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ARTICLEINFO ABSTRACT

Keywords: Predicting the progression of Alzheimer's Diseds®)(has been held back for
Alzheimer’s Disease decades due to the lack of sufficient longitudimidta required for the
Multitask learning development of novel machine learning algorithmssBtudy proposes a novel
Multimodal regression machine learning algorithm for predicting the pesgion of Alzheimer’s
Longitudinal study disease using a distributed multimodal, multitagiarhing method. More
Missing values specifically, each individual task is defined asremression model, which
Progression predicts cognitive scores at a single time poimcé& the prediction tasks for
Gradient boosting multiple intervals are related to each other inodotogical order, multitask
Fused sparse group Lasso regression models have been developed to trackrefaionship between

subsequent tasks. Furthermore, since subjects warieus combinations of
recording modalities together with other genetigunopsychological and
demographic risk factors, special attention is git@the fact that each modality
may experience a specific sparsity pattern. Thdehis hence generalized by
exploiting multiple individual multitask regressi@oefficient matrices for each
modality. The outcome for each independent modaligcific learner is then
integrated with complementary information, known resk factor parameters,
revealing the most prevalent trends of the multiastadhta. This new feature
space is then used as input to the gradient bgokémel in search for a more
accurate prediction. This proposed model not ordptures the complex
relationships between the different feature repregions, but it also ignores
any unrelated information which might skew the esgion coefficients.
Comparative assessments are made between thenpenfe of the proposed
method with several other well-established methaglag different multimodal
platforms. The results indicate that by capturimg interrelatedness between the
different modalities and extracting only relevamfiormation in the data, even in
an incomplete longitudinal dataset, will yield nimzed prediction errors.

1. Introduction

According to a March 2018 report from the Alzheitegkssociation (AA), nearly 5.7 million US citizensostly
elderly people, are affected by AD, a statistid ibgpredicted to reach 13.8 million by 2050. TA& report also
indicates that an approximated amount of 277 hiltlollars was invested in 2018 in caretaking sess/for patients
with AD and dementia (Alzheimer Association, 2016).

Alzheimer's Disease is a progressive and irreviersitain disorder where subtle brain changes mag ktarted
decades prior to any detectable symptoms. In ity stages, AD symptoms begin with mild cognitivectine,
which can then progressively lead to more seveysipal and functional impairments. Key indicators associated
with severe brain atrophy, beta-amyloid depositem] evidence of widespread limbic and corticalragorillary



degeneration. In the study by (Jedynak et al., 20&8 interesting computational neurodegeneratigsease
progression score is proposed on the basis ofythendics of the different biomarkers in AD.

Alzheimer’s Disease progression is generally aggkessing clinical measures, but it can also beoraptished
using biomarkers involving structural magnetic remwce imaging (MRI), 18-Fluoro-DeoxyGlucose PET ging
(FDG-PET), cognitive examination, cerebrospinaldl(CSF) and electroencephalography (EEG) (NimmnJet
al., 2018; Pail et al., 2013; Loewenstein et all&0 Commonly used MRI biomarkers for detecting phegression
of AD include cortical thickness and regional brablume (Stonnington et al., 2010; Lao et al.,£20@agnin et
al., 2009; Sgrensen et al., 2016), whereas the migstificant biomarkers of FDG-PET include glucose
hypometabolism in neocortical brain regions (Azinak, 2017; Alexander et al., 2002; Landau et2012; Cohen
and Klunk, 2015). It has also been revealed thémemease in CSF t-tau or Phospho-Tau is a potdritienarker of
disease progression (Trushina et al., 2013; Cahjth Grossberg, 2015; Shaw et al., 2009).

Along with neuroimaging modalities, there are otheconventional measurements, known as risk facidrgeh
are associated with Alzheimer’s, such as age, geirdormation, years of education and ethnicityi¢ivaelson,
2014; Rogers et al., 2012). As expected, this cemphtary information shows that age plays a sicgniti role in
the onset of AD (Chen et al., 2000; Mungas et24lQ1; Duara et al., 2019). It is also well acknalged that the
most prominent genetic risk factor is the Apolipmtein E (APOE) gene. This gene and its major edl€E2, E3,
and E4) are known to increase the risk of develppib in individuals as young as 40 years of agar@feet al.,
1997; Corder et al., 2008).

While many studies in the literature mainly foarsdisease prediction, typically relying on a $éngnodality
(Bi et al., 2018; Frisoni et al., 2007; Duchesnalet2009; Li et al., 2012; Buerger et al., 2002ck et al., 2018),
recent studies have shown that incorporating bi@erarfrom different modalities may lead to a moceunate
diagnosis (De Leon et al., 2006; Tong et al., 2@ifter et al., 2015; Westman et al., 2012; Zharg,2011). New
research directions have come to rely on multimoéakoimaging data with the inclusion of other béskers such
as cerebral spinal fluid (CSF), genetics and nesycimlogical testing. The main objectives of thessearch
endeavors are either to discriminate patientsustaia classification methods or to predict différeariables using
regression models. Cross-sectional and longitudiagd have been used to explore correlations betwkeical
neuroimaging tests, neurological exams and bioct@mheasurements to monitor changes in these imupiort
biomarkers. Yet, despite much ongoing researchjigting the progression of AD, especially for enaflearly
intervention, has remained challenging (Mendez,72®ierce et al., 2017; Lawlor et al., 1994; Wol616; Doody
et al., 2010; Van Der Flier and Scheltens, 2009radbet al., 2015; Curiel et al., 2018; Lizarragale 2018; C. Li
et al., 2017; Loewenstein et al., 2017; Sargoleaal., 2015; Duara et al., 2015; Minhas et al1,7J0

In order to study the relative temporal change&ln there is need to track pathophysiological cleanig a large
number of observations using Magnetic Resonancegiga(MRI), Positron Emission Tomography (PET),
Cognitive assessment tests (COG) and Cerebrodpinial (CSF) tests. However, acquiring all thesestegthin a
large population is costly, time-consuming and roffieficult to maintain high protocol adherence gjivthe dropout
rate and missed follow-up visits given the patieatdvanced age and severity and extent of diseesgrgssion.
Consequently, there are two kinds of challengestuiying longitudinal dynamics and related pattemmedical
data. The first one is due to size irregularitydaese of missing measurements from a specific mgdalhe second
is due to patients missing on follow-up visits oombing out from the study. Among the many verifessessments
that can diagnose the presence of AD and scalseerity of the progression, the Mini-Mental StBamination
(MMSE) and the Alzheimer’'s Disease Assessment SCalpitive Subscale (ADAS-Cog) are the most common
tests used in regression-based models (Zhang, Daagji Shen, 2013; Wang et al., 2011). One of thieesawork
in this domain was done by Tierney et al. in 19868p used logistic regression to predict the poliibef AD
progression over a period of two years (Tiernewlet1996). The study in (Zhang and Shen, 2012pgsed a
sparse linear regression model in conjunction w&igroup regularization technique. The model wadieghacross
different brain regions to select the most infoiiwetongitudinal features. Their model predictsufigt cognitive
clinical scores among MCI subjects over a perio@&imonths. Similarly, 1zquierdo et al (Izquierdbat, 2017)
predicted cognitive scores using stochastic gradieosting of decision trees among 1,141 individuar whom
longitudinal clinical and imaging studies were dafdlie in the Alzheimer’s Disease Neuroimaging &titie (ADNI)
database. In another study (Tabarestani et al9)2®do different variations of recurrent neuratwerks (RNN),
namely Long Short-Term Memory (LSTM) and Gated Resnt Units (GRU) have been applied using 1458
multimodal records of subjects from the ADNI datsddo predict AD progression. By leveraging theiguas’
historical records from the previous three timenpmitheir model could track the disease progressiends of
patients at three other subsequent time points avithccuracy that outperformed methods that raligely on the
baseline records.



Multitask learning, first proposed in 1997, is shovo improve performance by extracting the relaiops
between multiple similar tasks through the develeptof a statistical model (Caruana, 1997). It$iase attracted
a lot of attention in a variety of machine learniaigorithms with application domains ranging fromahce to
bioinformatics (Dong et al., 2015; Greenlaw et &017). This new research trend has delivered miomi
performance improvement in different categoriegjuding, but not limited to multitask learning ugikernel-
methods (Evgeniou et al., 2005), interpreting tesdltionship (Zhang and Yeung, 2012; Widmer et 2012),
developing probabilistic and statistical models éBial., 2008; Xue et al., 2007), selecting feaupéang et al.,
2010; Zhu et al., 2017), learning features (Zhamdj ¥eung, 2011; Y. Li et al., 2017), feature haghiweinberger
et al., 2009), and task grouping (Kumar and Da26&2; Bakker and Heskes, 2003).

In recent years, multitask learning has been ssbtaés applied to longitudinal clinical data to pliet the
progression of neurodegenerative diseases (ZhamgygiDang; Shen, 2013b; Emrani et al., 2017b; Nig.eR017;
Zhou et al., 2012b; Suk et al., 2017). Comparesingle-task learning, multitask learning uses aeggjon model
for predicting the future status of patients attiplé time points. The basic assumption in thesee®is that an
inherent correlation exists among multiple recastis;xformation, which are derived from the samejeats. These
studies demonstrated that capturing this inhemdatedness could improve the generalization ofitte prediction
model. For example, Zhou et al. in (Zhou et al.1Z4) developed convex and nonconvex fused groupd.as
formulation as the regularization term of the nakk learning kernel. Their model could choosentlmst important
sets of biomarkers from different time points todabthe progression of AD. Similarly, Emrani et amployed
multitask learning to predict the progression ofidideon’s disease over a period of 4.5 years (Eimetal., 2017a),
and Jie et al. in (Jie et al., 2015) reported tlshg manifold regularized multitask feature leagnicould yield
better classification performance and could idgntifsease-related regions in the brain deemed itapbifor
disease diagnosis. A Sparse Group Lasso with st@rbgpace Multitask learning (SGLS-MTL) has beeppsed
by Cao et al. (Cao et al., 2017). Their framewosksf,, penalty, groupf,,; penalty and subspace structure to
capture the correlation between the tasks, thesspf@ature representation and the shared subspEueg.have
applied their SGLS multitask learning method todgce cognitive scores and to detect potential mtacé MRI
biomarkers. Wang et al. in (Wang et al., 2012 9ppsed a high-order multitask feature learning rtliga to model
the longitudinal trajectories of the cognitive meas of AD subjects based on neuroimaging biomarkenhey
employed non-smooth structured sparsity-inducingnmaeo utilize the correlation between the adjactagks
(prediction of cognitive measures at two subsequiem¢ points) and the interrelations that existwmesn the
cognitive measurements. To capture the nonlinearitthe relationship between MRI neuroimaging feasuand
cognitive scores, Cao et al. in (Cao et al., 2068 thef, ; — [; norm. By combining a joint sparsity regularization
term with multitask learning, their proposed mogaebduced more accurate results. Jie et al. ingQia., 2017),
introduced a group regularization term to the spéirear regression model. They have also addedstaothness
regularization terms to the objective function tsere that the model keeps the differences betilemnveight
vectors belonging to adjacent time-points to bellsiieir proposed model leveraged the predictienfgemance
of the MMSE and ADAS-Cog scores from other existpgrse learning based models.

The neuropathological symptoms of AD in its difieretages are complex and combining different mtesilin
an effective way does augment the prospects foora mccurate diagnosis. Although there are mardiesgudealing
with multimodal datasets, only a few discusseddiserepancy in the different representations ofuieadomains
(Yang et al., 2010; Cheng et al., 2015). On thewokand, missing a screening test on a given eisitropping out
of an entire follow-up visit results in data scérdin the multimodal database, a drawback expeddrnia most
longitudinal studies. Therefore, to make a religiiediction of MMSE changes over time, a distrilouteultimodal
multitask framework is proposed in this study teemome these types of data scarcity problems. ltitesk
learning, the regularizing term presumes that amivedent degree of importance exists in the featspace.
Therefore, if a positive correlation between thatdees from different modalities is not found, fthie features are
not linearly correlated, the process may fail tenify relevant patterns. In this case, constrggctan unified
multitask learning model over the concatenatedrinfdion may not be the optimal approach. To addtkiss
problem, a multitask modality-specific regressioaniework is proposed to predict future MMSE scdogsup to
48 months while relying on measurements provideblageline. Separate multitask regression matricesrained
for each modality to ensure that the coefficientrivas select the leading features extracted fimersame modality
between consecutive tasks.

The objective function of each regression modekubke correlation and sparsity pattern that existsveen all
tasks within each modality to improve the longitaliprediction accuracy. In the second stage oftgerithm, a
gradient boosting method is implemented to takeomcatenated series of temporal predictions fronfedint
modalities and improve the overall performance l&d§ model by predicting a final score. This segliegabf
modalities in multitask modality-specific regressioffers the following advantages:



* Resolves issues related to nonlinear or negativeeletions between different feature spaces, witichld
hinder the performance of multitask learning.

* Provides an error propagation-free framework thhoagcombination of modality-specific multitask leggy
and gradient boosting. This approach assumes thantial errors might exist in the measurements gpecific
modality that originated from capturing, processimig extracting data. Concatenating data from differ
modalities will thus increase the risk of spreadthis error to the fused feature space. Hencerdiping
separate models and performing a majority voteHerdistributed models, the source of error caddiected
and consequently prevented from propagating iredfuked feature space.

< Overcomes the missing data challenge by projectihghly dimensional and highly sparse input feagpace
into multiple low-dimensional and less-sparse spathis ensures that the independent coefficietticea can
collectively determine and order the most importzintnarkers in the whole dataset.

It is worth noting that the motivation of the mo@el envisioned is to predict the trajectories ginitive decline
for subjects without any preliminary diagnosis avithout regard to the historical records. Thus, dpplicability of
the proposed framework in terms of providing préditfrom baseline information makes it differerdarh methods
that need at least a few historical records tovalable. For example, Zhu et al in (Zhu et al.1@0proposed a
method for early diagnosis of AD by analyzing ldndinal MRI records and constructing a new feaspace from
the mean and the difference between the first asiMisits measurements. While involving historieadords from
patients into the training phase may improve thegiotion accuracy, it limits the applicability dfeé model to only
those patients with available medical records.

The rest of the paper is organized as follows: i8e@ presents a brief mathematical backgroundngfie task
regression, multitask regression, and the gradiensting method. The methodology and implementaieps of
the proposed model are described in Section 3.pfoposed model is formally introduced with the nestatical
formulations that guided this study and with a dtgpstep implementation process which are descriimed
subsections 3.1 through 3.4. Section 4 begins avitliscussion on the data considered in this stadypaovides a
comprehensive assessment of the experiments cauduconcluding remarks and a retrospective on ¢lsalts
obtained are provided in Section 5.

2. Background
2.1 Problem Description

The development of Alzheimer's Disease takes pkloag a trajectory spanning several years withsitams
phases that vary from one patient to another. Toeregin longitudinal AD studies, individuals repeaedical
screening tests at multiple follow-up visits andittiMMSE scores are recorded and analyzed at eéathMMSE,
with a range of 0 to 30, is the screening test mostmonly used for memory and cognitive evaluatidhile it is
not intended to replace neurological diagnostielalt is used to validate the reliability of meali examinations or
to evaluate temporal cognitive decline in peopléesing from AD. Early intervention plans are effee only if the
earliest manifestations of AD are identified at tireset of the disease. Therefore, predicting futtagctories of
MMSE scores enables doctors to identify future olathical levels of memory and cognitive impairment.
Consequently, the initial objective of this papeta predict the MMSE scoreb)(of subjects, by finding the best
model g, such thatg: b = Aw, wherew is the regression coefficient amtl is the baseline information of the
subjects. In support of the proposed approachdored in Section 3, the required mathematical backyl is
introducedn sub-sections 2.2 through 2.4.

2.2 Single Task Regression

Let A € RV*P be a matrix consisting of N subjects with P feasudescribing each subject, whhe RV*1, ¢t =
1,2,..,T defining the clinical scores of thoskesubjects at the‘" time point. The problem of predicting the clinical
scores at multiple future time points could be folaed as solving T different regression models gisA €
RV*P — pt e RVt =1,2,..T.

In the simplest form, these T regression probleamsh®e solved using the followirRjdgeregression formula:



W = argminy [sO(b* — AW)|IZ + 0|Iwl|3 @)

where w! € RP*1; t = 1,2,...,T are T independent coefficient vectors calculatgdsblving the minimization
problem in Eq. (1). Thev is used as a variable under the arg min functioavoid any confusion witkv (the
perfect target) anev (the estimated target). In other words, at the itasation, w that minimizes the arg min
function is set as the best estimatd i.e.,w <— w). Symbol® defines the component-wise multiplier and vector
s € R¥*! defines the missing target values; meaning ghat 0 if the target value of thet” patient is missing at
thett” time point, and,, = 1 if the target value of the" patient is available at that same time point. dn @), the
lw||3 is the squared, norm of the coefficient vectod, which is controlled by tuning parameterRecall that the

p norm of a vectox € R¥*! with x = [x, x5, ..., x¢]' is defined as:

2, = |Ixll, = (ZK|x, P /e )

The penalty ternd ||v||3, controls the amount of coefficient shrinkage fordes the variance to be close to zero in
order to reduce the mean-squared error. Anothetiealin findingg is to employ the.assoregression formulated
as a constrained minimization problem as follows:

Wt = argming [sSO(b* — AW)|I + 01wl 3

In this formula, increasing forces the majority of coefficients i, which are associated with features deemed not
to be important, to be close to zero and shrinknthre zero coefficients simultaneously. The onlyatiénce between
these two regression models is in squaringfth@orm in Ridgeregression and usingy as the penalty terms in
Lassoregression, which increases the sparsity of tledficents.

2.3 Multitask Regression

Another way to tackle the problem of predicting mitige scores at multiple time points is to employltitask
learning. In the single-task approach, each taglefsned as predicting MMSE scores at a single tpomt and
several independent regression models are trag@atately to perform prediction for each time po® the other
hand, the multitask approach utilizes the similesitbetween different tasks to find a more accuretgession
model that can carry out multiple prediction taskhis means that in multi-task learning all the M&Scores
belonging to the T time points will be calculatéshsltaneously.

Multitask learning can be mathematically formulated a predictorG: 4 € RV*P - B € R¥*T where B =
[bY, b2, ..., bT] is the target values of N subjects at T time mifthis multitask predictof can be modeled using a
weight matrixw = [w?, w?,..,w’] wherew € RP*T. In computing thew matrix, one approach is to solve the
convex optimization problem as expressed in Eq.g¥p known as the convex fused sparse group L@ESGL)
(Zhou et al., 2012).

W = arg miny||SO(B - AW)||i + 6| Wl + A[|WI|, , +n[RW|| 4 4)

where® , as defined earliers the component-wise multiplier and mats> RV*T specifies the missing target
values, in whichS,,, = 0 if the target value of the patient is missing at the” time point, ands,,, = 1 if the
target value is availabl&V is the estimation of th& achieved by solving the minimization problem. Ten 4,
andn are the hyperparameters that control the effectéawh regularization term in the cost function ame
optimized during the training phase to improve pleeformance of the algorithnfW ||, is the Lasso penalty term
and||W||% is the squared Frobenius norm and|hi|'E||2'1 is known as the Group Lasso penalty. Moreo{f&#’||,

is the Fused Group Lasso penalty, @b (T — 1) x T sparse matrix interpreted as a descriptor of ¢hetedness
between different tasks. Assuming each task asde o a graph, a relationship between every twéstas
represented by a connection between their correbpgmodes. This penalty term controls the traositietween
neighboring tasks and forces the transition withirccessive tasks to remain small (a process alswrkras
temporal smoothness). In other wordls; = 0 indicates that the task assigned to nb@enot related to the task
assigned to nodg, whileR; ; = « indicates that taskand task j are associated with each other witbgaes ofa.

In the proposed model, this parameter restraingdhation of predicted cognitive scores in neigtibg time steps,
meaning that trajectories of MMSE scores at twoseentive time points cannot have spikes. In ordesotve Eq.



(4), the accelerated gradient method (AGM) was ugdtch is available in the MALSAR package (Zhouakt
2012).

Another approach for finding the weight matiiX is to use the non-Convex Fused Sparse Group Lasso
(nFSGL1) as formulated in (Zhou et al., 2012):

W = arg ming[|SOB — AW)||” + 0| RW'||, + 0 X2, /W1, (5)

wherew, is thei™ row of W. The convex and non-convex Fused Group Lasso fosmailaw for joint feature
selection across all tasks while selecting distieature sets for each task.

The joint selection of the coefficients W could also be penalized in the form&f;-norm with least square
loss. Thus, the finding of the optimal can be formulated as:

W = argming  [|S©B - AW)||” + 4, [W],, + 2, W] 6)

To incorporate global and local information in fleature set with a sparse regression method, Zauiet(Zhu
et al., 2016) reformulated the objective functioreguation (6) as follows:

W = argming > [|SOB - AW)|” + 2,tr(W' A'LAW) + |, , @)

wherel; andA, are the regularization parameters &n@d) denotes the trace operator. Here, Wtheing the
adjacency matrix, the Laplacian matrix L can berosf as:
L=D-R (8)
whereD is the symmetric diagonal matrix in which the diagl element®;; = 1 and all the other non-diagonal
entries are 0. Zhu et al. in (Zhu et al., 20189pesed an iterative method for finding the solutedrmultitask
problem, i.eW, to reduce the number of hyperparameters that beidtarned in the multitask learning problem.
The objective function in this proposed approadwifnd thewtvalues through the following formulation:

(A7 o 2 o _ .
W =argming: X7t ([[sO(" — AWO|" + |t - @], )+ AW, ©)

wherew is the mean vector ##*(t = 1,2,..T) € W. For each task the weights of each task denotedraare
calculated automatically with the following equatio
at = L (10)
2 j ||s®(b[—Awt)||z+||W‘—W”ZJ

Employing the centralized regularization in theejve function of (9) balances the variances efdbefficients in
wt by penalizing them separately usirfg

2.4 Gradient Boosting

Ensemble models have been shown to be effectivarious prediction tasks by grouping a set of wieakners to
construct a more powerful learner. Bagging and tiegsare the two mainstream techniques in enseel@ing
methods. The former creates independent and uhatadeearners on subsets of data and generatéinaheesult
by voting or averaging the outcomes of independiestners. On the contrary, the latter generatesllaction of
weak learners, in which the predictors are traiseguentially rather than separately. In boostinthods, the goal
is to utilize the error of the previous learnersiévelop a more efficient model for the next leariéith training the
learners sequentially, subsets of data do not Havehance to concurrently affect all the learn&rse algorithm
invests a larger weight on the samples that weassdied inaccurately, forcing the hypothesis af trext weak
learners to precisely analyze those tough sample@®@entually improve the performance of the model.

An extension of the boosting methods is gradierdsking, which is a supervised machine learning riepre
based on regression, classification, and rankingsds the gradient descent optimization techrigdied the global
or local minima of the cost function. Using a setpeeof weak learners, Gradient Boosting (GB) traimsachine to
fit a model on the input feature space such thelh ézarner improves the prediction accuracy ofgtevious ones.
Through multiple iterations, gradient boosting deps a single strong learner by combining multipksk learners
(Friedman, 2001; Ogutu et al., 2011). In the pregomethod, GB constructs the final stage of thenénaork to



improve the prediction accuracy by successivetinfijta more accurate model on the residuals optheious step.
This procedure will continue until it achieves alily accurate model. Sub-sections 3.3 and 3.4 gesvimore
details on the role of GB in the context of thegarsed framework.

3. Method
3.1 Notations and parameters

Through the rest of the paper, matrices are deredtdubld uppercase letters and vectors are deastédlic bold
letters. MatriceX?, € X andQt, € Q are the feature space and patients’ roster |Dcitgol with the subjects who
have been examined at time pointwith modality testm. For these subjectgiwitht =1,2,..,T are their
respective cognitive scores (independent from thece of the modality). Similarly,F is the risk factor matrix
consisting of age, gender, years of education aR@®B4 factors for all patients. It is noted that {henotation
denotes transposition and should not be confusddtwi 1, 2, ..., T which define the different time painh the
longitudinal study, where T denotes thd'48onth.

3.2 Method Overview

Tracking future MMSE scores reveals a subtle bagpssive decline in cognitive levels of individu#hrough the
different stages of AD and informs on the naturéheftransition phases of the disease. Howevegnastication of
AD progression, regardless of the label associaiitthe subject at baseline, remains challengaspecially in a
multimodal platform. Certain modalities have shawelatively higher impact on the asymptomaticyongtomatic
phases of AD. This promoted the use of multimodelmarkers to improve the accuracy of identifying
neurobiological and clinical symptoms of the digeadowever, the interactions and correlations betwte
biomarkers from complementary modalities remaimiéate. Furthermore, longitudinal datasets contitusuffer
from the missing data challenge.

Considering the data scarcity and the discrepandyé correlation matrix associated with the hefenous
multimodal longitudinal dataset, we propose toizdilthe modality-specific multitask coefficient mat These
unique multitask coefficient matrices are trainegrodifferent sets of biomarkers extracted fromheamdality to
model the temporal interaction between the basétiarires and the transitions of the cognitive ss@t successive
time points.

The strength and capability of different modalitiestracking the progression of AD are still incarsive.
Therefore, granting equal contribution (or equalgh® to the predictive biomarkers from differenbodalities
increases the chance of achieving better predi@mmuracy. This is accomplished by capturing thmplex yet
effective correlation between important modalitglesive features and eliminating the effect of ather
extraneous ones. Next, the initial outcomes ofdl®perative multitask learners are fused witk fastors, which
are assumed as time-invariant information. Finalgradient boosting kernel is trained over this gellective data
representation to leverage the prediction accurdmwgugh ensemble learning and looking into sparsd a
interpretable solutions. In the next section, wi ga through the setup of our multimodal-multitaskdel.

3.3 Method formulation

Suppose thaX € R¥*? is the multimodal feature space akd= [y',y?,...,y"] is representing the cognitive
trajectories of these N subjects through T tim@stdor each intervdl Xt € X is the set of subjects who are
chosen based dit, the roster ID of populatiopt. It is worth noting that some subjects may haveraturned for
the follow-up visit att® time point and therefor@® < Q is possible. Considering M as the total number of
modality sourcesX® andy' are decomposed into M subgroups, thus construgting pairs of{(X%,, y%,),m =
1,2,..,M, t=1,2,.., T}, where each pair ofXt,, y,) are them'" single-modality measurements associated
with thett" time point.

The single task regression method will be extenmethe T x M optimization problems to calculate!, by
solving equations (11) and (12).

W, = argmingl| (v, — X5W)II3 + 0113 D

W8, = argmingll (v, — Xt)I3 + 01l (12)



wherew?, € RPm*! js thew,,estimate at the'" time point.

In the multitask learning approach, the objectivection will be extended t@G,,: X, — Y,where ¥,, €
R"" is the concatenated matriX,, = [¥},%>,..,%"] with ¥, being the extended versions of their
correspondingt,, in which the unavailable test scores of the pati@an¢ represented by zero values. The
size discrepancy it,, which is a consequence of missing modalities andaditaig illustrated in Fig. 1.

Py P, P P,

“— P rhPe——>» ¢ ¥
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Fig. 1. lllustrative example of size discrepancy in a léndinal multimodal dataset. Available measuren
extracted from each modality are shown with coldoeses and the missing information are displayeth@blank

In this figure,patterns of missing values and arrangements ofadlaiinformation from four modalities are
represented over a fixed time period. Using a nitydapecific approach, the objective function of Ititask
learners will be reformulated to calculate M numbeW,, € R"m*T whereW,, = [wl, w2, ...,wl]. Thus, the
cFSGL (convex Fused Sparse Group Lasso) problerbeformulated as follows:

W,,, = arg ming ||[SO(Y , —X,an)||i +0||wl|, + /1||I/'1'/||2'1 + n||[RW'|, (13)

And based on nFSGL1 (non-Convex Fused Sparse Guasgp), the objective function will be formulatesl a
follows:

W, = argming||SO( ¥ — X5 W) + n||RW’||, + 0 7, el (14)

Using a similar approach, equations (6), (7), (8 €L0) will be reformulated respectively as follow

W, = argming 2 SOV = Xe W), + 2[[W]),, + 2. W[} (15%)

W, = argminw% S ©® (Vm —Xrlnw)”,z,— + Altr(W}(}nl‘X}"W) + ’12”W”2,1 (16)
Wm 4 argminwt’ . 217; at (”S@(}_’:,L—X}n Wt)”; + ||Wt— W”Z,l) + /12||W||1 (17)
at = 1 (18)

2 j st W+ [wt= ],

The flowchart of the proposed method in the tragrétage is illustrated in Fig. 2. In this figurégs 1 represents
the training process for the modality-specific esgion coefficient matricdd’,,. The input space is constructed by
T stack of modality-specific feature spacég, ,t =1, 2, ..., T and the targets are their respectognitive scores
characterized agf,. At the end of the training stage, step 1 gensrstemodality-specific multitask learning
regression coefficient matrice#/,, € RP»*T for m = 1,2,..,M, which are comprised a¥%, fort =1,..,T in
the form ofW,, = [W}, W2, ..., w},]. Consequently, using’, as input measurements, the initial prognostication
at time point t are established as:

Vin = Xpp X Wiy (19)
form=1,2,..,Mandt =1,2,...,T.

Modality-wise multitask coefficient matrices camuthe mutual relationships between the featureespaad
cognitive score trajectories. This provides a pdweool in obtaining the inter-modality correlati® and examining
the predictive power of each modality exclusivdlyg. take advantage of the information provided fremch source



of modality, the outcomes of the multitask moddtsg with risk factor parameters are combined togeto form
the input space for the gradient boosting. It isttvanoting that the risk factor parameters, do ocatry the
unpredictable temporal pattern as in the other bitwers. In order to reduce unnecessary computhtomsss, risk
factor parameters have not been processed wittitasiliearning models and have been added to tendestage
of the model. Step 2 in Fig. 2 shows the prepanaticthe data for the second stage of the method.

For the dataset used here, it is observed thheiPET measurements are available for a grouplpécts, the
MRI measurements are also available for that grduuy,the opposite is not necessarily true. Theegfdive
configurations of possible modality combinations eonsidered in this study: (1) MRI-PET, (2) MRITRESF, (3)
MRI-PET-COG, (4) PET-COG-CSF and (5) MRI-PET-COGFCS

The !, are the sets of roster IDs from subjects that Ipavécipated in test m at tt8 time point and_ Q! is the
intersection between alf, with respect to their availability in the" modality combination. Consideringas an
indicator of the modality combination, the GB mawes are developed asiB' : . Z¢ — yt forc=1,...,5 and
t =1,..,T over the set of.Q¢ . In which .Zt is the new feature space for #f2GB machine and is constructed by
concatenatingy%, and Ft, which are the initial predictions and risk fastdor the population of.Qf . This
process has been demonstrated in step 3 of Fig. 2.

For example, if the available modalities are MRd &ET, then ¢ = 1. Meaning that in stage 1, ongyrttodality-
specific regression coefficient matricesW; andW, can provide the initial predictions § and %%. Based on
their respective roster IDs,Q¢ , the input spacgZt = [ ,Ft, 9%, ;5] is constructed in step 2. Then th&* and
their corresponding sets of cognitive scopéswill be used to train the correspondingBtat step 3.

3.4 Test scenario

Suppose that we want to predict the MMSE scor@re pointt and the patient has completed three modality
tests. The available measurements from this patemtthus ¥, € R'*P1) extracted from MRI, %, € R¥*F2)
extracted from PET x{, € R**P+) extracted from CSF test and a veatarontaining the risk factor parameters for
this patient. In this scenario, the COG modalitychtis x5 is not available.

In the first step of the proposed model, modalitgevcoefficient matrices will provide the most aete
predictions possible from the measurements of oodafity through multitask learning. By feeding, x,, x, to
their respective modality-wise coefficient matricélse initial predictions can be calculated #fs= x; x w¢,
9L = x, x W5 andyt = x, x w. Next, the initial predictions dff, ¢, §£ and risk factors®) will be concatenated
to form the new feature vectqiz® = [r, $f, 9%, $5] wherec = 2 indicates the mode for modality combination (i.e.,
MRI-PET-CSF). Then in the second step, gradiensbog employs a boosting approach to ensembleutemmes
from different modalities, determine the correlatiamong them and reduce their prediction error. Tihal
estimation will be achieved by using th&B® machine ag* = ,GB!( ,Z%). While incomplete samples with
missing intervals are taken care of, through th&t ftep of the algorithm, the second step of tiop@sed method
deals with the missing modalities and the comptdationship between them. The gradient boostingripmrates
the predictive power of salient biomarkers fromteacodality, models the intra-correlation betweeanth and
adjusts the prediction error to improve the finadwracy.

3.5 Data and code availability statement

The clinical data used in conducting this study evebtained from the Alzheimer's Disease Neuroimggin
Initiative (ADNI) database, and all the detailstpéring to the different image processing pipelinas be found in
(adni.loni.usc.edu). The code generated for thislysttan be made available upon request to the spraling
author of this manuscript.
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Table 1
Demographic characteristic of the studied subjeetsied are specified as meanzstandard deviation

Category Subjects (f/m) Age Education(year) APOE (0/2) MMSE
CN 206/209 74.77+5.74 16.27+2.73 300/103/11 29.07+1.12
MCI 354/510 73.03+7.60 15.91+2.85 427/340/94 27.59+1.81
AD 150/186 74.92+7.81 15.17+2.99 113/156/65 23.18+2.05
MCI to AD 2/3 78.50+2.59 16.40+2.61 1/4/0 26.00+1.58

4. Results and Discussion
4.1 Data

The clinical data used in the preparation of ttapgr were obtained from the Alzheimer’s Diseaserblenaging
Initiative (ADNI) database (adni.loni.usc.edu). ADNas launched in 2003 as a public-private partriprgirected
by Principal Investigator Michael W. Weiner, MD. §lprimary objective of ADNI has been to test whetberial
magnetic resonance imaging (MRI), positron emissiomography (PET), other biological markers, andichl and
neuropsychological assessments can be combine@asure the progression of mild cognitive impairm@mcl)
and early Alzheimer’s disease (AD). For up-to-daetformation, see www.adni-info.orgADNI established the
following Mini-Mental Exam (MMSE) and Clinical Dem#éa Rating (CDR) cut off scores to interpret th® A
spectrum:

« MMSE of 30 and CDR of 0 is described as cognitivedydementia,

« MMSE of 29-26 and CDR of 0.5 is associated withsgie@able dementia,
« MMSE of 25-21 and CDR of 1.0 is associated withdngiémentia,

* MMSE of 20-11 and CDR of 2.0 is associated with srate dementia,

* MMSE of 10-0 and CDR of 3.0 is determined as sederaentia.

The experiments in this study used multimodal larmdjnal data from 1620 subjects who were enroltadup to 6
visits in a 4-year time span. This population cstssbf a total of 1620 subjects with 864 particiganith mild
cognitive impairment (MCI), 415 cognitively normaiibjects (CN), 336 individuals with dementia (ADjda5
participants whose status changed from mild cogmitnpairment to dementia at baseline (MCI to ADngrsion).
All samples used in this analysis are in the ramigg4.4 to 90.3 years old, with 44% female and 56ngte. The
majority of the 93.24 % of the population were itiiged as white, 3.95% as black and the rest wep®gnized
either as Asian, Indian/Alaskan or belonging to entinan one ethnicity. 76% reported their maritaltust as
married, 12.61% as widowed, and the rest of theqiaants were represented as either never maori¢ieir status
of marriage was recorded as unknown. Table 1 suimesathe demographic characteristics of the ADNiarb
used in this study based on the category of theads For the APOE column, the (0, 1, 2) valuesr rigf the
number ofe4 alleles in the APOE genotype.

4 .2 Importance of Data Modality and Structure of the Experimental Set-Up

In preparing the data, subjects were partitiondd fiour categories: individuals who had complethd MRI
scanning, individuals with PET scans, individualthvCSF analysis, and individuals with cognitiveesming tests.
The features extracted from each screening test, the number of subjects in different time periodse
summarized in Table 2. In relation to timjé=1 means time point at baseline or T2 refers to time point at the
6th month or T6t=3 refers to time point at the nonth or T121=4 refers to the time point at ®4nonth or T24,
t=5 for the time point at 35month or T36 and finally foi=T, for the last time point at the 48nonth or T48. The
importance of each data modality in the proposedtitask multimodal approach is reflected in thetfgas that
were selected for each modality as shown in Tabl®IZserve the decreasing number of observations rad
subsequent time points in this ADNI longitudinaldy, which highlights the missing data challenge. this study,
through the MRI imaging modality, the main featummsidered as the most important MRI biomarkees ar
extracted from seven brain regions to include Meular volume, Hippocampus volume, Whole Brain vogj
Entorhinal Cortical thickness, Fusiform, Middle fgonal gyrus and intracranial volume (ICV). Fig. IRistrates
these brain regions in the brain template. The ffaiures are single measurements of the Pittsbzogipound B
(PIB), the Florbetapir (AV-45), and the fluorodegkycose (FDG) for cerebral glucose metabolism,ualtd as
agents to image and gauge the extent of amyloigupla at the different stages of the disease. Aareveonstrained



to the multimodal features presented in Table 2l longitudinal study, future studies could ilwethe use of
PET regional standardized uptake value ratio (SU\dsjuantitative measures of the radiotracer @pitakegions
of interest with respect to a reference regionsseas how such measures, especially in disease-greas, relate to
the MMSE score as used for prediction purposekimdtudy. In the features listed in Table 2, inaadance with
the ADNI multisite study, FDG is the average FDGFR& angular, temporal, and posterior cingulat8 Bl the
average PIB SUVR of frontal cortex, anterior ciragal precuneus cortex, and parietal cortex and Alg¢4the
average AV45 SUVR of frontal, anterior cingulateequneus, and parietal cortex relative to the ahetn.

In terms of the cerebrospinal fluid (CSF) biomaskgknoop et al., 2010; Hanger et al., 2009; Noblal.e2013),
this study considers Amyloid Beta (ABETA), phospflated tau protein (PTAU), and Total tau proteiA(X) as
means to assess the extent of amyloid plaquestieba neurons and the neurofibrillary tangles magef tau
protein within the neurons themselves, both comsitléo contribute to the degradation of neuronélizheimer's
disease and other tauopathies. The other riskrf@acbnsidered in this study include age, gendgellof education
and Apolipoprotein E (APOE) gene. As indicated iearlAPOE with the E4 allele apolipoprotein is ciolesed a
major genetic risk factor for AD (Bussy et al., 201 As for age and gender, it is common knowletthge age is a
major risk factor in AD (since only about 5% deyekymptoms of AD before the age of 65) and it itested that
two-thirds of the 5.5 million Americans living withD are women. Although women tend to live londeart men,
we still could not conclude with certainty thatghliscrepancy in the larger number of women withidBnly due
to longevity and experts remain uncertain on ofaetors that could explain this difference. As the level of
education, there is an understanding and someestedinfirm that the higher is the level of educative lower is
the risk for dementia, and that cognitive reseemes as a strength to overcome some the symptbAiS (Stern,
2012; Buckner, 2004).

Table 2- Summary of ADNI dataset, the number ofobations in each follow-up visit and the featuegsacted from each modality

Source Number of observations Features
T1 T6 T12 T24 T36 T48

Ventricular volume, Hippocampus volume, Whole Braifume, Entorhinal

MRI 1465 1333 1191 987 617 451 Cortical thickness, Fusiform, Middle temporal gyrasd intracranial volume
(Icv)
PET 1127 1009 892 714 429 335 FDG, Pittsburgh Compdai(iIB), AV45

Rey Auditory Verbal Learning Test (RAVLT ImmediafRAVLT Learning,
RAVLT Forgetting, RAVLT Perc Forgetting), Functidrisctivities
456 Questionnaires (FAQ), Everyday Cognition (Ecog)esa EcogPtMem,
EcogPtLang, EcogPtVisspat, EcogPtPlan, EcogPtOfeogPtDivatt,
EcogPtTotal,EcogSPMem, EcogSPLang, EcogSPVisspag¥PPlan,
EcogSPOrgan, EcogSPDivatt, and EcogSPTotal )
Amyloid Beta (ABETA), Phosphorylated Tau Protei ), and Total Tau
Protein (TAU)

Cognitive

o 1525 1357 1207 997 627
Test

CSF 1014 914 806 662 404 305

Risk
factors

1737 Age, gender, years of education, and APOE4

* In this table MRI refers to Magnetic Resonancagding, PET refers to Positron Emission Tomogra@@©G refers to Cognitive assessment
tests and CSF refers to Cerebrospinal Fluid test.

**The Mini-Mental State Examination (MMSE) and dfial Dementia Rating Sum of Boxes (CDRSB) scosa@xcg initially used for labelling
subject} and Alzheimer's Disease Assessment Score (ADABDIAS13) and the Montreal Cognitive Assessn@mdCA) (since highly
correlated with MMSEwere excluded from the feature set in the trgraind testing phases of the proposed predictiorelnod



Fig. 3. Selected MRI brain regions for tracking the progi@s of Alzheimer’s disease. 3D mesh surface math, purple, greel
and yellow areasepresenting Entorhinal, fusiform, and middle terapoegions, respectively (Top). The volumetric segtation
in which the yellow line depicts the interface beém grey and whiteatter, and the purple and blue regions repreggiiie
hippocampus and ventricles, respectively (Bottom).

In the preprocessing step, ADAS11, ADAS13, MoC/A fhiagnosis labels (DX) and CDR were removed from
the feature set since it is known that they hawégh correlation with the MMSE score. We furtheclexied non-
stable CN participants (CN to MCI or CN to AD) asdbjects who are facing a reverse-phase in therggsipn
stage (MCI to CN, AD to MCI).

Given the number of subjects considered for thislys{1620), to compensate for the small sample, siested
cross-validation has been applied to our dataFein the whole dataset, 70% were randomly seleagethe
training set and 30% were set aside as the teséhdrhis process of randomly splitting the dats heen repeated
10 times to avoid any bias in the evaluation ofd&br hyperparameter selection, in each of thasz sblits, 5-fold
inner cross-validation along with exhaustive seaschsed to select the optimal hyperparametergdoh method.
For regression methods, the regularization parasetere selected in a range of0{3 to 103}. As for the
XGBoost method, the number of estimators is sedrdietween {1 and 500}, learning rate has been kedrc
between 1072 and 1}, the number of columns used by each tretsgmple_bytree) has been searched between
{0.1 to 1} and max depth has been searched betfdeand 15}.

Through the rest of the paper, reported valuesterenean and standard deviation of the experimentsesel0
different random train and test split. It is im@ort to mention that, feature space from every afagien in both the
training set and the testing set were normalizedusdely using the Z- score (i.e., dividing thefatiénce between
each value and the mean by the standard deviation).

4.3 Selecting modality-specific multitask models

The first stage of the model is focused on develgppmodality-specific multitask coefficient matriceShe
motivation is to not confuse the multitask regresstoefficients with modeling the relationship beem different
modalities and to preserve the maximum learningaciap to be devoted to learning the trajectoriecadnitive
decline. The following state-of-the-art algorithmse selected as the competing methods in the igetgisn of
predicting clinical decline at multiple time points

* Ridge regression

» Elastic Lasso

e« Temporal Group Lasso (TGL)

¢ Convex Fused Sparse Group Lasso (cFSGL)

* Non-convex Fused Sparse Group Lasso (nNFSGL)

e Subspace Regularized Sparse multitask learning €Zlali, 2016)



e Parameter-free least Lasso (Zhu et al., 2018)

For single task learners, six separate regressimel®s have been trained to predict cognitive scmegach
time point. However, in multitask learning, the megsion coefficients for all time points are trainegether. This
approach improves the efficiency of the final mobgl identifying and capturing the correlation betwethe
transitions of cognitive scores at successive fimiats. To benchmark the performance of differeethnds, Root
Mean Square Error (RMSE) and R correlation coedfiti(denoted a€orr in Tables and figures that follow) are
selected as the main evaluation metrics through shidy. Fig. 4 demonstrates the comparison ofigfed
accuracy of regression models using different eétsiomarkers. Several important empirical obseorst can be
made from analyzing the results given in Fig. 4.

First, single-task models yield a competitive perfance at earlier time points but multitask leasner
significantly surpassed them at subsequent timatgoirhis analysis found clear evidence for theesiopty of
multitask learners over single task learners.

Second, the sparsity and tempaainple size of each modality-specific feature spliter from each other. For
each modality, the regression model which yields tighest winning rate is selected as the bestigioed The
winning rate is defined here as the number of timespecific method achieves the best performanderim of
lowest error across all intervals and highest datian in comparison to all the other methods slimportant to
emphasize that the winning models are selectedhgluhie training phase without seeing the test datean be
observed that cFSGL proved to be the best methodEd and CSF, just as the method in (Zhu et @L82yielded
the best overall performance results for COG messants, and the coefficient matrix in (Zhu et 2016)
achieved the best prediction accuracy for MRl mezmsents. Thef, norm regularization penalty term in cFSGL
results in non-zero values . Since the feature spaces for PET and CSF arediowensional and less sparse,
using®, norm will help determine and keep the best predgidbiomarkers. The COG modality was found to have
higher dimensionality and the pattern of featusdsighly sparse, which enabled the coefficient matr(Zhu et al.,
2018) to achieve better generalization than othethods.

Third, the cognitive modality achieved the smallesbr in comparison to all other modalities ingicting the
cognitive decline. However, it must be pointed tatt ADAS11, ADAS13, MoCA, CDR, and diagnosis labekre
removed from the cognitive feature space to enthakvariables with a strong correlation with th&BIE label are
not biasing the prediction. The scatter plot fogridve assessment modality is shown in Fig. 5.
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Fig. 5. Scatter plot of predicted MMSE scores versus &etlaes in six time points using the cognitiveesssnent modality. The green line
is the regressioline achieved by the winning coefficient matrix ahe black dashed line is the reference for pedentelation.

Table 3
Hyper parameters used for tuning of Gradient Bagsti
Modality Combination (C) max_depth Learning rate |Isample_bytree n_estimators
MRI_PET 2 0.07 0.98 90
MRI_PET_CSF 3 0.05 1.00 120
MRI_PET_COG 3 0.07 1.00 90
PET_COG_CSF 3 0.07 0.98 80
MRI_PET_COG_CS 3 0.1C 050 50

4.4 Final resultsand discussion

In order to model the complex relationship betweéferent modalities, the outcomes of the winningdictors
from Fig. 4 are combined with the risk factor measuents, as non-temporal biomarkers. These nevok&tatures
have been utilized as the input for the gradiemsting (GB) machines. The GB machines have beémetizover
five combinations of modalities. Grid search hasrbadopted to estimate the hyperparameters ofegradoosting
for different combinations of modalities. The opsilnnyperparameter values for each modality have beported
in Table 3. The experimental results, in terms BISE, are shown in Table 4.

For all methods reported in Table 4, the trainimgl desting sets are identical, except for the fhet the
competing methods are using the conventional apprdoa which all features from different modalitiese
concatenated together. For the statistical testctirelation coefficient between the observed nedicted values
is calculated on 100 bootstrapped samples, geikirate the original sample size. By testing thd hypothesis of
no correlation, the significance of the correlatiprvalue, is calculated for each time point.

The proposed model achieved a correlation coefficdd 0.82 p = 6.20e-47) at T1, 0.8 (= 4.18e-62) at T6,
0.80 p=1.18e-41) at T12, 0.8p £ 1.82e-38) at T24, 0.7p £ 6.11e-20) at T36 and 0.76 £ 1.44e-15) at T48 on
the test data. Coefficient of determination is apotstatistical metric to evaluate the accuracgegfession models.
This parameter presents the percentage of thetigarian the dependent variable (predicted valuel ttan be
described by the independent variable (target yaltlee coefficient of determination for the propdseodel is 0.67
at T1, 0.73 at T6, 0.64 at T12, 0.66 at T24, 06236 and 0.58 at T48. Fig. 6 shows the scattessb predicted
MMSE scores versus the actual scores with coroglatialue reported within each scatter plot. Colare
representing groups of subjects belonging to differstages of AD. The progressive nature of AD Itesn a



steady, though uncertain slope in terms of cogmitlecline. Patients who are diagnosed with latgestaf AD at
baseline have a higher chance to encounter a siesgent to severe cognitive decline within theofsihg 48
months. Therefore, at the time points with an uabe¢d population, in terms of the cognitive scastribution,
individuals with a severely low MMSE score are detd as outliers. For example, according to Fighére are
very few subjects with a cognitive score of lesantiben, which makes it difficult for the systemkeep track of all
values. It should be pointed out that consideringeghting scheme of the distributions at the défe stages of the
disease and at different time points could helpriproving the prediction accuracy of the trajeaerin cognitive
decline (Sugiyama et al, 2007).

Table 4: Comparison of the results from our proposed methitit other existing methods on longitudinal mulibdal data. The error has been

reported using RMSE metric in six different futtirae points.

. Time Points
Method Modality T T6 T12 T24 T36 T48
Ridge MRI, PET, COG, CSF 1.00:0.47 2.3310.68 2.43%0.74 3.17+0.73 3.20:0.83 4.05£0.90
Lasso MRI, PET, COG, CSF 1.83+0.37 2.34+0.64 2.45+053 3.11+0.70 3.15+0.740040.76
TGL MRI, PET, COG, CSF 1.93+043 2324045 2424055 3.2240.67 3.10+0.8287£0.93
nCFGL1 MRI, PET, COG, CSF 1.8140.55 2.31+0.58 2.41+0.67 3.28+0.46 3.49+0.590640.70
CFSGL MRI, PET, COG, CSF 1.88+0.85 2.33+0.64 2.40+0.73 3.20+0.68 3.03+0.8661£0.78
£,,-norm MRI, PET, COG, CSF 1.89+0.75 2.34+052 2.38+0.76 3.24+0.59 3.08+0.67.6480.69
Zhu et al., 2016 MRI, PET, COG, CSF 1.87+40.52 2.31+0.66 2.3240.50 3.27+0.62 2.98+0.965680.87
Zhu et al., 2018 MRI, PET, COG, CSF 1.86:0.53 2.27+0.61 2.38+0.64 3.23+0.57 3.02+0.8442£0.64
MRI, PET 202026 2304032 2.88+036 3.06t035 251031608032
MRI, PET, CSF 1954039 2224031 2.81#0.30 2.9330. 2.51+0.37 2.72+0.30
Proposed MRI, PET, COG 1.60£0.27 1794023 2.3040.23 2.4350. 2.53:0.32 2.200.30
PET, COG, CSF 1.63:0.20 1.8040.28 2.25+0.20 2.3E0.2.41+0.26 2.38+0.29
MRI, PET, COG, CSF 1.62+0.24 1784022 2.24+0.243820.21 2.28+0.22 2.19+0.15

Corr =0.81878 at T1

Corr = 0.85863 at T6
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Fig. 6. Scatter plot of predicted MMSE scores versus &atalaies at six different time points. The blueeliis the fitted rearession line
achieved by the proposed model and the dashed li&cis the perfect correlation. Red squaresdre the CN group, blue plus si (+) { ) are the
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Since the focus of this paper is in predicting titsgectories of MMSE scores, the longitudinal dimitions of
predicted versus actual target MMSE scores for gagtp are provided in Fig. 7.
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Fig. 7. Longitudinal trajectories of MMSE scores througtinfe points for each category of disease. In digcine, boxplots in blue are used

for the distribution of predicted MMSE scores affatk boxplots are used for the distribution of &myIMSE scores.

To further evaluate the superiority of the proposemtiel, following the approach described in (Jialgt2017),
pairedt-test has been performed on the residuals of tbpoged method and each of the competing method. The
results summarized in Table 5 show that exceptherbaseline, the proposed method for all other future time

points demonstrates statistical significance, waltip-values less than 0.05, proving its effectasn

Table 5
Comparison of p-values obtained from residualhefgroposed method and the competing methods tr@ngpmbination of modalities of MRI,
PET, COG, CSF

Ridge Lasso TGL nCFGL1 cFSGL £, ,norm Zhu et al., 2016 Zhu et al., 2018
T1 0.063 0.083 0.386 0.386 0.501 0.086 0.029 0.032
T6 0.007 0.011 0.003 0.001 <0.001 <0.001 0.024 0.013
T12 0.004 <0.001 <0.001 <0.001 <0.001 <0.001 0.002 <0.001
T24 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 .000 <0.001
T36 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 10.0 0.012
T48 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 18.0 0.010




Since independent models are separately trained eaeh feature space, our model brings the follgwin
advantages: (1) feature scarcity from one partraul@dality would not be an issue for the other esgion models;
(2) any error within the data of one modality cobklprevented from propagating through other madali(3) the
model could be easily extended to include other atipdsources with little adjustments and to coesidparsity
patterns of the measurements; (4) the proposed Inisdapplicable to a wide variety of subjects winy
combination of modality sources, without being riestd to their baseline diagnosis or to their dristal records;
and (5) the robustness and flexibility of the preéed framework in handling missing data preservesugh
information to monitor and predict MMSE trajectaieith a relatively high accuracy.

5. Conclusion

Predicting MMSE over time, through multimodal lotglinal data, could augment our prospects for anmadythe

interplay between the different multimodal featutesed in the input space in relation to the predidMMSE

scores. Such a prediction model could also be tseascertain the effectiveness of treatment oragheutic
protocol by comparing actually taken MMSE testsiagtgpredicted scores by the model, allowing atstiee time
to observe the conversion rate in the differengestaof individuals who are at risk of developing .A® novel

distributed multitask multimodal framework is inthaced for predicting cognitive measures in the msgjon of
Alzheimer’s disease even when burdened with thesimgsdata challenge. The model is capable of hagdiize
discrepancy between the number of observations\giglg to different time points and assuming diffénecording
modalities. The proposed approach also has thenfpatéo directly consider the inherent temporahrsity patterns
of different modalities and their relative corr@at strength. This provides flexibility in utilizgncomplementary
information from multimodal data. Furthermore, thedel also terminates the propagation of potewetiedr from

one modality to another which may have originatedif corrupted data.

It is important to emphasize that in designingpheposed prediction model, the Mini-Mental StateBination
(MMSE) and Clinical Dementia Rating Sum of Boxe®®SB) scoresgince initially used for labelling subjegts
and Alzheimer's Disease Assessment Score (ADASDB$13) and the Montreal Cognitive Assessment (MoCA)
(since highly correlated with MMSHRvere excluded from the feature set or input spadee training and testing
phases of the proposed prediction model. The lodgitl MMSE scores were instead used as labels foréxdicted
by the model on the basis of the multimodal featgteconsidered for the different time points agell in Table 2.
The experimental results proved that this methadeftectively predict the progression of Alzheirsatisease over
a period of four years in terms of the predicted $Hscores on the basis of neuroimaging featured gVl PET),
cognitive tests not used initially for labellingetBubjects or found to be highly correlated with Bto avoid any
bias, cerebrospinal fluid (CSF) and other riskdegtassociated with age, gender, years of educai@mhthe APOE
gene. While the proposed approach mitigates thesemprence of the negative correlation between variou
modalities, there could still be unrelated inforibatbetween different tasks within a single mogalfuture studies
using longitudinal data may be able to improve feeformance of these prediction algorithms. Theegan
approach described for predicting progression usékis study, as expressed in Fig. 2, could bereded not only
to other longitudinal studies involving other ndogical disorders, but could also be used for ttegligtion of other
cognitive scores such as ADAS11 and RAVLT to asskessingular merits of such cognitive scores and h
related and correlated they may be to the MMSE test
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Highlights

e A novel machine learning algorithm is proposed for predicting the progression of Alzheimer’s
disease using a distributed multimodal, multitask learning method.

e A new approach for predicting longitudinal trajectories of cognitive decline up to 48" month.

e The missing data challenge (missing modality, missing follow-up visit and drop out) is handled.

o Ability to capture complex relationships between different modalities while ignoring nonrelevant
information.
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