2 switch and all of its possible interconnections

A switching network that connects N inputs to M outputs is called an NxM switching network.
It is composed of one or more stages of switching elements. Figure 4.2 [Hayes-88] shows an
example of a three stage 8x8 switching network. One of the basic requirements for a multistage
network is the full access property: each processor can be interconnected to any other processor.
The network shown in Figure 4.2 has that property. A network which allows for the

D.Tal,N.Rishe, S. Navathe, and S. Graham 13

interconnection of any processor pair that is not currently interconnected without resetting the
network is called a non-blocking network. The switching network shown in Figure 4.2 is a
blocking network which can lead to communication delays. Among the popular interconnec-
tions in multistage nctworks arc Banyan [Goke-73] and shuffle [Siegel-85].

One of the most common methods of implementing parallelism is through the use of a multipro-
cessor architecture. These architectures are the traditional design for parallel computers which
are based on several coordinated von Neumann processors, each of which handles a portion of a
problem. This approach entails memory access conflicts and high hardware and software over-
head for processor synchronization and allocation.

10 00
11 > — Ol
13 —>f — 03
4 — 04
15 — OS5
6 —> — 06
17 — 07

Figure 4.2. Three stage switching network.

4.2. Data Flow Architectures

The data flow model is a radical change and an altemative to the classical sequential instruction
execution in the von Neumann approach. In the data flow model all the instructions are con-
sidered as independent entities which can each be executed as an independent concurrent action
whenever each instruction has its input data. The data flow model of computation is based on
two principles:

14 Parallel Architectures

I, Asynchrony. All operations arc exccuted when and only when the required operands are
available.

2. Functionality. All operations are functions: there are no side effects.

The first principle provides for an exccution mechanism in which data values pass through data
flow graphs as tokens and in which an operation is triggered whenever all of the required input
tokens are present at a node in the graph. The second principle implies that any enabled opera-
tions can be executed in any order or concurrently.

before after

Figure 4.3. Data flow principles.

The data flow principles are illustrated in Figure 4.3. Large circles represent instructions,
arrows represent arcs between instructions, and black circles represent data tokens. For an
instruction to be enabled, tokens must be present at each input arc. Any enabled operator can be
fired by removing one input token from each input arc, applying the specified function to the
data, and placing the tokens labeled with the resulting value on the output arcs.

Figurc 44 shows an example data flow graph which implements the computation of

Z=(X+Y)*(X-Y). In this example, one computation by the graph can produce a value on arc Z,
while a new computation on new values on arcs X and Y is ready to begin in a pipeline fashion.

D.Tal,N.Rishe, S. Navathe, and S. Graham

Figure 4.4. A data flow graph which implements the computation of Z=(X+Y)*(X-Y)

The data flow concept is very altractive because control is distributed out to the level of opera-
tions on scalar operands and parallelism in exccution flows naturally as operands become avail-
able, thus following an algorithm’s natural parallelism. Unfortunately, some problems have
plagued the data flow concept since its inception:

1. A method to control and support a large amount of interprocessor communication is
needed.

2. The handling of arrays, data structures, and large static data bases, is often inefficient,
especially in ring architectures.

3. Thelaw of granularity further impacts an alrcady crowded communication bandwidth.

4. The absence of explicit storage imposes serious overhead problems such as the need to cir-
culate storage constants and literals.

5. Operand accumulation causes storage and retricval congestion.
6. The data-driven philosophy prevents lookahead and instruction overlap parallelism.

7. A process’ data flow graph representation is limited to the size of the physical program
storage. i

5. Summary

We have shown a large number of different parallel architectural solutions. Many of these solu-
tions are difficult o compare because of their differences in granularity, algorithmic approach,
hardware implementations, and applicability in different problem situations. However, this dis-
cussion has tried to cover most of the existing architectural concepts and to explain how they

16 Parallel Architectures

work. In the following chapters we find novel proposals for parallel architecture paradigms.
We hope that the review that has been conducted here will help the reader examine these propo-
sals in a clearer light.

References
[Alliant-88] Alliant FX/Series Product Summary, Alliant Computer Systems Cor., 1988.

[Arvind-84] Arvind, D. E. Culler, **Why Dataflow Architectures'’, The 4th Jerusalem Confer-
ence on Information Technology. pp. 27-32, 1984.

|Bacr-80] J. L. Baer, Computer System Architecture, Computer Science Press, Rockville, MD,
1980).

[Bames-68] G.H. Bames, RM. Brown, M. Kato, D.J. Kuck, D.L. Slotnick, and R.A.
Stokes, *‘The Illiac IV Computer"’, IEEE Transactions on Computers, Vol. C-17, No. 8,
pp. 746-757, 1968.

[Batcher-74] K.E. Baicher, “"STARAN Parallel Processor System Hardware'', Proceedings
AFIPS 1974 National Computer Conference, ,Vol. 43, AFIPS Press, Montvale, N.J., pp.
17-22, 1974.

[Crane-72] B.A. Crane, M.J. Gilmartin, J.H. Huttenhoff and R.R. Shively, ‘‘PEPE Computer
Architeeture™', [JEEE COMPCON, pp. 57-60, 1972.

[CRAY-85]) CRAY-2 Computer System Functional Description, Publication HR-2000, Cray
Research, Inc., Mendota Heights, MN, 1985.

[Dennis-80] J. B. Dennis, **Data Flow Supercomputer®’, JEEE Computer, Vol. 13, No. 11, pp.
48-56, 1980.

[Duncan-90] R. Duncan, ‘A Survey of Parallel Computer Architectures'’, IEEE Computer,
Vol. 23, No. 2, pp. 5-16, 1990.

{Enslow-77] P.H. Enslow JR, **Multiprocessor Organization - A Survey'', Computing Surveys,
Vol. 9, No. 1, pp. 103-130, 1977.

[Feng-77] T. Feng, ‘*An Overview of Parallel Processors and Processing’ ', Computing Surveys,
Vol. 9, No. I, pp. 1-2, 1977.

[Flynn-66] M. J. Flynn, ‘*Very High Speed Computing Systems’’, Proceedings, IEEE, Vol.
54, No. 12, pp. 1901-1909, 1966

[Flynn-72] M. J. Flynn, **Some Computer Organizations and Their Effectiveness'’, /EEE
Transactions on Computers, Vol. C-21, No. 9, pp. 948-960, 1972.

[Goke-73] R. Goke and G.J. Lipovski, *‘Banyan Networks for partitioning on Multiprocessor
Systems", Proceedings of the first Annual Symposium on Computer Architecture, pp. 21-
30, 1973.

[Handler-77] W. Handler, **The Impact of Classification Schemes on Computer Architecture'’,
Proceedings, Int. Conference on Parallel Processing, pp. 7-15, 1977.

[Hayes-88] J. P. Hayes, Computer Architecture and Organization, 2nd. ed., McGraw-Hill, NY,
1988.

D.Tal, N. Rishe, S. Navathe, and S. Graham

[Haynes-82] L.S. Haynes, R.L. Lau, D.P. Sicwiorck, D.W. Mizell, ‘A Survey of Highly
Parallel Computing™*, JEEE Computer, Vol. 15, No. 1, pp. 9-24, 1982.

[Hillis-85] W. D. Hillis, The Connection Machine, The MIT Press in Artificial Intelligence,
US.A., 1985.

[Hillis-87] W.D. Hillis, **The Connection Machine'', Scientific American, Vol. 75, No. 3, PP.
86-93, 1987

(Hwang-84] K. Hwang, F. A. Briggs, Computer Architecture and Parallel Processing,
McGraw-Hill, NY, 1984.

(Kung-82) H.T. Kung, **Why Systolic Architectures?"’, IEEE Computer, Vol. 15, No. 1, pp.
37-46, 1982.

[Kung-87] S.Y. Kung, S.C. Lo, S.N. Jean, and J.N. Hwang, ** Wavefront Array Processors -
Concept to Implementation™, JEEE Computer, Vol. 20, No. 7, pp. 18-33, 1987.

[Lubeck-85] O. Lubeck, J. Moore, and R. Mendez, **A benchmark comparison of three super-
computers: Fujitsu VP-200, Hitachi $810/20, and CRAY X-MP/2"", IEEE Computer, Vol.
18, No. 1, pp. 10-29, 1985.

[Moore-87] W. Moore, A. McCabe, R. Urquhart eds., Systolic Arrays, Adam Hilger, Bristol
England, 1987.

[Padegs-88] A. Padegs, B. B. Moore, R. M. Smith, and W. Buchholz, *“The IBM Sys-
tem/370 Vector Architecture: Design Considerations®*, IEEE Transactions on Computers,
Vol. 37, No. 5, pp. 509-520, 1988.

[Ramamoorthy-77] C.V. Ramamoorthy, **A Pipeline Architecture'’, Computing Surveys, Vol.
9, No. I, pp. 61-102, (1977).

[Russell-78] R.M. Russell, **The Cray-1 Computer System'*, Communication of the ACM, Vol.
21, pp. 63-72, 1978.

[Siegel-85] H.J. Siegel, Interconnection Networks for Large-Scale Parallel Processing, Lex-
ington Books, D.C. Heath and Co., Lexington, MA, 1985.

[Tabak-90] D. Tabak, Multiprocessors, Prentice-Hall, Englewood Cliffs, NJ, 1988.

[Treleaven-82] P.C. Treleaven, D.R. Brownbridge, and R.P. Hopkins, ‘‘Data-Driven and
Demand-Driven Computer Architecture'*, Computing Surveys, Vol. 14, No. 1, pp. 93-142,
1982.

17

