
Large-Scale Matrix Factorization using MapReduce

Zhengguo Sun, Tao Li, and Naphtali Rishe
School of Computer Science

Florida International University
Miami, FL 33199

{zsun002, taoli, rishen}@cs.fiu.edu

Abstract—Due to the popularity of nonnegative matrix
factorization and the increasing availability of massive data
sets, researchers are facing the problem of factorizing large-
scale matrices of dimensions in the orders of millions. Recent
research [11] has shown that it is feasible to factorize a million-
by-million matrix with billions of nonzero elements on a
MapReduce cluster. In this work, we present three different
matrix multiplication implementations and scale up three types
of nonnegative matrix factorizations on MapReduce.
Experiments on both synthetic and real-world datasets show
the excellent scalability of our proposed algorithms.

Keywords: nonnegative matrix factorization; MapReduce

I. INTRODUCTION
Nonnegative matrix factorization (NMF) factorizes an

input nonnegative matrix into nonnegative matrices of lower
rank. Originally proposed for parts-of-whole interpretation of
matrix factors, NMF has attracted a lot of attentions recently
in data mining and machine learning communities. It is
recently discovered that NMF can be used to solve
challenging data mining and machine learning problems.
For example, NMF with the sum of squared error cost
function is equivalent to a relaxed K-means clustering, the
most widely unsupervised learning algorithm [21][22]. In
addition, NMF with the I-divergence cost function is
equivalent to probabilistic latent semantic indexing, another
unsupervised learning method popularly used in text analysis
[23][24]. Consequently, NMF has been shown to be useful in
a variety of applied settings, including environmetrics,
chemometrics, pattern recognition, multimedia data analysis,
text mining, web mining, and DNA gene expression analysis.

Due to the increasing availability of massive data sets,
researchers are facing the problem of factorizing matrices of
dimensions in the orders of millions. Recent research [11]
has shown that it is possible to factorize such gigantic
matrices within tens of hours using the MapReduce
distributed programming platform. In this paper, we propose
three different matrix multiplication implementations using
MapReduce, based on which we successfully parallelize
three different types of NMF algorithms on the MapReduce
platform. We evaluate our algorithms on a cluster provided
by Google and IBM through the NSF Cluster Exploratory
(CLuE) program [17] using both synthetic and real data sets.
Results have shown that the performance of our proposed
algorithm is at least as good as previous efforts.

Different from the work by Liu et al. [11] whose
implementations are directly built on the updating rules, we
reduce the problem of NMF to a series of different matrix
multiplication implementations on the MapReduce platform,

which makes our algorithms applicable to most matrix
factorization algorithms that are using the multiplicative
updating scheme.

In summary, the key contributions of our work are
summarized below:

• We propose three different matrix multiplication
implementations on MapReduce.

• We scale up three different types of NMF algorithms
on MapReduce based on our proposed matrix
multiplication implementations.

• We implement and experimentally evaluate our
algorithms using both synthetic and real data sets on
a real-world cluster.

The rest of this paper is organized as follows. Section II
defines three different types of nonnegative matrix
factorization and introduces their updating algorithms
respectively. Section III describes three schemes to perform
matrix multiplication on MapReduce based on the properties
of the matrices. These schemes are then used to implement
the updating algorithms in Section II. We report the
experimental evaluation in Section IV and briefly discuss
related works in Section V. Finally, Section 0 concludes our
work.

II. NONNEGATIVE MATRIX FACTORIZATION

Let ܺ א Թାൈ be the input data matrix, we define three
different matrix factorizations and introduce their updating
rules in the following.

A. NMF
The classical NMF [12] could be written as ܺ ൎ ,்ܩܨ

where ܨ א Թାൈೖ, ܩ א Թାൈೖ. The updating rules for NMF
are listed as follows:

ܨ ՚ ܨ (ீ)ೖ൫ிீீ൯ೖ , (1)

ܩ ՚ ܩ ൫ி൯ೕೖ൫ீிி൯ೕೖ. (2)

B. Convex-NMF
In general, the basis vectors ܨ has the meaning of cluster

centroids. To enforce this geometry meaning, ܨ can be
restricted to be a convex combination of the input data
points [25]. In other words, in addition to have ܨ to be

2010 IEEE International Conference on Data Mining Workshops

978-0-7695-4257-7/10 $26.00 © 2010 IEEE

DOI 10.1109/ICDMW.2010.155

1242

2010 IEEE International Conference on Data Mining Workshops

978-0-7695-4257-7/10 $26.00 © 2010 IEEE

DOI 10.1109/ICDMW.2010.155

1242

nonnegative, we restrict each column of ܨ to lie within the
space spanned by the columns of ܺ, i.e.,

݂ ൌ ଵݔଵݓ ڮ ݔݓ ൌ ݓܺ , or ܨ ൌ ܹܺ,

where ݂ and ݔ is a column vector of ܨ and ܺ ݓ , is an
element of ܹ, ݓ ݀݊ܽ 0. We call this restricted form of
factorization as Convex-NMF [25]. The updating rules of
this factorization are

ܩ ՚ ඨܩ ൫ௐ൯ೖ൫ீௐௐ൯ೖ, (3)

 ܹ ՚ ܹඨ ൫ீ൯ೖ൫ௐீீ൯ೖ. (4)

C. Tri-Factorization
Tri-factorization [14] is useful to simultaneously cluster

the rows and the columns of the input data matrix ܺ. We
consider the following nonnegative 3-factor decomposition ܺ ൎ ,்ܩܵܨ

where ܨ א Թାൈೖ, ܵ א Թାೖൈೖ, ܩ א Թାൈೖ. Note that S
provides additional degrees of freedom such that the low-
rank matrix representation remains accurate while F gives
row clusters and G gives column clusters. The updating
rules of tri-factorization are

ܩ ՚ ඨܩ ൫ிௌ൯ೕೖ൫ீீிௌ൯ೕೖ, (5)

ܨ ՚ ඨܨ ൫ீௌ൯ೖ൫ிிீௌ൯ೖ, (6)

 ܵ ՚ ܵඨ ൫ிீ൯ೖ൫ிிௌீீ൯ೖ. (7)

III. NMF USING MAPREDUCE

A. MapReduce Introduction
MapReduce is a programming model proposed by

Google for processing and generating large data sets [6].
Inspired by two functional programming primitives, each
MapReduce computation unit consists of two stages, namely,
map stage and reduce stage. Input of key/value pairs are
consumed by a map function defined by the user in the map
stage. A set of intermediate key/value pairs are generated in
the map stage and grouped by keys as the input to the reduce
stage. User-defined reduce function merges all intermediate

values associated with the same intermediate key and output
the final result.

Despite its simplicity, the applicability of this model is
not limited to processing and generating large data sets.
Large-scale data clustering [8], graph computations [9] and
many other problems have been shown to be suitable for
MapReduce. In the following, we first discuss three different
matrix multiplication implementations on MapReduce.
Based on that, we next discuss how to scale up NMF on
MapReduce. We give details on the steps to compute the
classic NMF. We extend the algorithm to ConvexNMF and
Tri-Factorization, by pointing out the difference between
these two factorizations and NMF as their updating rules are
similar. For the same reason, we only discuss how to update ܩ in NMF.

B. Matrix Multiplication on MapReduce
The major operation in the updating rules of all three

types of factorizations is matrix multiplication. Thus,
efficient implementation of matrix multiplication on
MapReduce is the key to scale up matrix factorization.

Assume ܣ א Թାൈ and ܤ א Թାൈೖ . Traditionally, ܤܣ
is defined as the inner product of the row vectors of ܣ and
column vectors of ܤ. Thus,

ܤܣ ൌ ቌ ܽଵܽଶܽڭቍ (ܾଵ ܾଶ ڮ ܾ) ൌ ൭ ܽଵܾଵ ڮ ܽଵܾڭ ڰ ܾଵܽڭ ڮ ܾܽ൱.

This kind of decomposition is useful if we could share ܤ
across all rows of ܣ. Each row of ܤܣ could be computed in
parallel. A MapReduce job MM-1 is formulized in TABLE I.
to carry out this computation.

TABLE I. THREE MATRIX MULTIPLICATION SCHEMES

Scheme
Input/Output

input output

MM-1
Map ݅ۃ, ܽ݅ۃ ۄכ, ܽۄܤכ
Reduce None

MM-2

Map ݅ۃ, ,݅ۃ or ۄכܽ ܾ݅ۃ ۄכ, ,݅ۃ or ۄכܽ ܾۄכ
Reduce ݅ۃ, [ܽ, ܾ]݆ۃൣ ۄ, ܿۄכ൧ or ൣ݆ۃ, ൧ۄכܿ
Map ݆ۃ, ݆ܿۃ ۄ, ܿۄ
Reduce ݆ۃ, ൣ ܿభ ܿమ ڮ ൧݆ۃ ۄ, ܿᇱۄ

MM-3
Map ݅ۃ, ݆ܽۃൣ ۄכ, ܿۄ൧
Reduce ݆ۃ, ൣ ܿభ ܿమ ڮ ൧݆ۃ ۄ, ܿᇱۄ

We use ܽכ to denote a row vector with id ݅ and ܽכ to

denote a column vector. We use ܽ to denote either a row
vector or column vector if it doesn’t matter which one it is. ܽᇱ is used to denote the final result aggregated from all the ܽ `s. We use an angle bracket to denote a key/value pair and
a square bracket to denote a list of key/value pairs.

12431243

As can be seen from TABLE I. no reduce phase is
needed for MM-1. The input to the map phase is the row
vectors of ܣ. When the size of ܤ gets large enough, this
scheme will fail since the cost of sharing a large matrix
across many nodes in a cluster is too expensive.

Alternatively, we could decompose ܣ into column
vectors and ܤ into row vectors. Thus,

ܤܣ ൌ (ܽଵ ܽଶ ڮ ܽ) ൮ܾଵܾଶܾڭ൲ ൌ ∑ ܽ ٔ ܾ.
The implication of this decomposition is that if we could

partition ܣ and ܤ in such a way that the corresponding
columns of ܣ and rows of ܤ are on the same machine, we
could compute the outer product in parallel and merge them
together to obtain AB. This scheme fits the MapReduce
model perfectly. No data sharing is required as in the
previous scheme. We could use two MapReduce jobs to
implement this scheme MM-2, which is shown in TABLE I.

Now let’s examine these two jobs of MM-2 in detail. The
first job does multiplication and the second job does
summation. The map phase of the multiplication job accepts
a column vector ܽכ or a row vector ܾכ , and emits an
intermediate pair with column id or row id as key and the
column or row itself as value. Column and row vectors with
the same id are shuffled to the same machine as the input for
the reduce phase. In the reduce phase, we compute the outer
product of ܽכ and ܾכ and, depending on the context in
which this multiplication is used, we either output a bunch of
row vectors or column vectors, which is denoted in TABLE
I. as ൣ݆ۃ, ܿۄכ൧ or ൣ݆ۃ, .൧ۄכܿ These row or column vectors are
partial results of the vector. We merge them into the final
vector in the summation job. The map phase of the
summation job is an identity function, which just outputs the
input key/value pairs for shuffling. The reduce phase of this
job merges all the row vectors with the same id or column
vectors with the same id and emits a final row vector or
column vector.

This scheme can be used to compute the product of any
matrices, no matter it is dense or sparse, as long as the left
matrix is partitioned into column vectors and the right matrix
is partitioned into row vectors. Under certain circumstance,
the two MapReduce jobs can be merged into one. For
example, consider the matrix multiplication ܣ்ܣ. Assume ܣ
is partitioned in row vector, then ்ܣ in column vector is the
same as ܣ in row vector. Thus, we could compute ܣ்ܣ using
only one MapReduce job as shown in MM-3 of TABLE I.
where multiplication is conducted in map phase and
summation is performed in reduce phase. This shortcut saves
one MapReduce job and turns out to be very useful in matrix
factorization, where multiplications like ܣ்ܣ appear
frequently.

C. NMF
We partition ܺ, ܨ and ܩ into row vectors, which renders

the following view:

ܺ ൌ ቌ ቍݔڭଶݔଵݔ ܨ ൌ ൮ ଵ݂݂ଶ݂ڭ൲ ܩ ݀݊ܽ ൌ ቌ݃ଵ݃ଶ݃ڭቍ,

where ݔ is ܽ ݊-dimensional row vector and ݂ and ݃ are ݇
dimensional row vectors. All of them are stored as sets
of ݅ۃ, ,݅ۃ ,ۄݔ ݂ۄ and ݅ۃ, ݃ۄ key/value pairs. There are three
steps to update ܩ. The first step is to compute the numerator ்ܺܨ in (2). The second step is to compute the denominator ܨ்ܨܩ in (2). And the last step is to update ܩ. Fig. 1 shows
the flow chart of updating ܩ . We discuss them in the
following one by one.

1) Computing ܣ ൌ ܨ்ܺ
Since we partition ܺ and ܨ in row vectors, ்ܺܨ is ready

for multiplication. Using the scheme MM-2 in TABLE I. ,
we could compute ்ܺܨ with two MapReduce jobs.

2) Computing ܤ ൌ ܨ்ܨܩ
There are two ways to compute ܨ்ܨܩ. The first one is to

compute ்ܨܩ first and ܨ்ܨܩ afterwards. This requires 4
MapReduce jobs, 2 for each multiplication. The second one
is much faster. By using MM-3 to compute ܨ்ܨ first, and
using MM-1 to compute ܨ்ܨܩ, only two jobs are needed.
Noting that the result of ܨ்ܨ is a ݇ ൈ ݇ matrix which is
reasonably small to be fit into memory for computing ܨ்ܨܩ
with ܩ.

3) Updating G
Once both ்ܺܨ and ܨ்ܨܩ have been computed; only

one job is needed to update ܨ , which is summarized as
follow:

• Map: Map ݅ۃ, ݃݅ۃ ,ۄ, ܽۄ and ݅ۃ, ܾۄ as they are
• Reduce: Take ݅ۃ, [݃, ܽ, ܾ]ۄ and emit݅ۃ, ݃ᇱۄ, where ݃ᇱ ൌ ݃, ,ೕ,ೕ.

This finishes the update of ܩ is updated in the same ܨ .
manner, except that when computing ܺܩ, we need ܺ to be
partitioned into column vectors, whereas it is stored as row
vectors. Thus, an additional MapReduce job is needed to
transform ܺ from row vectors to column vectors. This won’t
affect the overall performance, since only one such job is
needed for the entire updating cycle, which usually consists
of a few iterations.

D. Convex-NMF and Tri-Factorization
Convex-NMF and Tri-Factorization are essentially

computed in the same manner as NMF, namely, to update a
matrix, first compute the numerator of the updating rule, and
then compute the denominator, and finally update the
original matrix. In the following, we focus on their
difference with NMF on the updating rules, rather than the
details.

1) Convex-NMF
We partition ܺ, ܩ and ܹ into row vectors as we did in

NMF. One notable pattern of the updating rules of Convex-
NMF is that ்ܹܺܺ has appeared three times, two in (3) and
one in (4). Thus, it is beneficial to first compute ்ܹܺܺ and
use the result later.

12441244

Again, we could use the MM-3 to compute ்ܺܺ first
and ்ܹܺܺ afterwards. However, this time we decide not to
do that, because the result of ்ܺܺ would be a huge dense
matrix that could introduce a lot of data shuffling in later
computation. We choose to compute ܹܺ first and ்ܹܺܺ
afterwards using MM-2 in TABLE I. .

After computing ܹܺ, we use two additional MM-2s to
compute the denominator in (3). The numerator in (4) is
computed in the same manner as ்ܹܺܺ. When computing
the denominator in (4), we first use MM-3 to compute ܩ்ܩ,
and then take the result of ்ܹܺܺ and do a MM-1 job to
finish the computation.

2) Tri-Factorization
Again, we partition ܺ , ܩ ܨ , and ܵ into row vector.

Repeated patterns like ்ܺܵܨ in (5) and ்ܺܵܩ in (6) are
utilized to reduce the computation. To update ܩ , we first
compute the numerator ்ܺܵܨ in (5) using MM-2 (ܣ ൌ (ܨ்ܺ
and MM-1 (ܤ ൌ The result is then used to compute the .(ܵܣ
denominator in (5) using MM-2 (ܥ ൌ ܤ்ܩ) and MM-1
 .is updated similarly ܨ .(ܥܩ)

The updating rule of ܵ has its own structure and ܵ is
updated slightly differently. First of all, the numerator of ܵ
is computed using two MM-2s (ܣ ൌ We use .(ܩܣ ݀݊ܽ ்ܺܨ
MM-3 to compute both ܤ ൌ ܥ and ܨ்ܨ ൌ in (7). And ܩ்ܩ
then two MM-1 operations are used to compute ܦ ൌ Finally, an update job is used to update the new value .ܥܦ and ܵܤ
of ܵ.

IV. EXPERIMENTS
We use the open source implementation of MapReduce –

Hadoop [15] in our experiments. All three factorization
algorithms have been implemented in Java for Hadoop.

A. Experiments Setup
All the experiments were conducted on a large shared

cluster of approximately 500 machines provided by Google
and IBM [18]. Each machine has two single-core 2.8GHz
Xeon processors, 8 GB memory, two 400 GB hard drives,
and one gigabit Ethernet connection. Hadoop 0.20.1 runs on

one 64-bit Xen virtual machine running on top of the above
physical hardware with access to all the memory (minus
some overhead), all the execution threads of the processors
and all of the disks. The VM runs CentOS 5.3 and the host
operating system runs Fedora Core 8.

Both synthetic and real data sets were used in the
experiments. Synthetic data sets were generated by a random
matrix generator, which generates a matrix ܺ א Թାൈ with
sparsity δ on given parameters ݉, ݊ and δ. We varied ݉, ݊
and δ to see how the performance varies. While the number
of participating machines in the map phase cannot be set
directly, we varied the number of machines ܴ in the reduce
phase to see how more participating machines could improve
the performance. Unless explicitly pointed out, all the
reported time is for one iteration of the algorithms.

The blog data was collected by an NEC in-house blog
crawler. Given seeds of manually picked highly ranked blogs,
the crawler discovered blogs that are densely connected with
the seeds, resulting in an expanded set of blogs that
communicate with each other [19][26]. The data set is
represented as a sparse matrix that is of dimension 274,679
by 5,304. Each row is a blog entry and the columns contain
word frequencies in the blogs. TABLE II. summarizes the
characteristics of the data sets used in the experiments.

In the following sections, we first examine the
computation cost of each component in (2). Then, we
examine the scalability of the algorithms with the size of the
input matrices. We also present how the performance varies
w.r.t δ, ݇ and ܴ in section IV.C. Finally, we evaluate the
algorithms on the real data set.

B. Computation Cost
The computation cost of each MapReduce job in

updating ܩ is shown in TABLE III. We recorded the data
shuffled between Map phase and Reduce phase in MB and
the total elapsed time in seconds for each job. We choose ݉ ൌ 2ଶଶ, ݊ ൌ 2ଵଶ, ݇ ൌ 8, ߜ ൌ 2ି for the matrix being
factorized in this experiment, which is typical for a large data
set.

As can be seen from TABLE III. , the major cost in
updating ܩ is the computation of ்ܺܨ and ܨ்ܨ , which
accounts for 87 percent of the total elapsed time. This is
understandable because the inner dimension of both of the
two multiplications is in the order of million. Another
notable pattern is the imbalance in the size of data shuffling.
The multiplication job of ்ܺܨ shuffled more than 2 GB of
data, while ܨ்ܨ only shuffled 7 KB. This is because we used
MM-2 to compute ்ܺܨ , whose Map phase only read the
input for grouping. Thus, both ்ܺand ܨ were shuffled. On
the other hand, we used MM-3 to compute ܨ்ܨ, where the
multiplication was performed in Map phase and only the
small resulting ݇ ൈ ݇ matrix was shuffled.

C. Scalability and Performance w.r.t δ, k and R
We also report the elapsed time of one iteration for all

three algorithms in 0 In these experiments, we fixed ݇ ൌ8, ߜ ൌ 2ି, ܴ ൌ 8 ܽ݊݀ ݊ ൌ 2ଵଵ and varied ݉ from 2ଵଶ to 2ଶସ.

Figure 1. Computing ܩ ՚ ܩ ൫ி൯ೕೖ(ீிி)ೕೖ.

X: (i, xi)
(i, [xi, fi])

F: (i, fi)

(j, xi,jfj)

Map Reduce

(j, [xi,jfj])
(j, aj)

G: (i, gi)
(i, fiTfi)

(i, bi)
(j, (FTF)j)

(i, ai,bi ,gi)
(i, gi’)

A=XTF
MM-2

FTF
MM-3

B=GFTF
MM-1

Copy

12451245

TABLE II. DATA SETS DESCRIPTION

Data Sets m n δ Size(MB)

Synthetic data sets 2ଵଶ~2ଶସ 2ଵଵ~2ଵଶ 2ିଵ~2ିହ 1~6605

Real data set 274,649 5,304 0.008 47

As can be seen from Fig. 2, the time doesn’t change

much as m increases from 212 to 218 . This is because the
computation power hasn’t been saturated on this scale. The
main cost is the overhead of starting MapReduce jobs.
Starting from 218, we observe the sub linear scalability for
all of the algorithms. This is due to the appropriate
application of different multiplication implementations for
different components in the updating rules, which minimizes
the communication cost and maximizes data locality and
parallelism.

Fig. 3 shows how the performance varies w.r.t the
sparsity ߜ . As δ goes from 2ିଵ to 2ିହ , the number of
nonzero elements in the matrix increases from 16 million to
600 million, and the elapsed time also increases in proportion
to that.

Fig. 4 reveals the linearity between elapsed time and the
dimensionality of ݇. As ݇ doubles from 8 to 128, the elapsed
time gradually increases from 10 minutes to 40 minutes. The
slope is smaller than 1, which is good for large data sets.

Finally, we plot the speedup achieved by doubling the
number of machines in the reduce phases of MM-2 and MM-
3 in Fig. 5. Two series are plotted. One shows the speedup
for one single iteration of the NMF algorithm; the other
shows the speedup achieved by the affected MapReduce jobs
only, that is, MM-2 and MM-3. There are jobs that don’t
benefit from adding more machines, such as MM-1 and the
updating of the original matrix. Thus, the speedup for one
single iteration is smaller than that of MM-2 and MM-3.

D. Experiments with real data set
Finally, we ran our algorithm on the real world blog data

set. The result is reported in Fig. 6. We divided this data set
into five partitions and ran our algorithms on 20%, 40%,
60%, 80%, and the whole data set. Again, we observed linear
scalability with regarding to this data set. Due to the
relatively small size of this data set compared to the synthetic
data sets, most of the elapsed time is spent in starting and
cleaning up MapReduce jobs, which results a near-flat line in
Fig. 6.

V. RELATED WORK
Two particular lines of research are related to our work.

One is existing works in parallel matrix multiplication and
NMF. The other is using MapReduce in large-scale data
mining and machine learning.

A. Parallel Matrix Multiplication and NMF
Because of the importance of matrix multiplication as a

basic operation in linear algebra, parallel matrix
multiplication has been studied extensively. One of the most
popular algorithm might be Cannon’s algorithm [1].
Although most of the algorithms assume special data layout

and are tied to a particular parallel architecture, some basic
ideas still could be applied to MapReduce. Algorithms
designed for single instruction multiple data (SIMD)
systems are of particular interests, for the resembalance
between MapReduce and SIMD. For example, the MM-2
scheme we proposed in Section III.B could also be
implemented directly on an SIMD system by replacing a
machine in the cluster with a processor in the system. From
a relational algebra perspective, what MM-2 does is a join
on the column id of the left matrix and the row id of the
right matrix. More detailed discussions could be found in
[2] [3].

Because of the popularity of NMF, there are many
works in trying to parallelize it [4][5]. Since data sharing
and communication are no longer light-weight in distributed
clusters like MapReduce, those methods cannot be ported
directly to MapReduce.

B. Large-scale data mining using MapReduce
Although the initial purpose of MapReduce is to perform

large-scale data processing [6], it turns out that this model is
much more expressive than that [6]. Chu et al. investigated
the possibility to implement machine learning algorithms
using MapReduce on multicore [7]. Their conclusion is that
a variety of learning algorithms that fit the statistic query
model [30] could be parallelized using MapReduce. An open
source project Mahout [13] has been started to port those
algorithms to Hadoop. Papadimitriou and Sun have done a
case study in data mining on co-clustering [8] towards
petabyte scale of data using MapReduce. MapReduce has
also been used in many other tasks of data mining and
machine learning. Those works include but not limited to
Kang et al. on graph mining [9], Panda et al. on tree
ensembles [20], Liu et al. on bayesian browsing model [10],
and Chen et al. on behavioral targeting [16].

In particular, Liu et al. successfully scaled up the
classical NMF [12] for web-scale dyadic data analysis on
MapReduce [11]. They assumed the matrix to be factorized
is stored as ൫݅, ݆, ,൯ tuples that are spread across machinesܣ
and proposed different partitions for the factors. Although
the techniques they used are different, they could be reduced
to one of the matrix multiplication schemes we proposed in
Section III.B.

TABLE III. COMPUTATION COST OF UPDATING G IN NMF

Component ൌ , ൌ , ൌ ૡ, ࢾ ൌ ିૠࢊࢇ ࡾ ൌ ૡ
Shuffle(MB) Time(sec) XTF Multiplication 2099 242

Summation 62 96 FTF 0.007 141 GFTF 0 26

Update G 1.4 45

12461246

Figure 2. Elapsed Time w.r.t ݉.

Figure 3. Elapsed Time w.r.t ߜ

Figure 4. Elapsed Time w.r.t ݇.

7.1 8.18 7.73
9.45

14.23
18.42

37.17

12.65 11.08 11.58
13.48

20.83

28.17

48.43

15.97 16.27 18.68 19.63

24.15

41.77

54.27

12 14 16 18 20 22 24

El
ap

se
d

Ti
m

e(
m

in
ut

es
)

m: Power of Two

NMF ConvexNMF TriFactorization

δ = 2-9
δ = 2-8

δ = 2-7

δ = 2-6

δ = 2-5

0

5

10

15

20

25

30

35

40

45

0 1 2 3 4 5 6

El
ap

se
d

Ti
m

e
(m

in
ut

es
)

N: Number of Nonzero elements in X

x 108

0

5

10

15

20

25

30

35

40

45

0 20 40 60 80 100 120 140

Ep
la

ps
ed

 T
im

e
(m

in
ut

es
)

k: Factorization Dimentionality

VI. CONCLUSION
In this paper, we presented three different

implementations of matrix multiplication on MapReduce
depending on the properties of the matrices. Based on that,
we successfully scaled up three different types of
nonnegative matrix factorization algorithms. Matrices of
dimension million-by-thousand with millions of nonzero
elements can be factorized within several hours on a
MapReduce cluster.

There are many avenues for future work on large-scale
matrix factorization. First, our current work is focused on the
multiplicative updating rules used in NMF which could be
reduced to applications of different matrix multiplications.
One interesting direction is to investigate schemes for scaling
up other NMF algorithm such as alternating non-negative
least squares [27] and projective gradient descent [28].
Second, recently tensor factorization, as a generalization of
matrix factorization, has attracted a lot of research attention
[29]. It is thus interesting to study schemes for scaling up
large-scale tensor factorization. Last but not least, we would
also like to explore various applications of NMF on large-
scale data sets.

ACKNOWLEDGMENT
This research was supported in part by NSF grants IIS-

0837716, CNS-0821345, HRD-0833093, IIP-0829576, IIP-
0931517, CNS-1057661, IIS-1052625, CNS-0959985.

REFERENCES
[1] Lynn Elliot Cannon, “A cellular computer to implement the kalman

filter algorithm,” Technical report, Ph.D. Thesis, Montana State
University, 14 July 1969.

[2] Gene H. Golub and Charles F. Van Loan, Matrix Computations. 3rd
ed, The Johns Hopkins University Press, 1996.

[3] J. J. MODI, Parallel Algorithms and Matrix Computation. Oxford:
Clarendon Press, 1988.

Figure 5. Speedup w.r.t ܴ.

Figure 6. Elapsed time w.r.t ݉ for real data set.

0

2

4

6

8

10

12

0 5 10 15 20

Sp
ee

du
p

R: Number of Reducers in MM-2 & MM-3

One Iteration

MM-2 & MM-3

0

2

4

6

8

10

12

0 5 10 15 20 25 30

El
ap

se
d

Ti
m

e
(m

in
ut

es
)

m: Number of Rows in X x 104

12471247

[4] S. A. Robila and L. G. Maciak, “A parallel unmixing algorithm for
hyperspectral images,” Intelligent Robots and Computer Vision
XXIV, 2006.

[5] E. Batternberg and D. Wessel, “Accelarating Non-Negative Matrix
Factorization for Audio Source Separation on Multi-core and Many-
core Architectures,” 10th International Society for Music Information
Retrieval Conference (ISMIR 2009).

[6] J. Dean and S. Ghemawat, “MapReduce: simplified data processing
on large clusters,” Proceedings of the 6th Conference on Symposium
on Opearting Systems Design & Implementation - Volume 6 (San
Francisco, CA, December 06 - 08, 2004). Operating Systems Design
and Implementation. USENIX Association, Berkeley, CA, 10-10.

[7] C. Chu et al, “MapReduce for Machine Learning on Multicore,” the
Twentieth Annual Conference on Neural Information Processing
Systems, 2006.

[8] S. Papadimitriou and J. Sun, “DisCo: Distributed Co-clustering with
Map-Reduce: A Case Study towards Petabyte-Scale End-to-End
Mining,” Proceedings of the 2008 Eighth IEEE international
Conference on Data Mining (December 15 - 19, 2008), ICDM, IEEE
Computer Society, Washington, DC, 2008, 512-521,
doi:10.1109/ICDM.2008.142.

[9] U. Kang, C. Tsourakakis, and C. Faloutsos, “PEGASUS: A Peta-
Scale Graph Mining System - Implementation and Observations,” the
IEEE International Conference on Data Mining 2009.

[10] C. Liu, F. Guo, and C. Faloutsos, “BBM: bayesian browsing model
from petabyte-scale data,” Proceedings of the 15th ACM SIGKDD
international Conference on Knowledge Discovery and Data Mining
(Paris, France, June 28 - July 01, 2009), KDD '09, ACM, New York,
NY, 2009, 537-546, doi:10.1145/1557019.1557081.

[11] C. Liu, H. Yang, J. Fan, L. He, and Y. Wang, “Distributed
nonnegative matrix factorization for web-scale dyadic data analysis
on mapreduce,” Proceedings of the 19th international Conference on
World Wide Web (Raleigh, North Carolina, USA, April 26 - 30,
2010), WWW '10. ACM, New York, NY, 2010, 681-690,
doi:10.1145/1772690.1772760.

[12] D. D. Lee and H. S. Seung, “Algorithms for Non-Negative Matrix
Factorization,” NIPS, 2000.

[13] http://mahout.apache.org/
[14] C. Ding, T. Li, W. Peng, and H. Park, “Orthogonal nonnegative

matrix tri-factorization for clustering,” Proc SIGKDD Int’l Conf. on
Knowledge Discovery and Data Mining, 2006.

[15] http://hadoop.apache.org/
[16] Y. Chen, D. Pavlov, and J. F. Canny, “Large-scale behavioral

targeting,” Proceedings of the 15th ACM SIGKDD international
Conference on Knowledge Discovery and Data Mining (Paris,
France, June 28 - July 01, 2009), KDD '09, ACM, New York, NY,
2009, 209-218, doi:10.1145/1557019.1557048.

[17] NSF Cluster Exploratory Program,
http://www.nsf.gov/pubs/2008/nsf08560/nsf08560.htm

[18] Google&IBM Academic Cluster Computing Initiative,
http://www.google.com/intl/en/press/pressrel/20071008_ibm_univ.ht
ml

[19] H. Ning, W. Xu, Y. Chi, Y. Gong, and T. Huang, “Incremental
spectral clustering with application to monitoring of evolving blog
communities,” SIAM Int. Conf. on Data Mining, 2007.

[20] B. Panda, J. Herbach, S. Basu, and R. Baryado, “PLANET: Massively
Parallel Learning of Tree Ensembles with MapReduce,” the 35th
International Conference on Very Large Data Bases, 2009.

[21] C. Ding, X. He, and H.D. Simon, “On the equivalence of nonnegative
matrix factorization and spectral clustering,” Proc. SIAM Data
Mining Conf, 2005.

[22] T. Li and C. Ding, “The Relationships among Various Nonnegative
Matrix Factorization Methods for Clustering,” Proceedings of the
2006 IEEE International Conference on Data Mining (ICDM 2006),
Pages 362-371, 2006.

[23] E. Gaussier and C. Goutte, “Relation between PLSA and NMF and
implications,” Proceedings of the 28th annual international ACM
SIGIR conference on Research and development in information
retrieval, August 15-19, 2005.

[24] C. Ding, T. Li, and W. Peng, “On the Equivalence Between
Nonnegative Matrix Factorization and Probabilistic Latent Semantic
Indexing,” Computational Statistics and Data Analysis, 52(8): 3913-
3927, 2008.

[25] C. Ding, T. Li, and M. I. Jordan, “Convex and Semi-Nonnegative
Matrix Factorizations,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, 32(1): 45-55, 2010.

[26] Y. Chi, X. Song, D. Zhou, K. Hino, and B. L. Tseng, “On
evolutionary spectral clustering,” ACM Trans. Knowl. Discov. Data
3, 4 (Nov. 2009), 1-30. doi:10.1145/1631162.1631165.

[27] M. B. Berry, M. Browne, A. N. Langville, V. P. Pauca, and R. J.
Plemmons, “Algorithms and applications for approximate
nonnegative matrix factorization,” Computational Statistics & Data
Analysis Volume 52, Issue 1, 15 September 2007, Pages 155-173.

[28] Chih-Jen Lin, “On the Convergence of Multiplicative Update
Algorithms for Nonnegative Matrix Factorization,” IEEE
Transactions on Neural Networks 18 (6): 1589-1596, 2007.

[29] A. Shashua, and T. Hazan, “Non-negative tensor factorization with
applications to statistics and computer vision,” Proceedings of the
22nd international Conference on Machine Learning (ICML '05),
Pages 792-799, 2005.

[30] M. Kearns, “Efficient noise-tolerant learning from statistical queries,”
J. ACM 45, 6, 983-1006, 1998.

12481248

