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Abstract—Due to the popularity of nonnegative matrix 
factorization and the increasing availability of massive data 
sets, researchers are facing the problem of factorizing large-
scale matrices of dimensions in the orders of millions. Recent 
research [11] has shown that it is feasible to factorize a million-
by-million matrix with billions of nonzero elements on a 
MapReduce cluster. In this work, we present three different 
matrix multiplication implementations and scale up three types 
of nonnegative matrix factorizations on MapReduce. 
Experiments on both synthetic and real-world datasets show 
the excellent scalability of our proposed algorithms. 
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I.  INTRODUCTION 
Nonnegative matrix factorization (NMF) factorizes an 

input nonnegative matrix into nonnegative matrices of lower 
rank. Originally proposed for parts-of-whole interpretation of 
matrix factors, NMF has attracted a lot of attentions recently 
in data mining and machine learning communities. It is 
recently discovered that NMF can be used to solve 
challenging data mining and machine learning problems.  
For example, NMF with the sum of squared error cost 
function is equivalent to a relaxed K-means clustering, the 
most widely unsupervised learning algorithm [21][22]. In 
addition, NMF with the I-divergence cost function is 
equivalent to probabilistic latent semantic indexing, another 
unsupervised learning method popularly used in text analysis 
[23][24]. Consequently, NMF has been shown to be useful in 
a variety of applied settings, including environmetrics, 
chemometrics, pattern recognition, multimedia data analysis, 
text mining, web mining, and DNA gene expression analysis. 

Due to the increasing availability of massive data sets, 
researchers are facing the problem of factorizing matrices of 
dimensions in the orders of millions. Recent research [11] 
has shown that it is possible to factorize such gigantic 
matrices within tens of hours using the MapReduce 
distributed programming platform. In this paper, we propose 
three different matrix multiplication implementations using 
MapReduce, based on which we successfully parallelize 
three different types of NMF algorithms on the MapReduce 
platform. We evaluate our algorithms on a cluster provided 
by Google and IBM through the NSF Cluster Exploratory 
(CLuE) program [17] using both synthetic and real data sets. 
Results have shown that the performance of our proposed 
algorithm is at least as good as previous efforts. 

Different from the work by Liu et al. [11] whose 
implementations are directly built on the updating rules, we 
reduce the problem of NMF to a series of different matrix 
multiplication implementations on the MapReduce platform, 

which makes our algorithms applicable to most matrix 
factorization algorithms that are using the multiplicative 
updating scheme. 

In summary, the key contributions of our work are 
summarized below: 

• We propose three different matrix multiplication 
implementations on MapReduce. 

• We scale up three different types of NMF algorithms 
on MapReduce based on our proposed matrix 
multiplication implementations. 

• We implement and experimentally evaluate our 
algorithms using both synthetic and real data sets on 
a real-world cluster. 

The rest of this paper is organized as follows. Section II 
defines three different types of nonnegative matrix 
factorization and introduces their updating algorithms 
respectively. Section III describes three schemes to perform 
matrix multiplication on MapReduce based on the properties 
of the matrices. These schemes are then used to implement 
the updating algorithms in Section II. We report the 
experimental evaluation in Section IV and briefly discuss 
related works in Section V. Finally, Section 0 concludes our 
work. 

II. NONNEGATIVE MATRIX FACTORIZATION 

Let ܺ א Թାൈ be the input data matrix, we define three 
different matrix factorizations and introduce their updating 
rules in the following. 

A. NMF 
The classical NMF [12] could be written as ܺ ൎ  ,்ܩܨ

where ܨ א Թାൈೖ, ܩ א Թାൈೖ. The updating rules for NMF 
are listed as follows: 

ܨ   ՚ ܨ (ீ)ೖ൫ிீீ൯ೖ ,  (1) 

ܩ   ՚ ܩ ൫ி൯ೕೖ൫ீிி൯ೕೖ.  (2) 

B. Convex-NMF 
In general, the basis vectors ܨ has the meaning of cluster 

centroids. To enforce this geometry meaning, ܨ  can be 
restricted to be a convex combination of the input data 
points [25]. In other words, in addition to have ܨ  to be 

2010 IEEE International Conference on Data Mining Workshops

978-0-7695-4257-7/10 $26.00 © 2010 IEEE

DOI 10.1109/ICDMW.2010.155

1242

2010 IEEE International Conference on Data Mining Workshops

978-0-7695-4257-7/10 $26.00 © 2010 IEEE

DOI 10.1109/ICDMW.2010.155

1242



nonnegative, we restrict each column of  ܨ to lie within the 
space spanned by the columns of ܺ, i.e., 

݂ ൌ ଵݔଵݓ  ڮ  ݔݓ ൌ ݓܺ , or ܨ ൌ ܹܺ, 

where ݂  and ݔ is a column vector of ܨ and  ܺ ݓ , is an 
element of ܹ, ݓ ݀݊ܽ  0. We call this restricted form of 
factorization as Convex-NMF [25]. The updating rules of 
this factorization are 

ܩ   ՚ ඨܩ ൫ௐ൯ೖ൫ீௐௐ൯ೖ,  (3) 

  ܹ ՚ ܹඨ ൫ீ൯ೖ൫ௐீீ൯ೖ.  (4) 

C. Tri-Factorization 
Tri-factorization [14] is useful to simultaneously cluster 

the rows and the columns of the input data matrix ܺ. We 
consider the following nonnegative 3-factor decomposition ܺ ൎ  ,்ܩܵܨ

where ܨ א Թାൈೖ, ܵ א Թାೖൈೖ, ܩ א Թାൈೖ. Note that S 
provides additional degrees of freedom such that the low-
rank matrix representation remains accurate while F gives 
row clusters and G gives column clusters. The updating 
rules of tri-factorization are 

ܩ   ՚ ඨܩ ൫ிௌ൯ೕೖ൫ீீிௌ൯ೕೖ,  (5) 

ܨ   ՚ ඨܨ ൫ீௌ൯ೖ൫ிிீௌ൯ೖ,  (6) 

  ܵ ՚ ܵඨ ൫ிீ൯ೖ൫ிிௌீீ൯ೖ.  (7) 

III. NMF USING MAPREDUCE 

A. MapReduce Introduction 
MapReduce is a programming model proposed by 

Google for processing and generating large data sets [6]. 
Inspired by two functional programming primitives, each 
MapReduce computation unit consists of two stages, namely, 
map stage and reduce stage. Input of key/value pairs are 
consumed by a map function defined by the user in the map 
stage. A set of intermediate key/value pairs are generated in 
the map stage and grouped by keys as the input to the reduce 
stage. User-defined reduce function merges all intermediate 

values associated with the same intermediate key and output 
the final result. 

Despite its simplicity, the applicability of this model is 
not limited to processing and generating large data sets. 
Large-scale data clustering [8], graph computations [9] and 
many other problems have been shown to be suitable for 
MapReduce. In the following, we first discuss three different 
matrix multiplication implementations on MapReduce. 
Based on that, we next discuss how to scale up NMF on 
MapReduce. We give details on the steps to compute the 
classic NMF. We extend the algorithm to ConvexNMF and 
Tri-Factorization, by pointing out the difference between 
these two factorizations and NMF as their updating rules are 
similar. For the same reason, we only discuss how to update ܩ in NMF. 

B. Matrix Multiplication on MapReduce 
The major operation in the updating rules of all three 

types of factorizations is matrix multiplication. Thus, 
efficient implementation of matrix multiplication on 
MapReduce is the key to scale up matrix factorization. 

Assume ܣ א Թାൈ  and  ܤ א Թାൈೖ . Traditionally, ܤܣ 
is defined as the inner product of the row vectors of ܣ and 
column vectors of ܤ. Thus, 

ܤܣ ൌ ቌ ܽଵܽଶܽڭቍ (ܾଵ ܾଶ ڮ ܾ) ൌ ൭ ܽଵܾଵ ڮ ܽଵܾڭ ڰ ܾଵܽڭ ڮ ܾܽ൱. 

This kind of decomposition is useful if we could share ܤ 
across all rows of ܣ. Each row of ܤܣ could be computed in 
parallel. A MapReduce job MM-1 is formulized in TABLE I.  
to carry out this computation. 

TABLE I.  THREE MATRIX MULTIPLICATION SCHEMES 

Scheme 
Input/Output 

input output 

MM-1 
Map ݅ۃ, ܽ݅ۃ  ۄכ, ܽۄܤכ 
Reduce None 

MM-2 

Map ݅ۃ, ,݅ۃ or ۄכܽ ܾ݅ۃ ۄכ, ,݅ۃ or ۄכܽ ܾۄכ 
Reduce ݅ۃ, [ܽ, ܾ]݆ۃൣ ۄ, ܿۄכ൧ or ൣ݆ۃ,  ൧ۄכܿ
Map ݆ۃ, ݆ܿۃ ۄ, ܿۄ 
Reduce ݆ۃ, ൣ ܿభ ܿమ ڮ ൧݆ۃ ۄ, ܿᇱۄ 

MM-3 
Map ݅ۃ, ݆ܽۃൣ ۄכ, ܿۄ൧ 
Reduce ݆ۃ, ൣ ܿభ ܿమ ڮ ൧݆ۃ ۄ, ܿᇱۄ 

 
We use ܽכ  to denote a row vector with id ݅  and ܽכ  to 

denote a column vector. We use ܽ  to denote either a row 
vector or column vector if it doesn’t matter which one it is. ܽᇱ is used to denote the final result aggregated from all the ܽ `s. We use an angle bracket to denote a key/value pair and 
a square bracket to denote a list of key/value pairs. 
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As can be seen from TABLE I.  no reduce phase is 
needed for MM-1. The input to the map phase is the row 
vectors of  ܣ.  When the size of ܤ gets large enough, this 
scheme will fail since the cost of sharing a large matrix 
across many nodes in a cluster is too expensive. 

Alternatively, we could decompose ܣ  into column 
vectors and ܤ into row vectors. Thus, 

ܤܣ ൌ (ܽଵ ܽଶ ڮ ܽ) ൮ܾଵܾଶܾڭ൲ ൌ  ∑ ܽ ٔ ܾ. 
The implication of this decomposition is that if we could 

partition ܣ  and ܤ  in such a way that the corresponding 
columns of  ܣ and rows of  ܤ are on the same machine, we 
could compute the outer product in parallel and merge them 
together to obtain AB. This scheme fits the MapReduce 
model perfectly. No data sharing is required as in the 
previous scheme. We could use two MapReduce jobs to 
implement this scheme MM-2, which is shown in TABLE I.  

Now let’s examine these two jobs of MM-2 in detail. The 
first job does multiplication and the second job does 
summation. The map phase of the multiplication job accepts 
a column vector ܽכ  or a row vector ܾכ , and emits an 
intermediate pair with column id or row id as key and the 
column or row itself as value. Column and row vectors with 
the same id are shuffled to the same machine as the input for 
the reduce phase. In the reduce phase, we compute the outer 
product of ܽכ  and ܾכ  and, depending on the context in 
which this multiplication is used, we either output a bunch of 
row vectors or column vectors, which is denoted in TABLE 
I. as ൣ݆ۃ, ܿۄכ൧ or ൣ݆ۃ, .൧ۄכܿ   These row or column vectors are 
partial results of the vector. We merge them into the final 
vector in the summation job. The map phase of the 
summation job is an identity function, which just outputs the 
input key/value pairs for shuffling. The reduce phase of this 
job merges all the row vectors with the same id or column 
vectors with the same id and emits a final row vector or 
column vector.  

This scheme can be used to compute the product of any 
matrices, no matter it is dense or sparse, as long as the left 
matrix is partitioned into column vectors and the right matrix 
is partitioned into row vectors. Under certain circumstance, 
the two MapReduce jobs can be merged into one. For 
example, consider the matrix multiplication ܣ்ܣ. Assume ܣ 
is partitioned in row vector, then ்ܣ in column vector is the 
same as ܣ in row vector. Thus, we could compute ܣ்ܣ using 
only one MapReduce job as shown in MM-3 of TABLE I.  
where multiplication is conducted in map phase and 
summation is performed in reduce phase. This shortcut saves 
one MapReduce job and turns out to be very useful in matrix 
factorization, where multiplications like ܣ்ܣ  appear 
frequently. 

C. NMF 
We partition  ܺ, ܨ and ܩ into row vectors, which renders 

the following view: 

ܺ ൌ ቌ ቍݔڭଶݔଵݔ ܨ  ൌ ൮ ଵ݂݂ଶ݂ڭ൲ ܩ ݀݊ܽ  ൌ ቌ݃ଵ݃ଶ݃ڭቍ, 

where ݔ  is ܽ ݊-dimensional row vector and ݂  and ݃  are ݇ 
dimensional row vectors. All of them are stored as sets 
of ݅ۃ, ,݅ۃ ,ۄݔ ݂ۄ and ݅ۃ, ݃ۄ key/value pairs. There are three 
steps to update ܩ. The first step is to compute the numerator ்ܺܨ in (2). The second step is to compute the denominator ܨ்ܨܩ in (2). And the last step is to update ܩ. Fig. 1 shows 
the flow chart of updating ܩ . We discuss them in the 
following one by one. 

1) Computing ܣ ൌ  ܨ்ܺ
Since we partition ܺ and ܨ in row vectors, ்ܺܨ is ready 

for multiplication. Using the scheme MM-2 in TABLE I. , 
we could compute ்ܺܨ with two MapReduce jobs. 

2) Computing ܤ ൌ  ܨ்ܨܩ
There are two ways to compute ܨ்ܨܩ. The first one is to 

compute ்ܨܩ  first and ܨ்ܨܩ  afterwards. This requires 4 
MapReduce jobs, 2 for each multiplication. The second one 
is much faster. By using MM-3 to compute ܨ்ܨ first, and 
using MM-1 to compute ܨ்ܨܩ, only two jobs are needed. 
Noting that the result of ܨ்ܨ  is a ݇ ൈ ݇  matrix which is 
reasonably small to be fit into memory for computing ܨ்ܨܩ 
with ܩ. 

3) Updating G 
Once both ்ܺܨ  and ܨ்ܨܩ  have been computed; only 

one job is needed to update ܨ  , which is summarized as 
follow: 

• Map: Map ݅ۃ, ݃݅ۃ ,ۄ, ܽۄ and ݅ۃ, ܾۄ as they are 
• Reduce: Take ݅ۃ, [݃, ܽ, ܾ]ۄ and emit݅ۃ, ݃ᇱۄ, where ݃ᇱ ൌ ݃, ,ೕ,ೕ. 

This finishes the update of  ܩ  is updated in the same ܨ .
manner, except that when computing ܺܩ, we need ܺ to be 
partitioned into column vectors, whereas it is stored as row 
vectors. Thus, an additional MapReduce job is needed to 
transform ܺ from row vectors to column vectors. This won’t 
affect the overall performance, since only one such job is 
needed for the entire updating cycle, which usually consists 
of a few iterations. 

D. Convex-NMF and Tri-Factorization 
Convex-NMF and Tri-Factorization are essentially 

computed in the same manner as NMF, namely, to update a 
matrix, first compute the numerator of the updating rule, and 
then compute the denominator, and finally update the 
original matrix. In the following, we focus on their 
difference with NMF on the updating rules, rather than the 
details. 

1) Convex-NMF 
We partition ܺ, ܩ and ܹ into row vectors as we did in 

NMF. One notable pattern of the updating rules of Convex-
NMF is that ்ܹܺܺ has appeared three times, two in (3) and 
one in (4). Thus, it is beneficial to first compute ்ܹܺܺ and 
use the result later. 
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Again, we could use the MM-3 to compute ்ܺܺ  first 
and ்ܹܺܺ afterwards. However, this time we decide not to 
do that, because the result of ்ܺܺ would be a huge dense 
matrix that could introduce a lot of data shuffling in later 
computation. We choose to compute ܹܺ  first and ்ܹܺܺ 
afterwards using MM-2 in TABLE I. . 

After computing ܹܺ, we use two additional MM-2s to 
compute the denominator in (3). The numerator in (4) is 
computed in the same manner as ்ܹܺܺ. When computing 
the denominator in (4), we first use MM-3 to compute ܩ்ܩ, 
and then take the result of ்ܹܺܺ and do a MM-1 job to 
finish the computation. 

2) Tri-Factorization 
Again, we partition ܺ , ܩ ܨ ,  and ܵ  into row vector. 

Repeated patterns like ்ܺܵܨ in (5) and ்ܺܵܩ in (6) are 
utilized to reduce the computation. To update ܩ , we first 
compute the numerator ்ܺܵܨ in (5) using MM-2 (ܣ ൌ  (ܨ்ܺ
and MM-1 (ܤ ൌ  The result is then used to compute the .(ܵܣ
denominator in (5) using MM-2 ( ܥ ൌ ܤ்ܩ ) and MM-1 
 .is updated similarly ܨ .(ܥܩ)

The updating rule of ܵ  has its own structure and ܵ  is 
updated slightly differently. First of all, the numerator of ܵ 
is computed using two MM-2s (ܣ ൌ  We use .( ܩܣ ݀݊ܽ ்ܺܨ
MM-3 to compute both ܤ ൌ ܥ and ܨ்ܨ ൌ  in (7). And ܩ்ܩ
then two MM-1 operations are used to compute ܦ ൌ  Finally, an update job is used to update the new value .ܥܦ and ܵܤ
of ܵ. 

IV. EXPERIMENTS 
We use the open source implementation of MapReduce – 

Hadoop [15] in our experiments. All three factorization 
algorithms have been implemented in Java for Hadoop. 

A. Experiments Setup 
All the experiments were conducted on a large shared 

cluster of approximately 500 machines provided by Google 
and IBM [18]. Each machine has two single-core 2.8GHz 
Xeon processors, 8 GB memory, two 400 GB hard drives, 
and one gigabit Ethernet connection. Hadoop 0.20.1 runs on 

one 64-bit Xen virtual machine running on top of the above 
physical hardware with access to all the memory (minus 
some overhead), all the execution threads of the processors 
and all of the disks. The VM runs CentOS 5.3 and the host 
operating system runs Fedora Core 8. 

Both synthetic and real data sets were used in the 
experiments. Synthetic data sets were generated by a random 
matrix generator, which generates a matrix ܺ א Թାൈ with 
sparsity δ on given parameters ݉, ݊ and δ. We varied ݉, ݊ 
and δ to see how the performance varies. While the number 
of participating machines in the map phase cannot be set 
directly, we varied the number of machines ܴ in the reduce 
phase to see how more participating machines could improve 
the performance. Unless explicitly pointed out, all the 
reported time is for one iteration of the algorithms. 

The blog data was collected by an NEC in-house blog 
crawler. Given seeds of manually picked highly ranked blogs, 
the crawler discovered blogs that are densely connected with 
the seeds, resulting in an expanded set of blogs that 
communicate with each other [19][26]. The data set is 
represented as a sparse matrix that is of dimension 274,679 
by 5,304. Each row is a blog entry and the columns contain 
word frequencies in the blogs. TABLE II. summarizes the 
characteristics of the data sets used in the experiments. 

In the following sections, we first examine the 
computation cost of each component in (2). Then, we 
examine the scalability of the algorithms with the size of the 
input matrices. We also present how the performance varies 
w.r.t δ, ݇  and ܴ  in section IV.C. Finally, we evaluate the 
algorithms on the real data set. 

B. Computation Cost 
The computation cost of each MapReduce job in 

updating ܩ  is shown in TABLE III. We recorded the data 
shuffled between Map phase and Reduce phase in MB and 
the total elapsed time in seconds for each job. We choose  ݉ ൌ 2ଶଶ, ݊ ൌ 2ଵଶ, ݇ ൌ 8, ߜ ൌ 2ି for the matrix being 
factorized in this experiment, which is typical for a large data 
set. 

As can be seen from TABLE III. , the major cost in 
updating ܩ is the computation of ்ܺܨ and ܨ்ܨ , which 
accounts for 87 percent of the total elapsed time. This is 
understandable because the inner dimension of both of the 
two multiplications is in the order of million. Another 
notable pattern is the imbalance in the size of data shuffling. 
The multiplication job of  ்ܺܨ shuffled more than 2 GB of 
data, while ܨ்ܨ only shuffled 7 KB. This is because we used 
MM-2 to compute ்ܺܨ , whose Map phase only read the 
input for grouping. Thus, both ்ܺand ܨ  were shuffled. On 
the other hand, we used MM-3 to compute ܨ்ܨ, where the 
multiplication was performed in Map phase and only the 
small resulting ݇ ൈ ݇ matrix was shuffled. 

C. Scalability and Performance w.r.t δ, k and R 
We also report the elapsed time of one iteration for all 

three algorithms in 0 In these experiments, we fixed ݇ ൌ8, ߜ ൌ 2ି, ܴ ൌ 8 ܽ݊݀ ݊ ൌ 2ଵଵ and varied ݉  from 2ଵଶ  to 2ଶସ. 

 

Figure 1.  Computing  ܩ ՚ ܩ ൫ி൯ೕೖ(ீிி)ೕೖ. 
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TABLE II.  DATA SETS DESCRIPTION 

Data Sets m n δ Size(MB) 

Synthetic data sets 2ଵଶ~2ଶସ 2ଵଵ~2ଵଶ 2ିଵ~2ିହ 1~6605 

Real data set 274,649 5,304 0.008 47 
 
As can be seen from Fig. 2, the time doesn’t change 

much as m increases from 212  to 218 . This is because the 
computation power hasn’t been saturated on this scale. The 
main cost is the overhead of starting MapReduce jobs. 
Starting from 218, we observe the sub linear scalability for 
all of the algorithms. This is due to the appropriate 
application of different multiplication implementations for 
different components in the updating rules, which minimizes 
the communication cost and maximizes data locality and 
parallelism. 

Fig. 3 shows how the performance varies w.r.t the 
sparsity ߜ . As δ goes from 2ିଵ  to 2ିହ , the number of 
nonzero elements in the matrix increases from 16 million to 
600 million, and the elapsed time also increases in proportion 
to that. 

Fig. 4 reveals the linearity between elapsed time and the 
dimensionality of ݇. As ݇ doubles from 8 to 128, the elapsed 
time gradually increases from 10 minutes to 40 minutes. The 
slope is smaller than 1, which is good for large data sets. 

Finally, we plot the speedup achieved by doubling the 
number of machines in the reduce phases of MM-2 and MM-
3 in Fig. 5. Two series are plotted. One shows the speedup 
for one single iteration of the NMF algorithm; the other 
shows the speedup achieved by the affected MapReduce jobs 
only, that is, MM-2 and MM-3. There are jobs that don’t 
benefit from adding more machines, such as MM-1 and the 
updating of the original matrix. Thus, the speedup for one 
single iteration is smaller than that of MM-2 and MM-3.  

D. Experiments with real data set 
Finally, we ran our algorithm on the real world blog data 

set. The result is reported in Fig. 6. We divided this data set 
into five partitions and ran our algorithms on 20%, 40%, 
60%, 80%, and the whole data set. Again, we observed linear 
scalability with regarding to this data set. Due to the 
relatively small size of this data set compared to the synthetic 
data sets, most of the elapsed time is spent in starting and 
cleaning up MapReduce jobs, which results a near-flat line in 
Fig. 6. 

V. RELATED WORK 
Two particular lines of research are related to our work. 

One is existing works in parallel matrix multiplication and 
NMF. The other is using MapReduce in large-scale data 
mining and machine learning. 

A. Parallel Matrix Multiplication and NMF 
Because of the importance of matrix multiplication as a 

basic operation in linear algebra, parallel matrix 
multiplication has been studied extensively. One of the most 
popular algorithm might be Cannon’s algorithm [1]. 
Although most of the algorithms assume special data layout 

and are tied to a particular parallel architecture, some basic 
ideas still could be applied to MapReduce. Algorithms 
designed for single instruction multiple data (SIMD) 
systems are of particular interests, for the resembalance 
between MapReduce and SIMD. For example, the MM-2 
scheme we proposed in Section III.B could also be 
implemented directly on an SIMD system by replacing a 
machine in the cluster with a processor in the system. From 
a relational algebra perspective, what MM-2 does is a join 
on the column id of the left matrix and the row id of the 
right matrix. More detailed discussions could be found in  
[2] [3]. 

Because of the popularity of NMF, there are many 
works in trying to parallelize it [4][5]. Since data sharing 
and communication are no longer light-weight in distributed 
clusters like MapReduce, those methods cannot be ported 
directly to MapReduce. 

B. Large-scale data mining using MapReduce 
Although the initial purpose of MapReduce is to perform 

large-scale data processing [6], it turns out that this model is 
much more expressive than that [6]. Chu et al. investigated 
the possibility to implement machine learning algorithms 
using MapReduce on multicore [7]. Their conclusion is that 
a variety of learning algorithms that fit the statistic query 
model [30] could be parallelized using MapReduce. An open 
source project Mahout [13] has been started to port those 
algorithms to Hadoop. Papadimitriou and Sun have done a 
case study in data mining on co-clustering [8] towards 
petabyte scale of data using MapReduce. MapReduce has 
also been used in many other tasks of data mining and 
machine learning. Those works include but not limited to 
Kang et al. on graph mining [9], Panda et al. on tree 
ensembles [20], Liu et al. on bayesian browsing model [10], 
and Chen et al. on behavioral targeting [16]. 

In particular, Liu et al. successfully scaled up the 
classical NMF [12] for web-scale dyadic data analysis on 
MapReduce [11]. They assumed the matrix to be factorized 
is stored as ൫݅, ݆,  ,൯ tuples that are spread across machinesܣ
and proposed different partitions for the factors. Although 
the techniques they used are different, they could be reduced 
to one of the matrix multiplication schemes we proposed in 
Section III.B. 

 

TABLE III.  COMPUTATION COST OF UPDATING G IN NMF 

Component  ൌ ,  ൌ ,  ൌ ૡ, ࢾ ൌ ିૠࢊࢇ ࡾ ൌ ૡ 
Shuffle(MB) Time(sec) XTF Multiplication 2099 242 

Summation 62 96 FTF 0.007 141 GFTF 0 26 

Update G 1.4 45 
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Figure 2.  Elapsed Time w.r.t  ݉. 

 

Figure 3.  Elapsed Time w.r.t  ߜ 

 

Figure 4.  Elapsed Time w.r.t ݇. 
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VI. CONCLUSION 
In this paper, we presented three different 

implementations of matrix multiplication on MapReduce 
depending on the properties of the matrices. Based on that, 
we successfully scaled up three different types of 
nonnegative matrix factorization algorithms. Matrices of 
dimension million-by-thousand with millions of nonzero 
elements can be factorized within several hours on a 
MapReduce cluster. 

There are many avenues for future work on large-scale 
matrix factorization. First, our current work is focused on the 
multiplicative updating rules used in NMF which could be 
reduced to applications of different matrix multiplications. 
One interesting direction is to investigate schemes for scaling 
up other NMF algorithm such as alternating non-negative 
least squares [27] and projective gradient descent [28]. 
Second, recently tensor factorization, as a generalization of 
matrix factorization, has attracted a lot of research attention 
[29]. It is thus interesting to study schemes for scaling up 
large-scale tensor factorization. Last but not least, we would 
also like to explore various applications of NMF on large-
scale data sets. 
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