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ABSTRACT OF THE DISSERTATION 

LARGE SCALE DATA PROCESSING USING MAPREDUCE 

by 

Zhengguo Sun 

Florida International University, 2011 

Miami, Florida 

Professor Naphtali Rishe, Major Professor 

As massive data sets become increasingly available, people are facing the problem of 

how to effectively process and understand these data. Traditional sequential computing 

models are giving way to parallel and distributed computing models, such as MapReduce, 

both due to the large size of the data sets and their high dimensionality. 

This dissertation, as in the same direction of other researches that are based on 

MapReduce, tries to develop effective techniques and applications using MapReduce that 

can help people solve large-scale problems. 

Three different problems are tackled in the dissertation. The first one deals with 

processing terabytes of raster data in a spatial data management system. Aerial imagery 

files are broken into tiles to enable data parallel computation. The second and third 

problems deal with dimension reduction techniques that can be used to handle data sets of 

high dimensionality. Three variants of the nonnegative matrix factorization technique are 

scaled up to factorize matrices of dimensions in the order of millions in MapReduce 



vii 
 

based on different matrix multiplication implementations. Two algorithms, which 

compute CANDECOMP/PARAFAC and Tucker tensor decompositions respectively, are 

parallelized in MapReduce based on carefully partitioning the data and arranging the 

computation to maximize data locality and parallelism. 
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1. INTRODUCTION 

1.1.Web-scale Data 

Although it is a cliché, it is true that we live in an information explosion era. On 

the personal side, filled with applications, documents, photos, and videos, PCs with 

terabytes hard drives are not uncommon today. On the enterprise side, InformationWeek 

reported that the retail giant, Wal-Mart, had 583 terabytes sales data in 2006. The 

telecommunication company AT&T has 312 terabytes of data in its Daytona database [1]. 

And the search giant Google processes an estimated twenty peta-bytes of data per day [2]. 

The situation in the science community is not slightly better. Vast data stores are 

generated by scientific instruments and computer simulations that need to be analyzed. 

For example, the World Data Center for Climate has 220 terabytes of climate research 

data readily accessible online and six petabytes worth of additional data stored on tape in 

2005 [3]. 

Our capability to process and analyze data has not kept pace with our ability to 

capture and store data [4]. There is an urgent need for tools that can process tera-, peta- or 

even exa-bytes scale data. Several researches have reacted to this complexity with novel 

ideas and tools [5] [6]. MapReduce [5] is one of them. Originally developed in Google as 

a tool to process large amounts of data such as crawled documents, web request logs, and 

etc., it has become popular both in industrial and academic to solve large-scale problems. 
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This research, as in the same direction of other researches that based on 

MapReduce, tries to solve large-scale problems we are facing today using MapReduce 

and gain more insights into the model as to how can this model be used under different 

scenarios. 

1.2.My Work 

There are three major piece of works presented in this dissertation. The first one is 

related to large scale raster data processing in spatial database. This piece of work 

belongs to the traditional category of data intensive computing, for which MapReduce is 

designed. The second and third pieces of work have a more algorithmic flavor. They 

explore the domain of how MapReduce could be used to express and parallelize 

algorithms. 

As a major type of data processed by spatial database, raster data (aerial 

photography and satellite imagery), is being generated by satellite or aircraft-mounted 

cameras periodically in the scale of Tera-byte or Peta-byte. How to efficiently process 

and manage such huge amount of data is a challenge for modern spatial database. As a 

case study to show how MapReduce could be applied to spatial database to process large 

amount of raster data, we present two problems in the context of TerraFly [7] – an online 

spatial data management system. The first problem deals with loading data into the 

system and the second one computes some statistics over a large store of raster data. We 

present the design and implementation of two MapReduce applications to solve these two 

problems. Some techniques are demonstrated in the process. We experimentally evaluate 
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our applications on a real-world cluster and get very good result, which in turn prove the 

applicability of MapReduce to data intensive problems. 

A less explored application domain of MapReduce is the algorithm design field, 

or, contrary to data intensive problems, computation intensive problems. We present two 

attempts made to investigate the applicability of MapReduce in this field in the 

dissertation.  

An implicit consequence of the increase of the size of data set is the increase of 

the dimensionality of the data set. For example, the most popular social network website, 

Facebook, has more than 600 million active users as of January 2011. Every user is a 

node in this giant social graph, which could be represented as a sparse matrix with 

millions of rows and millions of columns. Another example is the WWW, which now 

contains billions of web pages and is an enormous repository for text mining applications. 

Term-document matrix with millions or even billions of rows and columns could easily 

be derived from this repository. The ability to understand the structure and recover the 

hidden information from such data sets is of vital importance. There exist techniques and 

algorithms to reduce the dimensionality of data set and extract the hidden structure, but 

most of them do not scale well and consequently cannot cope with data sets at this scale. 

One of the popular algorithms is called nonnegative matrix factorization (NMF), which 

was originally proposed for parts-of-whole interpretation of matrix factors. NMF has 

attracted a lot of attentions recently in data mining and machine learning communities, 

and  has been shown to be useful in a variety of applied settings, including 
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environmetrics, chemometrics, pattern recognition, multimedia data analysis, text mining, 

web mining, and DNA gene expression analysis. 

Our first attempt is to scale up the NMF algorithm to be able to factorize matrices 

of dimensions in the orders of millions. We propose three different matrix multiplication 

implementations using MapReduce, based on which we successfully parallelize three 

different types of NMF algorithms on the MapReduce platform. We evaluate our 

algorithms on a cluster provided by Google and IBM through the NSF Cluster 

Exploratory (CLuE) program [33] using both synthetic and real data sets and obtain 

linear scalability of the proposed algorithm. 

Our second attempt deals with tensors, a natural extension of vectors and matrices 

in high-order dimensions. Tensors are multidimensional arrays. Many data sets could be 

naturally represented by tensors. For example, we could add a time dimension to the 

Facebook‟s social graph so that we could track the changes over time. The WWW is 

another example. As its size increases, it becomes more and more important to analyze 

link structure considering context as well. Multilinear algebra provides a novel tool for 

incorporating anchor text and other information into the authority computation used by 

link analysis methods such as Hyperlink-Induced Topic Search (HITS) [8]. T. Kolda and 

B.Bader [9] proposed Topical HITS (TOPHITS) method which uses a higher-order 

analogue of the matrix SVD called the PARAFAC model to analyze a three-way 

representation of web data. They compute hubs and authorities together with the terms 

that are used in the anchor text of the links between them. Adding a third dimension to 

the data greatly extends the applicability of HITS because the TOPHITS analysis can be 
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performed in advance and offline. More applications of high-order tensor decomposition 

could be found in [10]. 

We consider two major tensor decomposition algorithms in this dissertation, 

namely, the CANDECOMP/PARAFAC decomposition and the Tucker decomposition. 

We decompose the algorithms into some basic operations such as matrix multiplication, 

the Hadamard product, the Khatri-Rao product, and the Moore-Penrose pseudo inverse. 

We implement each of them in MapReduce and chain them together to do the 

decomposition. Our implementation is experimentally evaluated on the Google & IBM 

cluster and the results show excellent scalability. 

1.3.Organization of the Dissertation 

The dissertation is constructed in the following way: we briefly introduce 

MapReduce and cloud computing in chapter two. We put emphasis on its programming 

model and application. Also demonstrated is the real-world usage with an open source 

implementation – Hadoop. As the major background in which MapReduce was born, we 

discuss cloud computing and its relationship to MapReduce in the end of chapter two. 

Chapter three presents how to solve large scale raster data processing problems in 

MapReduce by using two case studies from the TerraFly project. Chapter four discusses 

how we scale up the nonnegative matrix factorization algorithm in MapReduce. The 

design and implementation of two tensor decomposition algorithms are presented in 

chapter five. We conclude our work in chapter six and briefly discuss future work. 
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2. MAPREDUCE AND CLOUD COMPUTING 

In this chapter, we give a brief introduction to MapReduce, which includes its 

restricted programming model, various applications of this model, its implementation, 

and how do you use such an implementation in the real world. The larger background, 

cloud computing, in which MapReduce origins, is also discussed in section 2.2 with its 

relationship to distributed and parallel computing.  

2.1.Introduction to MapReduce 

2.1.1. The Model and Its Application 

MapReduce, originally proposed by Google in 2004 [5] for solving many 

problems related to large data sets in the company, is a restricted programming model 

that is applicable for processing and generating large data sets. It has intrigued many 

related researches upon its newborn, which includes but not limited to works to porting 

this model to different architectures [11] [12] [13] [14] [15], extensions to the model [16] 

[17] [18], and various applications in machine learning and data mining [19] [20] [21] 

[22] [23], information retrieval [24] [25], video processing [26], spatial data processing 

[27] [28], and so on so forth. 

The popularity of MapReduce is largely related to the simplicity of its 

programming model. The users of a MapReduce implementation just have to specify map 

and reduce two functions. Everything else, including automatic parallelization of tasks, 

fault-tolerance handling, locality optimization, and loading balancing, is taken care of by 
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the underlying implementation. The model takes a key/value pair perspective on the data 

to be processed. In other words, the input data of the computation is presented as a set of 

key/value pairs; the computation itself is carried out on the key/value pairs; and the 

output of the computation is saved as another set of key/value pairs too. 

More specifically, the map function, specified by the user, takes an input pair and 

produces one or more intermediate key/value pairs, which will be consumed by the 

reduce function later. The underlying MapReduce implementation groups together all 

intermediate pairs that have the same key and passes them to the reduce function. 

The reduce function, also specified by the user, consumes all the pairs that 

associate with the same key and produces another set of key/value pairs. 

Conceptually, the process can be described by the following two formulas: 

                       

                                 

Taking the classic word count problem as an example, given a large collection of 

documents, you are supposed to count the number of occurrences of each word in the 

collection. The map function and reduce function for this problem is similar to the 

pseudo-code in Figure 1. From a relational algebra point of view, the whole process is 

more like a select projection via sequential scan (map), followed by hash partitioning, 

sort and group-by (the runtime system) and aggregation (reduce). More formal analysis 

about this model can be found in [29]. 
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This model is very appealing to programmers; for there are only two high-level 

declarative primitives (map and reduce) needs to be specified to enable parallel 

processing. Even programmers with little experience in parallel programming can do it. 

All the benefits of data partitioning, task scheduling, fault-tolerance, and load balancing 

come with the framework. However, every coin has two sides. Those benefits don‟t come 

for free. The assumption is that the problem to be solved has a solution that can be 

expressed in the MapReduce model. The one-input, two-stage data flow of the model is 

somewhat constrained, thus, restricting the applicability of the model to certain kinds of 

problems. We don‟t want to overemphasize its limitation, for the various applications 

developed on this model have already proved its expressiveness. Not to mention that 

there exist extensions that overcomes its limitations [16] [18]. 

Map(key, value) 

// key: document name 

// value: document contents 

 For each word w in value: 

  Emitintermediate(w, 1) 

 

Reduce(key, values) 

// key: a word 

// values: a list of counts 

res = 0 

For each v in values: 

  Result += v 

Emit(res) 

Figure 1 MapReduce pseudo-code for word count problem 
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The original target applications of MapReduce are data intensive applications. As 

it becomes more and more popular, more applications have been considered, especially 

computation intensive applications. Data intensive application, such as the word count 

example, distributed grep, count of URL access frequency, reverse web-link graph, 

inverted index, distributed sort and others [5] are usually simple and straightforward to 

express in MapReduce. The whole process usually entails applying some small 

computation on each pair of input in the map function and aggregating the results in the 

reduce function. On the other hand, computation intensive applications, such as some 

machine learning algorithms [19], integer factorization [30], and the problems we are 

going to study in Chapter 4 and Chapter 5, are not so intuitive to be expressed in 

MapReduce due to the complex nature of the algorithms. Still, solution exists after 

careful analysis of the problems and sometimes some small adjustments of the model as 

demonstrated in [19] [20] [21] and Chapter 4 and 5 of this dissertation. The process is 

beneficial in that we gain deep insight into the capability of the MapReduce model and 

accumulates experience for solving new problems using the model. 

2.1.2. Its Implementation and Real-World Usage 

We give some introduction to the programming model of MapReduce and its 

applications in the previous section. In this section, we will review the implementation of 

the model and see how to use such framework in the real-world. 

Figure 2 shows the execution overview of a MapReduce job. Google‟s 

implementation of MapReduce is proprietary and not available for public use. Fortunately, 

an open source project, called Hadoop [31], completely implements the idea of 
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MapReduce. We are going to discuss its major components. From a theoretical point of 

view, there is no different between Hadoop and Google‟s implementation of MapReduce. 

Our discussion is more focused from a user‟s point of view. Thus, some components that 

are not supposed to be used by a MapReduce user are skipped. Interested readers are 

encouraged to consult the original paper [5] and Hadoop‟s online documentation [31]. In 

the rest of this dissertation, we interchangeably use the term MapReduce and Hadoop. 

When we use MapReduce, we are referring to the Hadoop implementation. 

 

Figure 2 Execution overview of MapReduce* 

*image from Google‟s original paper [5] 
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There are three major components in Hadoop, namely, the Mapper, the Reducer, 

and the Partitioner. The Mapper corresponds to the map function and the Reducer 

corresponds to the reduce function in the model. The Partitioner controls the partitioning 

of the keys of the intermediate outputs of map function.  

There are some other components that are not always used in every Hadoop job, 

but are very helpful under certain conditions. For example, the InputFormat interface 

describes the input specification of a MapReduce job. Together with the InputSplit and 

the RecordReader interfaces, they make a MapReduce job capable of reading input from 

different sources (e.g. from files, databases e.t.c).  Another example is the 

SortingComparator and GroupingComparator interfaces. They are responsible for sorting 

and grouping the intermediate outputs of Mappers. Hadoop only guarantees that the keys 

are sorted in the input of a Reducer, but not the values. Certain tricky use of 

SortingComparator and GoupingComparator can simulate secondary sort on values as 

well, which we will see this use in Chapter 3. 

All the experiments of this dissertation are run on a large shared cluster provided 

by the Google and IBM Academic Cluster Computing Initiative [32] through the NSF 

Cluster Exploratory (CluE) program [33]. We describe its configuration and how we use 

this cluster as a real-world example of using MapReduce. There are about 500 machines 

in the cluster, each of which has two single-core 2.8 GHz Xeon processors, 8 GB 

memory, two 400 GB hard drives, and one gigabit Ethernet connection. Hadoop 0.20.1 

runs on one 64-bit Xen virtual machine running on top of the above physical hardware 

with access to all the memory (minus some overhead), all the execution threads of the 
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processors and all of the disks. The VM runs CentOS 5.3 and the host operating system 

runs Fedora Core 8. Access to the cluster is provided through the Internet by a SOCKS 

proxy server. SOCKS is an Internet protocol that secures client-server communications 

over a non-secure network. 

There are three main steps in interacting with the cluster, as shown in Figure 3. (1) 

Input data is uploaded into the cluster. The user uses file system shell scripts provided by 

the Hadoop Distributed File System (HDFS), which is an integral part of the Apache 

Hadoop project; HDFS is a clone project of Google‟s files system GFS [34]. (2) A user 

develops a Hadoop application and submits it to the cluster via Hadoop command. 

 

Figure 3 Google, IBM academic cluster overview 
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Hadoop applications are usually developed in Java, but other languages are supported, 

like C++ and Python. (3) After application execution is completed, the output is 

downloaded to the user‟s local site with Hadoop file system shell scripts. A data set is 

stored as a set of files in HDFS, which are in turn stored as a sequence of blocks 

(typically of 64MB in size) that are replicated on multiple nodes to provide fault-

tolerance. 

2.2.Cloud Computing 

It is incomplete to introduce MapReduce without mentioning cloud computing, 

because cloud computing is the large background in which MapReduce is born. As a 

buzz word, the term cloud computing entails many things and means different concepts to 

different people. The National Institute of Standards and Technology (NIST) defines it as 

follow: 

“Could computing is a model for enabling convenient, on-demand network access 

to a shared pool of configurable computing resources (e.g., networks, servers, storage, 

applications, and services) that can be rapidly provisioned and released with minimal 

management effort or service provider interaction. [35]” 

It may not be complete, but it does describe the way we use the Google & IBM 

cluster. Some of its characteristics are: 

 Cloud computing provides computing resources as an on-demand service. 

  The user of cloud computing doesn‟t know the physical location of the 

computing resources he is using. 
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 Cloud computing is elastic and scalable. 

 The computing resources are shared between many users. 

As can be seen from these characteristics, cloud computing does bear some 

similarities to the traditional terms “utility computing” and “grid computing”, for 

example, providing computing resources as a public service is the essence of utility 

computing, and offering shared computation and storage over long distances is the same 

as grid computing. 

So how does MapReduce fit into this big picture? From a user‟s point of view, 

MapReduce is the tool to utilize the power of cloud computing, especially the infinite 

scalability, to solve various kinds of large scale problems. And from a cloud service 

providers‟ point of view, MapReduce is an essential piece of software that consists of 

their cloud services. 
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3. RASTER DATA PROCESSING IN MAPREDUCE 

3.1.Background 

One of the major types of data that is handled by spatial databases is raster data, 

namely, aerial photography and satellite imagery. This type of data is being generated by 

satellite or aircraft-mounted cameras periodically and is in the scale of Tera-byte or Peta-

byte. How to efficiently process such a huge amount of data is a challenge for modern 

spatial databases. Although the size of the data is huge, the operations performed on the 

data are relatively simple. Two case studies are given in this section to show how 

MapReduce could be used to solve such kind of problems. 

3.1.1. TerraFly 

Both of the problems described in this section have their real world applications 

in the TerraFly project [7]. Terrafly is a web application that enables easy access and 

manipulation of remotely sensed data (aerial photography and satellite imagery) and 

other spatial data. Using only a standard web browser, an average user can seamlessly fly 

over various remotely sensed data of different sources, spatial resolutions and image 

formats integrated with graphical maps and other spatial data sets such as US census data 

and demographic data. The raster data sets collected by TerraFly cover the whole United 

States in 1 meter spatial resolution, most of its major cities in 30 cm resolution, and some 

areas in 1 foot (most Florida Counties) or 3 inch (Miami) resolution. The size of this data 
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set is about 40 TB currently and is still increasing. The first problem deals with the 

loading of this huge and ever increasing raster data set.  

3.1.2. The image loading problem 

In order to provide fast and high quality aerial photography and satellite imagery 

viewing experience, TerraFly converts and tiles the image files that it collects from 

various sources (USGS, GeoEye, or GIS department of Counties). Internally, Terrafly 

uses a grid structure based on the Universal Transverse Mercator geographic coordinate 

system (UTM) to index this raster data set. The UTM system divides the whole global 

into 60 longitudinal projection zones numbered 1 to 60 starting at 180°W, each of which 

is 6 degrees wide except a few regions around Norway and Svalbard. Within each 

longitudinal zone the Transverse Mercator Projection is used to give co-ordinates 

(eastings and northings) in metres. For the easting, the origin is defined as a point 

500,000 meters west of the central meridian of each longitudinal zone, giving an easting 

 

Figure 4 the Universal Transverse Mercator System 
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of 500,000 meters at the central meridian. For the northing in the northern hemisphere, 

the origin is defined as the equator. For the northing in the southern hemisphere, the 

origin is defined as a point 10,000,000 meters south of the equator. Figure 4 shows the 

whole global in the UTM system. The continental United States is covered by UTM Zone 

10 to UTM Zone 19. 

The index structure consists of several parts. The first part is the name of the 

imagery source. Each source has its own name space. The second part is the UTM Zone. 

We further divide each zone into grids of size 102400 by 102400 in pixels. Each of these 

grids has its unique id inside a particular UTM Zone. We create a file for each of these 

grids, each of which contains records that describe image files within or intersect with 

this grid.  These image files are in an internal format that contains a descriptive header 

and a bunch of JPEG image tiles, each of which is of 400 by 400 in pixels. This is the 

smallest unit of this index system and we call it a tile. We also do resampling for each 

image file to facilitate viewing of the same area at different scales. The resampled image 

files are also put into the index system marked with a zoom level that indicates their 

resolutions after the zone number. For example, Miami, FL is in UTM Zone 17 and in 

grid 275. Let‟s say we have a data set covers this city and its name is USGS_30CM, 

which indicates that it is from USGS and is of spatial resolution 30 cm. We will converts 

and tiles each image files in this data sets and put index records into our index system. 

We could find these files by following the index path usgs_30cm/17.1/275. And path 

usgs_30cm/17.2/275 contains the resampled image files which are of resolution 0.6 meter 
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per pixel. And so on so forth. We usually stop resampling at 2
10

 of the original resolution, 

because the viewable area becomes very small at this scale. 

All the raster data collected by TerraFly are converted into the internal format 

mentioned above, and tiled under the above index system. We call this process loading. 

This loading process is very slow considering the huge size of the data sets using 

traditional single processor architecture. But this procedure could be easily implemented 

in an embarrassingly parallelizable way. Each file is independent of other files and can be 

converted and tiled in parallel. Special care needs to be taken at the boundary of image 

files, for a tile could potentially span four different neighboring files. Under such 

conditions, the Reducers are employed to handle the merging of such tiles. 

3.1.3. The image quality assessment problem 

The second problem given in this section is also common in aerial photography 

and satellite image processing. It is related to the quality of service provided by TerraFly. 

Let‟s say that we have loaded a data set that covers a particular geographical region. At 

the boundary of this data set, there could be incomplete tiles, for the coverage of the data 

set does not necessarily fit exactly into our index structure. In other words, the files we 

receive are not necessarily of sizes that are a multiple of 400 by 400 in pixels, which is 

the tile size of our index system. Later, we have a second data set that covers these 

incomplete tiles. Thus, we want to merge data from these two data sets for those 

incomplete tiles. This situation could become especially obvious when you zoom out into 

a states level or country level, at which scale every city becomes so small that a data set 

doesn‟t even cover a tile. Figure 5 shows an example tile in Florida that is mosaiced from 
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several data sets. Such situation not only occurs at the boundary of data sets, but may also 

in the middle of a data set due to faulty instrument or incorrect processing steps in the 

data acquisition phase.  

Thus, a mosaicing or patching step is needed when rendering the images. The 

necessity of such a step should be determined before it is carried out. Instead of 

dynamically analyze the image at runtime, which is computationally expensive, the result 

of the analysis is usually pre-calculated and stored in some format. This pre-computation 

could again take advantage of the parallelizing power of MapReduce, for such local 

analysis on each image files doesn‟t need information from other files and can be 

processed independently. 

In summary, the key contributions of this work are as follow: 

 

Figure 5 A tile that is mosaiced from multiple data sets 
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 We develop two real world applications in Hadoop to process spatial rater 

data in TerraFly. 

 We demonstrate how to process spatial raster data in MapReduce by 

solving two real world problems. 

 We experimentally evaluate our MapReduce algorithms using real data 

sets on a real world cluster. 

The rest of this chapter is organized as follows. Section 3.2 discusses the related 

work to our problems. Section 3.3 presents the detailed design and implementation of the 

two algorithms. Experiment setup and results are shown in section 3.4. We conclude and 

summarize our work in section 3.5. 

3.2.Related Work 

3.2.1. Image Processing 

The image we are referring to in this paper is digital image, which can be defined 

as a two-dimensional function, f(x, y), where x and y are spatial coordinates, and the value 

of f at a particular coordinate (x, y) is called the intensity or gray level of the image at that 

point. The domain and range of f should both be finite and discrete in order for the image 

to be a digital image. Digital images are consists of basic elements, which are usually 

called Pixel. Each pixel occupies a specific location (x, y) and has some value f(x, y). 

More formal discussions can be found in [36]. 
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Processing digital images using a digital computer is generally called digital 

image processing. Closely related to but different from the concept of image processing 

are the concepts of image analysis and computer vision. Although there is no agreement 

among authors regarding the boundaries between these concepts, the concept of image 

processing is more towards low-level processing, such as noise reduction, contrast 

enhancement, and image sharpening, while the concept of computer vision is more 

towards high-level processing such as object recognition. Image analysis sits in between 

the two other concepts. A useful criterion that can be used to differentiate them is the 

resultant structure of the processing. The result of lower level primitive processing 

usually is still an image. For example, after noise reduction, the output image is still the 

for example, the answer to the question: whether this image contains a human face? [36] 

[37]. The image processing tasks considered in this paper is limited to low level 

processing. 

Various software packages are available for carrying out general image 

processing tasks [38] [39]. Aerial photography and satellite imagery are usually handled 

by specialized software packages such as ArcGIS [40] or ERDAS [41]. In addition to 

some of the basic low level image processing tasks, they provides functionalities such as 

image reprojection, image mosaic, map composition, same as the input image except 

some portion of noise has been removed. This also applies to contrast enhancement and 

image sharpening. On the other hand, the result of high level processing is usually not an 

image. And it could as simply as a “YES” or “NO”, spatial modeling and other GIS 

related features. 
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3.2.2. Parallel Processing 

Parallel processing is the term used in computing that is the contrary of sequential 

processing. In sequential processing, instructions are executed one after another. There is 

only one execution thread at any given point of time. While in parallel processing, there 

are many calculations carried out simultaneously.  

Parallel processing can be classified into four categories by Flynn‟s taxonomy 

[42], namely single instruction single data (SISD), single instruction multiple data 

(SIMD), multiple instruction single data (MISD), and multiple instruction multiple data 

(MIMD). This classification is based on instruction and data two dimensions. The SISD 

class corresponds to sequential processing. The MISD class is rarely used and the MIMD 

class is the most common type of parallel processing, which requires synchronizations 

between different subtasks of the computation. The SIMD class, which is also called data 

parallel systems, is the most similar one to MapReduce and involves doing the same 

operations on a large data set. In such a system, all PEs (processing elements), being it a 

processor or a node in a cluster, execute the same instructions on its own portion of data. 

There is no need for communications between PEs and error-prone synchronization 

mechanisms such as mutex or semaphores, thus simplifying the design of the system. 

Low level image processing turns out to be a very good candidate for parallel 

processing, for many operations require only information from a limited neighborhood of 

a pixel or even operate without data from other pixels. Researchers have been making 

efforts on many different aspects to bring the benefits of parallel computing to the image 

processing community. Various special architectures have been proposed in the literature 
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for parallel image processing [43] [44]. In an earlier work, Anthony [45] surveyed the 

architectures of many parallel systems that have been developed for image processing 

and proposed a simple SIMD/MIMD computational model for comparison with such 

systems. Recent advancement includes using GPU (graphic processing unit) to accelerate 

image processing tasks [46]. Another branch of researches exploit developing high level 

languages and libraries for parallel image processing that can be applied to a range of 

different architectures.  [47], which presents an application-specific high level 

programming language intended for implementing low level image processing 

applications on parallel architectures, is in this category. Similarly, [48] presents a library 

of data parallel low level image processing operations that is based on so-called 

“parallelizable pattern”. Thomas et. al [49] give an extensive discussion on the topic of 

parallel image processing.   

3.3.Design and Implementation 

The detailed design and implementation of the above two problems are presented 

in this section. A brief description of the organization of the imagery data is given first, 

followed by the MapReduce algorithms to process the data. And finally, some 

implementation issues are discussed. 

The aerial/satellite imagery data TerraFly collects is usually DOQQ files in 

GeoTiff format [50]. This is the input for the image loading problem. After conversion 

and tiling, they are transformed into an internal format. More specifically, this format 

contains a descriptive header and a bunch of JPEG image tiles, each of which is of size 
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400 by 400 pixels and covers a particular geographic area. The result of the imagery 

loading problem is the input for the image quality assessment problem. 

3.3.1. MapReduce Algorithm for the image loading problem 

The algorithm for the imagery loading problem is discussed in the following. The 

input for this problem is a data set that consists of GeoTiff files and covers a specific 

geographical region, such as a city or a county, and the output is a bunch of tiled files in 

the format mentioned above and their corresponding index files. All the output files will 

be of the same size measured in terms of width and height in pixels (for example, 25600 

x 25600), which is the parameter of the actual Hadoop job. Thus, the number of output 

files may not be the same as input. In fact, usually it is less than the number of input files 

and the size is always chosen to be a multiple of 400 so that the output file doesn‟t 

contain incomplete tiles (each tile is 400 by 400 in size). All paths of the input files are 

compiled into one file, which contains the path of one file on each line and is the input 

for the Hadoop job. TextInputFormat is used to parse the input into one line per record. 

Each Mapper will be responsible for portion of the input files. The Mapper opens the 

GeoTiff file and converts it into a bitmap. After that it tiles the bitmap according to its 

geographic coordinates, compresses each tile, and emits a record with (gid, fid, zoomlevel, 

tid) as its key and the compressed tile as its value, where gid is the grid id in the index 

system, fid is the output file id that this tile belongs to, zoomlevel is the current zoom 

level, and tid is the tile id in the output file.             
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The Mapper resamples the bitmap and repeats the above process until the desired 

zoom level is reached. Thus, the Mapper creates a hierarchical pyramid of the input 

image at different resolutions, which can be rendered at runtime to show the same region 

at different scales. Figure 6 shows the pseudo-code for the map function of this problem. 

The Reducer is supposed to receive all the tiles that belongs to one output file and 

merges them together, but this is not the default behavior in Hadoop. Recall from section 

2.1.2 that MapReduce groups all the intermediate values with the same intermediate key 

and sends it to a reduce function. Since the key is different for each tile (because tid is 

different for each tile), tiles belong to one output file may be shuffled to different 

Reducers. The reason we also put tid into the key is that we want to simulate a secondary 

sort on the tiles that belong to the same output file, which will facilitate the processing in 

Reducers. In other words, tiles are sorted by their positions in a file so that the Reducer 

can write to HDFS directly when iterating through its input. We achieve such result by 

overriding the Partitioner and the GroupingComparator interfaces. 

Map (offset, path) 

1 open Geotiff and convert it into bitmap 

2 zoomlevel = 0 

3 while zoomlevel < targetlevel 

4     for each tile in current bitmap 

5         compress and emit intermediate result 

6     resample bitmap 

7     zoomlevel += 1 

Figure 6 Pseudo-code for the map function of the image loading problem 
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As mentioned in the previous chapter, there is a shuffling and sorting phase 

between the map and the reduce phase. Intermediate outputs with the same keys are 

shuffled to one Reducer and are guaranteed to be sorted according to their keys. The 

Partitioner interface is responsible for the partitioning of the keys of the intermediate 

outputs of Mappers. It is typically implemented as a hash function. Thus, a key is hashed 

into one of the Reducers. We override the hash function so that it only considers the gid 

part of the key. This ensures all the tiles belong to the same grid will be shuffled to one 

Reducer, but it doesn‟t specify the order by which the groups are created. There are two 

Comparator interfaces in the Hadoop framework that controls the sorting and grouping of 

intermediate outputs, namely, the SortingComparator and the GroupingComparator. The 

SortingComparator is responsible for sorting all the intermediate outputs according to 

their keys and the GroupingComparator is responsible for grouping the intermediate 

outputs and sending each group as one call to the Reducers. In our case, the 

SortingComparator will sort all the tiles in the order according to gid, fid, zoomlevel, and 

tid. This gives the correct ordering of all the tiles for the Reducer to write them to HDFS, 

but the GroupingComparator will treat each tile as one group by default, for each of them 

has different keys. Again we override this GroupingComparator so that it only considers 

the fid and zoomlevel part of the key (the gid part is the same for all the values that are 

Reduce (key, tiles) 

1 f = open file for writing 

2 for each tile in tiles 

3     f.write(tile) 

Figure 7 pseudo-code for the reduce function of the image loading problem 
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shuffled to one Reducer). Thus, tiles belong to the same output file are sorted and 

grouped in one call to the Reducer.  Figure 7 shows the pseudo-code for the Reducer, 

which is very concise due to the work we have done in Partitioner and 

GroupingComparator. The input and output key/value pairs for this problem is 

summarized in Table 1. We use brackets to represent key value pair and square brackets 

to represent a list of values. 

Table 1 Input/output for the converting and tiling Hadoop job 

Function Input Output 

Map                                          
                   

Reduce                                             
 

3.3.2. Algorithm for the image quality assessment problem 

We introduce some notations before describing the algorithm for the image 

quality assessment problem. Let d be an image file and t be a tile inside d. d.name is the 

file name and t.q is the quality information of tile t. Figure 8 depicts the execution 

overview of the MapReduce algorithm to compute the image quality. The algorithm runs 

on a tile by tile basis within the boundary of a given image file. It computes a bitmap for 

each tile where a set bit represents a good pixel in the tile and an unset bit represents a 

bad pixel. A pixel is defined as “bad” if all the values of its samples are below or above 

some predefined value. More complex operations could be carried out in the process, but 
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this simple scheme is enough for the application purpose. 

Each image file is first partitioned into several splits, each of which is then 

processed by a separate Mapper. Since the underlying distributed file system (HDFS) has 

no knowledge of tiles, a specialized RecordReader is implemented to respect the tile 

boundaries. Each tile is parsed out from a split by this RecordReader, combined with the 

file name and tile id as its key, and sent to Mappers as an input record. 

The input and output key/value pairs for Mappers and Reducers are described in 

Table 2. The Mapper decompresses the JPEG tile t, iterates through each pixel of t to 

obtain quality information t.q (a bitmap, one bit per pixel) and compresses it using Run-

length encoding. After that, it emits the intermediate key/value pair with d.name as the 

key and t.q as the value. The Reducer merges all the quality bitmaps that belong to the 

same file and writes them to an output file as shown in Figure 8. 

Table 2 Input/output of map and reduce functions for image quality assessment 

Function Input: (Key, Value) Output: (Key, Value) 

Map                              

Reduce                                            

 

 

Figure 8 Overview of the aerial imagery quality computation algorithm 
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3.4.Experiments 

3.4.1. Cluster Setup 

All the experiments in this section and in the following two sections were 

conducted on a large shared cluster of approximately 500 machines provided by Google 

and IBM [32] through the NSF Cluster Exploratory (CluE) program [33], which we 

described in section 2.1.2. 

3.4.2. Data Sets 

We used two different data sets for the two different problems. The data set used 

in the image loading problem is a 1-foot resolution aerial imagery of Hendry County of 

Florida. The data set used in the image quality assessment problem is a 3-inch resolution 

aerial imagery of Miami Dade County of Florida. Some statistics about these two data 

sets are summarized in Table 3.  

Table 3 Data sets statistics for raster data processing in MapReduce 

Data set Used for Size Num of files 

Hendry County Image loading 100 GB 1486 

Miami Dade County Image quality 

assessment 

520 GB 482 

 

As can be seen in the table, the size of the data set is about 520 GB without 

compression. Since the final result is compressed in JPEG, its actual size is about 52 GB. 

This data set is stored in the format described in section 3.1.3. There are 482 files, each of 

which contains 4096 tiles. Each tile is 400 by 400 pixels and has 3 bytes for each pixel as 
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the red, green, and blue channel. The size for each tile is 480,000 bytes uncompressed 

and compressed tile is about 50 KB each. 

3.4.3. Experimental Results 

Two experiments are carried out for each of the data set. The first experiment 

varies the number of Mappers/Reducers and the second one varies the size of the input 

data. Both of the experiments record the elapsed time of the MapReduce jobs. 

Figure 9 shows the experiment results for the image loading problem. Both of the 

experiments load the whole or partial of the data set for nine zoom levels. The first 

experiment uses the whole data set, fixed the number of Reducers to 4 and varies the 

number of Mappers from 4 to 512.  

      

        a)     Variable Mappers                             b) Variable input data size 

Figure 9 MapReduce job completion time for the image loading problem 
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As can be seen from Figure 9 a), the time spent in the reduce phase is almost the 

same across all the different configurations of Mappers. This is because the work done in 

the reduce phase is the same for all the configurations, namely merging all the tiles to 

their final files. On the other hand, the time spent in the map phase drops sharply at first 

and stabilizes to around 4 minutes as the number of Mappers increase. It drops initially 

because each Mapper processes less data as the number of Mapper increase, but as the 

number continues to increase (especially when it‟s larger than 64), the time spent in the 

computation of Mappers becomes relatively small compared to the time spent in 

launching and coordinating all the Mappers. Also, the chances that one of the Mappers is 

much slower than others increase as the number of Mappers increase. 

The result of the second experiments is shown in Figure 9 b). We vary the input 

data size and fix the number of Mappers and Reducers to 16. Sub linear complexity has 

been observed in this figure. This means the computation power of Mapper haven‟t been 

saturated yet. Thus, doubling the size of the data doesn‟t increase the time to twice of the 

original.  

The first experiment for the image quality assessment problem uses a subset of 

the whole data set that is a re-sampled version of the original one. It is about 20GB and 

has 482 files with 1024 tiles each. The size of the files ranges from several megabytes to 

around 80 megabytes, and the number of Reducers is varied from 4 to 512. The second 

experiment uses different sized subsets of the original data set. The size of the files 

ranges from 2GB to 16GB, and the number of Reducers is fixed at 256. 
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In the first experiment, the number of Mappers is also fixed, determined by the 

data set size. Thus, the execution time of the map phase is similar through different runs, 

as can be seen in Figure 10 (a). The execution time slightly fluctuates because there were 

other concurrent jobs running in the cluster at the same time. As the number of Reducers 

increases, the execution time of the reduce phase largely decreases for smaller number of 

reducers, and less improvements are obtained for larger number of reducers. This is 

because the same amount of work is now shared by more Reducers. When the number of 

Reducers is larger than 64, the execution time of the reduce phase stabilizes to around 2.5 

minutes. This could be explained by the launching time of Reducers dominating the 

whole time at this point. With 64 Reducers, each of them will be writing around 482/64 

≈ 8 files. The time taken to write 8, 4 (128 Reducers) or even less files is negligible 

compared with the launching time of that many Reducers. 

        

a) Variable Reducers                                b) Variable input data size                             

Figure 10 MapReduce job completion time for image quality computation 
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In the second experiment, Figure 10 (b), as the size of the data set increases with 

constant number of reducers (256), the execution time of the map phase hardly changes, 

which is consistent with the data parallelization provided by the MapReduce model, that 

is, more Mappers are engaged in processing the data. The execution time of the reduce 

phase increases because there are now more files to be written with the same number of 

Reducers. 

3.5.Summary 

Due to its inherent parallelizable nature of many low level image processing 

operations, parallel computing has been a great tool for researchers of the image 

processing community to dramatically reduce the processing time of large data sets. As a 

new member in the parallel computing domain, MapReduce is not an exception. Its data 

parallel model turns out to be another invaluable tool to speedup many low level but 

important tasks in image processing before further analysis can be carried out. In this 

chapter, we have studied two real world applications that utilize the computation power 

of MapReduce to speedup raster data processing in spatial database domain. Experiments 

have shown the linear scalability of our algorithms.  

Another lesson worth noting is that although the two phase (map and reduce) 

model of MapReduce seems to be stringent at first; some components are flexible enough 

for the model to be adapted to different situations. We have shown two such examples in 

our applications. The first one is to overriding the default rule in the shuffling phase of 

the image loading problem, which results different sorting and grouping criteria in the 

reduce phase. The other one is to define customized InputFormat to handle new format of 



34 
 

the input data in the image quality assessment problem. These two examples showcase 

the flexibility existing in MapReduce. 

We continue our discussion with MapReduce in the following chapters, but we 

switch to another domain. We show how MapReduce could be utilized in the algorithmic 

analysis domain. More specifically, we give two case studies, namely, Nonnegative 

Matrix Factorization (Chapter 4) and Tensor Factorization (Chapter 5). 
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4. NONNEGATIVE MATRIX FACTORIZATION 

4.1.Background 

Nonnegative matrix factorization (NMF) factorizes an input nonnegative matrix 

into nonnegative matrices of lower rank. Originally proposed for parts-of-whole 

interpretation of matrix factors, NMF has attracted a lot of attentions recently in data 

mining and machine learning communities. It is recently discovered that NMF can be 

used to solve challenging data mining and machine learning problems.  For example, 

NMF with the sum of squared error cost function is equivalent to a relaxed K-means 

clustering, the most widely unsupervised learning algorithm [51] [52]. In addition, NMF 

with the I-divergence cost function is equivalent to probabilistic latent semantic indexing, 

another unsupervised learning method popularly used in text analysis [53] [54]. 

Consequently, NMF has been shown to be useful in a variety of applied settings, 

including environmetrics, chemometrics, pattern recognition, multimedia data analysis, 

text mining, web mining, and DNA gene expression analysis. 

Due to the increasing availability of massive data sets, researchers are facing the 

problem of factorizing matrices of dimensions in the orders of millions. Recent research 

[55] has shown that it is possible to factorize such gigantic matrices within tens of hours 

using the MapReduce distributed programming platform. In this section, we propose 

three different matrix multiplication implementations using MapReduce, based on which 

we successfully parallelize three different types of NMF algorithms on the MapReduce 

platform. We evaluate our algorithms on a cluster provided by Google and IBM through 



36 
 

the NSF Cluster Exploratory (CLuE) program [33] using both synthetic and real data sets. 

Results have shown that the performance of our proposed algorithm is at least as good as 

previous efforts. 

Different from the work by Liu et al. [55] whose implementations are directly 

built on the updating rules, we reduce the problem of NMF to a series of different matrix 

multiplication implementations on the MapReduce platform, which makes our algorithms 

applicable to most matrix factorization algorithms that are using the multiplicative 

updating scheme. 

In summary, the key contributions of this work are summarized below: 

 We propose three different matrix multiplication implementations on MapReduce. 

 We scale up three different types of NMF algorithms on MapReduce based on our 

proposed matrix multiplication implementations. 

 We implement and experimentally evaluate our algorithms using both synthetic 

and real data sets on a real-world cluster. 

The rest of this chapter is organized as follows. Section 4.2 discusses related 

works, mainly focusing on parallel matrix multiplication and large-scale data mining two 

aspects. Section 4.3 defines three different types of nonnegative matrix factorization and 

introduces their updating algorithms respectively. Section 4.4 describes three schemes to 

perform matrix multiplication using MapReduce based on the properties of the matrices. 

These schemes are then used to implement the updating algorithms in Section 4.3. We 

report the experimental evaluation in Section 4.5 and conclude the work in Section 4.6. 
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4.2.Related Work 

 Two particular lines of research are related to our work. One is existing works in 

parallel matrix multiplication and NMF. The other is using MapReduce in large-scale 

data mining and machine learning. 

4.2.1. Parallel Matrix Multiplication and NMF 

Because of the importance of matrix multiplication as a basic operation in linear 

algebra, parallel matrix multiplication has been studied extensively. One of the most 

popular algorithms might be Cannon‟s algorithm [56]. Although most of the algorithms 

assume special data layout and are tied to a particular parallel architecture, some basic 

ideas still could be applied to MapReduce. Algorithms designed for single instruction 

multiple data (SIMD) systems are of particular interests, for the resembalance between 

MapReduce and SIMD. For example, the MM-2 scheme we proposed in Section 4.4.1 

could also be implemented directly on an SIMD system by replacing a machine in the 

cluster with a processor in the system. From a relational algebra perspective, what MM-2 

does is a join on the column id of the left matrix and the row id of the right matrix. More 

detailed discussions could be found in [57] [58]. 

Because of the popularity of NMF, there are many works in trying to parallelize it 

[59] [60]. Since data sharing and communication are no longer light-weight in distributed 

clusters like MapReduce, those methods cannot be ported directly to MapReduce. 
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4.2.2. Large-scale data mining using MapReduce 

Although the initial purpose of MapReduce is to perform large-scale data 

processing [5], it turns out that this model is much more expressive than that [5]. Chu et 

al. investigated the possibility to implement machine learning algorithms using 

MapReduce on multicore [19]. Their conclusion is that a variety of learning algorithms 

that fit the statistic query model [61] could be parallelized using MapReduce. An open 

source project Mahout [62] has been started to port those algorithms to Hadoop. 

Papadimitriou and Sun have done a case study in data mining on co-clustering [20] 

towards petabyte scale of data using MapReduce. MapReduce has also been used in 

many other tasks of data mining and machine learning. Those works include but not 

limited to Kang et al. on graph mining [21], Panda et al. on tree ensembles [22], Liu et al. 

on bayesian browsing model [23], and Chen et al. on behavioral targeting [63]. 

In particular, Liu et al. successfully scaled up the classical NMF [64] for web-

scale dyadic data analysis on MapReduce [55]. They assumed the matrix to be factorized 

is stored as            tuples that are spread across machines and proposed different 

partitions for the factors. Although the techniques they used are different, they could be 

reduced to one of the matrix multiplication schemes we proposed in Section 4.4. 

4.3.Nonnegative Matrix Factorization 

 Let        
 be the input data matrix, we define three different matrix 

factorizations and introduce their updating rules in the following. 
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A. NMF 

The classical NMF [64] could be written as 

      

where        
        . The updating rules for NMF are listed as follows: 

       
      

        
,  

             
     

  

        
.   

B. Convex-NMF 

In general, the basis vectors   have the meaning of cluster centroids. To enforce 

this geometry meaning,   can be restricted to be a convex combination of the input data 

points [65]. In other words, in addition to have   to be nonnegative, we restrict each 

column of    to lie within the space spanned by the columns of  , i.e.,            

              , where    and   is a column vector of  and  ,    is an 

element of            . We call this restricted form of factorization as Convex-NMF 

[65]. The updating rules of this factorization are 

        
        

           
, 
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C. Tri-Factorization 

Tri-factorization [66] is useful to simultaneously cluster the rows and the columns 

of the input data matrix  . We consider the following nonnegative 3-factor 

decomposition 

      , where        
                . Note that S provides 

additional degrees of freedom such that the low-rank matrix representation remains 

accurate while F gives row clusters and G gives column clusters. The updating rules of 

tri-factorization are 

        
        

           
,   

        
        

           
,    

        
        

           
.    

4.4.NMF using MapReduce 

4.4.1. Matrix Multiplication in MapReduce 

The major operation in the updating rules of all three types of factorizations is 

matrix multiplication. Thus, efficient implementation of matrix multiplication on 

MapReduce is the key to scale up matrix factorization. 

Assume        
 and         . Traditionally,    is defined as the inner 

product of the row vectors of   and column vectors of  . Thus, 
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 . 

This kind of decomposition is useful if we could share   across all rows of  . 

Each row of    could be computed in parallel. A MapReduce job MM-1 is formulized in 

Table 4 to carry out this computation. 

Table 4 Three Matrix Multiplication Schemes 

Scheme  Input/Output 

Input Output 

MM-1 Map                  

Reduce None 

MM-2 Map         or                 or         

Reduce                       or           

Map               

Reduce                    
   

MM-3 Map                  

Reduce                    
   

 

We use     to denote a row vector with id   and     to denote a column vector. We 

use    to denote either a row vector or column vector if it doesn‟t matter which one it is. 

  
  is used to denote the final result aggregated from all the    `s. We use an angle bracket 

to denote a key/value pair and a square bracket to denote a list of key/value pairs. 

As can be seen from Table 4, no reduce phase is needed for MM-1. The input to 

the map phase is the row vectors of   .  When the size of   gets large enough, this 
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scheme will fail since the cost of sharing a large matrix across many nodes in a cluster is 

too expensive. 

Alternatively, we could decompose   into column vectors and   into row vectors. 

Thus, 

             

  
  
 
  

         . 

The implication of this decomposition is that if we could partition   and   in such 

a way that the corresponding columns of    and rows of    are on the same machine, we 

could compute the outer product in parallel and merge them together to obtain AB. This 

scheme fits the MapReduce model perfectly. No data sharing is required as in the 

previous scheme. We could use two MapReduce jobs to implement this scheme MM-2, 

which is shown in Table 4. 

Now let‟s examine these two jobs of MM-2 in detail. The first job does 

multiplication and the second job does summation. The map phase of the multiplication 

job accepts a column vector     or a row vector    , and emits an intermediate pair with 

column id or row id as key and the column or row itself as value. Column and row 

vectors with the same id are shuffled to the same machine as the input for the reduce 

phase. In the reduce phase, we compute the outer product of     and     and, depending 

on the context in which this multiplication is used, we either output a bunch of row 

vectors or column vectors, which is denoted in Table 4 as           or             These 

row or column vectors are partial results of the vector. We merge them into the final 
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vector in the summation job. The map phase of the summation job is an identity function, 

which just outputs the input key/value pairs for shuffling. The reduce phase of this job 

merges all the row vectors with the same id or column vectors with the same id and emits 

a final row vector or column vector.  

This scheme can be used to compute the product of any matrices, no matter it is 

dense or sparse, as long as the left matrix is partitioned into column vectors and the right 

matrix is partitioned into row vectors. Under certain circumstance, the two MapReduce 

jobs can be merged into one. For example, consider the matrix multiplication    . 

Assume   is partitioned in row vector, then    in column vector is the same as   in row 

vector. Thus, we could compute     using only one MapReduce job as shown in MM-3 

of Table 4 where multiplication is conducted in map phase and summation is performed 

in reduce phase. This shortcut saves one MapReduce job and turns out to be very useful 

in matrix factorization, where multiplications like     appear frequently. 

4.4.2. NMF 

We partition   ,   and   into row vectors, which renders the following view: 

   

  
  
 
  

     

  
  
 
  

         

  
  
 
  

 , 

where    is    -dimensional row vector and    and    are   dimensional row 

vectors. All of them are stored as sets of       ,        and        key/value pairs. There 

are three steps to update  . The first step is to compute the numerator     in (2). The 

second step is to compute the denominator      in (2). And the last step is to update  . 
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Figure 11 shows the flow chart of updating  . We discuss them in the following one by 

one. 

A. Computing       

Since we partition   and   in row vectors,     is ready for multiplication. Using 

the scheme MM-2 in Table 4, we could compute     with two MapReduce jobs. 

B. Computing        

There are two ways to compute     . The first one is to compute     first and 

     afterwards. This requires 4 MapReduce jobs, 2 for each multiplication. The second 

one is much faster. By using MM-3 to compute     first, and using MM-1 to compute 

    , only two jobs are needed. Noting that the result of     is a     matrix which is 

reasonably small to be fit into memory for computing      with  . 

C. Updating G 

Once both     and      have been computed; only one job is needed to 

update  , which is summarized as follow: 

 Map: Map       ,        and        as they are 

 Reduce: Take                and emit     
  , where   

      
    

    
. 

This finishes the update of   .   is updated in the same manner, except that when 

computing   , we need   to be partitioned into column vectors, whereas it is stored as 

row vectors. Thus, an additional MapReduce job is needed to transform   from row 

vectors to column vectors. This won‟t affect the overall performance, since only one such 

job is needed for the entire updating cycle, which usually consists of a few iterations. 
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4.4.3. Convex-NMF and Tri-Factorization 

Convex-NMF and Tri-Factorization are essentially computed in the same manner 

as NMF, namely, to update a matrix, first compute the numerator of the updating rule, 

and then compute the denominator, and finally update the original matrix. In the 

following, we focus on their difference with NMF on the updating rules, rather than the 

details. 

A. Convex-NMF 

We partition  ,   and   into row vectors as we did in NMF. One notable pattern 

of the updating rules of Convex-NMF is that      has appeared three times, two in (3) 

and one in (4). Thus, it is beneficial to first compute      and use the result later. 

 

Again, we could use the MM-3 to compute     first and      afterwards. 

However, this time we decide not to do that, because the result of     would be a huge 

 

Figure 11 Computing         
     

  

        
. 
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dense matrix that could introduce a lot of data shuffling in later computation. We choose 

to compute    first and      afterwards using MM-2 in Table 4. 

After computing   , we use two additional MM-2s to compute the denominator 

in (3). The numerator in (4) is computed in the same manner as     . When computing 

the denominator in (4), we first use MM-3 to compute    , and then take the result of 

     and do a MM-1 job to finish the computation. 

B. Tri-Factorization 

Again, we partition  , ,   and   into row vector. Repeated patterns like      in 

(5) and     in (6) are utilized to reduce the computation. To update  , we first compute 

the numerator      in (5) using MM-2 (     ) and MM-1 (    ). The result is 

then used to compute the denominator in (5) using MM-2 (     ) and MM-1 (  ).   

is updated similarly. 

The updating rule of   has its own structure and   is updated slightly differently. 

First of all, the numerator of   is computed using two MM-2s (             ). We 

use MM-3 to compute both       and       in (7). And then two MM-1 

operations are used to compute      and   . Finally, an update job is used to update 

the new value of  . 

4.5.Experiments 

We use the open source implementation of MapReduce – Hadoop [31] in our 

experiments. All three factorization algorithms have been implemented in Java for 

Hadoop. 
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4.5.1. Experiments Setup 

All the experiments were conducted in the environment described in section 3.4.1. 

Both synthetic and real data sets were used in the experiments. Synthetic data sets were 

generated by a random matrix generator, which generates a matrix        
 with 

sparsity δ on given parameters  ,   and δ. We varied  ,   and δ to see how the 

performance varies. While the number of participating machines in the map phase cannot 

be set directly, we varied the number of machines   in the reduce phase to see how more 

participating machines could improve the performance. Unless explicitly pointed out, all 

the reported time is for one iteration of the algorithms. 

The blog data was collected by an NEC in-house blog crawler. Given seeds of 

manually picked highly ranked blogs, the crawler discovered blogs that are densely 

connected with the seeds, resulting in an expanded set of blogs that communicate with 

each other [67][68]. The data set is represented as a sparse matrix that is of dimension 

274,679 by 5,304. Each row is a blog entry and the columns contain word frequencies in 

the blogs. Table 5 summarizes the characteristics of the data sets used in the experiments. 

 

 

Table 5 Data sets description 

Data Sets M N δ Size(MB) 

Synthetic data sets                          1~6605 

Real data set 274,649 5,304 0.008 47 
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In the following sections, we first examine the computation cost of each 

component in (2). Then, we examine the scalability of the algorithms with the size of the 

input matrices. We also present how the performance varies w.r.t δ,   and   in section 

4.5.3. Finally, we evaluate the algorithms on the real data set. 

4.5.2. Computation Cost 

The computation cost of each MapReduce job in updating   is shown in Table 6. 

We recorded the data shuffled between Map phase and Reduce phase in MB and the total 

elapsed time in seconds for each job. We choose                      for 

the matrix being factorized in this experiment, which is typical for a large data set. 

TABLE 6 COMPUTATION COST OF UPDATING G IN NMF 

Component 
                             

Shuffle(MB) Time(sec) 

    

Multiplication 2099 242 

Summation 62 96 

    0.007 141 

     0 26 

Update   1.4 45 

 

As can be seen from Table 6, the major cost in updating  is the computation of 

   and   , which accounts for 87 percent of the total elapsed time. This is 

understandable because the inner dimension of both of the two multiplications is in the 
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order of million. Another notable pattern is the imbalance in the size of data shuffling. 

The multiplication job of      shuffled more than 2 GB of data, while     only shuffled 

7 KB. This is because we used MM-2 to compute    , whose Map phase only read the 

input for grouping. Thus, both   and   were shuffled. On the other hand, we used MM-3 

to compute    , where the multiplication was performed in Map phase and only the 

small resulting     matrix was shuffled. 

4.5.3. Scalability and Performance w.r.t  δ, k and R 

We also report the elapsed time of one iteration for all three algorithms in                  

Figure 14. In these experiments, we fixed                        and varied 

  from     to    . 

Figure 15 shows how the performance varies w.r.t the sparsity  . As δ goes from 

     to    , the number of nonzero elements in the matrix increases from 16 million to 

600 million, and the elapsed time also increases in proportion to that. 

Figure 12 reveals the linearity between elapsed time and the dimensionality of  . 

As   doubles from 8 to 128, the elapsed time gradually increases from 10 minutes to 40 

minutes. The slope is smaller than 1, which is good for large data sets. 

Finally, we plot the speedup achieved by doubling the number of machines in the 

reduce phases of MM-2 and MM-3 in Figure 13. Two series are plotted. One shows the 

speedup for one single iteration of the NMF algorithm; the other shows the speedup 

achieved by the affected MapReduce jobs only, that is, MM-2 and MM-3. There are jobs 

that don‟t benefit from adding more machines, such as MM-1 and the updating of the 
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original matrix. Thus, the speedup for one single iteration is smaller than that of MM-2 

and MM-3. 

4.5.4. Experiments with Real Data Set 

Finally, we ran our algorithm on the real world blog data set. The result is 

reported in Figure 16. We divided this data set into five partitions and ran our algorithms 

on 20%, 40%, 60%, 80%, and the whole data set. Again, we observed linear scalability 

with regarding to this data set. 

   

            Figure 12 Elapsed time w.r.t k                        Figure 13 Speedup w.r.t R 
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Due to the relatively small size of this data set compared to the synthetic data sets, most 

of the elapsed time is spent in starting and cleaning up MapReduce jobs, which results a 

near-flat line in Figure 16. 

 

4.6.Summary 

In this chapter, we presented three different implementations of matrix 

multiplication on MapReduce depending on the properties of the matrices. Based on that, 

we successfully scaled up three different types of nonnegative matrix factorization 

  

                 Figure 14 Elapsed time w.r.t m                     Figure 15 Elapsed time w.r.t δ 

7.1 8.18 7.73
9.45

14.23
18.42

37.17

12.65 11.08 11.58
13.48

20.83

28.17

48.43

15.97 16.27
18.68 19.63

24.15

41.77

54.27

12 14 16 18 20 22 24

El
ap

se
d

 T
im

e
(m

in
u

te
s)

m: Power of Two

NMF ConvexNMF TriFactorization

δ = 2-9

δ = 2-8

δ = 2-7

δ = 2-6

δ = 2-5

0

5

10

15

20

25

30

35

40

45

0 1 2 3 4 5 6

El
ap

se
d

 T
im

e
 (

m
in

u
te

s)

N: Number of Nonzero elements in X

x 108

 

Figure 16 Elapsed time w.r.t   for real data set 
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algorithms. Matrices of dimension million-by-thousand with millions of nonzero 

elements can be factorized within several hours on a MapReduce cluster. 

Ad demonstrated by the design of these algorithms, MapReduce can also be used 

to do computation intensive tasks such as matrix multiplication. The key is how to 

formulate the algorithm in a functional way that can be expressed in MapReduce. 

There are many avenues for future work on large-scale matrix factorization. First, 

our current work is focused on the multiplicative updating rules used in NMF which 

could be reduced to applications of different matrix multiplications. One interesting 

direction is to investigate schemes for scaling up other NMF algorithm such as 

alternating non-negative least squares [69] and projective gradient descent [70]. Second, 

recently tensor factorization, as a generalization of matrix factorization, has attracted a lot 

of research attention [71]. It is thus interesting to study schemes for scaling up large-scale 

tensor factorization, which is the subject of next chapter. Last but not least, we would 

also like to explore various applications of NMF on large-scale data sets. 
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5. TENSOR DECOMPOSITION 

5.1.Background 

Tensors are multidimensional arrays. The earliest work dates back to 1927 from 

Hitchcock [72] [73]. There has been active research on tensor decompositions since „60s. 

The work of Tucker [74] [75] [76] and Carroll and Chang [77] and Harshman [78] in 

psychometrics have brought great attention to this topic. Appellof and Davidson [79] 

introduced tensor decomposition into the field of chemometrics. And a lot of works [80] 

[81] [82] [83] have appeared in that field afterwards. In the field of algebraic complexity, 

there are also many works. The most famous example might be Strassen matrix 

multiplication, which is an application of a decomposition of a 4 × 4 × 4 tensor to 

describe 2 × 2 matrix multiplication [84] [85]. 

The popularity of tensor decomposition doesn‟t stop in the field of psychometrics 

and chemometrics. In the recent years, interest has expanded to many other fields, such as 

signal processing [86], computer vision [87], data mining [88], machine learning [89], 

graph analysis [90], and so on so forth.  

In this chapter, we discuss how to scale up two most famous tensor 

decompositions in MapReduce, namely, the CANDECOMP/PARAFAC (CP) [77] [78] 

and Tucker [76] tensor decomposition. 

The contributions of this work are as follow: 
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 We propose MapReduce implementations for the Hadamard product, the 

Khatri-Rao product, and the Moore-Penrose pseudo inverse. 

 We scale up the CP and Tucker tensor decomposition in MapReduce 

based on our implementation of the Hadamard product, the Khatri-Rao 

product, and the Moore-Penrose pseudo inverse. 

 We implement and experimentally evaluate our algorithms using synthetic 

data sets on a real-world cluster. 

The remainder of this chapter is organized as follows. Section 5.1 briefly reviews 

the history of tensor decomposition and introduces some notations and concepts on tensor. 

Rather than a complete review, the emphasis of this introduction is on the concepts that 

are necessary for the understanding of the two decompositions. More detailed discussions 

could be found in other surveys [10]. Efforts are made to keep the discussion as 

consistent as possible with the terminology of previous publications in the field. Section 

5.3 discusses the related works. The CP decomposition and Tucker decomposition are 

introduced in section 5.2 with the most popular algorithms to solve them. Followed are 

our design and implementation of the two decompositions in MapReduce. We evaluated 

our algorithms in section 5.5 and conclude our work in section 5.6. 

5.1.1. Tensor and its Notation 

Put it in the simplest way, a tensor is a multidimensional or N-way array. More 

formally, an N-way or Nth-order tensor is an element of the tensor product of N vector 
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spaces, each of which has its own coordinate system. The notations used in our 

discussion are very similar to [10], which in turn resembles to that proposed by Kiers [91].  

The number of dimensions of a tensor is called its order, also known as ways or 

modes. A first-order tensor is a vector, a second-order tensor is a matrix and tensors of 

order three or higher are called higher-order tensors. In our discussion, vectors are 

denoted by boldface lowercase letters, e.g., a. Matrices are denoted by boldface capital 

letters, e.g., A. Higher-order tensors are denoted by boldface italic capital letters, e.g., A. 

Scalars are denoted by lowercase letters, e.g., a. 

The ith element of a vector a is denoted by   , element       of a matrix A is 

denoted by    , and element         of a third-order tensor A is denoted by     . Indices 

usually range from 1 to their capital version, e.g.,          The nth element in a 

sequence is denoted by a superscript in parentheses, e.g.,      denotes the nth matrix in a 

sequence. 

A colon is used to indicate all elements of a mode. Thus, for matrices, the jth 

column of A is denoted by    , and the ith row of a matrix A is denoted by    . 

Sometimes we omit the colon for compactness if it is unambiguous in the context. 

Higher-order analogue of matrix rows and columns are called fibers. A fiber is 

defined by fixing every index but one. Mode-1 fiber is a matrix column and mode-2 fiber 

is a matrix row. Thus, third-order tensors have three different kinds of fibers, namely, 

column, row, and tube fibers, denoted by     ,     , and     . Figure 17 shows the fibers 

of an example of third-order tensor. 
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a) Mode-1(column) fiber 

 

b) Mode-2(row) fiber 

 

c) Mode-3(tube) fiber 

Figure 17 Fibers of a third-order 3×3×3 tensor 
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c) Frontal slices 

Figure 18 Slices of a 3
rd

-order tensor 

 

 

b) Lateral slices 

 

 

a) Horizontal slices 
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When all indices but two are fixed, a slice is defined. It can be viewed as two-

dimensional sections of a tensor. Figure 18 shows the horizontal, lateral, and frontal 

slides of a third-order tensor A, denoted by    ,     , and    . For the sake of 

compactness, we sometimes omit the colons in the notation of slice. Thus, the kth frontal 

slice of a third-order tensor,    , would be denoted as   . 

An N-way tensor               is rank one if it can be written as the outer 

product of N vectors, i.e., 

                    

The symbol “○” represents the vector outer product. Thus, each element of the tensor is 

the product of the corresponding vector elements: 

             
   
   
   

    
   

 for all        . 

Figure 19 shows a third-order rank-one tensor. 

 

 

Figure 19 Rank-one third-order tensor 
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5.1.2. Matricization 

Matricization is the process of reordering the elements of a tensor into a matrix, 

which is also known as unfolding or flattening. For example, a 2×3×4 tensor can be 

arranged as a 6×4 matrix, a 3×8 matrix or a 2×12 matrix depending on which mode of the 

fibers you take. The mode-n matricization of a tensor               is denoted by      

and arranges the mode-n fibers to be the columns of the resulting matrix. An example is 

given below to illustrate this concept. Let the frontal slices of           be      

 
   
   

 ,       
   
      

 . The three mode-n matricizations are 

      
   
   

   
      

   

      
  
  
  

   
   
   

   

      
   
    

   
     

   

5.1.3. Tensor Multiplication 

Tensor multiplication is much more complex than matrices. We only consider the 

tensor n-mode product here, i.e., multiplying a tensor by a matrix (or a vector) in mode n. 

More detailed discussions could be found in Bader and Kolda [92]. 

The n-mode product of a tensor                with a matrix        is 

denoted by      and is of size                      . Each element of 

the product is defined as: 
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Another interpretation of this product is that each mode-n fiber is multiplied by 

the matrix U. In the terminology of matricization, this could be expressed as: 

                    

5.1.4. Matrix Kronecker, Khatri-Rao, and Hadamard Products 

Some matrix products are important in tensor decomposition, so we briefly 

discuss them in this section. 

The Kronecker product of matrices        and        is denoted by    . 

The result is a matrix of size           and defined by 

    

 
 
 
 
        
        

     

     

  
        

  
      

 
 
 
 

                                 

The Khatri-Rao product is the “matching columnwise” Kronecker product [93]. It 

is denoted by    , where        and       . The result is a matrix of size 

       defined by 
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The Hadamard product is the element-wise matrix product. Given two matrices A 

and B of the same size    , their Hadamard product is denoted by    . The result is 

also of size     and defined by 

    

 
 
 
 
            
            

       
       

  
            

  
        

 
 
 

  

5.2.Tensor Decomposition 

 

5.2.1. The CANDECOMP/PARAFAC Decomposition 

The CANDECOMP/PARAFAC decomposition was introduced to the 

psychometrics community by Carroll and Chang (canonical decomposition) [77] and 

Harshman (parallel factors) [78]. Although it was proposed by Hitchcock in 1927 [72]  

[73], it didn‟t become popular until the 70s. We refer to the CANDECOMP/PARAFAC 

decomposition as CP, per Kiers [91]. 

 

Figure 20 CP decomposition of a 3
rd

-order tensor. 
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Figure 20 shows the CP decomposition of a 3
rd

-order tensor. The CP 

decomposition factorizes a tensor into a sum of component rank-one tensors. Recall that a 

rank-one tensor can be written as the outer product of N vectors, where N is the mode of 

the tensor. Take a third-order tensor          as an example. We wish to write it as 

           

 

   

  

where R is a positive integer and     
 ,     

 , and     
  for        . Each 

element of X can be written as 

         

 

   

                                    

By combining the vectors from the rank-one components, we obtain the factor matrices, 

i.e.,             and likewise for B and C. Using this definition, we can 

rewrite the CP decomposition in matricized form: 

              

              

              

Recall that   is the Khatri-Rao product we introduced in section 5.1.4. We usually 

normalize the columns of A, B, and C to length one. Thus, there is a vector      which 

absorbs the weights. More concisely, the CP model could be expressed as 
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We only focus on the three-way case in our discussion because it is widely applicable and 

sufficient for many needs. 

Due to its simplicity, the alternating least squares (ALS) method, which was 

proposed by Carroll and Chang [77] and Harshman [78] in their original papers, has 

become the major algorithm today to compute the CP decomposition. This algorithm 

assumes the number of components, which is R in our notation, is specified. We briefly 

1 Procedure CP-ALS(X, R) 

2     Initialize            for          

3     Repeat 

4         For           do 

5                                                                   

6                                                   

7             Normalize columns of      (storing norms as λ) 

8         End for 

9     Until fit ceases to improve or maximum iterations 

exhausted 

10 Return                      

11 End procedure 

Figure 21 ALS algorithm to compute a CP decomposition with R components for 

an Nth-order tensor X of size           . 

*   denotes the Moore-Penrose pseudoinverse of   
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describe the algorithm for the three-way case in the following. The full algorithm for an 

N-way tensor is presented in Figure 21. 

Let         be a third-order tensor. We are going to decompose X into R rank-

one components that best approximate X, i.e., to find 

   
  
                          

 

   

            

The ALS approach fixes two of the matrices to solve for the third one during each 

iteration. Namely, it fixed B and C to solve for A, then fixes A and C to solve for B, then 

fixes A and B to solve for C. It continues to repeat the entire procedure until some 

convergence criterion is satisfied. 

5.2.2. The Tucker Decomposition 

The Tucker decomposition is another important tensor decomposition model that 

was proposed by Tucker in 1963 [74] and improved by Levin [94] and Tucker [75] [76] 

in their subsequent papers. 

The Tucker decomposition is well known as a form of higher-order principal 

component analysis (PCA). It decomposes a tensor into a core tensor multiplied by a 

matrix along each mode. Take the three-way case as an example, for         , we 

have 
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The tensor          is called the core tensor and its entries show the level of 

interaction between the different components. The matrices 

                         are the factor matrices and can be thought of as the 

principal components in each mode. Alternatively, we can represent the Tucker 

decomposition element-wise as following: 

                     

 

   

 

   

 

   

                              

P, Q, and R are the number of components in the factor matrices A, B, and C, 

respectively. If P, Q, R are smaller than I, J, K, the core tensor G can be viewed as a 

compressed version of X. This feature makes the Tucker decomposition appeal for data 

compression applications. Figure 22 illustrates the Tucker decomposition of a three-way 

tensor. 

 

 

Figure 22 Tucker decomposition of a three-way tensor 

X

G
A

B

C

≈



66 
 

Before we continue with the discussion of the algorithm to compute a Tucker 

decomposition, we introduce the concept of n-Rank. Let X be an Nth-order tensor of size 

          . The n-rank of X, denoted      (X), is the column rank of     . We 

say X is a rank-             tensor if            . For a given tensor X, it is easy 

to compute an exact Tucker decomposition of rank             , where    

        . If for one or more n, we restrict           , then the result will be 

inexact and more difficult to compute. 

In his original paper [76], Tucker described three methods to compute a Tucker 

decomposition. We only discuss the first one here, which is better known as the higher-

order SVD (HOSVD) from the work of De Lathauwer, De Moor, and Vandewalle [95]. 

They have shown that the HOSVD is a convincing generalization of the matrix SVD. 

Figure 23 shows the pseudo code of HOSVD for a rank-             Tucker 

decomposition. 

 

1 Procedure HOSVD (            ) 

2     For         do 

3                                                      

4     End for 

5           
       

        
     

6     Return                    

7 End procedure 

Figure 23 the HOSVD algorithm to compute a rank-             
Tucker decomposition 
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The basic idea of this algorithm is to find those components that best capture the 

variation in mode n, independent of the other modes.  

5.3.Related Work 

Most of the works on tensor decomposition still focus on the quality of solutions, 

for the simple ALS method doesn‟t guarantee to converge to a global minimum. The final 

solution can be heavily dependent on the initial guess. In one of the works, Faber et al. 

[96] compare ALS with six different methods, none of which is better than ALS in terms 

of quality of solutions. 

There is increasing interests in using CP for large-scale, sparse tensors recently. 

Kolda et al. [90] developed a “greedy” CP for sparse tensors that computes one triad at a 

time via an ALS method. Kolda and Bader [9] [97] adapted the standard ALS algorithm 

to sparse tensors in their subsequent work. 

Parallel and distributed implementation is definitely an important way to handle 

large-scale tensors. Sears, Bader, and Kolda [98] implemented several algorithms which 

compute PARAFAC and Tucker representations of tensors using C++/MPI. They 

evaluated their implementation on several data sets that are of order three with 

dimensions in the order of thousands and have millions of nonzero entries. Speedups of 

10 to 20 are achieved with regarding to serial implementation. Zhang et al. [99] 

parallelized the Nonnegative Tensor Factorization (NTF) method, with the purposes of 

distributing large datasets into each cluster node and thus reducing the demand on a 

single node, blocking and localizing the computation at the maximal degree, and finally 

minimizing the memory use for storing matrices or tensors by exploiting their structural 



68 
 

relationships. The data set used in their experiments is relatively small (order three tensor 

with dimensions in the order of hundreds). A sublinear speedup was achieved for 2 to 8 

processors with an approximate peak speedup of 6.8. On a similar effort, Antikainen et al. 

[100] tried to accelerate the NTF method using GPGPU. Third order tensors with two of 

the dimensions varying between         and           and the third dimension 

being either 31 or 62 were used in their experiments. Great speedups (     compared 

with the CPU implementation) were achieved due to the massive parallelism provided by 

GPGPU. However, limited by the memory capacity of graphic cards, their method can 

only process third order tensors with up to 800 elements in each dimension. 

5.4.Tensor Decomposition in MapReduce 

We describe in this section how we implement the CP-ALS and the HOSVD 

algorithms in MapReduce to compute the CP decomposition and Tucker decomposition 

for a given tensor X. We decompose the algorithms into several basic operations and 

implement each of them in MapReduce. 

5.4.1. Matrix Multiplication 

Matrix multiplication is used in both of the two algorithms. In CP-ALS, it is used 

in line 5 and 6 of Figure 21 to compute the intermediate matrix V. While in HOSVD, it is 

used indirectly in the tensor n-mode matrix product in line 5 of Figure 23. 

General matrix multiplication implementation in MapReduce has been discussed 

extensively in section 4.4.1 and [101]. In particular, we want to point out that the 

multiplication in line 5 of Figure 21 is a special form of multiplication, which is of a 
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matrix multiplying with its transpose, which can be implemented in MapReduce very 

efficiently using only one job. 

5.4.2. The Hadamard Product 

Recall from section 5.1.4 that the Hadamard product is the elementwise matrix 

product. A straight forward MapReduce job can be derived from its definition. The 

Mappers match the positions of the matrix elements and the Reducers do the 

multiplication. The input/output key/value pairs for the Hadoop job is summarized in 

Table 7, assuming the input of this job are two matrices A and B, whose elements are 

stored as           or           on disk. 

Table 7 Input/output for the Hadamard product Hadoop job 

Function Input Output 

Map             or                         or             

Reduce                                   

 

As can be seen from this table, the map function is basically an identity function. 

Since there are only two matrices in the input, there could be only two values in the input 

of the reduce function. The reduce function just multiply the two values and emit the 

result. 
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5.4.3. The Khatri-Rao Product 

As mentioned in section 5.1.4, the Khatri-Rao product [93] is the “matching 

columnwise” Kronecker product. Given matrices        and       , the result is a 

matrix of size        defined by 

                        

It is used in line 6 of the CP-ALS algorithm. 

Similar to the Hadamard product, a straightforward MapReduce job can be 

derived from its definition. The map function matches the corresponding columns from 

the two input matrices. And the reduce function does the multiplication on the two 

matching columns. With the same assumption in the previous section, we summarize the 

input/output of the MapReduce job to compute the Khatri-Rao product in Table 8. 

Table 8 Input/output for the Khatri-Rao product Hadoop job 

Function Input Output 

Map             or                     or         

Reduce                                         

 

As can be seen from Table 8, the map function emits the column id as key for 

each element it reads. Thus, all the elements that belong to the same column will be 

shuffled to the same Reducer. But how do we distinguish elements from matrix A from 

elements from matrix B? If we don‟t put some special information into the matrix itself, 
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there is no way to tell where the current element comes from. Fortunately, Hadoop 

provides a class called MultipleInputs, which let you use different map functions for 

different inputs. Thus, we apply different map functions to the two input matrices. We 

negate the row value of the elements in the map function for one of the input matrix. 

Therefore, we can group the input of the reduce function into two groups by checking 

their row values (one is negative; the other is positive). After that, we do the Khatri-Rao 

product in the reduce function and emit the results. 

5.4.4. The Moore-Penrose Pseudoinverse 

The Moore-Penrose pseudoinverse [57], denoted by   , of a matrix  , is a 

generalization of the inverse matrix. It has various applications in applied linear algebra. 

In the context of tensor decomposition, it is used in line 6 of the CP-ALS algorithm. 

There are many ways to compute the pseudoinverse. One of them is by using the 

singular value decomposition (SVD) [57], which itself is an important matrix 

factorization method. The reason we choose SVD is that it is computationally simple and 

accurate and there is an “embarrassingly parallel” way to compute the SVD of a matrix A, 

namely, the Lanczos algorithm [57]. Once we have the singular value decomposition of 

A,       , then         . Since ∑ is a diagonal matrix, we can get its 

pseudoinverse by taking the reciprocal of each non-zero element on the diagonal, leaving 

the zeros as they are, and transposing the resulting matrix. 

With all the above, the problem is reduced to how to implement the Lanczos 

algorithm in MapReduce. As an adaption of the power method to compute the 
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eigenvalues and eigenvectors of a square matrix, the Lanczos algorithm is an iterative 

algorithm and can be implemented in an embarrassingly parallel way. The basic idea is 

that starting from a random vector v with norm one, we repeatedly multiply the matrix A 

to v and computes the diagonal and off-diagonal elements of a matrix T. After m 

iterations (m is usually much smaller than the size of A), we obtain a tridigonal and 

symmetric matrix T, from which we can get the eigenvalues and eigenvectors of A. The 

major computation in these iterations is the matrix vector multiplication, which could be 

easily parallelized using the techniques presented in the previous chapter. Thus, the 

number of MapReduce jobs is the same as the number of iterations. 

5.4.5. The CP decomposition 

Once all the sub operations are ready in MapReduce, implementing the CP 

decomposition is just a task of assembly. All of the four operations mentioned in the 

previous sections are utilized in the CP decomposition.  

As depicted in Figure 21, the CP-ALS algorithm starts with initializing N factor 

matrices           . This can be done using one MapReduce job by asking the map 

function to generate a random matrix for each input record. The input is a text file that 

contains one number each line as the id of the matrix to be generated. We write to HDFS 

directly in the map function, for there is no need to shuffling the generated elements and 

have a reduce phase. The input/output of this job is summarized in Table 9. 
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Table 9 Input/output for initializing factor matrices in the CP-ALS algorithm. 

Function Input Output 

Map            

Reduce None 

The major computation happens in the inner for loop of the algorithm. For each of 

the N factor matrices, we update it to the next iteration and normalize it. The updating 

happens in two steps. We first compute an intermediate matrix V by multiplying 

     with      for every factor matrix except the one we are computing and doing 

Hadamard product on all the results of the multiplication. Each of these matrix 

multiplication and Hadamard product takes one MapReduce job respectively. Thus, there 

are      jobs in this step. Next, we take the pseudoinverse of V, do the Khatri-Rao 

product of N-1 factor matrices, and multiply mode-n matricization of the input tensor 

with the results of the former two computations. Each of the Khatri-Rao product takes 

one MapReduce job. Adding the 4 jobs needed for the two matrix multiplications, there 

are      plus the number of jobs needed to compute the pseudo inverse in total in this 

step. Finally, we can use one job to normalize the columns of the current factor matrix. 

Adding all the numbers together, we spend linear number of MapReduce jobs as the 

order of the tensor in total in the inner for loop of the algorithm. 

The outer loop stops when fit ceases to improve or maximum iterations are 

exhausted. For simplicity, we implement a fixed number of iterations that can be tuned as 

a parameter of the job. Checking whether the fit has stopped to improve only requires one 

job which compares the newly computed factor matrices with the old ones. The map 
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function will be responsible to match the corresponding factor matrices and the reduce 

function does the comparison. 

5.4.6. The Tucker decomposition 

A very important operation in the HOSVD algorithm is the singular value 

decomposition we have used in the CP-ALS algorithm. Instead of using it to compute the 

pseudo inverse of a matrix in the CP-ALS algorithm, it is used to initialize N factor 

matrices in the HOSVD algorithm. 

The HOSVD algorithm starts with the initialization of N factor matrices with the 

   leading left singular vectors of     . Each of the factor matrices requires computing 

the SVD of the corresponding mode-n matricization of the input tensor. Thus,   

  MapReduce jobs are needed to finish the initialization part. 

The second step is to compute the core tensor by doing mode-n tensor matrix 

product on the N factor matrices we get in the first step with the input tensor. Each of 

such products could be computed using the general matrix multiplication scheme we 

proposed in chapter four, which requires two MapReduce jobs. However, since the factor 

matrices are usually dense and small, we could put it into memory and distribute the 

much larger matricization of tensor to different machines to do the computation. Thus, 

the product could be computed in one MapReduce job, and only       jobs are needed 

for this step. 
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Table 10 shows the input/output for a tensor matrix product job. What is special 

about this job is that we not only merge elements of tensor into fibers in the reduce phase, 

but also perform the matrix vector multiplication after we form the fibers. 

After we compute the core tensor G, the algorithm returns it with all the factor 

matrices. 

Table 10 MapReduce Input/Output for tensor matrix product. 

Function Input Output 

Map                                 or 

                    or 

                    

Reduce                                    

 

5.5.Experiments 

5.5.1. Experiments Setup 

We evaluate our implementations on random generated third-order tensors, which 

is widely applicable and sufficient for many needs. Experiments were conducted on the 

HOSVD algorithm to see how the performance changes w.r.t the size of the data sets. The 

first and second dimension of the data set are fixed at     and    . The third dimension 

varies from    to   . The sparsity of the data sets is fixed at 0.002. The size of the data 

sets thus varies from 200 MB to 3.7 GB. 
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The data sets are generated by our random tensor generation program in our 

experiments. Similar to our random matrix generator, the program generate random 

sparse third-order tensors           with δ as its sparsity, I, J, and K as the size of its 

three dimensions. All the experiments were conducted in the environment we described 

in section 2.1.2. We report the total time for the HOSVD algorithm. 

 

5.5.2. Scalability and Performance 

Figure 24 shows the performance of the HOSVD algorithm. As can be seen from 

the figure, the HOSVD implementation can easily handle tensors with third dimension up 

to 512, which has hundreds of millions nonzero entries. Figure 25 shows the computation 

time breakdown for the experiments. First observation is that the initialization part 

accounts for a large portion of the total computation time for all the data sets. However, 

this portion of time doesn‟t vary much despite the change of size of the data sets. Even 

for the largest data set, it takes more or less the same amount of time. The second 

 

Figure 24 Elapsed time w.r.t K 
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observation is that the time takes to compute the core tensor of the Tucker decomposition 

grows linearly with the size of the data sets. For the largest data set, it has already 

become commeasurable to the time of initialization. We would expect it account for the 

major computation time for even larger data sets. 

 

5.6.Summary 

Tensors are great abstractions to represent data sets of high dimensionality. While 

being useful for reducing the noise and recovering the hidden information in data sets, 

tensor decomposition techniques are notoriously unscalable due to its high computation 

demand. In this chapter, we presented several techniques to implement the Hadamard 

product, the KhatriRao product, and the Moore-Penrose Pseudoinverse in MapReduce. 

From these implementations, we assembled our implementation of the CP-ALS algorithm 

that computes the CP decomposition and the HOSVD algorithm that computes the 

     

Figure 25 Computation time breakdown for the HOSVD algorithm. 
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Tucker decomposition. Great scalability has been shown in the experiments we 

conducted on the HOSVD algorithm. 
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6. CONCLUSIONS 

6.1.Conclusions 

As an effort towards solving the general problem of how to efficiently process 

and understand large-scale data sets, this dissertation develops techniques and algorithms 

in large-scale raster data processing and algorithm parallelizing using MapReduce.  

Two meanings for the term “large-scale” are considered, namely the size of data 

sets and the dimensionality of data sets. In terms of the size of data sets, this dissertation 

addresses problems in loading and computing statistics over terabytes of raster data in an 

online spatial data management system - TerraFly. Although the problems themselves are 

specific to TerraFly, the developed techniques are generally applicable to the area of 

large-scale raster data processing. Solutions of the problems are formed, implemented 

and experimentally evaluated in a real-world cluster. 

In terms of the dimensionality of data sets, this dissertation addresses algorithms 

in two general categories of the domain of dimensionality reduction, namely matrix and 

tensor factorization. Three forms of nonnegative matrix factorization and two major 

tensor factorization algorithms were successfully scaled up in MapReduce. Extensive 

experiments were conducted to verify the scalability of the Hadoop implementation of 

these algorithms. 

In summary, this dissertation demonstrates and advances the capability of 

MapReduce in processing large-scale raster data and scaling up certain kinds of 
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algorithms. The developed techniques are not only effective in solving these specific 

problems, but also generally applicable to the field of data intensive and computation 

intensive computing using MapReduce. 

6.2.Future Work 

There are many directions for future work. As another major type of data in 

spatial database, vector data, is completely different from raster data. They are relatively 

small compared with raster data, but needs more complex operations over each byte of 

the data. It looks like MapReduce is not a good option for direct application, but may be 

best suited to generate the index structures that algorithms operates on [27]. More 

investigations need to be done on how MapReduce could be applied to vector data. 

The nonnegative matrix factorization algorithms we considered in chapter four are 

all based on multiplicative updating rules, upon which we reduce the algorithm to 

different implementations of matrix multiplication and successfully scaled them up in 

MapReduce. We would like to investigate other NMF algorithms such as alternating non-

negative least squares [69] and projective gradient descent [70] to see if there is an 

efficient MapReduce implementation. 

 Similar to matrix factorization, there are many other tensor decompositions, 

including INDSCAL, PARAFAC2, CANDELINC, DEDICOM, and PARATUCK2 as 

well as nonnegative variants of all the above. One interesting direction is to investigate 

schemes for scaling up these algorithms. 
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 Lastly, we would also like to explore various applications of NMF and tensor 

decomposition to large-scale data sets. 
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