

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

LARGE SCALE DATA PROCESSING USING MAPREDUCE

A dissertation submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Zhengguo Sun

2011

ii

To: Dean Amir Mirmiran

 College of Engineering and Computing

This dissertation, written by Zhengguo Sun, and entitled Large Scale Data Processing

Using MapReduce, having been approved in respect to style and intellectual content, is

referred to you for judgment.

We have read this dissertation and recommend that it be approved.

 Vagelis Hristidis

Raju Rangaswami

Malek Adjouadi

Naphtali Rishe, Major Professor

Date of Defence: March 25, 2011

The dissertation of Zhengguo Sun is approved.

 Dean Amir Mirmiran

College of Engineering and Computing

Interim Dean Kevin O‟Shea

University Graduate School

Florida International University, 2011

iii

© Copyright 2011 by Zhengguo Sun

All rights reserved.

iv

DEDICATION

To my beloved parents.

v

ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor, Professor Naphtali Rishe, who

provides me the great opportunity to study in HPDRC and offers me support and

guidance through my Ph.D. in FIU.

I would also like to thank other members of my dissertation committee, who taught me

many things in and outside of dissertation writing. Special thanks to Dr. Tao Li, who

gave me much help and suggestions on my research.

Next, I want to thank members of HPDRC, from whom I learned a lot during daily work

and discussions.

Finally and most important, I would like to thank my wife and my parents in law, who

provides me with enormous support and encouragement during my dissertation writing.

vi

ABSTRACT OF THE DISSERTATION

LARGE SCALE DATA PROCESSING USING MAPREDUCE

by

Zhengguo Sun

Florida International University, 2011

Miami, Florida

Professor Naphtali Rishe, Major Professor

As massive data sets become increasingly available, people are facing the problem of

how to effectively process and understand these data. Traditional sequential computing

models are giving way to parallel and distributed computing models, such as MapReduce,

both due to the large size of the data sets and their high dimensionality.

This dissertation, as in the same direction of other researches that are based on

MapReduce, tries to develop effective techniques and applications using MapReduce that

can help people solve large-scale problems.

Three different problems are tackled in the dissertation. The first one deals with

processing terabytes of raster data in a spatial data management system. Aerial imagery

files are broken into tiles to enable data parallel computation. The second and third

problems deal with dimension reduction techniques that can be used to handle data sets of

high dimensionality. Three variants of the nonnegative matrix factorization technique are

scaled up to factorize matrices of dimensions in the order of millions in MapReduce

vii

based on different matrix multiplication implementations. Two algorithms, which

compute CANDECOMP/PARAFAC and Tucker tensor decompositions respectively, are

parallelized in MapReduce based on carefully partitioning the data and arranging the

computation to maximize data locality and parallelism.

viii

TABLE OF CONTENTS

CHAPTER PAGE

1. INTRODUCTION ... 1

1.1. Web-scale Data .. 1

1.2. My Work .. 2

1.3. Organization of the Dissertation .. 5

2. MAPREDUCE AND CLOUD COMPUTING .. 6

2.1. Introduction to MapReduce ... 6

2.1.1. The Model and Its Application .. 6

2.1.2. Its Implementation and Real-World Usage .. 9

2.2. Cloud Computing ... 13

3. RASTER DATA PROCESSING IN MAPREDUCE .. 15

3.1. Background .. 15

3.1.1. TerraFly .. 15

3.1.2. The image loading problem ... 16

3.1.3. The image quality assessment problem ... 18

3.2. Related Work ... 20

3.2.1. Image Processing ... 20

3.2.2. Parallel Processing ... 22

3.3. Design and Implementation ... 23

3.3.1. MapReduce Algorithm for the image loading problem ... 24

3.3.2. Algorithm for the image quality assessment problem .. 27

3.4. Experiments ... 29

3.4.1. Cluster Setup .. 29

3.4.2. Data Sets .. 29

3.4.3. Experimental Results ... 30

3.5. Summary .. 33

4. NONNEGATIVE MATRIX FACTORIZATION ... 35

4.1. Background .. 35

4.2. Related Work ... 37

4.2.1. Parallel Matrix Multiplication and NMF ... 37

4.2.2. Large-scale data mining using MapReduce ... 38

4.3. Nonnegative Matrix Factorization ... 38

4.4. NMF using MapReduce ... 40

4.4.1. Matrix Multiplication in MapReduce .. 40

4.4.2. NMF ... 43

4.4.3. Convex-NMF and Tri-Factorization .. 45

4.5. Experiments ... 46

4.5.1. Experiments Setup ... 47

4.5.2. Computation Cost .. 48

4.5.3. Scalability and Performance w.r.t δ, k and R .. 49

4.5.4. Experiments with Real Data Set .. 50

4.6. Summary .. 51

ix

5. TENSOR DECOMPOSITION .. 53

5.1. Background .. 53

5.1.1. Tensor and its Notation .. 54

5.1.2. Matricization .. 59

5.1.3. Tensor Multiplication ... 59

5.1.4. Matrix Kronecker, Khatri-Rao, and Hadamard Products 60

5.2. Tensor Decomposition ... 61

5.2.1. The CANDECOMP/PARAFAC Decomposition .. 61

5.2.2. The Tucker Decomposition .. 64

5.3. Related Work ... 67

5.4. Tensor Decomposition in MapReduce ... 68

5.4.1. Matrix Multiplication ... 68

5.4.2. The Hadamard Product .. 69

5.4.3. The Khatri-Rao Product ... 70

5.4.4. The Moore-Penrose Pseudoinverse .. 71

5.4.5. The CP decomposition ... 72

5.4.6. The Tucker decomposition ... 74

5.5. Experiments ... 75

5.5.1. Experiments Setup ... 75

5.5.2. Scalability and Performance .. 76

5.6. Summary .. 77

6. CONCLUSIONS ... 79

6.1. Conclusions .. 79

6.2. Future Work ... 80

LIST OF REFERENCES ... 82

VITA .. 91

x

LIST OF TABLES

TABLE PAGE

Table 1 Input/output for the converting and tiling Hadoop job ... 27

Table 2 Input/output of map and reduce functions for image quality assessment 28

Table 3 Data sets statistics for raster data processing in MapReduce .. 29

Table 4 Three Matrix Multiplication Schemes .. 41

Table 5 Data sets description ... 47

Table 6 Computation cost of updating g in nmf .. 48

Table 7 Input/output for the Hadamard product Hadoop job ... 69

Table 8 Input/output for the Khatri-Rao product Hadoop job ... 70

Table 9 Input/output for initializing factor matrices in the CP-ALS algorithm. 73

Table 10 MapReduce Input/Output for tensor matrix product. .. 75

xi

LIST OF FIGURES

FIGURE PAGE

Figure 1 MapReduce pseudo-code for word count problem. ... 8

Figure 2 Execution overview of MapReduce* .. 10

Figure 3 Google, IBM academic cluster overview .. 12

Figure 4 the Universal Transverse Mercator System ... 16

Figure 5 A tile that is mosaiced from multiple data sets .. 19

Figure 6 pseudo-code for the map function of the image loading proble 25

Figure 7 pseudo-code for the reduce function of the image loading problem 26

Figure 8 Overview of the aerial imagery quality computation algorithm 28

Figure 9 MapReduce job completion time for the image loading problem 30

Figure 10 MapReduce job completion time for image quality computation 32

Figure 11 Computing

. .. 45

Figure 12 Elapsed time w.r.t k ... 50

Figure 13 Speedup w.r.t R ... 50

Figure 14 Elapsed time w.r.t m .. 51

Figure 15 Elapsed time w.r.t δ ... 51

Figure 16 Elapsed time w.r.t for real data set .. 51

Figure 17 Fibers of a third-order 3×3×3 tensor ... 56

Figure 18 Slices of a 3rd-order tensor ... 57

Figure 19 Rank-one third-order tensor... 58

Figure 20 CP decomposition of a 3rd-order tensor. .. 61

Figure 21 ALS algorithm to compute a CP decomposition with R components for an Nth-order

tensor X of size . .. 63

file:///D:/dissertation/ZhengguoDissertation.docx%23_Toc286867049
file:///D:/dissertation/ZhengguoDissertation.docx%23_Toc286867050
file:///D:/dissertation/ZhengguoDissertation.docx%23_Toc286867051
file:///D:/dissertation/ZhengguoDissertation.docx%23_Toc286867052
file:///D:/dissertation/ZhengguoDissertation.docx%23_Toc286867053
file:///D:/dissertation/ZhengguoDissertation.docx%23_Toc286867054
file:///D:/dissertation/ZhengguoDissertation.docx%23_Toc286867055
file:///D:/dissertation/ZhengguoDissertation.docx%23_Toc286867056
file:///D:/dissertation/ZhengguoDissertation.docx%23_Toc286867057
file:///D:/dissertation/ZhengguoDissertation.docx%23_Toc286867058
file:///D:/dissertation/ZhengguoDissertation.docx%23_Toc286867059
file:///D:/dissertation/ZhengguoDissertation.docx%23_Toc286867060
file:///D:/dissertation/ZhengguoDissertation.docx%23_Toc286867061
file:///D:/dissertation/ZhengguoDissertation.docx%23_Toc286867062
file:///D:/dissertation/ZhengguoDissertation.docx%23_Toc286867063
file:///D:/dissertation/ZhengguoDissertation.docx%23_Toc286867064
file:///D:/dissertation/ZhengguoDissertation.docx%23_Toc286867065
file:///D:/dissertation/ZhengguoDissertation.docx%23_Toc286867066
file:///D:/dissertation/ZhengguoDissertation.docx%23_Toc286867067
file:///D:/dissertation/ZhengguoDissertation.docx%23_Toc286867068
file:///D:/dissertation/ZhengguoDissertation.docx%23_Toc286867069
file:///D:/dissertation/ZhengguoDissertation.docx%23_Toc286867069

xii

Figure 22 Tucker decomposition of a three-way tensor... 65

Figure 23 the HOSVD algorithm to compute a rank- Tucker decomposition 66

Figure 24 Elapsed time w.r.t K .. 76

Figure 25 Computation time breakdown for the HOSVD algorithm. .. 77

file:///D:/dissertation/ZhengguoDissertation.docx%23_Toc286867070
file:///D:/dissertation/ZhengguoDissertation.docx%23_Toc286867071
file:///D:/dissertation/ZhengguoDissertation.docx%23_Toc286867072
file:///D:/dissertation/ZhengguoDissertation.docx%23_Toc286867073

1

1. INTRODUCTION

1.1.Web-scale Data

Although it is a cliché, it is true that we live in an information explosion era. On

the personal side, filled with applications, documents, photos, and videos, PCs with

terabytes hard drives are not uncommon today. On the enterprise side, InformationWeek

reported that the retail giant, Wal-Mart, had 583 terabytes sales data in 2006. The

telecommunication company AT&T has 312 terabytes of data in its Daytona database [1].

And the search giant Google processes an estimated twenty peta-bytes of data per day [2].

The situation in the science community is not slightly better. Vast data stores are

generated by scientific instruments and computer simulations that need to be analyzed.

For example, the World Data Center for Climate has 220 terabytes of climate research

data readily accessible online and six petabytes worth of additional data stored on tape in

2005 [3].

Our capability to process and analyze data has not kept pace with our ability to

capture and store data [4]. There is an urgent need for tools that can process tera-, peta- or

even exa-bytes scale data. Several researches have reacted to this complexity with novel

ideas and tools [5] [6]. MapReduce [5] is one of them. Originally developed in Google as

a tool to process large amounts of data such as crawled documents, web request logs, and

etc., it has become popular both in industrial and academic to solve large-scale problems.

2

This research, as in the same direction of other researches that based on

MapReduce, tries to solve large-scale problems we are facing today using MapReduce

and gain more insights into the model as to how can this model be used under different

scenarios.

1.2.My Work

There are three major piece of works presented in this dissertation. The first one is

related to large scale raster data processing in spatial database. This piece of work

belongs to the traditional category of data intensive computing, for which MapReduce is

designed. The second and third pieces of work have a more algorithmic flavor. They

explore the domain of how MapReduce could be used to express and parallelize

algorithms.

As a major type of data processed by spatial database, raster data (aerial

photography and satellite imagery), is being generated by satellite or aircraft-mounted

cameras periodically in the scale of Tera-byte or Peta-byte. How to efficiently process

and manage such huge amount of data is a challenge for modern spatial database. As a

case study to show how MapReduce could be applied to spatial database to process large

amount of raster data, we present two problems in the context of TerraFly [7] – an online

spatial data management system. The first problem deals with loading data into the

system and the second one computes some statistics over a large store of raster data. We

present the design and implementation of two MapReduce applications to solve these two

problems. Some techniques are demonstrated in the process. We experimentally evaluate

3

our applications on a real-world cluster and get very good result, which in turn prove the

applicability of MapReduce to data intensive problems.

A less explored application domain of MapReduce is the algorithm design field,

or, contrary to data intensive problems, computation intensive problems. We present two

attempts made to investigate the applicability of MapReduce in this field in the

dissertation.

An implicit consequence of the increase of the size of data set is the increase of

the dimensionality of the data set. For example, the most popular social network website,

Facebook, has more than 600 million active users as of January 2011. Every user is a

node in this giant social graph, which could be represented as a sparse matrix with

millions of rows and millions of columns. Another example is the WWW, which now

contains billions of web pages and is an enormous repository for text mining applications.

Term-document matrix with millions or even billions of rows and columns could easily

be derived from this repository. The ability to understand the structure and recover the

hidden information from such data sets is of vital importance. There exist techniques and

algorithms to reduce the dimensionality of data set and extract the hidden structure, but

most of them do not scale well and consequently cannot cope with data sets at this scale.

One of the popular algorithms is called nonnegative matrix factorization (NMF), which

was originally proposed for parts-of-whole interpretation of matrix factors. NMF has

attracted a lot of attentions recently in data mining and machine learning communities,

and has been shown to be useful in a variety of applied settings, including

4

environmetrics, chemometrics, pattern recognition, multimedia data analysis, text mining,

web mining, and DNA gene expression analysis.

Our first attempt is to scale up the NMF algorithm to be able to factorize matrices

of dimensions in the orders of millions. We propose three different matrix multiplication

implementations using MapReduce, based on which we successfully parallelize three

different types of NMF algorithms on the MapReduce platform. We evaluate our

algorithms on a cluster provided by Google and IBM through the NSF Cluster

Exploratory (CLuE) program [33] using both synthetic and real data sets and obtain

linear scalability of the proposed algorithm.

Our second attempt deals with tensors, a natural extension of vectors and matrices

in high-order dimensions. Tensors are multidimensional arrays. Many data sets could be

naturally represented by tensors. For example, we could add a time dimension to the

Facebook‟s social graph so that we could track the changes over time. The WWW is

another example. As its size increases, it becomes more and more important to analyze

link structure considering context as well. Multilinear algebra provides a novel tool for

incorporating anchor text and other information into the authority computation used by

link analysis methods such as Hyperlink-Induced Topic Search (HITS) [8]. T. Kolda and

B.Bader [9] proposed Topical HITS (TOPHITS) method which uses a higher-order

analogue of the matrix SVD called the PARAFAC model to analyze a three-way

representation of web data. They compute hubs and authorities together with the terms

that are used in the anchor text of the links between them. Adding a third dimension to

the data greatly extends the applicability of HITS because the TOPHITS analysis can be

5

performed in advance and offline. More applications of high-order tensor decomposition

could be found in [10].

We consider two major tensor decomposition algorithms in this dissertation,

namely, the CANDECOMP/PARAFAC decomposition and the Tucker decomposition.

We decompose the algorithms into some basic operations such as matrix multiplication,

the Hadamard product, the Khatri-Rao product, and the Moore-Penrose pseudo inverse.

We implement each of them in MapReduce and chain them together to do the

decomposition. Our implementation is experimentally evaluated on the Google & IBM

cluster and the results show excellent scalability.

1.3.Organization of the Dissertation

The dissertation is constructed in the following way: we briefly introduce

MapReduce and cloud computing in chapter two. We put emphasis on its programming

model and application. Also demonstrated is the real-world usage with an open source

implementation – Hadoop. As the major background in which MapReduce was born, we

discuss cloud computing and its relationship to MapReduce in the end of chapter two.

Chapter three presents how to solve large scale raster data processing problems in

MapReduce by using two case studies from the TerraFly project. Chapter four discusses

how we scale up the nonnegative matrix factorization algorithm in MapReduce. The

design and implementation of two tensor decomposition algorithms are presented in

chapter five. We conclude our work in chapter six and briefly discuss future work.

6

2. MAPREDUCE AND CLOUD COMPUTING

In this chapter, we give a brief introduction to MapReduce, which includes its

restricted programming model, various applications of this model, its implementation,

and how do you use such an implementation in the real world. The larger background,

cloud computing, in which MapReduce origins, is also discussed in section 2.2 with its

relationship to distributed and parallel computing.

2.1.Introduction to MapReduce

2.1.1. The Model and Its Application

MapReduce, originally proposed by Google in 2004 [5] for solving many

problems related to large data sets in the company, is a restricted programming model

that is applicable for processing and generating large data sets. It has intrigued many

related researches upon its newborn, which includes but not limited to works to porting

this model to different architectures [11] [12] [13] [14] [15], extensions to the model [16]

[17] [18], and various applications in machine learning and data mining [19] [20] [21]

[22] [23], information retrieval [24] [25], video processing [26], spatial data processing

[27] [28], and so on so forth.

The popularity of MapReduce is largely related to the simplicity of its

programming model. The users of a MapReduce implementation just have to specify map

and reduce two functions. Everything else, including automatic parallelization of tasks,

fault-tolerance handling, locality optimization, and loading balancing, is taken care of by

7

the underlying implementation. The model takes a key/value pair perspective on the data

to be processed. In other words, the input data of the computation is presented as a set of

key/value pairs; the computation itself is carried out on the key/value pairs; and the

output of the computation is saved as another set of key/value pairs too.

More specifically, the map function, specified by the user, takes an input pair and

produces one or more intermediate key/value pairs, which will be consumed by the

reduce function later. The underlying MapReduce implementation groups together all

intermediate pairs that have the same key and passes them to the reduce function.

The reduce function, also specified by the user, consumes all the pairs that

associate with the same key and produces another set of key/value pairs.

Conceptually, the process can be described by the following two formulas:

Taking the classic word count problem as an example, given a large collection of

documents, you are supposed to count the number of occurrences of each word in the

collection. The map function and reduce function for this problem is similar to the

pseudo-code in Figure 1. From a relational algebra point of view, the whole process is

more like a select projection via sequential scan (map), followed by hash partitioning,

sort and group-by (the runtime system) and aggregation (reduce). More formal analysis

about this model can be found in [29].

8

This model is very appealing to programmers; for there are only two high-level

declarative primitives (map and reduce) needs to be specified to enable parallel

processing. Even programmers with little experience in parallel programming can do it.

All the benefits of data partitioning, task scheduling, fault-tolerance, and load balancing

come with the framework. However, every coin has two sides. Those benefits don‟t come

for free. The assumption is that the problem to be solved has a solution that can be

expressed in the MapReduce model. The one-input, two-stage data flow of the model is

somewhat constrained, thus, restricting the applicability of the model to certain kinds of

problems. We don‟t want to overemphasize its limitation, for the various applications

developed on this model have already proved its expressiveness. Not to mention that

there exist extensions that overcomes its limitations [16] [18].

Map(key, value)

// key: document name

// value: document contents

 For each word w in value:

 Emitintermediate(w, 1)

Reduce(key, values)

// key: a word

// values: a list of counts

res = 0

For each v in values:

 Result += v

Emit(res)

Figure 1 MapReduce pseudo-code for word count problem

9

The original target applications of MapReduce are data intensive applications. As

it becomes more and more popular, more applications have been considered, especially

computation intensive applications. Data intensive application, such as the word count

example, distributed grep, count of URL access frequency, reverse web-link graph,

inverted index, distributed sort and others [5] are usually simple and straightforward to

express in MapReduce. The whole process usually entails applying some small

computation on each pair of input in the map function and aggregating the results in the

reduce function. On the other hand, computation intensive applications, such as some

machine learning algorithms [19], integer factorization [30], and the problems we are

going to study in Chapter 4 and Chapter 5, are not so intuitive to be expressed in

MapReduce due to the complex nature of the algorithms. Still, solution exists after

careful analysis of the problems and sometimes some small adjustments of the model as

demonstrated in [19] [20] [21] and Chapter 4 and 5 of this dissertation. The process is

beneficial in that we gain deep insight into the capability of the MapReduce model and

accumulates experience for solving new problems using the model.

2.1.2. Its Implementation and Real-World Usage

We give some introduction to the programming model of MapReduce and its

applications in the previous section. In this section, we will review the implementation of

the model and see how to use such framework in the real-world.

Figure 2 shows the execution overview of a MapReduce job. Google‟s

implementation of MapReduce is proprietary and not available for public use. Fortunately,

an open source project, called Hadoop [31], completely implements the idea of

10

MapReduce. We are going to discuss its major components. From a theoretical point of

view, there is no different between Hadoop and Google‟s implementation of MapReduce.

Our discussion is more focused from a user‟s point of view. Thus, some components that

are not supposed to be used by a MapReduce user are skipped. Interested readers are

encouraged to consult the original paper [5] and Hadoop‟s online documentation [31]. In

the rest of this dissertation, we interchangeably use the term MapReduce and Hadoop.

When we use MapReduce, we are referring to the Hadoop implementation.

Figure 2 Execution overview of MapReduce*

*image from Google‟s original paper [5]

11

There are three major components in Hadoop, namely, the Mapper, the Reducer,

and the Partitioner. The Mapper corresponds to the map function and the Reducer

corresponds to the reduce function in the model. The Partitioner controls the partitioning

of the keys of the intermediate outputs of map function.

There are some other components that are not always used in every Hadoop job,

but are very helpful under certain conditions. For example, the InputFormat interface

describes the input specification of a MapReduce job. Together with the InputSplit and

the RecordReader interfaces, they make a MapReduce job capable of reading input from

different sources (e.g. from files, databases e.t.c). Another example is the

SortingComparator and GroupingComparator interfaces. They are responsible for sorting

and grouping the intermediate outputs of Mappers. Hadoop only guarantees that the keys

are sorted in the input of a Reducer, but not the values. Certain tricky use of

SortingComparator and GoupingComparator can simulate secondary sort on values as

well, which we will see this use in Chapter 3.

All the experiments of this dissertation are run on a large shared cluster provided

by the Google and IBM Academic Cluster Computing Initiative [32] through the NSF

Cluster Exploratory (CluE) program [33]. We describe its configuration and how we use

this cluster as a real-world example of using MapReduce. There are about 500 machines

in the cluster, each of which has two single-core 2.8 GHz Xeon processors, 8 GB

memory, two 400 GB hard drives, and one gigabit Ethernet connection. Hadoop 0.20.1

runs on one 64-bit Xen virtual machine running on top of the above physical hardware

with access to all the memory (minus some overhead), all the execution threads of the

12

processors and all of the disks. The VM runs CentOS 5.3 and the host operating system

runs Fedora Core 8. Access to the cluster is provided through the Internet by a SOCKS

proxy server. SOCKS is an Internet protocol that secures client-server communications

over a non-secure network.

There are three main steps in interacting with the cluster, as shown in Figure 3. (1)

Input data is uploaded into the cluster. The user uses file system shell scripts provided by

the Hadoop Distributed File System (HDFS), which is an integral part of the Apache

Hadoop project; HDFS is a clone project of Google‟s files system GFS [34]. (2) A user

develops a Hadoop application and submits it to the cluster via Hadoop command.

Figure 3 Google, IBM academic cluster overview

13

Hadoop applications are usually developed in Java, but other languages are supported,

like C++ and Python. (3) After application execution is completed, the output is

downloaded to the user‟s local site with Hadoop file system shell scripts. A data set is

stored as a set of files in HDFS, which are in turn stored as a sequence of blocks

(typically of 64MB in size) that are replicated on multiple nodes to provide fault-

tolerance.

2.2.Cloud Computing

It is incomplete to introduce MapReduce without mentioning cloud computing,

because cloud computing is the large background in which MapReduce is born. As a

buzz word, the term cloud computing entails many things and means different concepts to

different people. The National Institute of Standards and Technology (NIST) defines it as

follow:

“Could computing is a model for enabling convenient, on-demand network access

to a shared pool of configurable computing resources (e.g., networks, servers, storage,

applications, and services) that can be rapidly provisioned and released with minimal

management effort or service provider interaction. [35]”

It may not be complete, but it does describe the way we use the Google & IBM

cluster. Some of its characteristics are:

 Cloud computing provides computing resources as an on-demand service.

 The user of cloud computing doesn‟t know the physical location of the

computing resources he is using.

14

 Cloud computing is elastic and scalable.

 The computing resources are shared between many users.

As can be seen from these characteristics, cloud computing does bear some

similarities to the traditional terms “utility computing” and “grid computing”, for

example, providing computing resources as a public service is the essence of utility

computing, and offering shared computation and storage over long distances is the same

as grid computing.

So how does MapReduce fit into this big picture? From a user‟s point of view,

MapReduce is the tool to utilize the power of cloud computing, especially the infinite

scalability, to solve various kinds of large scale problems. And from a cloud service

providers‟ point of view, MapReduce is an essential piece of software that consists of

their cloud services.

15

3. RASTER DATA PROCESSING IN MAPREDUCE

3.1.Background

One of the major types of data that is handled by spatial databases is raster data,

namely, aerial photography and satellite imagery. This type of data is being generated by

satellite or aircraft-mounted cameras periodically and is in the scale of Tera-byte or Peta-

byte. How to efficiently process such a huge amount of data is a challenge for modern

spatial databases. Although the size of the data is huge, the operations performed on the

data are relatively simple. Two case studies are given in this section to show how

MapReduce could be used to solve such kind of problems.

3.1.1. TerraFly

Both of the problems described in this section have their real world applications

in the TerraFly project [7]. Terrafly is a web application that enables easy access and

manipulation of remotely sensed data (aerial photography and satellite imagery) and

other spatial data. Using only a standard web browser, an average user can seamlessly fly

over various remotely sensed data of different sources, spatial resolutions and image

formats integrated with graphical maps and other spatial data sets such as US census data

and demographic data. The raster data sets collected by TerraFly cover the whole United

States in 1 meter spatial resolution, most of its major cities in 30 cm resolution, and some

areas in 1 foot (most Florida Counties) or 3 inch (Miami) resolution. The size of this data

16

set is about 40 TB currently and is still increasing. The first problem deals with the

loading of this huge and ever increasing raster data set.

3.1.2. The image loading problem

In order to provide fast and high quality aerial photography and satellite imagery

viewing experience, TerraFly converts and tiles the image files that it collects from

various sources (USGS, GeoEye, or GIS department of Counties). Internally, Terrafly

uses a grid structure based on the Universal Transverse Mercator geographic coordinate

system (UTM) to index this raster data set. The UTM system divides the whole global

into 60 longitudinal projection zones numbered 1 to 60 starting at 180°W, each of which

is 6 degrees wide except a few regions around Norway and Svalbard. Within each

longitudinal zone the Transverse Mercator Projection is used to give co-ordinates

(eastings and northings) in metres. For the easting, the origin is defined as a point

500,000 meters west of the central meridian of each longitudinal zone, giving an easting

Figure 4 the Universal Transverse Mercator System

17

of 500,000 meters at the central meridian. For the northing in the northern hemisphere,

the origin is defined as the equator. For the northing in the southern hemisphere, the

origin is defined as a point 10,000,000 meters south of the equator. Figure 4 shows the

whole global in the UTM system. The continental United States is covered by UTM Zone

10 to UTM Zone 19.

The index structure consists of several parts. The first part is the name of the

imagery source. Each source has its own name space. The second part is the UTM Zone.

We further divide each zone into grids of size 102400 by 102400 in pixels. Each of these

grids has its unique id inside a particular UTM Zone. We create a file for each of these

grids, each of which contains records that describe image files within or intersect with

this grid. These image files are in an internal format that contains a descriptive header

and a bunch of JPEG image tiles, each of which is of 400 by 400 in pixels. This is the

smallest unit of this index system and we call it a tile. We also do resampling for each

image file to facilitate viewing of the same area at different scales. The resampled image

files are also put into the index system marked with a zoom level that indicates their

resolutions after the zone number. For example, Miami, FL is in UTM Zone 17 and in

grid 275. Let‟s say we have a data set covers this city and its name is USGS_30CM,

which indicates that it is from USGS and is of spatial resolution 30 cm. We will converts

and tiles each image files in this data sets and put index records into our index system.

We could find these files by following the index path usgs_30cm/17.1/275. And path

usgs_30cm/17.2/275 contains the resampled image files which are of resolution 0.6 meter

18

per pixel. And so on so forth. We usually stop resampling at 2
10

 of the original resolution,

because the viewable area becomes very small at this scale.

All the raster data collected by TerraFly are converted into the internal format

mentioned above, and tiled under the above index system. We call this process loading.

This loading process is very slow considering the huge size of the data sets using

traditional single processor architecture. But this procedure could be easily implemented

in an embarrassingly parallelizable way. Each file is independent of other files and can be

converted and tiled in parallel. Special care needs to be taken at the boundary of image

files, for a tile could potentially span four different neighboring files. Under such

conditions, the Reducers are employed to handle the merging of such tiles.

3.1.3. The image quality assessment problem

The second problem given in this section is also common in aerial photography

and satellite image processing. It is related to the quality of service provided by TerraFly.

Let‟s say that we have loaded a data set that covers a particular geographical region. At

the boundary of this data set, there could be incomplete tiles, for the coverage of the data

set does not necessarily fit exactly into our index structure. In other words, the files we

receive are not necessarily of sizes that are a multiple of 400 by 400 in pixels, which is

the tile size of our index system. Later, we have a second data set that covers these

incomplete tiles. Thus, we want to merge data from these two data sets for those

incomplete tiles. This situation could become especially obvious when you zoom out into

a states level or country level, at which scale every city becomes so small that a data set

doesn‟t even cover a tile. Figure 5 shows an example tile in Florida that is mosaiced from

19

several data sets. Such situation not only occurs at the boundary of data sets, but may also

in the middle of a data set due to faulty instrument or incorrect processing steps in the

data acquisition phase.

Thus, a mosaicing or patching step is needed when rendering the images. The

necessity of such a step should be determined before it is carried out. Instead of

dynamically analyze the image at runtime, which is computationally expensive, the result

of the analysis is usually pre-calculated and stored in some format. This pre-computation

could again take advantage of the parallelizing power of MapReduce, for such local

analysis on each image files doesn‟t need information from other files and can be

processed independently.

In summary, the key contributions of this work are as follow:

Figure 5 A tile that is mosaiced from multiple data sets

20

 We develop two real world applications in Hadoop to process spatial rater

data in TerraFly.

 We demonstrate how to process spatial raster data in MapReduce by

solving two real world problems.

 We experimentally evaluate our MapReduce algorithms using real data

sets on a real world cluster.

The rest of this chapter is organized as follows. Section 3.2 discusses the related

work to our problems. Section 3.3 presents the detailed design and implementation of the

two algorithms. Experiment setup and results are shown in section 3.4. We conclude and

summarize our work in section 3.5.

3.2.Related Work

3.2.1. Image Processing

The image we are referring to in this paper is digital image, which can be defined

as a two-dimensional function, f(x, y), where x and y are spatial coordinates, and the value

of f at a particular coordinate (x, y) is called the intensity or gray level of the image at that

point. The domain and range of f should both be finite and discrete in order for the image

to be a digital image. Digital images are consists of basic elements, which are usually

called Pixel. Each pixel occupies a specific location (x, y) and has some value f(x, y).

More formal discussions can be found in [36].

21

Processing digital images using a digital computer is generally called digital

image processing. Closely related to but different from the concept of image processing

are the concepts of image analysis and computer vision. Although there is no agreement

among authors regarding the boundaries between these concepts, the concept of image

processing is more towards low-level processing, such as noise reduction, contrast

enhancement, and image sharpening, while the concept of computer vision is more

towards high-level processing such as object recognition. Image analysis sits in between

the two other concepts. A useful criterion that can be used to differentiate them is the

resultant structure of the processing. The result of lower level primitive processing

usually is still an image. For example, after noise reduction, the output image is still the

for example, the answer to the question: whether this image contains a human face? [36]

[37]. The image processing tasks considered in this paper is limited to low level

processing.

Various software packages are available for carrying out general image

processing tasks [38] [39]. Aerial photography and satellite imagery are usually handled

by specialized software packages such as ArcGIS [40] or ERDAS [41]. In addition to

some of the basic low level image processing tasks, they provides functionalities such as

image reprojection, image mosaic, map composition, same as the input image except

some portion of noise has been removed. This also applies to contrast enhancement and

image sharpening. On the other hand, the result of high level processing is usually not an

image. And it could as simply as a “YES” or “NO”, spatial modeling and other GIS

related features.

22

3.2.2. Parallel Processing

Parallel processing is the term used in computing that is the contrary of sequential

processing. In sequential processing, instructions are executed one after another. There is

only one execution thread at any given point of time. While in parallel processing, there

are many calculations carried out simultaneously.

Parallel processing can be classified into four categories by Flynn‟s taxonomy

[42], namely single instruction single data (SISD), single instruction multiple data

(SIMD), multiple instruction single data (MISD), and multiple instruction multiple data

(MIMD). This classification is based on instruction and data two dimensions. The SISD

class corresponds to sequential processing. The MISD class is rarely used and the MIMD

class is the most common type of parallel processing, which requires synchronizations

between different subtasks of the computation. The SIMD class, which is also called data

parallel systems, is the most similar one to MapReduce and involves doing the same

operations on a large data set. In such a system, all PEs (processing elements), being it a

processor or a node in a cluster, execute the same instructions on its own portion of data.

There is no need for communications between PEs and error-prone synchronization

mechanisms such as mutex or semaphores, thus simplifying the design of the system.

Low level image processing turns out to be a very good candidate for parallel

processing, for many operations require only information from a limited neighborhood of

a pixel or even operate without data from other pixels. Researchers have been making

efforts on many different aspects to bring the benefits of parallel computing to the image

processing community. Various special architectures have been proposed in the literature

23

for parallel image processing [43] [44]. In an earlier work, Anthony [45] surveyed the

architectures of many parallel systems that have been developed for image processing

and proposed a simple SIMD/MIMD computational model for comparison with such

systems. Recent advancement includes using GPU (graphic processing unit) to accelerate

image processing tasks [46]. Another branch of researches exploit developing high level

languages and libraries for parallel image processing that can be applied to a range of

different architectures. [47], which presents an application-specific high level

programming language intended for implementing low level image processing

applications on parallel architectures, is in this category. Similarly, [48] presents a library

of data parallel low level image processing operations that is based on so-called

“parallelizable pattern”. Thomas et. al [49] give an extensive discussion on the topic of

parallel image processing.

3.3.Design and Implementation

The detailed design and implementation of the above two problems are presented

in this section. A brief description of the organization of the imagery data is given first,

followed by the MapReduce algorithms to process the data. And finally, some

implementation issues are discussed.

The aerial/satellite imagery data TerraFly collects is usually DOQQ files in

GeoTiff format [50]. This is the input for the image loading problem. After conversion

and tiling, they are transformed into an internal format. More specifically, this format

contains a descriptive header and a bunch of JPEG image tiles, each of which is of size

24

400 by 400 pixels and covers a particular geographic area. The result of the imagery

loading problem is the input for the image quality assessment problem.

3.3.1. MapReduce Algorithm for the image loading problem

The algorithm for the imagery loading problem is discussed in the following. The

input for this problem is a data set that consists of GeoTiff files and covers a specific

geographical region, such as a city or a county, and the output is a bunch of tiled files in

the format mentioned above and their corresponding index files. All the output files will

be of the same size measured in terms of width and height in pixels (for example, 25600

x 25600), which is the parameter of the actual Hadoop job. Thus, the number of output

files may not be the same as input. In fact, usually it is less than the number of input files

and the size is always chosen to be a multiple of 400 so that the output file doesn‟t

contain incomplete tiles (each tile is 400 by 400 in size). All paths of the input files are

compiled into one file, which contains the path of one file on each line and is the input

for the Hadoop job. TextInputFormat is used to parse the input into one line per record.

Each Mapper will be responsible for portion of the input files. The Mapper opens the

GeoTiff file and converts it into a bitmap. After that it tiles the bitmap according to its

geographic coordinates, compresses each tile, and emits a record with (gid, fid, zoomlevel,

tid) as its key and the compressed tile as its value, where gid is the grid id in the index

system, fid is the output file id that this tile belongs to, zoomlevel is the current zoom

level, and tid is the tile id in the output file.

25

The Mapper resamples the bitmap and repeats the above process until the desired

zoom level is reached. Thus, the Mapper creates a hierarchical pyramid of the input

image at different resolutions, which can be rendered at runtime to show the same region

at different scales. Figure 6 shows the pseudo-code for the map function of this problem.

The Reducer is supposed to receive all the tiles that belongs to one output file and

merges them together, but this is not the default behavior in Hadoop. Recall from section

2.1.2 that MapReduce groups all the intermediate values with the same intermediate key

and sends it to a reduce function. Since the key is different for each tile (because tid is

different for each tile), tiles belong to one output file may be shuffled to different

Reducers. The reason we also put tid into the key is that we want to simulate a secondary

sort on the tiles that belong to the same output file, which will facilitate the processing in

Reducers. In other words, tiles are sorted by their positions in a file so that the Reducer

can write to HDFS directly when iterating through its input. We achieve such result by

overriding the Partitioner and the GroupingComparator interfaces.

Map (offset, path)

1 open Geotiff and convert it into bitmap

2 zoomlevel = 0

3 while zoomlevel < targetlevel

4 for each tile in current bitmap

5 compress and emit intermediate result

6 resample bitmap

7 zoomlevel += 1

Figure 6 Pseudo-code for the map function of the image loading problem

26

As mentioned in the previous chapter, there is a shuffling and sorting phase

between the map and the reduce phase. Intermediate outputs with the same keys are

shuffled to one Reducer and are guaranteed to be sorted according to their keys. The

Partitioner interface is responsible for the partitioning of the keys of the intermediate

outputs of Mappers. It is typically implemented as a hash function. Thus, a key is hashed

into one of the Reducers. We override the hash function so that it only considers the gid

part of the key. This ensures all the tiles belong to the same grid will be shuffled to one

Reducer, but it doesn‟t specify the order by which the groups are created. There are two

Comparator interfaces in the Hadoop framework that controls the sorting and grouping of

intermediate outputs, namely, the SortingComparator and the GroupingComparator. The

SortingComparator is responsible for sorting all the intermediate outputs according to

their keys and the GroupingComparator is responsible for grouping the intermediate

outputs and sending each group as one call to the Reducers. In our case, the

SortingComparator will sort all the tiles in the order according to gid, fid, zoomlevel, and

tid. This gives the correct ordering of all the tiles for the Reducer to write them to HDFS,

but the GroupingComparator will treat each tile as one group by default, for each of them

has different keys. Again we override this GroupingComparator so that it only considers

the fid and zoomlevel part of the key (the gid part is the same for all the values that are

Reduce (key, tiles)

1 f = open file for writing

2 for each tile in tiles

3 f.write(tile)

Figure 7 pseudo-code for the reduce function of the image loading problem

27

shuffled to one Reducer). Thus, tiles belong to the same output file are sorted and

grouped in one call to the Reducer. Figure 7 shows the pseudo-code for the Reducer,

which is very concise due to the work we have done in Partitioner and

GroupingComparator. The input and output key/value pairs for this problem is

summarized in Table 1. We use brackets to represent key value pair and square brackets

to represent a list of values.

Table 1 Input/output for the converting and tiling Hadoop job

Function Input Output

Map

Reduce

3.3.2. Algorithm for the image quality assessment problem

We introduce some notations before describing the algorithm for the image

quality assessment problem. Let d be an image file and t be a tile inside d. d.name is the

file name and t.q is the quality information of tile t. Figure 8 depicts the execution

overview of the MapReduce algorithm to compute the image quality. The algorithm runs

on a tile by tile basis within the boundary of a given image file. It computes a bitmap for

each tile where a set bit represents a good pixel in the tile and an unset bit represents a

bad pixel. A pixel is defined as “bad” if all the values of its samples are below or above

some predefined value. More complex operations could be carried out in the process, but

28

this simple scheme is enough for the application purpose.

Each image file is first partitioned into several splits, each of which is then

processed by a separate Mapper. Since the underlying distributed file system (HDFS) has

no knowledge of tiles, a specialized RecordReader is implemented to respect the tile

boundaries. Each tile is parsed out from a split by this RecordReader, combined with the

file name and tile id as its key, and sent to Mappers as an input record.

The input and output key/value pairs for Mappers and Reducers are described in

Table 2. The Mapper decompresses the JPEG tile t, iterates through each pixel of t to

obtain quality information t.q (a bitmap, one bit per pixel) and compresses it using Run-

length encoding. After that, it emits the intermediate key/value pair with d.name as the

key and t.q as the value. The Reducer merges all the quality bitmaps that belong to the

same file and writes them to an output file as shown in Figure 8.

Table 2 Input/output of map and reduce functions for image quality assessment

Function Input: (Key, Value) Output: (Key, Value)

Map

Reduce

Figure 8 Overview of the aerial imagery quality computation algorithm

29

3.4.Experiments

3.4.1. Cluster Setup

All the experiments in this section and in the following two sections were

conducted on a large shared cluster of approximately 500 machines provided by Google

and IBM [32] through the NSF Cluster Exploratory (CluE) program [33], which we

described in section 2.1.2.

3.4.2. Data Sets

We used two different data sets for the two different problems. The data set used

in the image loading problem is a 1-foot resolution aerial imagery of Hendry County of

Florida. The data set used in the image quality assessment problem is a 3-inch resolution

aerial imagery of Miami Dade County of Florida. Some statistics about these two data

sets are summarized in Table 3.

Table 3 Data sets statistics for raster data processing in MapReduce

Data set Used for Size Num of files

Hendry County Image loading 100 GB 1486

Miami Dade County Image quality

assessment

520 GB 482

As can be seen in the table, the size of the data set is about 520 GB without

compression. Since the final result is compressed in JPEG, its actual size is about 52 GB.

This data set is stored in the format described in section 3.1.3. There are 482 files, each of

which contains 4096 tiles. Each tile is 400 by 400 pixels and has 3 bytes for each pixel as

30

the red, green, and blue channel. The size for each tile is 480,000 bytes uncompressed

and compressed tile is about 50 KB each.

3.4.3. Experimental Results

Two experiments are carried out for each of the data set. The first experiment

varies the number of Mappers/Reducers and the second one varies the size of the input

data. Both of the experiments record the elapsed time of the MapReduce jobs.

Figure 9 shows the experiment results for the image loading problem. Both of the

experiments load the whole or partial of the data set for nine zoom levels. The first

experiment uses the whole data set, fixed the number of Reducers to 4 and varies the

number of Mappers from 4 to 512.

 a) Variable Mappers b) Variable input data size

Figure 9 MapReduce job completion time for the image loading problem

0

5

10

15

20

25

30

35

40

45

4 8 16 32 64 128 256 512

Ti
m

e
 (

m
in

)

Mappers

reduce

map

0

1

2

3

4

5

6

7

8

9

4 8 16 32 64

Ti
m

e
(m

in
)

Size of data (GB)

reduce

map

31

As can be seen from Figure 9 a), the time spent in the reduce phase is almost the

same across all the different configurations of Mappers. This is because the work done in

the reduce phase is the same for all the configurations, namely merging all the tiles to

their final files. On the other hand, the time spent in the map phase drops sharply at first

and stabilizes to around 4 minutes as the number of Mappers increase. It drops initially

because each Mapper processes less data as the number of Mapper increase, but as the

number continues to increase (especially when it‟s larger than 64), the time spent in the

computation of Mappers becomes relatively small compared to the time spent in

launching and coordinating all the Mappers. Also, the chances that one of the Mappers is

much slower than others increase as the number of Mappers increase.

The result of the second experiments is shown in Figure 9 b). We vary the input

data size and fix the number of Mappers and Reducers to 16. Sub linear complexity has

been observed in this figure. This means the computation power of Mapper haven‟t been

saturated yet. Thus, doubling the size of the data doesn‟t increase the time to twice of the

original.

The first experiment for the image quality assessment problem uses a subset of

the whole data set that is a re-sampled version of the original one. It is about 20GB and

has 482 files with 1024 tiles each. The size of the files ranges from several megabytes to

around 80 megabytes, and the number of Reducers is varied from 4 to 512. The second

experiment uses different sized subsets of the original data set. The size of the files

ranges from 2GB to 16GB, and the number of Reducers is fixed at 256.

32

In the first experiment, the number of Mappers is also fixed, determined by the

data set size. Thus, the execution time of the map phase is similar through different runs,

as can be seen in Figure 10 (a). The execution time slightly fluctuates because there were

other concurrent jobs running in the cluster at the same time. As the number of Reducers

increases, the execution time of the reduce phase largely decreases for smaller number of

reducers, and less improvements are obtained for larger number of reducers. This is

because the same amount of work is now shared by more Reducers. When the number of

Reducers is larger than 64, the execution time of the reduce phase stabilizes to around 2.5

minutes. This could be explained by the launching time of Reducers dominating the

whole time at this point. With 64 Reducers, each of them will be writing around 482/64

≈ 8 files. The time taken to write 8, 4 (128 Reducers) or even less files is negligible

compared with the launching time of that many Reducers.

a) Variable Reducers b) Variable input data size

Figure 10 MapReduce job completion time for image quality computation

0

5

10

15

20

25

4 8 16 32 64 128 256 512

T
im

e
 (

m
in

)

Reducers

Reduce

Map

0

0.5

1

1.5

2

2.5

3

3.5

4

2 4 8 16

T
im

e
 (

m
in

)

Size of data (GB)

Reduce

Map

33

In the second experiment, Figure 10 (b), as the size of the data set increases with

constant number of reducers (256), the execution time of the map phase hardly changes,

which is consistent with the data parallelization provided by the MapReduce model, that

is, more Mappers are engaged in processing the data. The execution time of the reduce

phase increases because there are now more files to be written with the same number of

Reducers.

3.5.Summary

Due to its inherent parallelizable nature of many low level image processing

operations, parallel computing has been a great tool for researchers of the image

processing community to dramatically reduce the processing time of large data sets. As a

new member in the parallel computing domain, MapReduce is not an exception. Its data

parallel model turns out to be another invaluable tool to speedup many low level but

important tasks in image processing before further analysis can be carried out. In this

chapter, we have studied two real world applications that utilize the computation power

of MapReduce to speedup raster data processing in spatial database domain. Experiments

have shown the linear scalability of our algorithms.

Another lesson worth noting is that although the two phase (map and reduce)

model of MapReduce seems to be stringent at first; some components are flexible enough

for the model to be adapted to different situations. We have shown two such examples in

our applications. The first one is to overriding the default rule in the shuffling phase of

the image loading problem, which results different sorting and grouping criteria in the

reduce phase. The other one is to define customized InputFormat to handle new format of

34

the input data in the image quality assessment problem. These two examples showcase

the flexibility existing in MapReduce.

We continue our discussion with MapReduce in the following chapters, but we

switch to another domain. We show how MapReduce could be utilized in the algorithmic

analysis domain. More specifically, we give two case studies, namely, Nonnegative

Matrix Factorization (Chapter 4) and Tensor Factorization (Chapter 5).

35

4. NONNEGATIVE MATRIX FACTORIZATION

4.1.Background

Nonnegative matrix factorization (NMF) factorizes an input nonnegative matrix

into nonnegative matrices of lower rank. Originally proposed for parts-of-whole

interpretation of matrix factors, NMF has attracted a lot of attentions recently in data

mining and machine learning communities. It is recently discovered that NMF can be

used to solve challenging data mining and machine learning problems. For example,

NMF with the sum of squared error cost function is equivalent to a relaxed K-means

clustering, the most widely unsupervised learning algorithm [51] [52]. In addition, NMF

with the I-divergence cost function is equivalent to probabilistic latent semantic indexing,

another unsupervised learning method popularly used in text analysis [53] [54].

Consequently, NMF has been shown to be useful in a variety of applied settings,

including environmetrics, chemometrics, pattern recognition, multimedia data analysis,

text mining, web mining, and DNA gene expression analysis.

Due to the increasing availability of massive data sets, researchers are facing the

problem of factorizing matrices of dimensions in the orders of millions. Recent research

[55] has shown that it is possible to factorize such gigantic matrices within tens of hours

using the MapReduce distributed programming platform. In this section, we propose

three different matrix multiplication implementations using MapReduce, based on which

we successfully parallelize three different types of NMF algorithms on the MapReduce

platform. We evaluate our algorithms on a cluster provided by Google and IBM through

36

the NSF Cluster Exploratory (CLuE) program [33] using both synthetic and real data sets.

Results have shown that the performance of our proposed algorithm is at least as good as

previous efforts.

Different from the work by Liu et al. [55] whose implementations are directly

built on the updating rules, we reduce the problem of NMF to a series of different matrix

multiplication implementations on the MapReduce platform, which makes our algorithms

applicable to most matrix factorization algorithms that are using the multiplicative

updating scheme.

In summary, the key contributions of this work are summarized below:

 We propose three different matrix multiplication implementations on MapReduce.

 We scale up three different types of NMF algorithms on MapReduce based on our

proposed matrix multiplication implementations.

 We implement and experimentally evaluate our algorithms using both synthetic

and real data sets on a real-world cluster.

The rest of this chapter is organized as follows. Section 4.2 discusses related

works, mainly focusing on parallel matrix multiplication and large-scale data mining two

aspects. Section 4.3 defines three different types of nonnegative matrix factorization and

introduces their updating algorithms respectively. Section 4.4 describes three schemes to

perform matrix multiplication using MapReduce based on the properties of the matrices.

These schemes are then used to implement the updating algorithms in Section 4.3. We

report the experimental evaluation in Section 4.5 and conclude the work in Section 4.6.

37

4.2.Related Work

 Two particular lines of research are related to our work. One is existing works in

parallel matrix multiplication and NMF. The other is using MapReduce in large-scale

data mining and machine learning.

4.2.1. Parallel Matrix Multiplication and NMF

Because of the importance of matrix multiplication as a basic operation in linear

algebra, parallel matrix multiplication has been studied extensively. One of the most

popular algorithms might be Cannon‟s algorithm [56]. Although most of the algorithms

assume special data layout and are tied to a particular parallel architecture, some basic

ideas still could be applied to MapReduce. Algorithms designed for single instruction

multiple data (SIMD) systems are of particular interests, for the resembalance between

MapReduce and SIMD. For example, the MM-2 scheme we proposed in Section 4.4.1

could also be implemented directly on an SIMD system by replacing a machine in the

cluster with a processor in the system. From a relational algebra perspective, what MM-2

does is a join on the column id of the left matrix and the row id of the right matrix. More

detailed discussions could be found in [57] [58].

Because of the popularity of NMF, there are many works in trying to parallelize it

[59] [60]. Since data sharing and communication are no longer light-weight in distributed

clusters like MapReduce, those methods cannot be ported directly to MapReduce.

38

4.2.2. Large-scale data mining using MapReduce

Although the initial purpose of MapReduce is to perform large-scale data

processing [5], it turns out that this model is much more expressive than that [5]. Chu et

al. investigated the possibility to implement machine learning algorithms using

MapReduce on multicore [19]. Their conclusion is that a variety of learning algorithms

that fit the statistic query model [61] could be parallelized using MapReduce. An open

source project Mahout [62] has been started to port those algorithms to Hadoop.

Papadimitriou and Sun have done a case study in data mining on co-clustering [20]

towards petabyte scale of data using MapReduce. MapReduce has also been used in

many other tasks of data mining and machine learning. Those works include but not

limited to Kang et al. on graph mining [21], Panda et al. on tree ensembles [22], Liu et al.

on bayesian browsing model [23], and Chen et al. on behavioral targeting [63].

In particular, Liu et al. successfully scaled up the classical NMF [64] for web-

scale dyadic data analysis on MapReduce [55]. They assumed the matrix to be factorized

is stored as tuples that are spread across machines and proposed different

partitions for the factors. Although the techniques they used are different, they could be

reduced to one of the matrix multiplication schemes we proposed in Section 4.4.

4.3.Nonnegative Matrix Factorization

 Let
 be the input data matrix, we define three different matrix

factorizations and introduce their updating rules in the following.

39

A. NMF

The classical NMF [64] could be written as

where
 . The updating rules for NMF are listed as follows:

,

.

B. Convex-NMF

In general, the basis vectors have the meaning of cluster centroids. To enforce

this geometry meaning, can be restricted to be a convex combination of the input data

points [65]. In other words, in addition to have to be nonnegative, we restrict each

column of to lie within the space spanned by the columns of , i.e.,

 , where and is a column vector of and , is an

element of . We call this restricted form of factorization as Convex-NMF

[65]. The updating rules of this factorization are

,

40

C. Tri-Factorization

Tri-factorization [66] is useful to simultaneously cluster the rows and the columns

of the input data matrix . We consider the following nonnegative 3-factor

decomposition

 , where
 . Note that S provides

additional degrees of freedom such that the low-rank matrix representation remains

accurate while F gives row clusters and G gives column clusters. The updating rules of

tri-factorization are

,

,

.

4.4.NMF using MapReduce

4.4.1. Matrix Multiplication in MapReduce

The major operation in the updating rules of all three types of factorizations is

matrix multiplication. Thus, efficient implementation of matrix multiplication on

MapReduce is the key to scale up matrix factorization.

Assume
 and . Traditionally, is defined as the inner

product of the row vectors of and column vectors of . Thus,

41

 .

This kind of decomposition is useful if we could share across all rows of .

Each row of could be computed in parallel. A MapReduce job MM-1 is formulized in

Table 4 to carry out this computation.

Table 4 Three Matrix Multiplication Schemes

Scheme Input/Output

Input Output

MM-1 Map

Reduce None

MM-2 Map or or

Reduce or

Map

Reduce

MM-3 Map

Reduce

We use to denote a row vector with id and to denote a column vector. We

use to denote either a row vector or column vector if it doesn‟t matter which one it is.

 is used to denote the final result aggregated from all the `s. We use an angle bracket

to denote a key/value pair and a square bracket to denote a list of key/value pairs.

As can be seen from Table 4, no reduce phase is needed for MM-1. The input to

the map phase is the row vectors of . When the size of gets large enough, this

42

scheme will fail since the cost of sharing a large matrix across many nodes in a cluster is

too expensive.

Alternatively, we could decompose into column vectors and into row vectors.

Thus,

 .

The implication of this decomposition is that if we could partition and in such

a way that the corresponding columns of and rows of are on the same machine, we

could compute the outer product in parallel and merge them together to obtain AB. This

scheme fits the MapReduce model perfectly. No data sharing is required as in the

previous scheme. We could use two MapReduce jobs to implement this scheme MM-2,

which is shown in Table 4.

Now let‟s examine these two jobs of MM-2 in detail. The first job does

multiplication and the second job does summation. The map phase of the multiplication

job accepts a column vector or a row vector , and emits an intermediate pair with

column id or row id as key and the column or row itself as value. Column and row

vectors with the same id are shuffled to the same machine as the input for the reduce

phase. In the reduce phase, we compute the outer product of and and, depending

on the context in which this multiplication is used, we either output a bunch of row

vectors or column vectors, which is denoted in Table 4 as or These

row or column vectors are partial results of the vector. We merge them into the final

43

vector in the summation job. The map phase of the summation job is an identity function,

which just outputs the input key/value pairs for shuffling. The reduce phase of this job

merges all the row vectors with the same id or column vectors with the same id and emits

a final row vector or column vector.

This scheme can be used to compute the product of any matrices, no matter it is

dense or sparse, as long as the left matrix is partitioned into column vectors and the right

matrix is partitioned into row vectors. Under certain circumstance, the two MapReduce

jobs can be merged into one. For example, consider the matrix multiplication .

Assume is partitioned in row vector, then in column vector is the same as in row

vector. Thus, we could compute using only one MapReduce job as shown in MM-3

of Table 4 where multiplication is conducted in map phase and summation is performed

in reduce phase. This shortcut saves one MapReduce job and turns out to be very useful

in matrix factorization, where multiplications like appear frequently.

4.4.2. NMF

We partition , and into row vectors, which renders the following view:

 ,

where is -dimensional row vector and and are dimensional row

vectors. All of them are stored as sets of , and key/value pairs. There

are three steps to update . The first step is to compute the numerator in (2). The

second step is to compute the denominator in (2). And the last step is to update .

44

Figure 11 shows the flow chart of updating . We discuss them in the following one by

one.

A. Computing

Since we partition and in row vectors, is ready for multiplication. Using

the scheme MM-2 in Table 4, we could compute with two MapReduce jobs.

B. Computing

There are two ways to compute . The first one is to compute first and

 afterwards. This requires 4 MapReduce jobs, 2 for each multiplication. The second

one is much faster. By using MM-3 to compute first, and using MM-1 to compute

 , only two jobs are needed. Noting that the result of is a matrix which is

reasonably small to be fit into memory for computing with .

C. Updating G

Once both and have been computed; only one job is needed to

update , which is summarized as follow:

 Map: Map , and as they are

 Reduce: Take and emit
 , where

.

This finishes the update of . is updated in the same manner, except that when

computing , we need to be partitioned into column vectors, whereas it is stored as

row vectors. Thus, an additional MapReduce job is needed to transform from row

vectors to column vectors. This won‟t affect the overall performance, since only one such

job is needed for the entire updating cycle, which usually consists of a few iterations.

45

4.4.3. Convex-NMF and Tri-Factorization

Convex-NMF and Tri-Factorization are essentially computed in the same manner

as NMF, namely, to update a matrix, first compute the numerator of the updating rule,

and then compute the denominator, and finally update the original matrix. In the

following, we focus on their difference with NMF on the updating rules, rather than the

details.

A. Convex-NMF

We partition , and into row vectors as we did in NMF. One notable pattern

of the updating rules of Convex-NMF is that has appeared three times, two in (3)

and one in (4). Thus, it is beneficial to first compute and use the result later.

Again, we could use the MM-3 to compute first and afterwards.

However, this time we decide not to do that, because the result of would be a huge

Figure 11 Computing

.

X: (i, xi)

(i, [xi, fi])

F: (i, fi)

(j, xi,jfj)

Map Reduce

(j, [xi,jfj])

(j, aj)

G: (i, gi)

(i, fi
Tfi)

(i, bi)

(j, (FTF)j)

(i, ai,bi ,gi)

(i, gi’

A=XTF
MM-2

FTF
MM-3

B=GFTF
MM-1

Copy

46

dense matrix that could introduce a lot of data shuffling in later computation. We choose

to compute first and afterwards using MM-2 in Table 4.

After computing , we use two additional MM-2s to compute the denominator

in (3). The numerator in (4) is computed in the same manner as . When computing

the denominator in (4), we first use MM-3 to compute , and then take the result of

 and do a MM-1 job to finish the computation.

B. Tri-Factorization

Again, we partition , , and into row vector. Repeated patterns like in

(5) and in (6) are utilized to reduce the computation. To update , we first compute

the numerator in (5) using MM-2 () and MM-1 (). The result is

then used to compute the denominator in (5) using MM-2 () and MM-1 ().

is updated similarly.

The updating rule of has its own structure and is updated slightly differently.

First of all, the numerator of is computed using two MM-2s (). We

use MM-3 to compute both and in (7). And then two MM-1

operations are used to compute and . Finally, an update job is used to update

the new value of .

4.5.Experiments

We use the open source implementation of MapReduce – Hadoop [31] in our

experiments. All three factorization algorithms have been implemented in Java for

Hadoop.

47

4.5.1. Experiments Setup

All the experiments were conducted in the environment described in section 3.4.1.

Both synthetic and real data sets were used in the experiments. Synthetic data sets were

generated by a random matrix generator, which generates a matrix
 with

sparsity δ on given parameters , and δ. We varied , and δ to see how the

performance varies. While the number of participating machines in the map phase cannot

be set directly, we varied the number of machines in the reduce phase to see how more

participating machines could improve the performance. Unless explicitly pointed out, all

the reported time is for one iteration of the algorithms.

The blog data was collected by an NEC in-house blog crawler. Given seeds of

manually picked highly ranked blogs, the crawler discovered blogs that are densely

connected with the seeds, resulting in an expanded set of blogs that communicate with

each other [67][68]. The data set is represented as a sparse matrix that is of dimension

274,679 by 5,304. Each row is a blog entry and the columns contain word frequencies in

the blogs. Table 5 summarizes the characteristics of the data sets used in the experiments.

Table 5 Data sets description

Data Sets M N δ Size(MB)

Synthetic data sets 1~6605

Real data set 274,649 5,304 0.008 47

48

In the following sections, we first examine the computation cost of each

component in (2). Then, we examine the scalability of the algorithms with the size of the

input matrices. We also present how the performance varies w.r.t δ, and in section

4.5.3. Finally, we evaluate the algorithms on the real data set.

4.5.2. Computation Cost

The computation cost of each MapReduce job in updating is shown in Table 6.

We recorded the data shuffled between Map phase and Reduce phase in MB and the total

elapsed time in seconds for each job. We choose for

the matrix being factorized in this experiment, which is typical for a large data set.

TABLE 6 COMPUTATION COST OF UPDATING G IN NMF

Component

Shuffle(MB) Time(sec)

Multiplication 2099 242

Summation 62 96

 0.007 141

 0 26

Update 1.4 45

As can be seen from Table 6, the major cost in updating is the computation of

 and , which accounts for 87 percent of the total elapsed time. This is

understandable because the inner dimension of both of the two multiplications is in the

49

order of million. Another notable pattern is the imbalance in the size of data shuffling.

The multiplication job of shuffled more than 2 GB of data, while only shuffled

7 KB. This is because we used MM-2 to compute , whose Map phase only read the

input for grouping. Thus, both and were shuffled. On the other hand, we used MM-3

to compute , where the multiplication was performed in Map phase and only the

small resulting matrix was shuffled.

4.5.3. Scalability and Performance w.r.t δ, k and R

We also report the elapsed time of one iteration for all three algorithms in

Figure 14. In these experiments, we fixed and varied

 from to .

Figure 15 shows how the performance varies w.r.t the sparsity . As δ goes from

 to , the number of nonzero elements in the matrix increases from 16 million to

600 million, and the elapsed time also increases in proportion to that.

Figure 12 reveals the linearity between elapsed time and the dimensionality of .

As doubles from 8 to 128, the elapsed time gradually increases from 10 minutes to 40

minutes. The slope is smaller than 1, which is good for large data sets.

Finally, we plot the speedup achieved by doubling the number of machines in the

reduce phases of MM-2 and MM-3 in Figure 13. Two series are plotted. One shows the

speedup for one single iteration of the NMF algorithm; the other shows the speedup

achieved by the affected MapReduce jobs only, that is, MM-2 and MM-3. There are jobs

that don‟t benefit from adding more machines, such as MM-1 and the updating of the

50

original matrix. Thus, the speedup for one single iteration is smaller than that of MM-2

and MM-3.

4.5.4. Experiments with Real Data Set

Finally, we ran our algorithm on the real world blog data set. The result is

reported in Figure 16. We divided this data set into five partitions and ran our algorithms

on 20%, 40%, 60%, 80%, and the whole data set. Again, we observed linear scalability

with regarding to this data set.

 Figure 12 Elapsed time w.r.t k Figure 13 Speedup w.r.t R

0

5

10

15

20

25

30

35

40

45

0 20 40 60 80 100 120 140

E
p

la
p

se
d

 T
im

e
 (

m
in

u
te

s)

k: Factorization Dimentionality

0

2

4

6

8

10

12

0 5 10 15 20

S
p

e
e

d
u

p

R: Number of Reducers in MM-2 & MM-3

One Iteration

MM-2 & MM-3

51

Due to the relatively small size of this data set compared to the synthetic data sets, most

of the elapsed time is spent in starting and cleaning up MapReduce jobs, which results a

near-flat line in Figure 16.

4.6.Summary

In this chapter, we presented three different implementations of matrix

multiplication on MapReduce depending on the properties of the matrices. Based on that,

we successfully scaled up three different types of nonnegative matrix factorization

 Figure 14 Elapsed time w.r.t m Figure 15 Elapsed time w.r.t δ

7.1 8.18 7.73
9.45

14.23
18.42

37.17

12.65 11.08 11.58
13.48

20.83

28.17

48.43

15.97 16.27
18.68 19.63

24.15

41.77

54.27

12 14 16 18 20 22 24

El
ap

se
d

 T
im

e
(m

in
u

te
s)

m: Power of Two

NMF ConvexNMF TriFactorization

δ = 2-9

δ = 2-8

δ = 2-7

δ = 2-6

δ = 2-5

0

5

10

15

20

25

30

35

40

45

0 1 2 3 4 5 6

El
ap

se
d

 T
im

e
 (

m
in

u
te

s)

N: Number of Nonzero elements in X

x 108

Figure 16 Elapsed time w.r.t for real data set

0

2

4

6

8

10

12

0 5 10 15 20 25 30

El
ap

se
d

 T
im

e
 (

m
in

u
te

s)

m: Number of Rows in X x 104

52

algorithms. Matrices of dimension million-by-thousand with millions of nonzero

elements can be factorized within several hours on a MapReduce cluster.

Ad demonstrated by the design of these algorithms, MapReduce can also be used

to do computation intensive tasks such as matrix multiplication. The key is how to

formulate the algorithm in a functional way that can be expressed in MapReduce.

There are many avenues for future work on large-scale matrix factorization. First,

our current work is focused on the multiplicative updating rules used in NMF which

could be reduced to applications of different matrix multiplications. One interesting

direction is to investigate schemes for scaling up other NMF algorithm such as

alternating non-negative least squares [69] and projective gradient descent [70]. Second,

recently tensor factorization, as a generalization of matrix factorization, has attracted a lot

of research attention [71]. It is thus interesting to study schemes for scaling up large-scale

tensor factorization, which is the subject of next chapter. Last but not least, we would

also like to explore various applications of NMF on large-scale data sets.

53

5. TENSOR DECOMPOSITION

5.1.Background

Tensors are multidimensional arrays. The earliest work dates back to 1927 from

Hitchcock [72] [73]. There has been active research on tensor decompositions since „60s.

The work of Tucker [74] [75] [76] and Carroll and Chang [77] and Harshman [78] in

psychometrics have brought great attention to this topic. Appellof and Davidson [79]

introduced tensor decomposition into the field of chemometrics. And a lot of works [80]

[81] [82] [83] have appeared in that field afterwards. In the field of algebraic complexity,

there are also many works. The most famous example might be Strassen matrix

multiplication, which is an application of a decomposition of a 4 × 4 × 4 tensor to

describe 2 × 2 matrix multiplication [84] [85].

The popularity of tensor decomposition doesn‟t stop in the field of psychometrics

and chemometrics. In the recent years, interest has expanded to many other fields, such as

signal processing [86], computer vision [87], data mining [88], machine learning [89],

graph analysis [90], and so on so forth.

In this chapter, we discuss how to scale up two most famous tensor

decompositions in MapReduce, namely, the CANDECOMP/PARAFAC (CP) [77] [78]

and Tucker [76] tensor decomposition.

The contributions of this work are as follow:

54

 We propose MapReduce implementations for the Hadamard product, the

Khatri-Rao product, and the Moore-Penrose pseudo inverse.

 We scale up the CP and Tucker tensor decomposition in MapReduce

based on our implementation of the Hadamard product, the Khatri-Rao

product, and the Moore-Penrose pseudo inverse.

 We implement and experimentally evaluate our algorithms using synthetic

data sets on a real-world cluster.

The remainder of this chapter is organized as follows. Section 5.1 briefly reviews

the history of tensor decomposition and introduces some notations and concepts on tensor.

Rather than a complete review, the emphasis of this introduction is on the concepts that

are necessary for the understanding of the two decompositions. More detailed discussions

could be found in other surveys [10]. Efforts are made to keep the discussion as

consistent as possible with the terminology of previous publications in the field. Section

5.3 discusses the related works. The CP decomposition and Tucker decomposition are

introduced in section 5.2 with the most popular algorithms to solve them. Followed are

our design and implementation of the two decompositions in MapReduce. We evaluated

our algorithms in section 5.5 and conclude our work in section 5.6.

5.1.1. Tensor and its Notation

Put it in the simplest way, a tensor is a multidimensional or N-way array. More

formally, an N-way or Nth-order tensor is an element of the tensor product of N vector

55

spaces, each of which has its own coordinate system. The notations used in our

discussion are very similar to [10], which in turn resembles to that proposed by Kiers [91].

The number of dimensions of a tensor is called its order, also known as ways or

modes. A first-order tensor is a vector, a second-order tensor is a matrix and tensors of

order three or higher are called higher-order tensors. In our discussion, vectors are

denoted by boldface lowercase letters, e.g., a. Matrices are denoted by boldface capital

letters, e.g., A. Higher-order tensors are denoted by boldface italic capital letters, e.g., A.

Scalars are denoted by lowercase letters, e.g., a.

The ith element of a vector a is denoted by , element of a matrix A is

denoted by , and element of a third-order tensor A is denoted by . Indices

usually range from 1 to their capital version, e.g., The nth element in a

sequence is denoted by a superscript in parentheses, e.g., denotes the nth matrix in a

sequence.

A colon is used to indicate all elements of a mode. Thus, for matrices, the jth

column of A is denoted by , and the ith row of a matrix A is denoted by .

Sometimes we omit the colon for compactness if it is unambiguous in the context.

Higher-order analogue of matrix rows and columns are called fibers. A fiber is

defined by fixing every index but one. Mode-1 fiber is a matrix column and mode-2 fiber

is a matrix row. Thus, third-order tensors have three different kinds of fibers, namely,

column, row, and tube fibers, denoted by , , and . Figure 17 shows the fibers

of an example of third-order tensor.

56

a) Mode-1(column) fiber

b) Mode-2(row) fiber

c) Mode-3(tube) fiber

Figure 17 Fibers of a third-order 3×3×3 tensor

57

c) Frontal slices

Figure 18 Slices of a 3
rd

-order tensor

b) Lateral slices

a) Horizontal slices

58

When all indices but two are fixed, a slice is defined. It can be viewed as two-

dimensional sections of a tensor. Figure 18 shows the horizontal, lateral, and frontal

slides of a third-order tensor A, denoted by , , and . For the sake of

compactness, we sometimes omit the colons in the notation of slice. Thus, the kth frontal

slice of a third-order tensor, , would be denoted as .

An N-way tensor is rank one if it can be written as the outer

product of N vectors, i.e.,

The symbol “○” represents the vector outer product. Thus, each element of the tensor is

the product of the corresponding vector elements:

 for all .

Figure 19 shows a third-order rank-one tensor.

Figure 19 Rank-one third-order tensor

X

a

b

c

59

5.1.2. Matricization

Matricization is the process of reordering the elements of a tensor into a matrix,

which is also known as unfolding or flattening. For example, a 2×3×4 tensor can be

arranged as a 6×4 matrix, a 3×8 matrix or a 2×12 matrix depending on which mode of the

fibers you take. The mode-n matricization of a tensor is denoted by

and arranges the mode-n fibers to be the columns of the resulting matrix. An example is

given below to illustrate this concept. Let the frontal slices of be

 ,

 . The three mode-n matricizations are

5.1.3. Tensor Multiplication

Tensor multiplication is much more complex than matrices. We only consider the

tensor n-mode product here, i.e., multiplying a tensor by a matrix (or a vector) in mode n.

More detailed discussions could be found in Bader and Kolda [92].

The n-mode product of a tensor with a matrix is

denoted by and is of size . Each element of

the product is defined as:

60

Another interpretation of this product is that each mode-n fiber is multiplied by

the matrix U. In the terminology of matricization, this could be expressed as:

5.1.4. Matrix Kronecker, Khatri-Rao, and Hadamard Products

Some matrix products are important in tensor decomposition, so we briefly

discuss them in this section.

The Kronecker product of matrices and is denoted by .

The result is a matrix of size and defined by

The Khatri-Rao product is the “matching columnwise” Kronecker product [93]. It

is denoted by , where and . The result is a matrix of size

 defined by

61

The Hadamard product is the element-wise matrix product. Given two matrices A

and B of the same size , their Hadamard product is denoted by . The result is

also of size and defined by

5.2.Tensor Decomposition

5.2.1. The CANDECOMP/PARAFAC Decomposition

The CANDECOMP/PARAFAC decomposition was introduced to the

psychometrics community by Carroll and Chang (canonical decomposition) [77] and

Harshman (parallel factors) [78]. Although it was proposed by Hitchcock in 1927 [72]

[73], it didn‟t become popular until the 70s. We refer to the CANDECOMP/PARAFAC

decomposition as CP, per Kiers [91].

Figure 20 CP decomposition of a 3
rd

-order tensor.

a1

b1

c1

a2

b2

c2

aR

bR

cR

≈ + + +∙∙∙

62

Figure 20 shows the CP decomposition of a 3
rd

-order tensor. The CP

decomposition factorizes a tensor into a sum of component rank-one tensors. Recall that a

rank-one tensor can be written as the outer product of N vectors, where N is the mode of

the tensor. Take a third-order tensor as an example. We wish to write it as

where R is a positive integer and
 ,

 , and
 for . Each

element of X can be written as

By combining the vectors from the rank-one components, we obtain the factor matrices,

i.e., and likewise for B and C. Using this definition, we can

rewrite the CP decomposition in matricized form:

Recall that is the Khatri-Rao product we introduced in section 5.1.4. We usually

normalize the columns of A, B, and C to length one. Thus, there is a vector which

absorbs the weights. More concisely, the CP model could be expressed as

63

We only focus on the three-way case in our discussion because it is widely applicable and

sufficient for many needs.

Due to its simplicity, the alternating least squares (ALS) method, which was

proposed by Carroll and Chang [77] and Harshman [78] in their original papers, has

become the major algorithm today to compute the CP decomposition. This algorithm

assumes the number of components, which is R in our notation, is specified. We briefly

1 Procedure CP-ALS(X, R)

2 Initialize for

3 Repeat

4 For do

5

6

7 Normalize columns of (storing norms as λ)

8 End for

9 Until fit ceases to improve or maximum iterations

exhausted

10 Return

11 End procedure

Figure 21 ALS algorithm to compute a CP decomposition with R components for

an Nth-order tensor X of size .

* denotes the Moore-Penrose pseudoinverse of

64

describe the algorithm for the three-way case in the following. The full algorithm for an

N-way tensor is presented in Figure 21.

Let be a third-order tensor. We are going to decompose X into R rank-

one components that best approximate X, i.e., to find

The ALS approach fixes two of the matrices to solve for the third one during each

iteration. Namely, it fixed B and C to solve for A, then fixes A and C to solve for B, then

fixes A and B to solve for C. It continues to repeat the entire procedure until some

convergence criterion is satisfied.

5.2.2. The Tucker Decomposition

The Tucker decomposition is another important tensor decomposition model that

was proposed by Tucker in 1963 [74] and improved by Levin [94] and Tucker [75] [76]

in their subsequent papers.

The Tucker decomposition is well known as a form of higher-order principal

component analysis (PCA). It decomposes a tensor into a core tensor multiplied by a

matrix along each mode. Take the three-way case as an example, for , we

have

65

The tensor is called the core tensor and its entries show the level of

interaction between the different components. The matrices

 are the factor matrices and can be thought of as the

principal components in each mode. Alternatively, we can represent the Tucker

decomposition element-wise as following:

P, Q, and R are the number of components in the factor matrices A, B, and C,

respectively. If P, Q, R are smaller than I, J, K, the core tensor G can be viewed as a

compressed version of X. This feature makes the Tucker decomposition appeal for data

compression applications. Figure 22 illustrates the Tucker decomposition of a three-way

tensor.

Figure 22 Tucker decomposition of a three-way tensor

X

G
A

B

C

≈

66

Before we continue with the discussion of the algorithm to compute a Tucker

decomposition, we introduce the concept of n-Rank. Let X be an Nth-order tensor of size

 . The n-rank of X, denoted (X), is the column rank of . We

say X is a rank- tensor if . For a given tensor X, it is easy

to compute an exact Tucker decomposition of rank , where

 . If for one or more n, we restrict , then the result will be

inexact and more difficult to compute.

In his original paper [76], Tucker described three methods to compute a Tucker

decomposition. We only discuss the first one here, which is better known as the higher-

order SVD (HOSVD) from the work of De Lathauwer, De Moor, and Vandewalle [95].

They have shown that the HOSVD is a convincing generalization of the matrix SVD.

Figure 23 shows the pseudo code of HOSVD for a rank- Tucker

decomposition.

1 Procedure HOSVD ()

2 For do

3

4 End for

5

6 Return

7 End procedure

Figure 23 the HOSVD algorithm to compute a rank-
Tucker decomposition

67

The basic idea of this algorithm is to find those components that best capture the

variation in mode n, independent of the other modes.

5.3.Related Work

Most of the works on tensor decomposition still focus on the quality of solutions,

for the simple ALS method doesn‟t guarantee to converge to a global minimum. The final

solution can be heavily dependent on the initial guess. In one of the works, Faber et al.

[96] compare ALS with six different methods, none of which is better than ALS in terms

of quality of solutions.

There is increasing interests in using CP for large-scale, sparse tensors recently.

Kolda et al. [90] developed a “greedy” CP for sparse tensors that computes one triad at a

time via an ALS method. Kolda and Bader [9] [97] adapted the standard ALS algorithm

to sparse tensors in their subsequent work.

Parallel and distributed implementation is definitely an important way to handle

large-scale tensors. Sears, Bader, and Kolda [98] implemented several algorithms which

compute PARAFAC and Tucker representations of tensors using C++/MPI. They

evaluated their implementation on several data sets that are of order three with

dimensions in the order of thousands and have millions of nonzero entries. Speedups of

10 to 20 are achieved with regarding to serial implementation. Zhang et al. [99]

parallelized the Nonnegative Tensor Factorization (NTF) method, with the purposes of

distributing large datasets into each cluster node and thus reducing the demand on a

single node, blocking and localizing the computation at the maximal degree, and finally

minimizing the memory use for storing matrices or tensors by exploiting their structural

68

relationships. The data set used in their experiments is relatively small (order three tensor

with dimensions in the order of hundreds). A sublinear speedup was achieved for 2 to 8

processors with an approximate peak speedup of 6.8. On a similar effort, Antikainen et al.

[100] tried to accelerate the NTF method using GPGPU. Third order tensors with two of

the dimensions varying between and and the third dimension

being either 31 or 62 were used in their experiments. Great speedups (compared

with the CPU implementation) were achieved due to the massive parallelism provided by

GPGPU. However, limited by the memory capacity of graphic cards, their method can

only process third order tensors with up to 800 elements in each dimension.

5.4.Tensor Decomposition in MapReduce

We describe in this section how we implement the CP-ALS and the HOSVD

algorithms in MapReduce to compute the CP decomposition and Tucker decomposition

for a given tensor X. We decompose the algorithms into several basic operations and

implement each of them in MapReduce.

5.4.1. Matrix Multiplication

Matrix multiplication is used in both of the two algorithms. In CP-ALS, it is used

in line 5 and 6 of Figure 21 to compute the intermediate matrix V. While in HOSVD, it is

used indirectly in the tensor n-mode matrix product in line 5 of Figure 23.

General matrix multiplication implementation in MapReduce has been discussed

extensively in section 4.4.1 and [101]. In particular, we want to point out that the

multiplication in line 5 of Figure 21 is a special form of multiplication, which is of a

69

matrix multiplying with its transpose, which can be implemented in MapReduce very

efficiently using only one job.

5.4.2. The Hadamard Product

Recall from section 5.1.4 that the Hadamard product is the elementwise matrix

product. A straight forward MapReduce job can be derived from its definition. The

Mappers match the positions of the matrix elements and the Reducers do the

multiplication. The input/output key/value pairs for the Hadoop job is summarized in

Table 7, assuming the input of this job are two matrices A and B, whose elements are

stored as or on disk.

Table 7 Input/output for the Hadamard product Hadoop job

Function Input Output

Map or or

Reduce

As can be seen from this table, the map function is basically an identity function.

Since there are only two matrices in the input, there could be only two values in the input

of the reduce function. The reduce function just multiply the two values and emit the

result.

70

5.4.3. The Khatri-Rao Product

As mentioned in section 5.1.4, the Khatri-Rao product [93] is the “matching

columnwise” Kronecker product. Given matrices and , the result is a

matrix of size defined by

It is used in line 6 of the CP-ALS algorithm.

Similar to the Hadamard product, a straightforward MapReduce job can be

derived from its definition. The map function matches the corresponding columns from

the two input matrices. And the reduce function does the multiplication on the two

matching columns. With the same assumption in the previous section, we summarize the

input/output of the MapReduce job to compute the Khatri-Rao product in Table 8.

Table 8 Input/output for the Khatri-Rao product Hadoop job

Function Input Output

Map or or

Reduce

As can be seen from Table 8, the map function emits the column id as key for

each element it reads. Thus, all the elements that belong to the same column will be

shuffled to the same Reducer. But how do we distinguish elements from matrix A from

elements from matrix B? If we don‟t put some special information into the matrix itself,

71

there is no way to tell where the current element comes from. Fortunately, Hadoop

provides a class called MultipleInputs, which let you use different map functions for

different inputs. Thus, we apply different map functions to the two input matrices. We

negate the row value of the elements in the map function for one of the input matrix.

Therefore, we can group the input of the reduce function into two groups by checking

their row values (one is negative; the other is positive). After that, we do the Khatri-Rao

product in the reduce function and emit the results.

5.4.4. The Moore-Penrose Pseudoinverse

The Moore-Penrose pseudoinverse [57], denoted by , of a matrix , is a

generalization of the inverse matrix. It has various applications in applied linear algebra.

In the context of tensor decomposition, it is used in line 6 of the CP-ALS algorithm.

There are many ways to compute the pseudoinverse. One of them is by using the

singular value decomposition (SVD) [57], which itself is an important matrix

factorization method. The reason we choose SVD is that it is computationally simple and

accurate and there is an “embarrassingly parallel” way to compute the SVD of a matrix A,

namely, the Lanczos algorithm [57]. Once we have the singular value decomposition of

A, , then . Since ∑ is a diagonal matrix, we can get its

pseudoinverse by taking the reciprocal of each non-zero element on the diagonal, leaving

the zeros as they are, and transposing the resulting matrix.

With all the above, the problem is reduced to how to implement the Lanczos

algorithm in MapReduce. As an adaption of the power method to compute the

72

eigenvalues and eigenvectors of a square matrix, the Lanczos algorithm is an iterative

algorithm and can be implemented in an embarrassingly parallel way. The basic idea is

that starting from a random vector v with norm one, we repeatedly multiply the matrix A

to v and computes the diagonal and off-diagonal elements of a matrix T. After m

iterations (m is usually much smaller than the size of A), we obtain a tridigonal and

symmetric matrix T, from which we can get the eigenvalues and eigenvectors of A. The

major computation in these iterations is the matrix vector multiplication, which could be

easily parallelized using the techniques presented in the previous chapter. Thus, the

number of MapReduce jobs is the same as the number of iterations.

5.4.5. The CP decomposition

Once all the sub operations are ready in MapReduce, implementing the CP

decomposition is just a task of assembly. All of the four operations mentioned in the

previous sections are utilized in the CP decomposition.

As depicted in Figure 21, the CP-ALS algorithm starts with initializing N factor

matrices . This can be done using one MapReduce job by asking the map

function to generate a random matrix for each input record. The input is a text file that

contains one number each line as the id of the matrix to be generated. We write to HDFS

directly in the map function, for there is no need to shuffling the generated elements and

have a reduce phase. The input/output of this job is summarized in Table 9.

73

Table 9 Input/output for initializing factor matrices in the CP-ALS algorithm.

Function Input Output

Map

Reduce None

The major computation happens in the inner for loop of the algorithm. For each of

the N factor matrices, we update it to the next iteration and normalize it. The updating

happens in two steps. We first compute an intermediate matrix V by multiplying

 with for every factor matrix except the one we are computing and doing

Hadamard product on all the results of the multiplication. Each of these matrix

multiplication and Hadamard product takes one MapReduce job respectively. Thus, there

are jobs in this step. Next, we take the pseudoinverse of V, do the Khatri-Rao

product of N-1 factor matrices, and multiply mode-n matricization of the input tensor

with the results of the former two computations. Each of the Khatri-Rao product takes

one MapReduce job. Adding the 4 jobs needed for the two matrix multiplications, there

are plus the number of jobs needed to compute the pseudo inverse in total in this

step. Finally, we can use one job to normalize the columns of the current factor matrix.

Adding all the numbers together, we spend linear number of MapReduce jobs as the

order of the tensor in total in the inner for loop of the algorithm.

The outer loop stops when fit ceases to improve or maximum iterations are

exhausted. For simplicity, we implement a fixed number of iterations that can be tuned as

a parameter of the job. Checking whether the fit has stopped to improve only requires one

job which compares the newly computed factor matrices with the old ones. The map

74

function will be responsible to match the corresponding factor matrices and the reduce

function does the comparison.

5.4.6. The Tucker decomposition

A very important operation in the HOSVD algorithm is the singular value

decomposition we have used in the CP-ALS algorithm. Instead of using it to compute the

pseudo inverse of a matrix in the CP-ALS algorithm, it is used to initialize N factor

matrices in the HOSVD algorithm.

The HOSVD algorithm starts with the initialization of N factor matrices with the

 leading left singular vectors of . Each of the factor matrices requires computing

the SVD of the corresponding mode-n matricization of the input tensor. Thus,

 MapReduce jobs are needed to finish the initialization part.

The second step is to compute the core tensor by doing mode-n tensor matrix

product on the N factor matrices we get in the first step with the input tensor. Each of

such products could be computed using the general matrix multiplication scheme we

proposed in chapter four, which requires two MapReduce jobs. However, since the factor

matrices are usually dense and small, we could put it into memory and distribute the

much larger matricization of tensor to different machines to do the computation. Thus,

the product could be computed in one MapReduce job, and only jobs are needed

for this step.

75

Table 10 shows the input/output for a tensor matrix product job. What is special

about this job is that we not only merge elements of tensor into fibers in the reduce phase,

but also perform the matrix vector multiplication after we form the fibers.

After we compute the core tensor G, the algorithm returns it with all the factor

matrices.

Table 10 MapReduce Input/Output for tensor matrix product.

Function Input Output

Map or

 or

Reduce

5.5.Experiments

5.5.1. Experiments Setup

We evaluate our implementations on random generated third-order tensors, which

is widely applicable and sufficient for many needs. Experiments were conducted on the

HOSVD algorithm to see how the performance changes w.r.t the size of the data sets. The

first and second dimension of the data set are fixed at and . The third dimension

varies from to . The sparsity of the data sets is fixed at 0.002. The size of the data

sets thus varies from 200 MB to 3.7 GB.

76

The data sets are generated by our random tensor generation program in our

experiments. Similar to our random matrix generator, the program generate random

sparse third-order tensors with δ as its sparsity, I, J, and K as the size of its

three dimensions. All the experiments were conducted in the environment we described

in section 2.1.2. We report the total time for the HOSVD algorithm.

5.5.2. Scalability and Performance

Figure 24 shows the performance of the HOSVD algorithm. As can be seen from

the figure, the HOSVD implementation can easily handle tensors with third dimension up

to 512, which has hundreds of millions nonzero entries. Figure 25 shows the computation

time breakdown for the experiments. First observation is that the initialization part

accounts for a large portion of the total computation time for all the data sets. However,

this portion of time doesn‟t vary much despite the change of size of the data sets. Even

for the largest data set, it takes more or less the same amount of time. The second

Figure 24 Elapsed time w.r.t K

0
5

10
15
20
25
30
35
40
45
50

32 64 128 256 512

El
ap

se
d

 T
im

e
(m

in
s)

Third Dimension: K

HOSVD

77

observation is that the time takes to compute the core tensor of the Tucker decomposition

grows linearly with the size of the data sets. For the largest data set, it has already

become commeasurable to the time of initialization. We would expect it account for the

major computation time for even larger data sets.

5.6.Summary

Tensors are great abstractions to represent data sets of high dimensionality. While

being useful for reducing the noise and recovering the hidden information in data sets,

tensor decomposition techniques are notoriously unscalable due to its high computation

demand. In this chapter, we presented several techniques to implement the Hadamard

product, the KhatriRao product, and the Moore-Penrose Pseudoinverse in MapReduce.

From these implementations, we assembled our implementation of the CP-ALS algorithm

that computes the CP decomposition and the HOSVD algorithm that computes the

Figure 25 Computation time breakdown for the HOSVD algorithm.

0

5

10

15

20

25

30

35

40

45

50

32 64 128 256 512

El
ap

se
d

 T
im

e
(m

in
s)

Third Dimension: K

Tensor Matrix Product

Initialization

78

Tucker decomposition. Great scalability has been shown in the experiments we

conducted on the HOSVD algorithm.

79

6. CONCLUSIONS

6.1.Conclusions

As an effort towards solving the general problem of how to efficiently process

and understand large-scale data sets, this dissertation develops techniques and algorithms

in large-scale raster data processing and algorithm parallelizing using MapReduce.

Two meanings for the term “large-scale” are considered, namely the size of data

sets and the dimensionality of data sets. In terms of the size of data sets, this dissertation

addresses problems in loading and computing statistics over terabytes of raster data in an

online spatial data management system - TerraFly. Although the problems themselves are

specific to TerraFly, the developed techniques are generally applicable to the area of

large-scale raster data processing. Solutions of the problems are formed, implemented

and experimentally evaluated in a real-world cluster.

In terms of the dimensionality of data sets, this dissertation addresses algorithms

in two general categories of the domain of dimensionality reduction, namely matrix and

tensor factorization. Three forms of nonnegative matrix factorization and two major

tensor factorization algorithms were successfully scaled up in MapReduce. Extensive

experiments were conducted to verify the scalability of the Hadoop implementation of

these algorithms.

In summary, this dissertation demonstrates and advances the capability of

MapReduce in processing large-scale raster data and scaling up certain kinds of

80

algorithms. The developed techniques are not only effective in solving these specific

problems, but also generally applicable to the field of data intensive and computation

intensive computing using MapReduce.

6.2.Future Work

There are many directions for future work. As another major type of data in

spatial database, vector data, is completely different from raster data. They are relatively

small compared with raster data, but needs more complex operations over each byte of

the data. It looks like MapReduce is not a good option for direct application, but may be

best suited to generate the index structures that algorithms operates on [27]. More

investigations need to be done on how MapReduce could be applied to vector data.

The nonnegative matrix factorization algorithms we considered in chapter four are

all based on multiplicative updating rules, upon which we reduce the algorithm to

different implementations of matrix multiplication and successfully scaled them up in

MapReduce. We would like to investigate other NMF algorithms such as alternating non-

negative least squares [69] and projective gradient descent [70] to see if there is an

efficient MapReduce implementation.

 Similar to matrix factorization, there are many other tensor decompositions,

including INDSCAL, PARAFAC2, CANDELINC, DEDICOM, and PARATUCK2 as

well as nonnegative variants of all the above. One interesting direction is to investigate

schemes for scaling up these algorithms.

81

 Lastly, we would also like to explore various applications of NMF and tensor

decomposition to large-scale data sets.

82

LIST OF REFERENCES

[1] AT&T Daytona: http://www2.research.att.com/~daytona/

[2] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data processing

on large clusters. Commun. ACM 51, 1 (January 2008), 107-113.

[3] World Data Center for Climate:

http://www.mad.zmaw.de/fileadmin/extern/PI_Linux_DB_final.pdf

[4] Jim Gray, David T. Liu, Maria Nieto-Santisteban, Alex Szalay, David J. DeWitt,

and Gerd Heber. 2005. Scientific data management in the coming decade.

SIGMOD Rec. 34, 4 (December 2005), 34-41.

[5] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large

clusters,” Proceedings of the 6th Conference on Symposium on Opearting Systems

Design & Implementation - Volume 6 (San Francisco, CA, December 06 - 08,

2004). Operating Systems Design and Implementation. USENIX Association,

Berkeley, CA, 10-10.

[6] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. 2007.

Dryad: distributed data-parallel programs from sequential building blocks.

SIGOPS Oper. Syst. Rev. 41, 3 (March 2007), 59-72.

[7] TerraFly Project: http://terrafly.fiu.edu/tf-whitepaper.pdf

[8] Jon M. Kleinberg. Authoritative sources in a hyperlinked environment. JOURNAL

OF THE ACM, 46(5):604–632, 1999.

[9] Tamara Kolda and Brett Bader. The TOPHITS model for higher-order web link

analysis. In Proceedings of the SIAM Data Mining Conference Workshop on Link

Analysis, Counterterrorism and Security, 2006.

[10] Tamara G. Kolda and Brett W. Bader. 2009. Tensor Decompositions and

Applications. SIAM Rev. 51, 3 (August 2009), 455-500.

[11] Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary Bradski, and Christos

Kozyrakis. 2007. Evaluating MapReduce for Multi-core and Multiprocessor

Systems. In Proceedings of the 2007 IEEE 13th International Symposium on High

Performance Computer Architecture (HPCA '07). IEEE Computer Society,

Washington, DC, USA, 13-24.

[12] Bingsheng He, Wenbin Fang, Qiong Luo, Naga K. Govindaraju, and Tuyong

Wang. 2008. Mars: a MapReduce framework on graphics processors. In

Proceedings of the 17th international conference on Parallel architectures and

compilation techniques (PACT '08). ACM, New York, NY, USA, 260-269.

http://www2.research.att.com/~daytona/
http://www.mad.zmaw.de/fileadmin/extern/PI_Linux_DB_final.pdf
http://terrafly.fiu.edu/tf-whitepaper.pdf

83

[13] M. Mustafa Rafique, Benjamin Rose, Ali R. Butt, and Dimitrios S. Nikolopoulos.

2009. CellMR: A framework for supporting mapreduce on asymmetric cell-based

clusters. In Proceedings of the 2009 IEEE International Symposium on Parallel &

Distributed Processing (IPDPS '09). IEEE Computer Society, Washington, DC,

USA, 1-12.

[14] Yi Shan, Bo Wang, Jing Yan, Yu Wang, Ningyi Xu, and Huazhong Yang. 2010.

FPMR: MapReduce framework on FPGA. In Proceedings of the 18th annual

ACM/SIGDA international symposium on Field programmable gate arrays (FPGA

'10). ACM, New York, NY, USA, 93-102.

[15] M. Mustafa Rafique, Benjamin Rose, Ali R. Butt, and Dimitrios S. Nikolopoulos.

2009. Supporting MapReduce on large-scale asymmetric multi-core clusters.

SIGOPS Oper. Syst. Rev. 43, 2 (April 2009), 25-34.

[16] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, and Andrew

Tomkins. 2008. Pig latin: a not-so-foreign language for data processing. In

Proceedings of the 2008 ACM SIGMOD international conference on Management

of data (SIGMOD '08). ACM, New York, NY, USA, 1099-1110.

[17] Azza Abouzeid, Kamil Bajda-Pawlikowski, Daniel Abadi, Avi Silberschatz, and

Alexander Rasin. 2009. HadoopDB: an architectural hybrid of MapReduce and

DBMS technologies for analytical workloads. Proc. VLDB Endow. 2, 1 (August

2009), 922-933.

[18] Hung-chih Yang, Ali Dasdan, Ruey-Lung Hsiao, and D. Stott Parker. 2007. Map-

reduce-merge: simplified relational data processing on large clusters. In

Proceedings of the 2007 ACM SIGMOD international conference on Management

of data (SIGMOD '07). ACM, New York, NY, USA, 1029-1040.

[19] C. Chu et al, “MapReduce for Machine Learning on Multicore,” the Twentieth

Annual Conference on Neural Information Processing Systems, 2006.

[20] S. Papadimitriou and J. Sun, “DisCo: Distributed Co-clustering with Map-Reduce:

A Case Study towards Petabyte-Scale End-to-End Mining,” Proceedings of the

2008 Eighth IEEE international Conference on Data Mining (December 15 - 19,

2008), ICDM, IEEE Computer Society, Washington, DC, 2008, 512-521,

doi:10.1109/ICDM.2008.142.

[21] U. Kang, C. Tsourakakis, and C. Faloutsos, “PEGASUS: A Peta-Scale Graph

Mining System - Implementation and Observations,” the IEEE International

Conference on Data Mining 2009.

[22] B. Panda, J. Herbach, S. Basu, and R. Baryado, “PLANET: Massively Parallel

Learning of Tree Ensembles with MapReduce,” the 35th International Conference

on Very Large Data Bases, 2009.

84

[23] C. Liu, F. Guo, and C. Faloutsos, “BBM: bayesian browsing model from petabyte-

scale data,” Proceedings of the 15th ACM SIGKDD international Conference on

Knowledge Discovery and Data Mining (Paris, France, June 28 - July 01, 2009),

KDD '09, ACM, New York, NY, 2009, 537-546, doi:10.1145/1557019.1557081.

[24] Richard M. C. McCreadie, Craig Macdonald, and Iadh Ounis. 2009. On single-

pass indexing with MapReduce. In Proceedings of the 32nd international ACM

SIGIR conference on Research and development in information retrieval (SIGIR

'09). ACM, New York, NY, USA, 742-743.

[25] Richard Cyganiak, Holger Stenzhorn, Renaud Delbru, Stefan Decker, and

Giovanni Tummarello. 2008. Semantic sitemaps: efficient and flexible access to

datasets on the semantic web. In Proceedings of the 5th European semantic web

conference on The semantic web: research and applications (ESWC'08), Sean

Bechhofer, Manfred Hauswirth, Hoffmann, and Manolis Koubarakis (Eds.).

Springer-Verlag, Berlin, Heidelberg, 690-704.

[26] Thomas Sandholm and Kevin Lai. 2009. MapReduce optimization using regulated

dynamic prioritization. In Proceedings of the eleventh international joint

conference on Measurement and modeling of computer systems (SIGMETRICS

'09). ACM, New York, NY, USA, 299-310.

[27] Ariel Cary, Zhengguo Sun, Vagelis Hristidis, and Naphtali Rishe. 2009.

Experiences on Processing Spatial Data with MapReduce. In Proceedings of the

21st International Conference on Scientific and Statistical Database Management

(SSDBM 2009), Marianne Winslett (Ed.). Springer-Verlag, Berlin, Heidelberg,

302-319.

[28] Shubin Zhang, Jizhong Han, Zhiyong Liu, Kai Wang, and Shengzhong Feng. 2009.

Spatial Queries Evaluation with MapReduce. In Proceedings of the 2009 Eighth

International Conference on Grid and Cooperative Computing (GCC '09). IEEE

Computer Society, Washington, DC, USA, 287-292.

[29] Ralf Lämmel. 2007. Google's MapReduce programming model -- Revisited. Sci.

Comput. Program. 68, 3 (October 2007), 208-237.

[30] J Tordable. MapReduce for Integer Factorization. Arxiv preprint arXiv:1001.0421,

2010.

[31] Apache Hadoop Project: http://hadoop.apache.org/mapreduce/

[32] Google & IBM Academic Cluster Computing Initiative,

http://www.google.com/intl/en/press/pressrel/20071008_ibm_univ.html

[33] NSF Cluster Exploratory Program:

http://www.nsf.gov/pubs/2008/nsf08560/nsf08560.htm

http://hadoop.apache.org/mapreduce/
http://www.google.com/intl/en/press/pressrel/20071008_ibm_univ.html
http://www.nsf.gov/pubs/2008/nsf08560/nsf08560.htm

85

[34] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. 2003. The Google file

system. SIGOPS Oper. Syst. Rev. 37, 5 (October 2003), 29-43.

[35] http://csrc.nist.gov/groups/SNS/cloud-computing/

[36] Gonzalez, R., Woods, R., Digital Image Processing, Addison-Wesley, Reading

MA, 1992.

[37] Bräunl, T., with Feyrer, S., Rapf, W., Reinhardt, M.,Parallel Image Processing,

Springer Verlag, Heidelberg, 2000.

[38] http://www.adobe.com/products/photoshop/compare/

[39] http://www.gimp.org/

[40] http://www.esri.com/software/arcgis/

[41] http://www.erdas.com/Homepage.aspx

[42] Flynn, M. (1972). "Some Computer Organizations and Their Effectiveness". IEEE

Trans. Comput. C-21: 948.

[43] Rosenfeld, A, Parallel image processing using cellular arrays. Computer. Vol. 16,

no. 1, pp. 14-20. 1983

[44] DYER, C R, A VLSI pyramid machine for hierarchical parallel image processing ,

Conference on Pattern Recognition and Image Processing, Dallas, TX; United

States; 3-5 Aug. 1981. pp. 381-386. 1981

[45] Anthony P. Reeves, “Parallel computer architectures for image processing,”

Computer Vision, Graphics, and Image Processing, Volume 25, Issue 1, January

1984, Pages 68-88.

[46] Farrugia, J.-P.; Horain, P.; Guehenneux, E.; Alusse, Y.; GPUCV: A

Framework for Image Processing Acceleration with Graphics Processors,

[47] John Browna and Danny Crookes, A high level language for parallel image

processing, Image and Vision Computing, Volume 12, Issue 2, March 1994, Pages

67-79

[48] F.J. Seinstra, D. Koelma, "The Lazy Programmers Approach to Building a Parallel

Image Processing Library," IPDPS, vol. 3, pp.30115b, 15th International Parallel

and Distributed Processing Symposium (IPDPS'01) Workshops, 2001.

[49] Thomas Bräunl, Stefan Feyrer, Wolfgang Rapf, Michael Reinhardt, Parallel image

processing, Springer, 2001.

http://csrc.nist.gov/groups/SNS/cloud-computing/
http://www.adobe.com/products/photoshop/compare/
http://www.gimp.org/
http://www.esri.com/software/arcgis/
http://www.erdas.com/Homepage.aspx

86

[50] http://geospatial.osu.edu/resources/DOQ.pdf

[51] C. Ding, X. He, and H.D. Simon, “On the equivalence of nonnegative matrix

factorization and spectral clustering,” Proc. SIAM Data Mining Conf, 2005.

[52] T. Li and C. Ding, “The Relationships among Various Nonnegative Matrix

Factorization Methods for Clustering,” Proceedings of the 2006 IEEE International

Conference on Data Mining (ICDM 2006), Pages 362-371, 2006.

[53] E. Gaussier and C. Goutte, “Relation between PLSA and NMF and implications,”

Proceedings of the 28th annual international ACM SIGIR conference on Research

and development in information retrieval, August 15-19, 2005.

[54] C. Ding, T. Li, and W. Peng, “On the Equivalence Between Nonnegative Matrix

Factorization and Probabilistic Latent Semantic Indexing,” Computational

Statistics and Data Analysis, 52(8): 3913-3927, 2008.

[55] C. Liu, H. Yang, J. Fan, L. He, and Y. Wang, “Distributed nonnegative matrix

factorization for web-scale dyadic data analysis on mapreduce,” Proceedings of the

19th international Conference on World Wide Web (Raleigh, North Carolina, USA,

April 26 - 30, 2010), WWW '10. ACM, New York, NY, 2010, 681-690.

[56] Lynn Elliot Cannon, “A cellular computer to implement the kalman filter

algorithm,” Technical report, Ph.D. Thesis, Montana State University, 14 July

1969.

[57] Gene H. Golub and Charles F. Van Loan, Matrix Computations. 3rd ed, The Johns

Hopkins University Press, 1996.

[58] J. J. MODI, Parallel Algorithms and Matrix Computation. Oxford: Clarendon

Press, 1988.

[59] S. A. Robila and L. G. Maciak, “A parallel unmixing algorithm for hyperspectral

images,” Intelligent Robots and Computer Vision XXIV, 2006.

[60] E. Batternberg and D. Wessel, “Accelarating Non-Negative Matrix Factorization

for Audio Source Separation on Multi-core and Many-core Architectures,” 10th

International Society for Music Information Retrieval Conference (ISMIR 2009).

[61] M. Kearns, “Efficient noise-tolerant learning from statistical queries,” J. ACM 45,

6, 983-1006, 1998.

[62] The Apache Mahout Project: http://mahout.apache.org/

[63] Y. Chen, D. Pavlov, and J. F. Canny, “Large-scale behavioral targeting,”

Proceedings of the 15th ACM SIGKDD international Conference on Knowledge

http://geospatial.osu.edu/resources/DOQ.pdf
http://mahout.apache.org/

87

Discovery and Data Mining (Paris, France, June 28 - July 01, 2009), KDD '09,

ACM, New York, NY, 2009, 209-218.

[64] D. D. Lee and H. S. Seung, “Algorithms for Non-Negative Matrix Factorization,”

NIPS, 2000.

[65] C. Ding, T. Li, and M. I. Jordan, “Convex and Semi-Nonnegative Matrix

Factorizations,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

32(1): 45-55, 2010.

[66] C. Ding, T. Li, W. Peng, and H. Park, “Orthogonal nonnegative matrix tri-

factorization for clustering,” Proc SIGKDD Int‟l Conf. on Knowledge Discovery

and Data Mining, 2006.

[67] H. Ning, W. Xu, Y. Chi, Y. Gong, and T. Huang, “Incremental spectral clustering

with application to monitoring of evolving blog communities,” SIAM Int. Conf. on

Data Mining, 2007.

[68] Y. Chi, X. Song, D. Zhou, K. Hino, and B. L. Tseng, “On evolutionary spectral

clustering,” ACM Trans. Knowl. Discov. Data 3, 4 (Nov. 2009), 1-30.

[69] M. B. Berry, M. Browne, A. N. Langville, V. P. Pauca, and R. J. Plemmons,

“Algorithms and applications for approximate nonnegative matrix factorization,”

Computational Statistics & Data Analysis Volume 52, Issue 1, 15 September 2007,

Pages 155-173.

[70] Chih-Jen Lin, “On the Convergence of Multiplicative Update Algorithms for

Nonnegative Matrix Factorization,” IEEE Transactions on Neural Networks 18 (6):

1589-1596, 2007.

[71] A. Shashua, and T. Hazan, “Non-negative tensor factorization with applications to

statistics and computer vision,” Proceedings of the 22nd international Conference

on Machine Learning (ICML '05), Pages 792-799, 2005.

[72] F. L. Hitchcock, The expression of a tensor or a polyadic as a sum of products, J.

Math. Phys., 6 (1927), pp. 164-189.

[73] F. L. Hitchcock, Multiple invariants and generalized rank of a p-way matrix or

tensor, J. Math. Phys., 7 (1927), pp. 39-79.

[74] L. R. Tucker, Implications of factor analysis of three-way matrices for

measurement of change, in Problems in Measuring Change, C. W. Harris, ed.,

University of Wisconsin Press, 1963, pp. 122-137.

[75] L. R. Tucker, The extension of factor analysis to three-dimensional matrices, in

Contributions to Mathematical Psychology, H. Gulliksen and N. Frederiksen, eds.,

Holt, Rinehardt,& Winston, New York, 1964, pp. 110-127.

88

[76] L. R. Tucker, Some mathematical notes on three-mode factor analysis,

Psychometrika, 31(1966), pp. 279-311.

[77] J. D. Carroll and J. J. Chang, Analysis of individual differences in

multidimensional scaling via an N-way generalization of “Eckart-Young”

decomposition, Psychometrika, 35(1970), pp. 283–319.

[78] R. A. Harshman, Foundations of the PARAFAC procedure: Models and conditions

for an “explanatory” multi-modal factor analysis, UCLA Working Papers in

Phonetics, 16 (1970), pp. 1–84.

[79] C. J. Appellof and E. R. Davidson, Strategies for analyzing data from video

fluorometric monitoring of liquid chromatographic effluents, Anal. Chem., 53

(1981), pp. 2053–2056.

[80] R. Bro, PARAFAC. Tutorial and applications, Chemometrics and Intelligent

Laboratory Systems, 38 (1997), pp. 149–171.

[81] R. Bro, Multi-way Analysis in the Food Industry: Models, Algorithms, and

Applications, Ph.D.thesis, University of Amsterdam, 1998.

[82] C. M. Andersen and R. Bro, Practical aspects of PARAFAC modeling of

fluorescence excitation-emission data, J. Chemometrics, 17 (2003), pp. 200–215.

[83] C. A. Andersson and R. Henrion, A general algorithm for obtaining simple

structure of core arrays in N-way PCA with application to fluorimetric data,

Comput. Statist. Data Anal., 31 (1999), pp. 255–278.

[84] D. Bini, The Role of Tensor Rank in the Complexity Analysis of Bilinear Forms,

presentation at ICIAM07, Z ürich, Switzerland, 2007.

[85] J. B. Kruskal, Three-way arrays: Rank and uniqueness of trilinear decompositions,

with application to arithmetic complexity and statistics, Linear Algebra Appl., 18

(1977), pp. 95–138.

[86] L. De Lathauwer and B. De Moor, From matrix to tensor: Multilinear algebra and

signal processing, in Mathematics in Signal Processing IV, J. McWhirter and I.

Proudler, eds., Clarendon Press, Oxford, 1998, pp. 1–15.

[87] M. A. O. Vasilescu and D. Terzopoulos, Multilinear analysis of image ensembles:

TensorFaces, in ECCV 2002:Pr oceedings of the 7th European Conference on

Computer Vision, Lecture Notes in Comput. Sci. 2350, Springer, 2002, pp. 447–

460.

[88] N. Liu, B. Zhang, J. Yan, Z. Chen, W. Liu, F. Bai, and L. Chien, Text

representation: From vector to tensor, in ICDM 2005:Pr oceedings of the 5th IEEE

89

International Conferenceon Data Mining, IEEE Computer Society Press, 2005, pp.

725–728.

[89] Steffen Rendle, Leandro Balby Marinho, Alexandros Nanopoulos, and Lars

Schmidt-Thieme. 2009. Learning optimal ranking with tensor factorization for tag

recommendation. In Proceedings of the 15th ACM SIGKDD international

conference on Knowledge discovery and data mining (KDD '09). ACM, New

York, NY, USA, 727-736.

[90] T. G. Kolda, B. W. Bader, and J. P. Kenny, Higher-order web link analysis using

multilinear algebra, in ICDM 2005:Pr oceedings of the 5th IEEE International

Conference on Data Mining, IEEE Computer Society Press, 2005, pp. 242–249.

[91] H. A. L. Kiers, Towards a standardized notation and terminology in multiway

analysis, J. Chemometrics, 14 (2000), pp. 105–122.

[92] B. W. Bader and T. G. Kolda, Algorithm 862: MATLAB tensor classes for fast

algorithm prototyping, ACM Trans. Math. Software, 32 (2006), pp. 635–653.

[93] A. Smilde, R. Bro, and P. Geladi, Multi-Way Analysis: Applications in the

Chemical Sciences, Wiley, West Sussex, England, 2004.

[94] J. Levin, Three-Mode Factor Analysis, Ph.D. thesis, University of Illinois, Urbana,

1963.

[95] L. De Lathauwer, B. De Moor, and J. Vandewalle, A multilinear singular value

decomposition, SIAM J. Matrix Anal. Appl., 21 (2000), pp. 1253–1278.

[96] N. K. M. Faber, R. Bro, and P. K. Hopke, Recent developments in

CANDECOMP/PARAFAC algorithms: A critical review, Chemometrics and

Intelligent Laboratory Systems,65 (2003), pp. 119–137.

[97] B. W. Bader and T. G. Kolda, Efficient MATLAB computations with sparse and

factored tensors, SIAM J. Sci. Comput., 30 (2007), pp. 205–231.

[98] Mark P. Sears, Brett W. Bader, and Tammy Kolda, Parallel Implementation of

Tensor Decompositions for Large Data Analysis, SIAM AN09 Minisymposium on

High Performance Computing on Massive Real-World Graphs, 2009.

[99] Qiang Zhang, Michael W. Berry, Brian T. Lamb, and Tabitha Samuel. 2009. A

Parallel Nonnegative Tensor Factorization Algorithm for Mining Global Climate

Data. In Proceedings of the 9th International Conference on Computational

Science (ICCS 2009), Springer-Verlag, Berlin, Heidelberg, 405-415.

[100] Jukka Antikainen, Jiří Havel, Radovan Jošth, Adam Herout, Pavel Zemčík,

Markku Hauta-Kasari, "Non-Negative Tensor Factorization Accelerated Using

GPGPU," IEEE Transactions on Parallel and Distributed Systems, 08 Nov. 2010.

90

[101] Zhengguo Sun, Tao Li, and Naphtali Rishe. Large-Scale Matrix Factorization

using MapReduce. In Proceedings of the Optimization-based Methods for

Emerging Data Mining Workshop associated with ICDM 2010 (OEDM'10), 2010.

91

VITA

ZHENGGUO SUN

2004 B.E., Software Engineering

Zhejiang University

Hangzhou, China

2007 M.E., Software Engineering

Beihang University

Beijing, China

2007-2011 Doctoral Candidate in Computer Science

Florida International University

Miami, FL, USA

PUBLICATIONS

 Ariel Cary, Zhengguo Sun, Vagelis Hristidis, and Naphtali Rishe. 2009.

Experiences on Processing Spatial Data with MapReduce. In Proceedings of the

21st International Conference on Scientific and Statistical Database Management

(SSDBM 2009), Marianne Winslett (Ed.). Springer-Verlag, Berlin, Heidelberg,

302-319.

 Zhengguo Sun, Tao Li, Naphtali Rishe, "Large-Scale Matrix Factorization Using

MapReduce," pp.1242-1248, 2010 IEEE International Conference on Data

Mining Workshops, 2010.

