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A B S T R A C T 

Predicting the progression of Alzheimer's Disease (AD) has been held back for 
decades due to the lack of sufficient longitudinal data required for the 
development of novel machine learning algorithms. This study proposes a novel 
machine learning algorithm for predicting the progression of Alzheimer’s 
disease using a distributed multimodal, multitask learning method. More 
specifically, each individual task is defined as a regression model, which 
predicts cognitive scores at a single time point. Since the prediction tasks for 
multiple intervals are related to each other in chronological order, multitask 
regression models have been developed to track the relationship between 
subsequent tasks. Furthermore, since subjects have various combinations of 
recording modalities together with other genetic, neuropsychological and 
demographic risk factors, special attention is given to the fact that each modality 
may experience a specific sparsity pattern.  The model is hence generalized by 
exploiting multiple individual multitask regression coefficient matrices for each 
modality. The outcome for each independent modality-specific learner is then 
integrated with complementary information, known as risk factor parameters, 
revealing the most prevalent trends of the multimodal data. This new feature 
space is then used as input to the gradient boosting kernel in search for a more 
accurate prediction. This proposed model not only captures the complex 
relationships between the different feature representations, but it also ignores 
any unrelated information which might skew the regression coefficients. 
Comparative assessments are made between the performance of the proposed 
method with several other well-established methods using different multimodal 
platforms. The results indicate that by capturing the interrelatedness between the 
different modalities and extracting only relevant information in the data, even in 
an incomplete longitudinal dataset, will yield minimized prediction errors. 

 

 

1. Introduction 

According to a March 2018 report from the Alzheimer’s Association (AA), nearly 5.7 million US citizens, mostly 
elderly people, are affected by AD, a statistic that is predicted to reach 13.8 million by 2050. This AA report also 
indicates that an approximated amount of 277 billion dollars was invested in 2018 in caretaking services for patients 
with AD and dementia (Alzheimer Association, 2016).  

Alzheimer's Disease is a progressive and irreversible brain disorder where subtle brain changes may have started 
decades prior to any detectable symptoms. In its early stages, AD symptoms begin with mild cognitive decline, 
which can then progressively lead to more severe physical and functional impairments. Key indicators are associated 
with severe brain atrophy, beta-amyloid deposition, and evidence of widespread limbic and cortical neurofibrillary 



degeneration. In the study by (Jedynak et al., 2012), an interesting computational neurodegenerative disease 
progression score is proposed on the basis of the dynamics of the different biomarkers in AD. 

Alzheimer’s Disease progression is generally assessed using clinical measures, but it can also be  accomplished 
using biomarkers involving structural magnetic resonance imaging (MRI), 18-Fluoro-DeoxyGlucose PET imaging 
(FDG-PET), cognitive examination, cerebrospinal fluid (CSF) and electroencephalography (EEG) (Nimmy John et 
al., 2018; Poil et al., 2013; Loewenstein et al. 2018). Commonly used MRI biomarkers for detecting the progression 
of AD include cortical thickness and  regional brain volume (Stonnington et al., 2010; Lao et al., 2004; Magnin et 
al., 2009; Sørensen et al., 2016), whereas the most significant biomarkers of FDG-PET include glucose 
hypometabolism in neocortical brain regions (Azmi et al., 2017; Alexander et al., 2002; Landau et al., 2012; Cohen 
and Klunk, 2015). It has also been revealed that an increase in CSF t-tau or Phospho-Tau is a potential biomarker of 
disease progression (Trushina et al., 2013; Colijn and Grossberg, 2015; Shaw et al., 2009). 

Along with neuroimaging modalities, there are other unconventional measurements, known as risk factors, which 
are associated with Alzheimer’s, such as age, genetic information, years of education and ethnicity (Michaelson, 
2014; Rogers et al., 2012). As expected, this complementary information shows that age plays a significant role in 
the onset of AD (Chen et al., 2000; Mungas et al., 2001; Duara et al., 2019). It is also well acknowledged that the 
most prominent genetic risk factor is the Apolipoprotein E (APOE) gene.  This gene and its major alleles (E2, E3, 
and E4) are known to increase the risk of developing AD in individuals as young as 40 years of age (Farrer et al., 
1997; Corder et al., 2008).  

While many studies in the literature  mainly focus on disease prediction, typically relying on  a single modality 
(Bi et al., 2018; Frisoni et al., 2007; Duchesne et al., 2009; Li et al., 2012; Buerger et al., 2002; Jack et al., 2018), 

recent studies have shown that incorporating biomarkers from different modalities may lead to a more accurate 
diagnosis (De Leon et al., 2006; Tong et al., 2017; Ritter et al., 2015; Westman et al., 2012; Zhang et al, 2011). New 
research directions have come to rely on multimodal neuroimaging data with the inclusion of other biomarkers such 
as cerebral spinal fluid (CSF), genetics and neuropsychological testing. The main objectives of these research 
endeavors are either to discriminate patients’ status via classification methods or to predict different variables using 
regression models. Cross-sectional and longitudinal data have been used to explore correlations between clinical 
neuroimaging tests, neurological exams and biochemical measurements to monitor changes in these important 
biomarkers. Yet, despite much ongoing research, predicting the progression of AD, especially for enabling early 
intervention, has remained challenging (Mendez, 2017; Pierce et al., 2017; Lawlor et al., 1994; Wolfe, 2016; Doody 
et al., 2010; Van Der Flier and Scheltens, 2009; Moradi et al., 2015; Curiel et al., 2018; Lizarraga et al., 2018; C. Li 
et al., 2017; Loewenstein et al., 2017; Sargolzaei et al., 2015; Duara et al., 2015; Minhas et al., 2017).  

In order to study the relative temporal changes in AD, there is need to track pathophysiological changes in a large 
number of observations using Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), 
Cognitive assessment tests (COG) and Cerebrospinal Fluid (CSF) tests. However, acquiring all these tests within a 
large population is costly, time-consuming and often difficult to maintain high protocol adherence given the dropout 
rate and missed follow-up visits given the patients’ advanced age and severity and extent of disease progression. 
Consequently, there are two kinds of challenges in studying longitudinal dynamics and related patterns in medical 
data. The first one is due to size irregularity because of missing measurements from a specific modality. The second 
is due to patients missing on follow-up visits or dropping out from the study. Among the many verified assessments 
that can diagnose the presence of AD and scale the severity of the progression, the Mini-Mental State Examination 
(MMSE) and the Alzheimer’s Disease Assessment Scale-Cognitive Subscale (ADAS-Cog) are the most common 
tests used in regression-based models (Zhang, Daoqiuang; Shen, 2013; Wang et al., 2011). One of the earliest work 
in this domain was done by Tierney et al. in 1996, who used logistic regression to predict the possibility of AD 
progression over a period of two years (Tierney et al., 1996). The study in (Zhang and Shen, 2012) proposed a 
sparse linear regression model in conjunction with a group regularization technique. The model was applied across 
different brain regions to select the most informative longitudinal features. Their model predicts future cognitive 
clinical scores among MCI subjects over a period of 24-months. Similarly, Izquierdo et al (Izquierdo et al., 2017)  
predicted cognitive scores using stochastic gradient boosting of decision trees among 1,141 individuals for whom 
longitudinal clinical and imaging studies were available in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
database. In another study (Tabarestani et al., 2019), two different variations of recurrent neural networks (RNN), 
namely Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU) have been applied using 1458 
multimodal records of subjects from the ADNI database to predict AD progression. By leveraging the patients’ 
historical records from the previous three time points, their model could track the disease progression trends of 
patients at three other subsequent time points with an accuracy that outperformed methods that relied solely on the 
baseline records.  



Multitask learning, first proposed in 1997, is shown to improve performance by extracting the relationships 
between multiple similar tasks through the development of a statistical model (Caruana, 1997). It has since attracted 
a lot of attention in a variety of machine learning algorithms with application domains ranging from finance to 
bioinformatics (Dong et al., 2015; Greenlaw et al., 2017). This new research trend has delivered promising 
performance improvement in different categories, including, but not limited to multitask learning using kernel-
methods (Evgeniou et al., 2005), interpreting task relationship (Zhang and Yeung, 2012; Widmer et al., 2012), 
developing probabilistic and statistical models (Bi et al., 2008; Xue et al., 2007), selecting features (Yang et al., 
2010; Zhu et al., 2017), learning features (Zhang and Yeung, 2011; Y. Li et al., 2017), feature hashing (Weinberger 
et al., 2009), and task grouping (Kumar and Daume, 2012; Bakker and Heskes, 2003).  

In recent years, multitask learning has been successfully applied to longitudinal clinical data to predict the 
progression of neurodegenerative diseases (Zhang, Daoqiuang; Shen, 2013b; Emrani et al., 2017b; Nie et al., 2017; 
Zhou et al., 2012b; Suk et al., 2017). Compared to single-task learning, multitask learning uses a regression model 
for predicting the future status of patients at multiple time points. The basic assumption in these models is that an 
inherent correlation exists among multiple records of information, which are derived from the same subjects. These 
studies demonstrated that capturing this inherent relatedness could improve the generalization of the final prediction 
model. For example, Zhou et al. in (Zhou et al., 2012b) developed convex and nonconvex fused group Lasso 
formulation as the regularization term of the multitask learning kernel. Their model could choose the most important 
sets of biomarkers from different time points to model the progression of AD. Similarly, Emrani et al. employed 
multitask learning to predict the progression of Parkinson’s disease over a period of 4.5 years (Emrani et al., 2017a), 
and Jie et al. in (Jie et al., 2015) reported that using manifold regularized multitask feature learning could yield 
better classification performance and could identify disease-related regions in the brain deemed important for 
disease diagnosis. A Sparse Group Lasso with shared Subspace Multitask learning (SGLS-MTL) has been proposed 
by Cao et al. (Cao et al., 2017). Their framework uses ℓ�,� penalty, group ℓ�,� penalty and subspace structure to 
capture the correlation between the tasks, the sparse feature representation and the shared subspaces. They have 
applied their SGLS multitask learning method to predict cognitive scores and to detect potential predictive MRI 
biomarkers. Wang et al. in (Wang et al., 2012.), proposed a high-order multitask feature learning algorithm to model 
the longitudinal trajectories of the cognitive measures of AD subjects based on neuroimaging biomarkers. They 
employed non-smooth structured sparsity-inducing norm to utilize the correlation between the adjacent tasks 
(prediction of cognitive measures at two subsequent time points) and the interrelations that exist between the 
cognitive measurements. To capture the nonlinearity in the relationship between MRI neuroimaging features and 
cognitive scores, Cao et al. in (Cao et al., 2018) used the ℓ�,� − �� norm. By combining a joint sparsity regularization 
term with multitask learning, their proposed model produced more accurate results. Jie et al. in (Jie et al., 2017), 
introduced a group regularization term to the sparse linear regression model. They have also added two smoothness 
regularization terms to the objective function to ensure that the model keeps the differences between the weight 
vectors belonging to adjacent time-points to be small. Their proposed model leveraged the prediction performance 
of the MMSE and ADAS-Cog scores from other existing sparse learning based models.  

The neuropathological symptoms of AD in its different stages are complex and combining different modalities in 
an effective way does augment the prospects for a more accurate diagnosis. Although there are many studies dealing 
with multimodal datasets, only a few discussed the discrepancy in the different representations of feature domains 
(Yang et al., 2010; Cheng et al., 2015). On the other hand, missing a screening test on a given visit or dropping out 
of an entire follow-up visit results in data scarcity in the multimodal database, a drawback experienced in most 
longitudinal studies. Therefore, to make a reliable prediction of MMSE changes over time, a distributed multimodal 
multitask framework is proposed in this study to overcome these types of data scarcity problems. In multitask 
learning, the regularizing term presumes that an equivalent degree of importance exists in the feature space. 
Therefore, if a positive correlation between the features from different modalities is not found, or if the features are 
not linearly correlated, the process may fail to identify relevant patterns. In this case, constructing a unified 
multitask learning model over the concatenated information may not be the optimal approach. To address this 
problem, a multitask modality-specific regression framework is proposed to predict future MMSE scores for up to 
48 months while relying on measurements provided at baseline. Separate multitask regression matrices are trained 
for each modality to ensure that the coefficient matrices select the leading features extracted from the same modality 
between consecutive tasks.  

The objective function of each regression model uses the correlation and sparsity pattern that exists between all 
tasks within each modality to improve the longitudinal prediction accuracy. In the second stage of the algorithm, a 
gradient boosting method is implemented to take a concatenated series of temporal predictions from different 
modalities and improve the overall performance of the model by predicting a final score. This segregation of 
modalities in multitask modality-specific regression offers the following advantages: 



• Resolves issues related to nonlinear or negative correlations between different feature spaces, which could 
hinder the performance of multitask learning. 

• Provides an error propagation-free framework through a combination of modality-specific multitask learning 
and gradient boosting. This approach assumes that potential errors might exist in the measurements of a specific 
modality that originated from capturing, processing or extracting data. Concatenating data from different 
modalities will thus increase the risk of spreading this error to the fused feature space.  Hence, by training 
separate models and performing a majority vote for the distributed models, the source of error can be detected 
and consequently prevented from propagating into the fused feature space. 

• Overcomes the missing data challenge by projecting a highly dimensional and highly sparse input feature space 
into multiple low-dimensional and less-sparse spaces. This ensures that the independent coefficient matrices can 
collectively determine and order the most important biomarkers in the whole dataset. 

It is worth noting that the motivation of the model as envisioned is to predict the trajectories of cognitive decline 
for subjects without any preliminary diagnosis and without regard to the historical records. Thus, the applicability of 
the proposed framework in terms of providing prediction from baseline information makes it different from methods 
that need at least a few historical records to be available. For example, Zhu et al in (Zhu et al., 2016) proposed a 
method for early diagnosis of AD by analyzing longitudinal MRI records and constructing a new feature space from 
the mean and the difference between the first and last visits measurements. While involving historical records from 
patients into the training phase may improve the prediction accuracy, it limits the applicability of the model to only 
those patients with available medical records.  

The rest of the paper is organized as follows: Section 2 presents a brief mathematical background of single task 
regression, multitask regression, and the gradient boosting method. The methodology and implementation steps of 
the proposed model are described in Section 3. The proposed model is formally introduced with the mathematical 
formulations that guided this study and with a step-by-step implementation process which are described in 
subsections 3.1 through 3.4. Section 4 begins with a discussion on the data considered in this study and provides a 
comprehensive assessment of the experiments conducted. Concluding remarks and a retrospective on the results 
obtained are provided in Section 5. 

2. Background 

2.1 Problem Description 

The development of Alzheimer’s Disease takes place along a trajectory spanning several years with transitions 
phases that vary from one patient to another. Therefore, in longitudinal AD studies, individuals repeat medical 
screening tests at multiple follow-up visits and their MMSE scores are recorded and analyzed at each visit. MMSE, 
with a range of 0 to 30, is the screening test most commonly used for memory and cognitive evaluation. While it is 
not intended to replace neurological diagnostic labels, it is used to validate the reliability of medical examinations or 
to evaluate temporal cognitive decline in people suffering from AD. Early intervention plans are effective only if the 
earliest manifestations of AD are identified at the onset of the disease. Therefore, predicting future trajectories of 
MMSE scores enables doctors to identify future pathological levels of memory and cognitive impairment. 
Consequently, the initial objective of this paper is to predict the MMSE scores (�) of subjects, by finding the best 
model �, such that �: � = ��, where w	is the regression coefficient and � is the baseline information of the 
subjects. In support of the proposed approach introduced in Section 3, the required mathematical background is 
introduced in sub-sections 2.2 through 2.4. 
  

2.2 Single Task Regression 

Let � ∈ ℝ�×� be a matrix consisting of N subjects with P features describing each subject, with �� ∈ ℝ�×�, � =1,2, . . , � defining the clinical scores of those � subjects at the ��� time point. The problem of predicting the clinical 
scores at multiple future time points could be formulated as solving T different regression models as  ��: � ∈ℝ�×� → �� ∈ ℝ�×�	, � = 1, 2, . . �.  

In the simplest form, these T regression problems can be solved using the following Ridge regression formula: 



�� � = argmin�# ‖%⨀'�� − (�# )‖�� 	+ +‖�# ‖��       (1) 

where �� � ∈ ℝ�×�; 	� = 1, 2, … , � are T independent coefficient vectors calculated by solving the minimization 
problem in Eq. (1). The 	.#  is used as a variable under the arg min function to avoid any confusion with w (the 
perfect target) and ��  (the estimated target). In other words, at the last iteration, 	.#  that minimizes the arg min 
function is set as the best estimate ��  ( i.e., ��  ← �# ). Symbol ⨀ defines the component-wise multiplier and vector % ∈ ℝ�×� defines the missing target values; meaning that /0 = 0 if the target value of the 2�� patient is missing at 
the ��� time point, and /0 = 1 if the target value of the 2�� patient is available at that same time point. In Eq. (1), the ‖�# ‖�� is the squared ℓ� norm of the coefficient vector �# , which is controlled by tuning parameter +. Recall that the 
p norm of a vector 3 ∈ ℝ4×� with 3 = 56�, 6�, … , 6478 is defined as:  ℓ9 = ‖3‖9 = '∑ |6<|94< )� 9= 	     (2) 

The penalty term +‖�# ‖��, controls the amount of coefficient shrinkage and forces the variance to be close to zero in 
order to reduce the mean-squared error. Another solution in finding � is to employ the Lasso regression formulated 
as a constrained minimization problem as follows:  

�� � = argmin�# ‖%⨀'�� − (�# )‖�� + +‖�# ‖�       (3) 

In this formula, increasing + forces the majority of coefficients in �# , which are associated with features deemed not 
to be important, to be close to zero and shrink the non-zero coefficients simultaneously. The only difference between 
these two regression models is in squaring the ℓ� norm in Ridge regression and using ℓ� as the penalty terms in 
Lasso regression, which increases the sparsity of the coefficients.  

2.3 Multitask Regression 

Another way to tackle the problem of predicting cognitive scores at multiple time points is to employ multitask 
learning. In the single-task approach, each task is defined as predicting MMSE scores at a single time point and 
several independent regression models are trained separately to perform prediction for each time point. On the other 
hand, the multitask approach utilizes the similarities between different tasks to find a more accurate regression 
model that can carry out multiple prediction tasks. This means that in multi-task learning all the MMSE scores 
belonging to the T time points will be calculated simultaneously. 

Multitask learning can be mathematically formulated as a predictor >: � ∈ ℝ�×� → ? ∈ ℝ�×@ where ? =5��, ��, … , �@7 is the target values of N subjects at T time points. This multitask predictor > can be modeled using a 
weight matrix A = 5��, ��, … ,�@7 where A ∈ ℝ�×@. In computing the A matrix, one approach is to solve the 
convex optimization problem as expressed in Eq. (4), also known as the convex fused sparse group Lasso (cFSGL) 
(Zhou et al., 2012).  
 BC = arg	minB# DE⨀'F − (B# )DG� + +DB# DH + IDB# D�,� + JDKB# 8D	H      (4) 

 

where ⨀ , as defined earlier, is the component-wise multiplier and matrix E ∈ ℝ�×@ specifies the missing target 
values, in which L0,� = 0 if the target value of the 2�� patient is missing at the ��� time point, and L0,� = 1 if the 
target value is available. BC  is the estimation of the B achieved by solving the minimization problem. Terms +, I, 
and J are the hyperparameters that control the effect of each regularization term in the cost function and are 
optimized during the training phase to improve the performance of the algorithm. ‖A‖�		is the Lasso penalty term 
and ‖A‖G�  is the squared Frobenius norm and the DB# D�,� is known as the Group Lasso penalty. Moreover, ‖KA8‖� 
is the Fused Group Lasso penalty, and K is '� − 1) × � sparse matrix interpreted as a descriptor of the relatedness 
between different tasks. Assuming each task as a node in a graph, a relationship between every two tasks is 
represented by a connection between their corresponding nodes. This penalty term controls the transition between 
neighboring tasks and forces the transition within successive tasks to remain small (a process also known as 
temporal smoothness).  In other words, MN,O = 0 indicates that the task assigned to node P is not related to the task 
assigned to node Q , while MN,O = R indicates that task P and task j are associated with each other with a degree of R. 
In the proposed model, this parameter restrains the variation of predicted cognitive scores in neighboring time steps, 
meaning that trajectories of MMSE scores at two consecutive time points cannot have spikes. In order to solve Eq. 



(4), the accelerated gradient method (AGM) was used, which is available in the MALSAR package (Zhou et al., 
2012).  

 Another approach for finding the weight matrix A is to use the non-Convex Fused Sparse Group Lasso 
(nFSGL1) as formulated in (Zhou et al., 2012): 

BC = argminB# DE⨀'F − (B# )DG� + 	JDKB# 8D� + 	θ∑ T‖U# N‖�		VWX�         (5) 

where �Y#  is the Pth row of B# . The convex and non-convex Fused Group Lasso formulas allow for joint feature 
selection across all tasks while selecting distinct feature sets for each task. 

The joint selection of the coefficients in W could also be penalized in the form of ℓ�,�-norm with least square 
loss. Thus, the finding of the optimal W can be formulated as: 

BC = argminB# �� 	DE⨀'F − (B# )DG� 	+ 	I�DB# D�,� + I�	DB# DG� 				 				 				 (6) 

To incorporate global and local information in the feature set with a sparse regression method, Zhu et al in (Zhu 
et al., 2016) reformulated the objective function in equation (6) as follows: 
 BC = argminB# �� 		DE⨀'F − (B# )DG� 	+	I��Z'B# ′′′′�′\(B# ) +	 I�DB# D�,�  (7) 

where I� and I� are the regularization parameters and tr (.) denotes the trace operator. Here, with R being the 
adjacency matrix, the Laplacian matrix L can be defined as: 

L = D – R       (8) 
where D is the symmetric diagonal matrix in which the diagonal elements ]NN = 1 and all the other non-diagonal 

entries are 0. Zhu et al. in (Zhu et al., 2018.) proposed an iterative method for finding the solution of multitask 
problem, i.e. A, to reduce the number of hyperparameters that must be learned in the multitask learning problem. 
The objective function in this proposed approach is to find the ��values through the following formulation:  
  BC = argmin�# �,			 _̂ ∑ R� `	D%⨀a�� −(�# �bD�� 	+	D�# � −	�_D�,�c@� +	I�DB# D�  (9) 

 

where �_  is the mean vector of �# �'� = 1, 2, … �) ∈ 	A. For each task t, the weights of each task denoted as R�	are 
calculated automatically with the following equation: 

R� =	 1
2de%⨀'��−��# f)e22+e�# f−	�_e2,1

     (10) 

Employing the centralized regularization in the objective function of (9) balances the variances of the coefficients in �� by penalizing them separately using R�.  
2.4 Gradient Boosting 

Ensemble models have been shown to be effective in various prediction tasks by grouping a set of weak learners to 
construct a more powerful learner. Bagging and boosting are the two mainstream techniques in ensemble learning 
methods. The former creates independent and uncorrelated learners on subsets of data and generates the final result 
by voting or averaging the outcomes of independent learners. On the contrary, the latter generates a collection of 
weak learners, in which the predictors are trained sequentially rather than separately. In boosting methods, the goal 
is to utilize the error of the previous learners to develop a more efficient model for the next learner. With training the 
learners sequentially, subsets of data do not have the chance to concurrently affect all the learners. The algorithm 
invests a larger weight on the samples that were classified inaccurately, forcing the hypothesis of the next weak 
learners to precisely analyze those tough samples and eventually improve the performance of the model. 

An extension of the boosting methods is gradient boosting, which is a supervised machine learning technique 
based on regression, classification, and ranking. It uses the gradient descent optimization technique to find the global 
or local minima of the cost function. Using a sequence of weak learners, Gradient Boosting (GB) trains a machine to 
fit a model on the input feature space such that each learner improves the prediction accuracy of the previous ones. 
Through multiple iterations, gradient boosting develops a single strong learner by combining multiple weak learners 
(Friedman, 2001; Ogutu et al., 2011). In the proposed method, GB constructs the final stage of the framework to 



improve the prediction accuracy by successively fitting a more accurate model on the residuals of the previous step. 
This procedure will continue until it achieves a highly accurate model. Sub-sections 3.3 and 3.4 provides more 
details on the role of GB in the context of the proposed framework.   

3. Method 

3.1 Notations and parameters 

Through the rest of the paper, matrices are denoted as bold uppercase letters and vectors are denoted as italic bold 
letters. Matrices gh� ⊆ j and Ωh� ⊆ Ω are the feature space and patients’ roster ID associated with the subjects who 
have been examined at time point t with modality test m. For these subjects,	l�with	� = 1, 2, … , T are their 
respective cognitive scores (independent from the source of the modality). Similarly,  q is the risk factor matrix 
consisting of age, gender, years of education and APOE4 factors for all patients. It is noted that the (') notation 
denotes transposition and should not be confused with t = 1, 2, …, T which define the different time points in the 
longitudinal study, where T denotes the 48th month. 

3.2 Method Overview 

Tracking future MMSE scores reveals a subtle but progressive decline in cognitive levels of individuals through the 
different stages of AD and informs on the nature of the transition phases of the disease. However, prognostication of 
AD progression, regardless of the label associated with the subject at baseline, remains challenging, especially in a 
multimodal platform. Certain modalities have shown a relatively higher impact on the asymptomatic or symptomatic 
phases of AD. This promoted the use of multimodal biomarkers to improve the accuracy of identifying 
neurobiological and clinical symptoms of the disease. However, the interactions and correlations between the 
biomarkers from complementary modalities remain intricate. Furthermore, longitudinal datasets continue to suffer 
from the missing data challenge.  

Considering the data scarcity and the discrepancy in the correlation matrix associated with the heterogeneous 
multimodal longitudinal dataset, we propose to utilize the modality-specific multitask coefficient matrix. These 
unique multitask coefficient matrices are trained over different sets of biomarkers extracted from each modality to 
model the temporal interaction between the baseline features and the transitions of the cognitive scores at successive 
time points.  

The strength and capability of different modalities in tracking the progression of AD are still inconclusive. 
Therefore, granting equal contribution (or equal weight) to the predictive biomarkers from different modalities 
increases the chance of achieving better prediction accuracy. This is accomplished by capturing the complex yet 
effective correlation between important modality-exclusive features and eliminating the effect of all other 
extraneous ones. Next, the initial outcomes of these cooperative multitask learners are fused with risk factors, which 
are assumed as time-invariant information. Finally, a gradient boosting kernel is trained over this new collective data 
representation to leverage the prediction accuracy through ensemble learning and looking into sparse and 
interpretable solutions. In the next section, we will go through the setup of our multimodal-multitask model.  

 

3.3 Method formulation 

Suppose that g ∈ ℝ�×� is the multimodal feature space and r = 5l�, l�, … , l@7 is representing the cognitive 
trajectories of these N subjects through T time steps. For each interval t, g� ⊆ g is the set of subjects who are 
chosen based on Ω�, the roster ID of population ls. It is worth noting that some subjects may have not returned for 
the follow-up visit at ��� time point and therefore Ω� < 	Ω is possible. Considering M as the total number of 
modality sources, g� and ls are decomposed into M subgroups, thus constructing� × u pairs of v'gh� , lh� ),w =1, 2, … ,u, � = 1, 2, … , �x, where each pair of 'gh� , lh� ) are the w�� single-modality measurements associated 
with the ��� time point.  

The single task regression method will be extended to the � × u optimization problems to calculate �h�  by 
solving equations (11) and (12). 

��h� = argmin�# ‖'lh� − jh� �# )‖�� 	+ +‖�# ‖��     (11) 

��h� = argmin�# ‖'lh� − jh� �# )‖�� + +‖�# ‖�    (12) 



where ��h� ∈ 	M�y×� is the ��hestimate at the ��� time point.  
In the multitask learning approach, the objective function will be extended to G{:	gh� 	→ 	 	r|wwhere 	r|h ∈	ℝ�×� is the concatenated matrix 	r|h = }l_w1 , l_w2 , … ,l_w� ~ with l_h�  being the extended versions of their 

corresponding lh� , in which the unavailable test scores of the patients are represented by zero values. The 
size discrepancy in l_h� , which is a consequence of missing modalities and dropout is illustrated in Fig. 1.  

In this figure, patterns of missing values and arrangements of available information from four modalities are 
represented over a fixed time period. Using a modality-specific approach, the objective function of multitask 
learners will be reformulated to calculate M number of Ah 	 ∈ 	 M�y×@ 		where Ah = 5�h� , �h� , … ,�h@ 7. Thus, the 
cFSGL (convex Fused Sparse Group Lasso) problem can be formulated as follows:  

A�h = argmin�# DE⨀'	r|h − gh� A# )DG� + +DA# D�	 + IDA# D�,� + 	JDKA# 8D�	  (13) 

And based on nFSGL1 (non-Convex Fused Sparse Group Lasso), the objective function will be formulated as 
follows: 

A�h = argmin�# DE⨀'	r|h − gh� A# )DG� + 	JDKA# 8D� + 	θ∑ T‖�# N‖�		�yWX�              (14) 

Using a similar approach, equations (6), (7), (9) and (10) will be reformulated respectively as follows: 

BCh = argminB# �� 	DE⨀'	r|h − gh� A# )DG� 	+ 	I�DA# D�,� + I�	DA# DG�    '15) 
BCh = argmin�# �� 		DE	⨀	'	r|h −gh� A# )DG� 	+	I��Z'A# gh��� \gh� A# ) +	 I�DA# D�,�	 	 (16)	
BCh = argmin�# �,			�_ 	∑ 	R� 	`	D%⨀'l_w� −gh� 	�# �)D�� 	+	D�# � −	�_D�,�c@	� 	+	 I�DA# D�  (17) 

R� =	 �
�de%⨀'l_w� �gy� 	�# �)e���e�# ��	�_e�,�

     (18) 

 
The flowchart of the proposed method in the training stage is illustrated in Fig. 2. In this figure, step 1 represents 

the training process for the modality-specific regression coefficient matrices A�h. The input space is constructed by 
T stack of modality-specific feature spaces,  jh�  , t = 1, 2, …, T and the targets are their respective cognitive scores 
characterized as l�h� . At the end of the training stage, step 1 generates u modality-specific multitask learning 
regression coefficient matrices, A�h ∈ 	M�y×@ for w = 1, 2, … ,u,  which are comprised of ��h�  for � = 1,… , � in 
the form of A�h = 5��h� , ��h� , … ,��h@ 7. Consequently, using jh�   as input measurements, the initial prognostications 
at time point t are established as: 

l�h� = jh� × ��h�       (19) 

for w = 1, 2, … ,u and � = 1, 2, … , �.  

Modality-wise multitask coefficient matrices capture the mutual relationships between the feature spaces and 
cognitive score trajectories. This provides a powerful tool in obtaining the inter-modality correlations and examining 
the predictive power of each modality exclusively. To take advantage of the information provided from each source 

� g�� g�� g��g��
l� l�� l�� l�� l�

� l_���� �� �� ��

Fig. 1. Illustrative example of size discrepancy in a longitudinal multimodal dataset. Available measurements 
extracted from each modality are shown with colored boxes and the missing information are displayed in the blank
sections. 



of modality, the outcomes of the multitask models along with risk factor parameters are combined together to form 
the input space for the gradient boosting. It is worth noting that the risk factor parameters, do not carry the 
unpredictable temporal pattern as in the other biomarkers. In order to reduce unnecessary computational costs, risk 
factor parameters have not been processed with multitask learning models and have been added to the second stage 
of the model. Step 2 in Fig. 2 shows the preparation of the data for the second stage of the method.  

For the dataset used here, it is observed that if the PET measurements are available for a group of subjects, the 
MRI measurements are also available for that group, but the opposite is not necessarily true. Therefore, five 
configurations of possible modality combinations are considered in this study: (1) MRI-PET, (2) MRI-PET-CSF, (3) 
MRI-PET-COG, (4) PET-COG-CSF and (5) MRI-PET-COG-CSF.  

The Ωh�  are the sets of roster IDs from subjects that have participated in test m at the tth time point and Ω�		� is the 
intersection between all Ωh�  with respect to their availability in the cth modality combination. Considering � as an 
indicator of the modality combination, the GB machines are developed as >�� ∶ 	 ���� 	⟶ l� for � = 1,… ,5 and � = 1,… , � over the set of Ω�		� . In which ���  is the new feature space for the cth GB machine and is constructed by 
concatenating l�h��  and q�� , which are the initial predictions and risk factors for the population of Ω�		� . This 
process has been demonstrated in step 3 of Fig. 2.  

For example, if the available modalities are MRI and PET, then c = 1. Meaning that in stage 1, only the modality-
specific regression coefficient matrices of A�� and A�� can provide the initial predictions as l���  and 	l��� . Based on 
their respective roster IDs, Ω�		� , the input space ��� = 5 q�� , l���� , l���� 7 is constructed in step 2. Then the ���  and 
their corresponding sets of cognitive scores, l�, will be used to train the corresponding >��� at step 3. 

3.4 Test scenario 

Suppose that we want to predict the MMSE score at time point � and the patient has completed three modality 
tests. The available measurements from this patient are thus (3� ∈ 	M�×��) extracted from MRI, (3� ∈ 	M�×��) 
extracted from PET, (3� ∈ 	M�×��) extracted from CSF test and a vector r containing the risk factor parameters for 
this patient. In this scenario, the COG modality which is  3� is not available. 

In the first step of the proposed model, modality-wise coefficient matrices will provide the most accurate 
predictions possible from the measurements of one modality through multitask learning. By feeding 3�, 3�, 3� to 
their respective modality-wise coefficient matrices, the initial predictions can be calculated as ���� = 3� × ���� , ���� = 3� × ����  and ���� = 3� × ���� . Next, the initial predictions of ���� , ���� , ���� and risk factors (ℱ) will be concatenated 
to form the new feature vector �� � = 5�, ���� , ���� , ����7 where � = 2 indicates the mode for modality combination (i.e., 
MRI-PET-CSF). Then in the second step, gradient boosting employs a boosting approach to ensemble the outcomes 
from different modalities, determine the correlation among them and reduce their prediction error. The final 
estimation will be achieved by using the >���  machine as ��� = >�� �' �� �). While incomplete samples with 
missing intervals are taken care of, through the first step of the algorithm, the second step of the proposed method 
deals with the missing modalities and the complex relationship between them. The gradient boosting incorporates 
the predictive power of salient biomarkers from each modality, models the intra-correlation between them, and 
adjusts the prediction error to improve the final accuracy. 

 
 

3.5 Data and code availability statement 
 

The clinical data used in conducting this study were obtained from the Alzheimer’s Disease Neuroimaging 
Initiative (ADNI) database, and all the details pertaining to the different image processing pipelines can be found in 
(adni.loni.usc.edu). The code generated for this study can be made available upon request to the corresponding 
author of this manuscript.  

 



 
Fig. 2. (a) Flowchart of the proposed approach in the training phase, (b) Defining the dimensions in multitask formulation for step 1 
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4. Results and Discussion 

4.1 Data 

The clinical data used in the preparation of this paper were obtained from the Alzheimer’s Disease Neuroimaging 
Initiative (ADNI) database (adni.loni.usc.edu). ADNI was launched in 2003 as a public-private partnership, directed 
by Principal Investigator Michael W. Weiner, MD. The primary objective of ADNI has been to test whether serial 
magnetic resonance imaging (MRI), positron emission tomography (PET), other biological markers, and clinical and 
neuropsychological assessments can be combined to measure the progression of mild cognitive impairment (MCI) 
and early Alzheimer’s disease (AD). For up-to-date information, see www.adni-info.org. ADNI established the 
following Mini-Mental Exam (MMSE) and Clinical Dementia Rating (CDR) cut off scores to interpret the AD 
spectrum:  

• MMSE of 30 and CDR of 0 is described as cognitively no dementia, 
• MMSE of 29-26 and CDR of 0.5 is associated with questionable dementia,  
• MMSE of 25-21 and CDR of 1.0 is associated with mild dementia, 
• MMSE of 20-11 and CDR of 2.0 is associated with moderate dementia, 
• MMSE of 10-0 and CDR of 3.0 is determined as severe dementia. 

The experiments in this study used multimodal longitudinal data from 1620 subjects who were enrolled for up to 6 
visits in a 4-year time span. This population consists of a total of 1620 subjects with 864 participants with mild 
cognitive impairment (MCI), 415 cognitively normal subjects (CN), 336 individuals with dementia (AD) and 5 
participants whose status changed from mild cognitive impairment to dementia at baseline (MCI to AD conversion). 
All samples used in this analysis are in the range of 54.4 to 90.3 years old, with 44% female and 56 % male. The 
majority of the 93.24 % of the population were identified as white, 3.95% as black and the rest were recognized 
either as Asian, Indian/Alaskan or belonging to more than one ethnicity. 76% reported their marital status as 
married, 12.61% as widowed, and the rest of the participants were represented as either never married or their status 
of marriage was recorded as unknown. Table 1 summarizes the demographic characteristics of the ADNI cohort 
used in this study based on the category of the disease. For the APOE column, the (0, 1, 2) values refer to the 
number of ε4 alleles in the APOE genotype.  

4 .2 Importance of Data Modality and Structure of the Experimental Set-Up 

In preparing the data, subjects were partitioned into four categories: individuals who had completed the MRI 
scanning, individuals with PET scans, individuals with CSF analysis, and individuals with cognitive screening tests. 
The features extracted from each screening test, and the number of subjects in different time periods, are 
summarized in Table 2. In relation to time t, t=1 means time point at baseline or T1, t=2 refers to time point at the 
6th month or T6, t=3 refers to time point at the 12th month or T12, t=4 refers to the time point at 24th month or T24, 
t=5 for the time point at 36th month or T36 and finally for t=T, for the last time point at the 48th month or T48. The 
importance of each data modality in the proposed multitask multimodal approach is reflected in the features that 
were selected for each modality as shown in Table 2. Observe the decreasing number of observations made at 
subsequent time points in this ADNI longitudinal study, which highlights the missing data challenge. For this study, 
through the MRI imaging modality, the main features considered as the most important MRI biomarkers are 
extracted from seven brain regions to include Ventricular volume, Hippocampus volume, Whole Brain volume, 
Entorhinal Cortical thickness, Fusiform, Middle temporal gyrus and intracranial volume (ICV). Fig. 3 illustrates 
these brain regions in the brain template. The PET features are single measurements of the Pittsburgh compound B 
(PIB), the Florbetapir (AV-45), and the fluorodeoxyglucose (FDG) for cerebral glucose metabolism, all used as 
agents to image and gauge the extent of amyloid plaques at the different stages of the disease. As we are constrained 

Table 1 
 Demographic characteristic of the studied subjects. valued are specified as mean±standard deviation 

Category Subjects (f/m) Age Education(year) APOE (0/1/2) MMSE 

CN 206/209 74.77±5.74 16.27±2.73 300/103/11 29.07±1.12 

MCI 354/510 73.03±7.60 15.91±2.85 427/340/94 27.59±1.81 

AD 150/186 74.92±7.81 15.17±2.99 113/156/65 23.18±2.05 

MCI to AD 2/3 78.50±2.59 16.40±2.61 1/4/0 26.00±1.58 

  



to the multimodal features presented in Table 2 for this longitudinal study, future studies could involve the use of 
PET regional standardized uptake value ratio (SUVRs) as quantitative measures of the radiotracer uptake in regions 
of interest with respect to a reference region to assess how such measures, especially in disease-prone areas, relate to 
the MMSE score as used for prediction purposes in this study. In the features listed in Table 2, in accordance with 
the ADNI multisite study, FDG is the average FDG-PET of angular, temporal, and posterior cingulate, PIB is the 
average PIB SUVR of frontal cortex, anterior cingulate, precuneus cortex, and parietal cortex and AV45 is the 
average AV45 SUVR of frontal, anterior cingulate, precuneus, and parietal cortex relative to the cerebellum.  

In terms of the cerebrospinal fluid (CSF) biomarkers (Anoop et al., 2010; Hanger et al., 2009; Noble et al., 2013), 
this study considers Amyloid Beta (ABETA), phosphorylated tau protein (PTAU), and Total tau protein (TAU) as 
means to assess the extent of amyloid plaques in between neurons and the neurofibrillary tangles made up of tau 
protein within the neurons themselves, both considered to contribute to the degradation of neurons in Alzheimer's 
disease and other tauopathies.  The other risk factors considered in this study include age, gender, level of education 
and Apolipoprotein E (APOE) gene. As indicated earlier, APOE with the E4 allele apolipoprotein is considered a 
major genetic risk factor for AD (Bussy et al., 2019).  As for age and gender, it is common knowledge that age is a 
major risk factor in AD (since only about 5% develop symptoms of AD before the age of 65) and it is estimated that 
two-thirds of the 5.5 million Americans living with AD are women. Although women tend to live longer than men, 
we still could not conclude with certainty that this discrepancy in the larger number of women with AD is only due 
to longevity and experts remain uncertain on other factors that could explain this difference.  As for the level of 
education, there is an understanding and some studies confirm that the higher is the level of education the lower is 
the risk for dementia, and that cognitive reserve serves as a strength to overcome some the symptoms of AD (Stern, 
2012;  Buckner, 2004).   

 

 

Table 2- Summary of ADNI dataset, the number of observations in each follow-up visit and the features extracted from each modality 

 

Source* Number of observations 
Features 

T1 T6 T12 T24 T36 T48 

MRI 1465 1333 1191 987 617 451 
Ventricular volume, Hippocampus volume, Whole Brain volume, Entorhinal 
Cortical thickness, Fusiform, Middle temporal gyrus, and intracranial volume 
(ICV) 

PET 1127 1009 892 714 429 335 FDG, Pittsburgh Compound-B (PIB), AV45 

Cognitive 
Test** 

1525 1357 1207 997 627 456 

Rey Auditory Verbal Learning Test (RAVLT Immediate, RAVLT Learning, 
RAVLT Forgetting, RAVLT Perc Forgetting), Functional Activities 
Questionnaires (FAQ), Everyday Cognition (Ecog) scales: (EcogPtMem, 
EcogPtLang, EcogPtVisspat, EcogPtPlan, EcogPtOrgan, EcogPtDivatt, 
EcogPtTotal,EcogSPMem, EcogSPLang, EcogSPVisspat, EcogSPPlan, 
EcogSPOrgan, EcogSPDivatt, and EcogSPTotal ) 

CSF 1014 914 806 662 404 305 
Amyloid Beta (ABETA), Phosphorylated Tau Protein (PTAU), and Total Tau 
Protein (TAU) 

Risk 
factors 

1737 Age, gender, years of education, and APOE4 

* In this table MRI refers to Magnetic Resonance Imaging, PET refers to Positron Emission Tomography, COG refers to Cognitive assessment 

tests and CSF refers to Cerebrospinal Fluid test. 

**The Mini-Mental State Examination (MMSE) and Clinical Dementia Rating Sum of Boxes (CDRSB) scores (since initially used for labelling 

subjects) and Alzheimer's Disease Assessment Score (ADAS11, ADAS13) and the Montreal Cognitive Assessment (MoCA) (since highly 

correlated with MMSE) were excluded from the feature set in the training and testing phases of the proposed prediction model. 



 
In the preprocessing step, ADAS11, ADAS13, MoCA, the Diagnosis labels (DX) and CDR were removed from 

the feature set since it is known that they have a high correlation with the MMSE score. We further excluded non-
stable CN participants (CN to MCI or CN to AD) and subjects who are facing a reverse-phase in the progression 
stage (MCI to CN, AD to MCI).  

Given the number of subjects considered for this study (1620), to compensate for the small sample size, nested 
cross-validation has been applied to our data set. From the whole dataset, 70% were randomly selected as the 
training set and 30% were set aside as the testing set. This process of randomly splitting the data has been repeated 
10 times to avoid any bias in the evaluation of data. For hyperparameter selection, in each of those data splits, 5-fold 
inner cross-validation along with exhaustive search is used to select the optimal hyperparameters for each method. 
For regression methods, the regularization parameters were selected in a range of {10�� to 10�}. As for the 
XGBoost method, the number of estimators is searched between {1 and 500}, learning rate has been searched 
between {10�� and 1}, the number of columns used by each tree (colsample_bytree) has been searched between 
{0.1 to 1} and max depth has been searched between {1 and 15}.  

Through the rest of the paper, reported values are the mean and standard deviation of the experiments in these10 
different random train and test split. It is important to mention that, feature space from every observation in both the 
training set and the testing set were normalized separately using the Z- score (i.e., dividing the difference between 
each value and the mean by the standard deviation). 

4.3 Selecting modality-specific multitask models 

The first stage of the model is focused on developing modality-specific multitask coefficient matrices. The 
motivation is to not confuse the multitask regression coefficients with modeling the relationship between different 
modalities and to preserve the maximum learning capacity to be devoted to learning the trajectories of cognitive 
decline. The following state-of-the-art algorithms are selected as the competing methods in the investigation of 
predicting clinical decline at multiple time points.  

• Ridge regression  
• Elastic Lasso 
• Temporal Group Lasso (TGL) 
• Convex Fused Sparse Group Lasso (cFSGL) 
• Non-convex Fused Sparse Group Lasso (nFSGL) 
• Subspace Regularized Sparse multitask learning (Zhu et al., 2016) 

Fig. 3. Selected MRI brain regions for tracking the progression of Alzheimer’s disease. 3D mesh surface map, with purple, green, 
and yellow areas representing Entorhinal, fusiform, and middle temporal regions, respectively (Top). The volumetric segmentation, 
in which the yellow line depicts the interface between grey and white-matter, and the purple and blue regions representing the 
hippocampus and ventricles, respectively (Bottom). 



• Parameter-free least Lasso (Zhu et al., 2018) 

For single task learners, six separate regression models have been trained to predict cognitive scores for each 
time point. However, in multitask learning, the regression coefficients for all time points are trained together. This 
approach improves the efficiency of the final model by identifying and capturing the correlation between the 
transitions of cognitive scores at successive time points. To benchmark the performance of different methods, Root 
Mean Square Error (RMSE) and R correlation coefficient (denoted as Corr in Tables and figures that follow) are 
selected as the main evaluation metrics through this study. Fig. 4 demonstrates the comparison of prediction 
accuracy of regression models using different sets of biomarkers. Several important empirical observations can be 
made from analyzing the results given in Fig. 4. 

First, single-task models yield a competitive performance at earlier time points but multitask learners 
significantly surpassed them at subsequent time points. This analysis found clear evidence for the superiority of 
multitask learners over single task learners.  

Second, the sparsity and temporal sample size of each modality-specific feature space differ from each other. For 
each modality, the regression model which yields the highest winning rate is selected as the best predictor. The 
winning rate is defined here as the number of times a specific method achieves the best performance in term of 
lowest error across all intervals and highest correlation in comparison to all the other methods. It is important to 
emphasize that the winning models are selected during the training phase without seeing the test data. It can be 
observed that cFSGL proved to be the best method for PET and CSF, just as the method in (Zhu et al., 2018) yielded 
the best overall performance results for COG measurements, and the coefficient matrix in (Zhu et al., 2016) 
achieved the best prediction accuracy for MRI measurements. The ℓ2 norm regularization penalty term in cFSGL 
results in non-zero values in A. Since the feature spaces for PET and CSF are low dimensional and less sparse, 
using ℓ2 norm will help determine and keep the best predictive biomarkers. The COG modality was found to have a 
higher dimensionality and the pattern of features is highly sparse, which enabled the coefficient matrix in (Zhu et al., 
2018) to achieve better generalization than other methods. 

Third, the cognitive modality achieved the smallest error in comparison to all other modalities in predicting the 
cognitive decline. However, it must be pointed out that ADAS11, ADAS13, MoCA, CDR, and diagnosis labels were 
removed from the cognitive feature space to ensure that variables with a strong correlation with the MMSE label are 
not biasing the prediction. The scatter plot for cognitive assessment modality is shown in Fig. 5.  

 
  



  

  

 

Fig. 4. Performance comparison of different regression methods on longitudinal prediction of MMSE using different modalities. 

  



  
  

   

   

Fig. 5. Scatter plot of predicted MMSE scores versus actual values in six time points using the cognitive assessment modality. The green line 

is the regression line achieved by the winning coefficient matrix and the black dashed line is the reference for perfect correlation.  
  

 4.4 Final results and discussion 

In order to model the complex relationship between different modalities, the outcomes of the winning predictors 
from Fig. 4 are combined with the risk factor measurements, as non-temporal biomarkers. These new sets of features 
have been utilized as the input for the gradient boosting (GB) machines. The GB machines have been trained over 
five combinations of modalities. Grid search has been adopted to estimate the hyperparameters of gradient boosting 
for different combinations of modalities. The optimal hyperparameter values for each modality have been reported 
in Table 3. The experimental results, in terms of RMSE, are shown in Table 4.  

For all methods reported in Table 4, the training and testing sets are identical, except for the fact that the 
competing methods are using the conventional approach in which all features from different modalities are 
concatenated together. For the statistical test, the correlation coefficient between the observed and predicted values 
is calculated on 100 bootstrapped samples, generated from the original sample size. By testing the null hypothesis of 
no correlation, the significance of the correlation, p-value, is calculated for each time point.  

The proposed model achieved a correlation coefficient of 0.82 (p = 6.20e-47) at T1, 0.86 (p = 4.18e-62) at T6, 
0.80 (p = 1.18e-41) at T12, 0.81 (p = 1.82e-38) at T24, 0.79 (p = 6.11e-20) at T36 and 0.76 (p = 1.44e-15) at T48 on 
the test data. Coefficient of determination is another statistical metric to evaluate the accuracy of regression models. 
This parameter presents the percentage of the variation in the dependent variable (predicted value) that can be 
described by the independent variable (target value). The coefficient of determination for the proposed model is 0.67 
at T1, 0.73 at T6, 0.64 at T12, 0.66 at T24, 0.62 at T36 and 0.58 at T48. Fig. 6 shows the scatter plots of predicted 
MMSE scores versus the actual scores with correlation value reported within each scatter plot. Colors are 
representing groups of subjects belonging to different stages of AD. The progressive nature of AD results in a 
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Table 3 
Hyper parameters used for tuning of Gradient Boosting 

Modality Combination (C) max_depth Learning rate Colsample_bytree n_estimators 
MRI_PET 2 0.07 0.98 90 

MRI_PET_CSF 3 0.05 1.00 120 
MRI_PET_COG 3 0.07 1.00 90 
PET_COG_CSF 3 0.07 0.98 80 

MRI_PET_COG_CSF 3 0.10 0.50 50 

 



steady, though uncertain slope in terms of cognitive decline. Patients who are diagnosed with late stages of AD at 
baseline have a higher chance to encounter a steep descent to severe cognitive decline within the following 48 
months. Therefore, at the time points with an unbalanced population, in terms of the cognitive score distribution, 
individuals with a severely low MMSE score are detected as outliers. For example, according to Fig. 6, there are 
very few subjects with a cognitive score of less than ten, which makes it difficult for the system to keep track of all 
values. It should be pointed out that considering a weighting scheme of the distributions at the different stages of the 
disease and at different time points could help in improving the prediction accuracy of the trajectories in cognitive 
decline (Sugiyama et al, 2007).  

 

 

   

   

Fig. 6. Scatter plot of predicted MMSE scores versus actual values at six different time points. The blue line is the fitted regression line 

achieved by the proposed model and the dashed black line is the perfect correlation. Red squares (□) are the CN group, blue plus signs ( ) are the +

MCI group, red asterisks (*) are the MCI converter group and green plus signs (+) are the AD group. 
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Table 4: Comparison of the results from our proposed method with other existing methods on longitudinal multi modal data. The error has been 

reported using RMSE metric in six different future time points. 
 

Method Modality 
Time Points 

T1 T6 T12 T24 T36 T48 

Ridge MRI, PET, COG, CSF 1.90±0.47 2.33±0.68 2.43±0.74 3.17±0.73 3.20±0.83 4.05±0.90 

Lasso MRI, PET, COG, CSF 1.83±0.37 2.34±0.64 2.45±0.53 3.11±0.70 3.15±0.74 4.00±0.76 

TGL MRI, PET, COG, CSF 1.93±0.43 2.32±0.45 2.42±0.55 3.22±0.67 3.10±0.82 3.87±0.93 

nCFGL1 MRI, PET, COG, CSF 1.81±0.55 2.31±0.58 2.41±0.67 3.28±0.46 3.49±0.59 4.06±0.70 

cFSGL MRI, PET, COG, CSF 1.88±0.85 2.33±0.64 2.40±0.73 3.20±0.68 3.03±0.86 3.61±0.78 ℓ�,�-norm MRI, PET, COG, CSF 1.89±0.75 2.34±0.52 2.38±0.76 3.24±0.59 3.08±0.67 3.64±0.69 

Zhu et al., 2016 MRI, PET, COG, CSF 1.87±0.52 2.31±0.66 2.32±0.50 3.27±0.62 2.98±0.96 3.56±0.87 

Zhu et al., 2018 MRI, PET, COG, CSF 1.86±0.53 2.27±0.61 2.38±0.64 3.23±0.57 3.02±0.84 3.42±0.64 

Proposed 

MRI, PET 2.02±0.26 2.30±0.32 2.88±0.36 3.06±0.35 2.51±0.31 2.60±0.32 

MRI, PET, CSF 1.95±0.39 2.22±0.31 2.81±0.30 2.92±0.33 2.51±0.37 2.72±0.30 

MRI, PET, COG 1.60±0.27 1.79±0.23 2.30±0.23 2.41±0.35 2.53±0.32 2.20±0.30 

PET, COG, CSF 1.63±0.20 1.80±0.28 2.25±0.20 2.38±0.25 2.41±0.26 2.38±0.29 

MRI, PET, COG, CSF 1.62±0.24 1.78±0.22 2.24±0.24 2.38±0.21 2.28±0.22 2.19±0.15 

 



Since the focus of this paper is in predicting the trajectories of MMSE scores, the longitudinal distributions of 
predicted versus actual target MMSE scores for each group are provided in Fig. 7. 

Fig. 7.  Longitudinal trajectories of MMSE scores through 6 time points for each category of disease. In each figure, boxplots in blue are used 

for the distribution of predicted MMSE scores and black boxplots are used for the distribution of target MMSE scores. 

 
To further evaluate the superiority of the proposed model, following the approach described in (Jie et al., 2017), 

paired t-test has been performed on the residuals of the proposed method and each of the competing method. The 
results summarized in Table 5 show that except for the baseline, the proposed method for all other five future time 
points demonstrates statistical significance, with all p-values less than 0.05, proving its effectiveness.  
 
 

 
Table 5 

Comparison of p-values obtained from residuals of the proposed method and the competing methods using the combination of modalities of MRI, 

PET, COG, CSF 
 

  

  

 Ridge Lasso TGL nCFGL1 cFSGL ℓ�,�norm Zhu et al., 2016 Zhu et al., 2018 

T1 0.063 0.083 0.386 0.386 0.501 0.086 0.029 0.032 

T6 0.007 0.011 0.003 0.001 < 0.001 < 0.001 0.024 0.013 

T12 0.004 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.002 < 0.001 

T24 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

T36 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.010 0.012 

T48 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.013 0.010 
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Since independent models are separately trained over each feature space, our model brings the following 

advantages: (1) feature scarcity from one particular modality would not be an issue for the other regression models; 
(2) any error within the data of one modality could be prevented from propagating through other modalities; (3) the 
model could be easily extended to include other modality sources with little adjustments and to consider sparsity 
patterns of the measurements; (4) the proposed model is applicable to a wide variety of subjects with any 
combination of modality sources, without being restricted to their baseline diagnosis or to their historical records; 
and (5) the robustness and flexibility of the presented framework in handling missing data preserves enough 
information to monitor and predict MMSE trajectories with a relatively high accuracy. 

 

5. Conclusion 

Predicting MMSE over time, through multimodal longitudinal data, could augment our prospects for analyzing the 
interplay between the different multimodal features used in the input space in relation to the predicted MMSE 
scores.  Such a prediction model could also be used to ascertain the effectiveness of treatment or therapeutic 
protocol by comparing actually taken MMSE tests against predicted scores by the model, allowing at the same time 
to observe the conversion rate in the different stages of individuals who are at risk of developing AD. A novel 
distributed multitask multimodal framework is introduced for predicting cognitive measures in the progression of 
Alzheimer’s disease even when burdened with the missing data challenge. The model is capable of handling size 
discrepancy between the number of observations belonging to different time points and assuming different recording 
modalities. The proposed approach also has the potential to directly consider the inherent temporal sparsity patterns 
of different modalities and their relative correlation strength. This provides flexibility in utilizing complementary 
information from multimodal data. Furthermore, the model also terminates the propagation of potential error from 
one modality to another which may have originated from corrupted data. 

It is important to emphasize that in designing the proposed prediction model, the Mini-Mental State Examination 
(MMSE) and Clinical Dementia Rating Sum of Boxes (CDRSB) scores (since initially used for labelling subjects) 
and Alzheimer's Disease Assessment Score (ADAS11, ADAS13) and the Montreal Cognitive Assessment (MoCA) 
(since highly correlated with MMSE) were excluded from the feature set or input space in the training and testing 
phases of the proposed prediction model. The longitudinal MMSE scores were instead used as labels to be predicted 
by the model on the basis of the multimodal feature set considered for the different time points as listed in Table 2. 
The experimental results proved that this method can effectively predict the progression of Alzheimer's disease over 
a period of four years in terms of the predicted MMSE scores on the basis of neuroimaging features (MRI and PET), 
cognitive tests not used initially for labelling the subjects or found to be highly correlated with MMSE to avoid any 
bias, cerebrospinal fluid (CSF) and other risk factors associated with age, gender, years of education, and the APOE 
gene. While the proposed approach mitigates the consequence of the negative correlation between various 
modalities, there could still be unrelated information between different tasks within a single modality. Future studies 
using longitudinal data may be able to improve the performance of these prediction algorithms. The general 
approach described for predicting progression used in this study, as expressed in Fig. 2, could be extended not only 
to other longitudinal studies involving other neurological disorders, but could also be used for the prediction of other 
cognitive scores such as ADAS11 and RAVLT to assess the singular merits of such cognitive scores and how 
related and correlated they may be to the MMSE test.  
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Highlights 

• A novel machine learning algorithm is proposed for predicting the progression of Alzheimer’s 

disease using a distributed multimodal, multitask learning method. 

• A new approach for predicting longitudinal trajectories of cognitive decline up to 48th month. 

• The missing data challenge (missing modality, missing follow-up visit and drop out) is handled. 

• Ability to capture complex relationships between different modalities while ignoring nonrelevant 

information. 
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