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Abstract-This paper proposes an implementation of 
Recurrent Neural Networks (RNNs) for (a) predicting futnre 
Mini-Mental State Examination (MMSE) scores in a longitudinal 
study and (h) deploying a multiclaas multimodal neuroimaging 
classification process that involves three different known stages of 
Alzheimer's progression, cognitively normal (CN), Mild Cognitive 
Impairment (MCI) and Alzheimer's Disease (AD). This 
multimodal data is fed into two well-studied variations of the 
RNNs; Long Short-Term Memory (LSTM) and Gated Recurrent 
Unit (GRU). The accuracy, F-score, sensitivity, and specificity of 
the models are reported for the classification task as well as the 
root mean square error (RMSE) and correlation coemcient for the 
regression task. The results demonstrate the superiority of the 
proposed model over state-of-the-art classification and regression 
techniques of Support Veetor Machine (SVM), Support Vector 
Regression (SVR) and Ridge Regression. 

Keywords-Long Short-Term Memory (LSTM), Gated 
Recurrent Unit (GRU), Classification, Regression, Alzheimer, 
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I. INTRODUCTION 

A lzheimer's disease is an irreversible neurodegenerative 
disorder that impairs memory, cognitive abilities and 

behavior [1]. The complex nature of AD biomarkers and the 
heterogeneity of measurements obtained from various imaging 
modalities are some of the obstacles faced in seeking effective 
early detection and planning therapeutic protocols [2]. 

In addressing the barriers impeding AD research, scientists 
have proposed statistical and machine learning techniques for 
robust diagnosis. Until recently, most efforts were dedicated to 
modeling the disease at a single time point using cross-sectional 
datasets [3], [4]. However, these approaches could not provide 
enough information about the future status of patients. At later 
stages of AD, where the brain has already suffered from 
atrophy, treatment would too late to be effective. Early 
diagnosis of the disease allows for early intervention and 
facilitates development of effective healthcare services. This 
initiates a new line of research aiming at enhancing the effect 
of treatment by predicting the onset of the disease before the 
occurrence of acute neurodegeneration. The objective of these 
studies is to leverage temporal information from longitudinal 
data to model the progression of AD. Multiple classification 
and regression models have been proposed to predict disease 
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progression and level of disease severity. The feature space is 
either based on the information available at baseline or a 
concatenation of features from multiple previous time points 
[5], [6], [7], [8]. The integration of features into a single 
observation window creates a high dimensional input space 
which is not only dil'ficult to deal with, but also disregards 
temporal connections between consecutive time points [9], 
[10]. With the gradual nature of AD progression, these methods 
could not efficiently exploit the longitudinal information. 

Recurrent Neural Networks (RNNs), introduced in 1986, 
recently gained popularity due to the intrinsic power in learning 
long-short term dependencies of sequenced data. These 
networks share information between series of data points 
through an additional hidden set of parameters. RNNs are now 
being implemented in modeling the progression patterns of 
chronic diseases [11], [12]. In [10], Nguyen et al. trained an 
RNN-LSTM network over a seven-year period to predict 
multiple AD biomarkers for one subsequent time point. In 
another study, Wang et al. applied an RNN architecture with 
LSTM cells to predict global staging of the Clinical Dementia 
Rating (CDR) score of the next visit using previous records 
[13]. Aghili et al. utilized LSTM and GRU models to classify 
AD subjects using longitudinal records of data over an 11-year 
period [14]. 

Using the inherent correlations of sequential data, RNN s 
proved their potential in predicting AD related biomarkers for 
a future time point. Although effective, these studies limit 
themselves to predicting at only a single future interval. This 
paper broadened the scope and application of the RNNs by 
predicting the progression of AD over multiple future time 
points simultaneously. Employing three records of data for each 
subject, the RNN surpassed other machine learning methods not 
only in estimating the categorical variable for a multiclass 
classification task, but also in assessing the numerical value of 
the AD biomarker. Furthermore, two variations of RNN, GRU 
and LSTM, are investigated for the challenging task of drawing 
the delineation boundary of subjects in a multiclass 
classification scenario and also for predicting the trajectories of 
cognitive scores for the next two years. 

The rest of the paper is structured as follows. Section II 
begins with a brief description of the data used and the 
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Fig. l. Recurrent Neural Network architecture. 

preprocessing steps undertaken. Then, the different variations 
of RNN are introduced and the proposed methodology is 
presented. Section III reports on experiments that were 
conducted and discusses the results obtained, with section IV 
providing the conclusion. 

II. METHODOLOGY 

A. Recurrent Neural Network (RNN) 

Processing sequences of data, RNN s have the capability to 
effectively incorporate temporal dependencies in longitudinal 
data. Fig. 1 illustrates an RNN with data sequences of k time 
steps. At each time point (ti), besides the input features (Xt,), 

the internal state (memory) of the cell from the previous time 
step (htci-i)) are fed to the cell. Thus, unlike feedforward neural 

networks, RNN s can identify patterns hidden in sequences of 
data. However, due to a lack of long-term memory in basic 
RNNs, each time point is mainly affected by previous intervals 
in close vicinity. Therefore, they are not capable of leveraging 
long-term relationships in historical data and older information 
tends to fade away. This setback is known as ''vanishing 
gradient" in which the network gradually forgets older traces. 

To address this issue, GRU and LSTM-based RNN 
architectures with the capability of capturing long-term 
memories have been proposed [15], [16]. The structure of 
LSTM and GRU cells as the building blocks of improved 
version of RNN are shown in Fig. 2. In an LSTM cell, three 
gates denoted by sigmoid functions (r:r), decide whether the 
previous cell state (C), the input (X), and the output (h) need to 
be passed to the next time step. This will make the memorizing 
capability of the cell more intelligent and durable. The 
following equations describe the operation principle of an 
LSTMcell. 

ht = a(w,(xtt• he._.)+ b1) 

itk = u(W;(Xtk•htH) + b,) 
rtk = tanh(w1(xt •• hck_1 ) + b1) 

Ct• = Ct•-• * ht + 'i.1 * itk 
Ock = u(w0 (xc •• hc1<-1) + b0 ) 

htk = Ott * tanh( Ctk) 

(1) 

where tir refers to the klh time step; Xt1r.• Ct1r.• and ht1r. represent 
the input, state, and output of the cell at the kth time step; and 
ft1r.• it1r.• and Ot1r. are the outputs of the forget, input, and output 
gates. Also, Wand b are the weights of the neural networks. 

In the gating mechanism of GRU, two gates known as reset 
and update gates determine the amount of the current input and 
output of the previous time step that needs to be preserved. With 
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Fig.2. The structure of LSTM and GRU cells 
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Fig.3. Heat-map of features used in this study 

the same notations of Xt1r. and ht1r. as the input and output of the 
cell for the klh time step, the mathematical equations of a GRU 
cell are summarized as follows. 

zck = u(W,,(Xck' hc._1 ) + bz) 
Ttt = u(Wr(Xtk• hc1c-.) + br) 

lie•= tanh(w,.(xt•• re•• he._.)+ b,.) 
htt = (1-ztt) * hc._1 + Zt• *lie. 

ht• = Ott * tanh( Cct) 

(2) 

where Zt1r. and Tt1r. are the outputs of the update and reset gates. 

B. Feature Selection 

Referring to previous studies [14], which shed light on the 
possible overfitting of RNNs on the original feature space, 
feature analysis and ranking has been performed on the data. 
Consequently, to address the highly correlated features, Li 
feature selection was employed to extract the most important 
features. Using Li method, 25 features with highest variance in 
the feature space have been selected. The correlation matrix 
(heat map) of the features is illustrated in Fig 3. 

C. Longitudinal AD Prediction using RNN 

The proposed framework uses the memorization capability 
of the LSTM/GRU cell to capture historical dependencies from 
three records of subjects in order to predict the progression of 
AD at three next future time points. Therefore, a many-to-many 
RNN architecture with LSTM/GRU cells has been developed 
to carry out two tasks of longitudinal multiclass classification 
and regression. 

The structure of the network for the LSTM case is 
demonstrated in Fig. 4. In the developed network, the three 
inputs (Xti• Xt

2
and Xt

3
) represent the feature space associated 

with three-time points of Mo (Baseline), M6 (after 6 months), 
and M12 (after 12 months). The information is transferred from 
one time point to the next one using the cell state ( C) and output 
(Y). The outputs Yt, are the Mini-Mental State Examination 
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Fig. 4. The RNN architecture used to predict the progression of AD using 
historical data 

TABLE I. STATISTICS OF THE DATASET USED IN Tills STUDY 

Cate 
AD 
MCI 
CN 

Sub'ects (f/m) 
336 (150/186) 
864 (3541510) 
521 (268/253) 

e 
74.93±7.81 
73.03±7.60 
74.25±5.79 

Education( ) 
15.17 ±2.99 
15.91±2.85 
16.37±2.70 

MMSE 
23.18 ± .06 
27.59±1.81 
29.06±1.14 

(MMSE) score for regression model or status of patients (CN, 
MCI, and AD) for classification model. The time steps t4 and 
t 5 are associated with the future time points M24 (24 months 
after the baseline) and M36 (36 months after baseline). The next 
section discusses the material and experimental results. 

ill. EXPERIMENTAL SETUPS, RESULTS AND DISCUSSIONS 

A.Data 

The data used in this study is obtained from the Alzheimer's 
Disease Neuroimaging Initiative (ADNI) database 
(http://adni.loni.usc.edu/). ADNI was launched in 2003 as a 
public-private partnership, led by Principal Investigator 
Michael W. Weiner, MD. The primary goal of ADNI has been 
to test whether structural Magnetic Resonance Imaging (MRI), 
Positron Emission Tomography (PET), other biological 
markers, and clinical and neuropsychological assessment can 
be combined to measure the progression of MCI and early AD. 

Longitudinal medical records from 1458 subjects (341 CN, 
255 EMCI, 529 LMCI, and 333 AD) have been incorporated in 
this dataset. During an 11-year study, each patient has been 
recalled for a follow-up visit every six months. These subjects 
have undergone several medical screening tests including MRI, 
PET, genetic tests, CSF tests, and cognitive impairment 
assessments. At each visit, an expert monitors the test results 
and updates the diagnosis for the participants. This categorical 
diagnosis (AD, MCI, NC) is used as the label for the multi.class 
classification experiment proposed in this study and the 
numerical Mini-Mental State Examination (MMSE) scores, an 
indicator of the AD cognitive impairment, with a range of 0-30 
is adopted for the regression experiment. Characteristics of the 
dataset used in this study are summarized in Table I. 

B. Longitudinal Data Preprocessing 

Initially, the data is preprocessed to alleviate any 
inconsistencies caused by utilizing different data modalities and 
various protocols. Subjects who have participated at all five 
consecutive intervals including baseline, six months after the 
first visit (Moo), twelve months after the first visit (M12), twenty­
four months after the first visit (M24) and thirty-six months after 
the first visit (M36) have been considered. In the initial step of 
the experiments, data cleaning [17), [18), mean centering, data 

TABLE II. SUMMARY OF MULTIMODALF'BATURES UTILIZED IN nns STUDY 
Sowce 

Cognitive 
tests 
MRI 

PET 
Genetic 

Demo a hie 
CSP 

Features 
Everyday Cognition (ECog) questionnaire 

measurements, FA , MOCA, RA VLT, CDRSB 
Ventricular volume, Hippocampus volume, Whole 

Brain volume, Entorbinal Cortical thickness, 
Fusiform, Middle tem al s, ICV 

TABIB ill. REGRESSION RESULTS 

M12 M24 M36 Total 
Algorithm 

RMSE Corr RMSE Corr RMSE Corr MSE 

Ridge 2.07 0.58 2.66 0.62 2.99 0.63 6.82 
SVR 2.14 0.59 2.86 0.61 3.17 0.58 7.68 

LSTM 1.97 0.63 2.33 0.69 2.54 0.72 5.26 
GRU 1.97 0.63 2.33 0.69 2.54 0.72 5.24 

Ridge+ FS' 2.02 0.62 2.67 0.65 2.93 0.65 6.65 
SVR+FS' 2.16 0.60 2.76 0.65 3.26 0.62 7.70 

LSTM+FS' 1.85 0.63 2.25 0.70 2.48 0.70 4.98 
GRU+FS' 1.82 0.63 2.21 0.71 2.44 0.70 4.77 
*Fea~ selection 

normalization, missing feature handling, and univariate feature 
analysis has been performed to discard uninformative features. 
Furthermore, subjects whose medical diagnosis are not reported 
are removed from further analysis. 

C. Simulation and Results 

This study evaluates the performance of two RNN variations, 
LSTM and GRU, on the ADNI cohort for the two tasks of 
classification and regression. The experiment proceeds with the 
selection of historical records from subjects at three intervals 
(baseline, M06, and Mi2) to predict the status of the subjects in 
three future time points of M12, M24 and M36· Estimating the 
MMSE scores of subjects is pursued as a regression problem 
and predicting the diagnosis labels is defined as multi.class 
classification problem. The data has been split randomly to a 
75% training set, a 10% validation set, and a 15% testing set. 
Grid search has been utilized to select the best hyperparameters 
for regression and classification networks separately. In order 
to feed the longitudinal feature space into the RNNs, the data 
has been framed in the tensor form of [samples, ti.me steps, 
features] which in this case is 3-time steps of the 532 samples 
with 34 features involving MRI, PET, Cerebrospinal fluid 
(CSF) and cognitive test scores as provided in Table II. 

The performance ofLSTM and GRU, implemented using the 
Keras deep learning library, are compared with state-of-the-art 
methods. It is worth noting that conventional methods cannot 
incorporate historical records of subjects for enhancing the 
prediction accuracy. This limitation has been compensated by 
concatenating all three-historical feature sets. Competing 
methods are then trained on this new feature space to find an 
individual direct map between the feature space from past 
intervals with the corresponding future time points. 
As regression, RMSE and R-Correlation factor are used as 
evaluation metrics to compare Ridge and SVR from Scikit-leam 
library with LSTM and GRU, and the Results are reported in 
Table III. 
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TABLEN Cl..AsSIFICATIONREsULTS 

Method 
Ml2 M24 M36 

ACC PRE REC Fl ACC PRE REC Fl ACC PRE REC Fl 
SVM 0.66±0.04 0.44±0.0S 0.66±0.05 0.52-+0.04 0.61±0.04 0.38±0.04 0.61±0.04 0.46±0.04 0.61±0.03 0.38±0.04 0.61±0.03 0.48±0.04 

LSTM 0.84±0.10 0.86±0.06 0.84±0.10 0.81±0.16 0.82±0.12 0.77±0.22 0.82±0.12 0.79±0.18 0.80±0.09 0.84±0.06 0.80±0.09 0.78±0.15 
GRU 0.61±0.09 0.9~.oo 0.60±0.09 0.74±0.07 0.37±0.06 o.~oo 0.37±0.06 0.53±0.06 0.61±0.04 o.~.oo 0.61±0.04 0.75±0.03 

LSTM+FS 0.8~.03 0.89±0.02 o.~02 ........ 02 0.87:l0.0l 0.86±0.04 0.87:l0.02 0.-0.02 O.RR:l0.02 0.87:l0.03 O.RR:l0.02 0.87:l0.03 
GRU+FS 0.68±0.09 0.95±0.00 0.68±0.09 0.79±0.07 0.28±0.11 O.!l!l±0.00 0.29±0.11 0.43±0.13 0.51±0.08 O.!IS±0.00 0.51±0.08 0.67±0.04 

Similarly, the classification problem is defined as the 
diagnosis of subjects at three futore time points based on three 
previous intervals. For the classification task, SVM from Scikit­
learn library is selected as the competitive alternative to 
evaluate the performance of the LSTM and GRU. F-score, 
precision, recall, accuracy has been utilized as the classification 
metrics and the results are summarized in Table IV. 

From Tables III and IV, it can be observed that the LSTM 
and GRU on the original featore space demonstrate lower 
performance in comparison to the competitive methods in some 
cases. Incorporating L1 has led to a noticeable improvement in 
the prediction accuracy, which could be associated with the 
overfitting of networks. Since RNNs have a high number of 
variables and weights, they require a larger number of samples 
for training. The approach investigated in this paper employs 
the L1 feature selection to overcome the limited number of 
samples for training an effective network, which can predict the 
future status of AD subjects using their historical 
measurements. 

IV. CONCLUSION 

For tracking the progression of the AD at multiple futore 
intervals and gauging the merits and gradual effects of any 
potential treatment plan in longitudinal AD studies, this paper 
aimed to apply Recurrent Neural Networks to the ADNI 
dataset. Three historical time points from subjects in three 
categories of CN, MCI and AD were selected to form a feature 
space. Then, the model is trained on 75% of the data to predict 
three future MMSE scores and diagnosis labels of the subjects 
with two different variations of RNN (LSTM and GRU). 
Employing LI featore extraction prior to application of the 
RNNs lead to a higher performance in both regression and 
classification models in comparison to other state of the art 
algorithms, which can be observed from the results provided in 
Tables III and IV. 
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