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ABSTRACT 
We consider the problem of evaluating the continuous query of 
finding the k nearest objects with respect to a given moving point-
object Oq among a set of n moving point-objects. The query 
returns a sequence of answer-pairs, namely pairs of the form (I, S) 
such that I is a time interval and S is the set of objects that are 
closest to Oq during I. Existing work on this problem lacks 
complexity analysis due to limited understanding of the maximum 
number of answer-pairs. In this paper we analyze the lower bound 
and the upper bound on the maximum number of answer-pairs. 
Then we consider two different types of algorithms. The first is 
off-line algorithms that compute a priori all the answer-pairs. The 
second type is on-line algorithms that at any time return the 
current answer-pair. We present the algorithms and analyze their 
complexity using the maximum number of answer-pairs. 

Categories and Subject Descriptors 

D.3.3 [Database Management]: Systems – query processing.  

General Terms 

Algorithms, Performance, Theory. 

Keywords 

Nearest-neighbor queries, continuous queries, moving objects 
databases, complexity analysis, kinetic data structure. 

1. INTRODUCTION 
A CkNN query is a query that continuously finds the k nearest 
neighbors with respect to a given moving point-object Oq among a 
set of n moving point-objects. The query returns a sequence of 
answer-pairs, namely pairs of the form (I, S) such that I is a time 
interval and S is the set of k objects that are nearest to Oq during I. 
CkNN queries see many applications in mobile computing 

environments. For example, in a road network, the CkNN query 
continuously provides a driver with the locations of the k nearest 
vehicles from her location. The query enables the driver to be 
aware of the vehicles that are blocked by a truck, a turn, a blind 
zone, etc. In a digital battlefield, a vehicle may use the CkNN 
query to monitor the k nearest hostile (or friendly) vehicles for 
surveillance (or for support).  

The processing of CkNN queries has been extensively studied in 
the database community (see e.g., [3, 4]). However, existing 
studies lack complexity analysis due to limited understanding of 
the maximum number of answer-pairs. These studies either do not 
provide algorithm complexity analysis (such as [3]), or treat the 
number of answer-pairs as an input size that is independent of n 
(such as [4]). In order to enable complexity analysis for CkNN 

query processing, our paper bounds the value of βk(n) which 
represents the maximum number of pairs in an answer to the 
CkNN problem with n moving objects. Throughout the paper we 
assume that k is a constant. We study both the lower bound and 

the upper bound of βk(n).  

We start with the linear motion model, in which all the objects, 
including Oq, start from different points and move with a constant 
velocity-vector in a multi-dimensional space. We adopt a standard 
strategy which transforms the problem into the Time-
SquareDistance space, where the square distance between a 
moving object Oi and the query object Oq as a function of time is 

a parabola curve. With this transformation, βk(n) is upper 
bounded by the maximum number of edges in the k-level of an 
arrangement of n parabola curves ([8]). It is well known that the 
maximum number of edges in the k-level is O(n) when k is a 
constant (see e.g. [6]). However, most of the existing literature 
only gives order-statistics results. Theorem 3.1 in [2] implies an 
exact upper bound of 8k(n-k)+1. In this paper we give an exact 

upper bound of k(2n−k−1)+1. Since k(2n−k−1)<8k(n-k) when 
k<<n, and for most real applications this is indeed the case, our 
bound is tighter. 

Now the question is whether the O(n) upper bound is attainable. 

In other words, what is the lower bound of βk(n). In this paper we 

show that O(n) is also the lower bound of βk(n). We show this by 
constructing a feasible configuration in terms of the motion of 

objects such that βk(n) is equal to 2(n−k)+1. 

Then we bound βk(n) for a second motion model, called the 
piecewise linear model, in which the objects change their 
velocities a finite number of times denoted by m. In this case, each 
object is represented by a sequence of connected parabola-
segments in the Time-SquareDistance space. Using Theorem 2.4 
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in [8], we can easily prove an O(nm2α(nm)) upper bound for βk(n) 

where α is the functional inverse of Ackermann’s function (see 
[8] for the definition of Ackermann’s function). However, we 

prove a tighter bound of O(nmα(n)), utilizing the fact that the 
parabola-segments of each individual object are one-by-one 

connected. We further show that the lower bound of βk(n) for the 

piecewise linear model is 2m(n−k)+1=O(nm). Given the fact that 

α(n) is at most 4 for any practical value of n, we can say that the 

bound of O(nmα(n)) is nearly tight as it only adds an almost-
constant factor to the lower bound. 

In the second part of the paper, we study the processing of CkNN 
queries. We consider two different processing styles, namely off-
line processing and on-line processing. The off-line processing 
computes a priori all the answer-pairs. The on-line processing at 
any time returns the current answer-pair. For off-line processing, 
there is an existing simple divide-and-conquer algorithm which 
gives the solution for the linear model in O(nlogn) time (see 
Theorem 2.6 in [8]). For the piecewise linear model, when k=1, 
the algorithm introduced in [1] can be used to give the solution in 
O(nmlog(nm)) time. This algorithm treats the parabola-segments 
of each individual object as independent functions. In this paper 
we present an algorithm which gives the solution for an arbitrary k 

value in O(nmα(n)logn) time. Our algorithm utilizes the fact that 
the parabola-segments of an object belong to the same function. 

Since α(n) is almost a constant, our algorithm is practically more 
efficient than the algorithm in [1]. Furthermore, observe that the 
time complexity of our algorithm is only higher by a factor of 

α(n)logn than the lower bound which is the maximum number of 
answer-pairs.  

For on-line processing, we develop a kinetic data structure, called 
object heap. This data structure allows updates like insertion of a 
new object, deletion of an existing object, and velocity-vector 
change of an existing object. We analyze the complexity of object 
heap under two different conditions, depending on whether there 
are updates or not. In either case, we assume that initially each 
object moves linearly until updated. When there are no updates, 
the cumulative complexity of object heap, i.e., the total cost for 
returning all answer-pairs (Recall that on-line processing returns 
one answer-pair each time), is O(nlog2n). This is the same as that 
of kinetic tournament [5] and kinetic heap [5,7], two classical 
kinetic data structures for monitoring the nearest neighbor (i.e., 
k=1) 1 . However, object heap is better at handling updates. In 
object heap, insertion, deletion, and velocity-vector change can be 
carried out in O(logn) time each. In kinetic tournament and 
kinetic heap, these operations require O(log2n) time each. We 
prove that if each object can change its velocity-vector at most m 
times, then the cumulative complexity of our on-line algorithm is 

O(nmα(n)log2n) which is higher than the lower bound by a factor 

of α(n)log2n. Furthermore, our data structure satisfies all the four 
quality criteria defined in [5] for a kinetic data structure, namely 

                                                                 
1 Better complexity is known for kinetic heap when the distance 

functions are pseudo-lines (i.e., any pair of distance functions 
intersect each other at most once) (see [7]). In our problem, the 
square-distance functions are parabolas. Observe that each 
parabola can be cut into two pseudo-lines. However, this will 
make the square-distance functions partially defined whereas 
the analysis in [7] assumes totally defined functions. 

responsiveness, compactness, locality, and efficiency. Intuitively, 
these criteria mean that the processing does not look too much 
ahead because there may be updates coming in that will invalidate 
such look-ahead.  

In summary, the main contributions of this paper are the 
following: 

1. We give exact numbers that upper bound and lower bound the 
number of answer-pairs in a CkNN query for the linear model for 
a given constant k. These bounds prove that the O(n) bound to the 
maximum number of answer-pairs is tight.  

2. We prove that the upper bound to the maximum number of 
answer-pairs in a CkNN query for the piecewise linear model is 

O(nmα(n)) and the lower bound is 2m(n−k)+1. 

3. We introduce an algorithm that computes answer-pairs for the 
piecewise linear model. The algorithm improves the complexity 

from the existing O(nmlog(nm)) to O(nmα(n)logn). 

4. We introduce a kinetic data structure for on-line processing 

which has the cumulative complexity of O(nmα(n)log2n) if each 
object can change its velocity-vector at most m times. The 
complexity of an update operation improves from the existing 
result by a factor of logn. 

Table 1.1. Summary of the results. 

problem 
previous 

result 
our result 

number of 
answer-

pairs 

linear 
lower not studied 2(n−k)+1 

upper  8k(n-k)+1 k(2n−k−1)+1 

piecewise 
linear 

lower  not studied 2m(n−k)+1 

upper  O(nm2α(nm))* O(nmα(n))  

off-line processing,  
piecewise linear 

O(nmlog(nm))* O(nmα(n)logn)  

on-line 
processing 

single update O(log2n) O(logn) 

cumulative 
complexity with m 
velocity-changes 

per object 

not studied O(nmα(n)log2n) 

* Results obtained by a straightforward application of existing 
techniques. 

The rest of this paper is structured as follows. Section 2 analyzes 
the bound on the number of answer-pairs. Section 3 discusses 
query processing. Section 4 concludes the paper and discusses 
future work. 

2. MAXIMUM NUMBER OF ANSWER-

PAIRS 
Subsection discusses the number of answer-pairs in the case 
where objects move linearly. Subsection 2.2 discusses the number 
of answer-pairs in the case where objects move piecewise linearly. 

2.1 Number of Answer-pairs with Linear 

Motion 
We consider query processing at a query object Oq

 that is moving. 
Oq has an objects database that stores the motion information of 
each other data object O1, O2,…, On that is also moving. The 



 

CkNN query requests for every point in time the k nearest 
neighbors of Oq among all the data objects. All the objects move 
in a linear manner in a multi-dimensional space called the motion 

space. That is, each object moves along a straight line with a 
constant speed. All the objects start at negative infinity and 
continue to positive infinity. Then the square of the distance di 
between Oq and a data object Oi is a quadratic function of time t: 

cbtattd i ++= 22 )( , where a, b, and c are parameters dependent 

on the velocities and initial locations of Oq and Oi. The coefficient 

a is non-negative and thus the )(2
tdi

 function is convex. The 

)(2
td i

 function is a parabola in the Time-SquareDistance space [3] 

as illustrated in Figure 2.1. For convenience of presentation, in 
the rest of this paper we use object Oi and its square-distance 

function )(2
td i

 interchangeably when there is no confusion.  
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Figure 2.1. Example of answer-pairs in the Time-

SquareDistance space 

The CkNN query is issued at time 0. At that time Oq has a set of k 
nearest neighbors, but as time progresses, the kNN set may change. 
A time interval during which the kNN set remains unchanged is 
referred to as an answer interval. An answer-pair is a pair 
consisting of an answer interval and its associated kNN set. 
Answer-pairs are required to be non-redundant in that, for any 
pairs (I, S) and (I', S'), the sets S and S' are distinct if I and I' are 
contiguous. As an example, in Figure 2.1, if k=2, then the answer-
pairs are: 

<[0,t1),{O1, O2}>, 

<[t1,t2),{O2, O3}>, 

<[t2,t3),{O1, O3}>, 

<[t3, ∞),{O1, O2}> 

Denote by Ik(G) the number of answer-pairs for an instance G of 
the objects database for the CkNN query. Define 

βk(n)=max{Ik(G)|G is an instance of the objects database with n 
objects} 

In words, βk(n) is the maximum number of answer-pairs for the 
CkNN query among all the objects database instances with n 

objects. First we examine the upper bound of βk(n). Observe that 
for any objects database instance, the number of answer-pairs is 
upper bounded by the number of times the k-th nearest neighbor 
changes. This is because each change of the answer set is always 
caused by a change of the k-th nearest neighbor whereas a change 
of the k-th nearest neighbor does not necessarily cause a change of 
the answer set. Specifically, the answer set changes only when 

there is a switch of order between the k-th nearest neighbor and 
the (k+1)st nearest neighbor. In the Time-SquareDistance space, 
such a switch occurs when a k-th lowest curve is crossed by a 
curve from above. For example, in Figure 2.1, at point p1, the 2nd 
lowest curve O1 is crossed by O3 from above, and thus the answer 
set is changed at p1. Specifically, O1 is removed from the answer 
set, and O3 is added to the answer set. On the other hand, the 
answer set does not change when a k-th lowest curve is crossed by 
a curve from below. For example, in Figure 2.1, at point p0, the 
2nd lowest curve O2 is crossed by O1 from below, and thus the 
answer set is not changed at p0.  

According to the above observation, the number of answer-pairs 
is upper bounded by the number of pieces in the envelope formed 
by the k-th lowest curves. The latter number has been studied in 
the context of arrangements of curves and is formally defined as 

follows (see [8]). Given a set Γ of curves where each curve is a 

continuous and univariate function, the arrangement A(Γ) of Γ is 

the planar subdivision induced by the curves in Γ. That is, A(Γ) is 
a planar map the vertices of which are the pair-wise intersection 

points of the curves in Γ and the edges of which are maximal 
connected portions of the curves that do not contain a vertex. As 
an example, Figure 2.1 shows the arrangement of three objects O1, 
O2, and O2, where white circles are vertices. The level of a point p 

in A(Γ) is the number of curves in Γ not above p, and the level of 

an edge e∈A(Γ) is the common level of all the points lying in the 

relative interior of e2. The k-level of A(Γ) is the union of all edges 

in A(Γ) whose level is k−1.  The length of the k-level is the 
number of edges in the k-level. In Figure 2.1, the thick curve 
shows the 2-level in the arrangement of O1, O2, and O3; its length 
is 7.  

It is well known that the length of the k-level in an arrangement of 
n parabolas, each with an axis of symmetry that is parallel to the 
y-axis, is O(n) for any constant k (see e.g. [6]). However, most of 
the existing literature only gives order-statistics results. Theorem 

3.1 in [2] implies an exact bound of 8k(n−k)+1. In the following 
lemma we give a tighter exact bound. 

Theorem 2.1. Assume that the query object and data objects all 

move linearly. Then for any constant k βk(n)≤k(2n−k−1)+1. 

Before proving Theorem 2.1, we introduce some definitions and 
denotations. Given the arrangement of data objects in the Time-
SquareDistance space, an intersection point in the arrangement is 
referred to as a ≤k-level intersection (respectively >k-level 
intersection) if it is an endpoint of an edge the level of which is 
smaller than or equal to k (respectively greater than k). Let p be an 
intersection of two objects A and B. We use p.time to denote the 
time coordinate of the intersection. p is associated with another 
two attributes, namely its downward and upward. A is the 
downward of p, and A downward-crosses B at p, if A is farther 
than B immediately before p.time (and thus closer than B 
immediately after p.time). In this case B is the upward of p, and B 
upward-crosses A at p. Clearly, for any two objects A and B, A 
downward-crosses B at most once and A upward-crosses B at most 
once.  

                                                                 
2 In the computational geometry literature, the level of a point p is 

defined to be the number of curves lying strictly below p. In this 
paper we define the level to be the number of curves not above 
p, so that the k-level corresponds to the k-th nearest neighbor.  
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Figure 2.2. The auxiliary figure for the proof of Theorem 2.1. 

Proof of Theorem 2.1. We prove by showing that the number of 

≤k-level intersections is at most k(2n−k−1). Without loss of 
generality, we assume that at the time when the query is 
processed, O1 is the first nearest neighbor, O2 is the second 
nearest neighbor, …, and On is the n-th nearest (and the farthest) 
neighbor (see Figure 2.2(a)). We construct the arrangement in the 
same order. That is, we add O1 first, and then add O2, and so on. 
We show that for any integer k<j≤n, the addition of Oj can 
introduce at most 2k ≤k-level intersections to the final 
arrangement of the n objects. To do this, we divide the 
intersections introduced by Oj to the arrangement of the first j 
objects into two groups, namely the ≤k-level intersections and >k-
level intersections. We call these two groups lower intersections 
and higher intersections respectively. Observe that, due to the 
later introduction of Oj+1, Oj+2, and so on, some of the lower 
intersections may become >k-level intersections in the final 
arrangement. However, none of the higher intersections may 
become ≤k-level intersections in the final arrangement. Thus the 
number of ≤k-level intersections introduced by Oj to the final 
arrangement is upper bounded by the number of lower 
intersections. In the following we show that the number of lower 
intersections is at most 2k. 

If Oi never reaches the k-th position, then the statement clearly 
holds. If Oj does reach the k-th position, then consider the first 
time it reaches the (k+1)st position. Denote that time by T. 
Observe that Oj has to experience a series of downward-crosses to 
reach the (k+1)st position. We refer to the objects that are closer 
to Oq than Oj at time T as the lower objects and the objects that 
are farther away from Oq at time T as the higher objects. Clearly 
there are k lower objects. In Figure 2.2(b), the objects left to Oj 
are the lower objects. The objects right to Oj, excluding Oj+1, 
Oj+2,…, On, are the higher objects. Notice that the set of lower 
objects and that of higher objects pertain to time T.  

 

(a) Configuration in the motion space. 

time

square
distance 
to Oq

0

O1

O2

Ok−1

Ok

Ok+1 Ok+2 On

 

 (b) Arrangement in the Time-SquareDistance space. 

Figure 2.3. The auxiliary figure for the proof of Proposition 

2.2 

Assume that object Oj participates in d lower intersections with 
the higher objects after time T. Obviously, Oj can make at most 2k 
lower intersections with the lower objects. Observe that for each 
lower intersection that Oj makes with an higher object after time 
T, that higher object will move to the left of Oj and it can never 
move to the right of Oj again, because the downward-cross has 
already been consumed before time T.  

Now observe that if more than k−d of the lower objects make 2 
lower intersections with Oj, it means that an higher object upward 
crosses Oj after time T; thus this is impossible. Therefore at most 

k−d of the lower objects make 2 lower intersections with Oj and 
each one of the rest makes at most one lower intersection with Oj. 
Thus if the number of lower intersections of higher objects with 
Oj is d, then the maximum number of lower intersections of lower 

objects with Oj is 2k−d. Thus the maximum number of lower 
intersections is 2k. 

So far we have studied the case of k<j≤n. Using similar argument 
we can show that in the case of j≤k the number of ≤k-level 

intersections introduced by Oj to the final arrangement is 2(j−1). 

In summary, the total number of ≤k-level intersections in the final 
arrangement is: 

)12()1(2)(2
1

−−=−+− ∑
=

knkjknk
k

j

 

The length of the k-level is upper bounded by the number of ≤k-
level intersections plus one. Thus the number of answer pairs is at 

most 1)12( +−− knk . 

For some k’s, the exact number given by Theorem 2.1 is tight. For 
example, when k=1, the number of answer-pairs is equal to the 

length of the 1-level which is tightly bounded by 2n−1 according 



 

to Theorems 2.1 and 3.1 in [8]. Theorem 2.1 gives the same 
bound in this case. The order given by Theorem 2.1 (i.e., O(n)) is 
tight for all values of k, as shown by the following lemma.  

Proposition 2.2. Assume that the query object and data objects 

all move linearly. Then for any constant k βk(n)≥2(n−k)+1. 

Proof: We construct a feasible case in which the number of 
answer-pairs is linear in n. Let objects Oq, O1, O2,…, and Ok be 
static in a 2D plane of the motion space such that Oi is the i-th 
nearest neighbor of Oq, as shown in Figure 2.3(a). Denote by Ri 
the circle the center of which is the location of Oq and the radius 
of which is the distance between Oi and Oq. Let object Ok+1 move 
in the same 2D plane such that its route intersects Rk twice but 

does not intersect Rk−1. Let Ok+2 have the same route as Ok+1 and 
move behind Ok+1 such that it enters Rk after Ok+1 leaves Rk. 
Construct the same for Ok+3 and so on. Figure 2.3(b) shows the 
arrangement of the objects in the Time-SquareDistance space. It is 

easy to see that the number of answer-pairs is 2(n−k)+1.  

Corollary 2.3. Assume that the query object and the data objects 

all move linearly. Then for any constant k βk(n)=Θ(n). 

2.2 Number of Answer-pairs with Piecewise 

Linear Motion 
Now we assume that objects move piecewise linearly in the 
motion space. That is, an object moves along a straight line with a 
constant speed from point a to point b. At point b the object 
changes its velocity-vector and moves to point c; there it changes 
the velocity-vector again and moves to point d, etc. Observe that 
in the Time-SquareDistance space in this model each object is 
represented by a connected sequence of parabola-segments (see 
Figure 2.4). It is easy to see that if the motion of Oq has m linear 
pieces and that of each Oi also has m linear pieces, then Oi has at 

most 2m−1 parabola-segments in the Time-SquareDistance space.  

According to Theorem 2.5 of [8], the length of the k-level in an 

arrangement of N parabola-segments is O(N2α(N)) where α is the 
functional inverse of Ackermann’s function3. Based on this result, 

βk(n)= O(nm2α(nm)) because there are at most n(2m−1) parabola-
segments totally for all objects in the Time-SquareDistance space. 
However, this derivation treats the parabola-segments of each 
individual object as independent segments. It does not utilize the 
fact that they are one-by-one connected. With the connectivity 
property taken into account, we obtain a tighter bound in the 
following lemma. 

time

square
distance 
to Oq

t10

O1

O2

O1

O2

t2  

Figure 2.4. In the piece-wise linear model each object is 

represented by a connected sequence of parabola-pieces. 

                                                                 
3 See [8] for the definition of Ackermann’s function. 

Theorem 2.4: Assume that the query object and the data objects 

all move piecewise linearly, where each object can have at most 

m linear pieces. Then βk(n)=O(nmα(n)). 

Due to the extremely fast growth of Ackermann’s function, its 

inverse α(n) grows extremely slowly, and is at most 4 for any 
practical value of n.  

Proof idea: The proof is inspired by Corollary 3.4 in [8]. The 
Corollary implies that the length of the k-level in an arrangement 
of n piecewise linear functions, where each function has m linear 

pieces, is O(nmα(n)). It can be shown that Corollary 3.4 in [8] 
holds for piecewise pseudo-linear functions as well. A piecewise 
pseudo-linear function is one that has one-by-one connected 
pseudo-linear pieces; two pseudo-linear pieces intersect at most 
once. We then cut each parabola into two pseudo-linear pieces 

using its axis of symmetry. Thus the O(nmα(n)) bound follows.  

The following proposition gives a lower bound of βk(n) in the 
piecewise linear model. 

Proposition 2.5: Assume that the query object and the data 

objects all move piecewise linearly, where each object can have 

at most m linear pieces. Then for any constant k βk(n)≥2m(n−k)+1. 

Proposition 2.5 tells us that the bound of O(nmα(n)) is very tight 
because it only adds an almost-constant factor to the lower bound. 

Proof: For the motion in Figure 2.5(a) the curves arrangement is 

as in Figure 2.5(b), and the details are as in Proposition 2.2.  
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 (a) Configuration in the motion space 
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Figure 2.5. The auxiliary figure for the proof of Proposition 

2.5. 

 



 

Corollary 2.6. Assume that the query object and the data objects 

all move piecewise linearly, where each object can have at most 

m linear pieces. βk(n)=O(nmα(n)) and βk(n)=Ω(nm). 

3. Query Processing 
In subsection 3.1 we discuss off-line processing and in subsection 
3.2 we discuss on-line processing. 

3.1 Off-line Processing 
When k=1, the processing of a CkNN query reduces to the 
construction of the lower envelope in the arrangement of the 

square-distance functions of the n data objects (i.e., the )(2
tdi

’s).  

In the linear model, the lower envelope can be constructed using a 
simple and efficient divide-and-conquer algorithm in O(nlogn) 
time (see Theorem 2.6 in [8]). This algorithm divides the objects 
database into two subsets S1 and S2, each of size at most  2/n , 

computes the lower envelopes of S1 and S2 recursively, and 
merges the two envelopes to obtain the lower envelope of the 
objects database.  

The same paradigm can be used to compute the lower envelope in 
the piecewise linear model. In this case, merging the lower 
envelopes of S1 and S2 still takes time proportional to the sum of 
|S1| and |S2| as described in [8]. Due to Theorem 2.4, 
|S1|+|S2|=O(nmα(n)). Thus the complexity in the piece-wise linear 

model is ))(()
2

(2)( nnmO
n

TnT α+= , which is O(nmα(n)logn). 

When k>1, the answer pairs can be computed in the same fashion. 
Details are omitted due to space limitations. 

3.2 On-line Processing 
In subsection 3.2.1 we describe an existing on-line processing 
data structure called kinetic tournament and discuss its 
shortcoming. From 3.2.2 to 3.2.5 we present our on-line 
processing data structure which overcomes this shortcoming.  

3.2.1 Kinetic Tournament 
Consider the case in which k=1 and all the objects move linearly. 
The query processing in this case translates to the problem of 
dynamically maintaining the lower envelope of a set of parabolas 
in the Time-SquareDistance space. In computation geometry this 
problem is known as kinetic minimum maintenance. The authors 
of [5] introduce a solution to this problem, which is called a 
kinetic tournament. The idea is to use a simple divide-and-
conquer strategy. The algorithm partitions the data objects into 
two approximately equal-sized groups (arbitrarily), and 
recursively maintains the minimum of each group. A final 
comparison at the top level yields the global minimum. If viewed 
from the bottom up, this is exactly a tournament for computing the 
global winner. Each comparison of two data objects is associated 
with an event that describes when this comparison will be violated 
in the future. When a violation happens, the new winner is 
produced and is percolated up the tournament tree, until it is 
either defeated or declared the global winner. 
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Figure 3.1. Kinetic tournament 

Figure 3.1 gives an example of kinetic tournament. 3.1(a) shows 
three data objects O1, O2, and O3 in the Time-SquareDistance 
space. 3.1(b) shows the tournament tree constructed at time 0. 
Two events are scheduled at this moment: (i) O1 crosses O2 at 
time t1; (ii) O1 crosses O3 at time t2. Since t1<t2, the O1-crossing-
O2 event is triggered earlier, at t1. In response to this event, the 
winner between O1 and O2 is changed, and the new winner is 
percolated up (see 3.1(c)). The O1-crossing-O3 event is eliminated, 
and two new events are scheduled to be triggered, at time t4 and t3 
respectively. 

Now examine the complexity of kinetic tournament on processing 
each event. The processing of an event involves the percolation of 
the new winner. Because a tournament tree is balanced, the 
percolation visits at most O(logn) nodes. A visit to each of these 
nodes may result in elimination of an existing event and creating 
of a new event. If we use a priority queue to store the relevant 
events (at most O(n)), then the elimination or creation of an event 
takes O(logn) time. Thus, the percolation takes O(log2n) time. 

As analyzed above, in kinetic tournament, O(logn) time is spent 
on accessing the event queue when processing an event. Indeed, 
kinetic tournament schedules an event for each internal node in 
the tournament tree, even though some of these events will never 
be triggered. In the Figure 3.1 example, the O1-crossing-O3 event 
is never triggered because it becomes useless after O2 claims the 
global winner. In fact we only need to schedule one event which 
is the earliest time at which the current global winner may be 
replaced. In this way we eliminate the cost of accessing the event 
queue. This is the main idea of our on-line processing data 
structure which is presented in the following subsection. 

3.2.2 The Object Heap Data Structure 
Our kinetic data structure is called object heap and is organized as 
follows. As before, we assume that we have a query object Oq and 

a set S of data objects such that Oq∉S. We assume that there is a 
unique id with each object in S. Let t≥0 be a time instance. An 
object heap H over the set S at time t is a full binary tree such that 
each node x in it stores two items x.object and x.time satisfying the 
following conditions. First, for any internal node x, let 
ObjectSet(x) denote the set of objects stored at the leaves of the 

sub-tree rooted at x. For a leaf node x, x.time=∞. For an internal 

node x, x.time≥t and x.object is the closest object to Oq during the 



 

time interval [t, x.time] among all the objects in ObjectSet(x). 
For any internal node x, we let x.left, x.right represent respectively 
the left and right child of x. Also, x.parent represents the parent of 
x. Figure 3.2 shows the object heap at time 0 for the arrangement 
of Figure 3.1(a). From the heap we see that O1 is the closest object 
until t1. 

 

Figure 3.2. The object heap at time 0 for the arrangement of 

Figure 3.1(a). 

An object heap is constructed using the procedure 
BuildObjectHeap(S,Oq,Ctime) given below. The procedure takes 
the set of objects S, the query object Oq and time Ctime and builds 
an object heap at time Ctime. CloserObject(O1,O2,t), 
NextTime(O1,O2,t) are functions that take two objects O1, O2 and 
time t as parameters and returns values as defined below. 
CloserObject(O1,O2,t) returns the object closest to Oq among the 
two objects O1, O2 at time t. NextTime(O1,O2,t) returns the earliest 

time t'>t such that CloserObject(O1,O2,t′) is different from 
CloserObject(O1,O2,t), i.e. when one of the two objects becomes 
closer than the other; if no such t' exists then it returns ∞. The 
BuildObjectHeap procedure first initializes the heap so that each 
object in S is stored at a leaf node. Then it processes nodes in 
decreasing order of their levels. For each internal node, it sets its 
object to be the closest object to Oq at time Ctime among the 
objects stored at its two children; it sets its time to be the 
minimum of the time values in its children and the next time when 
one of them is going to overtake the other to become closer to Oq. 
In this procedure, min is a function that returns the minimum of 
three values. 

BuildObjectHeap(S,Oq,Ctime) 
Initialize(); 

For each node x in decreasing values of the level of x 

If x is an internal node 
O1 := x.left.object; 
O2 := x.right.object; 
x.object := CloserObject(O1, O2, Ctime); 
x.time := min(x.left.time, x.right.time, NextTime(O1,O2,Ctime)) 

 

It is fairly obvious to see that the worst case time complexity of 
BuildObjectHeap() is O(n) where n is the number of objects in S. 
Assuming that the start time is zero, the initial object heap is built 
by invoking the above procedure with the parameter value of 
Ctime set to zero. It is to be noted that if r is the root node of the 
object heap then r.object is the closest object until the time r.time. 
Thus, at time r.time, the object heap needs to be readjusted. We 
call such a readjustment as an implicit update.  

3.2.3 Algorithm for Implicit Updates 
We classify the internal nodes of an object heap as cross nodes 
and minimal nodes as follows. An internal node x is called a cross 
node, if x.time is less than both x.left.time and x.right.time. All 
internal nodes other than cross nodes are called minimal nodes. If 

x is a cross node and O1,O2 are the objects at its children and 
x.object=O1, then up to the time x.time object O1 is the closest to 
Oq among objects in ObjectSet(x) and  at time x.time, O2 will be 
the closest object among these objects. If x is a minimal node, 
then there is a child y of x such that x.time=y.time. 

Roughly speaking, the algorithm for implicit update works as 
follows. If the root node r is a cross node then it sets r.object to be 
the object, among its children, that is different from the current 
value of r.object and sets r.time to be the minimum of the times at 
its children. If the root node r is a minimal node then it traverses 
along a path of internal nodes x1,...,xg such that x1=r, xg is a cross 

node and all nodes x1,...,xg−1 are minimal nodes and the time value 
on all these nodes is r.time. After reaching xg, it updates the object 
and time value at this node, and retraces the path back to the root 
node updating the object and time values on each of these nodes 
appropriately. The object heap of Figure 3.3 results when we 
perform implicit update on the object heap of Figure 3.2 at time t1. 
The modified object heap shows that object O2 is the closest 
object from time t1 up to time t2. 

 

Figure 3.3. The object heap resulting from an implicit update 

on the object heap of Figure 3.2. 

The above algorithm is accomplished by the recursive procedure 
ImplicitUpdate(x) given below. This procedure acts as follows. If 
x is a cross node and O1,O2 are objects stored in its two children 
and x.object=O1 then it sets x.object to O2 and sets x.time to be the 
minimal of the times of its children and returns. Otherwise, it 
recursively invokes the procedure on a child y such that 
y.time=x.time. This recursive invocation may change the object 
and time at node y. Thus, when invocation on y returns, it 
reevaluates which of the objects at its children is the closest object 
and sets x.object to that object and resets x.time and returns. Note 
that the actual implicit update is carried out by invoking this 
procedure with the root r at time r.time. 

ImplicitUpdate(x) 
y := x.left; z := x.right; 

If x.time<y.time and x.time<z.time (//x is a cross node) 

If x.object = y.object 
x.object := z.object; 

Else x.object := y.object; 
x.time := NextTime(y,z,x.time); 
return; 

If x.time = y.time 
ImplicitUpdate(y); 

If x.time = z.time 
ImplicitUpdate(z); 

x.object := CloserObject(y,z,x.time); 
x.time := min(y.time, z.time, NextTime(y,z,x.time)); 
return 

 

Note that for an object heap at time t, with root r, t<r.time, r.time 
is less than or equal to x.time for every node x in it, and the 
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structure satisfies the heap property until r.time. At time r.time, 
we invoke the procedure ImplicitUpdate(r). It is fairly 
straightforward to show that after invocation of ImplicitUpdate(r) 
at time r.time, the structure continues to be an object heap. 

We make the assumption, called distinct-sibling-times 
assumption, that for every pair of internal nodes y, z, that are 

siblings, y.time≠z.time. At the end of this subsection we will 
discuss what happens when this assumption does not hold. Under 
the distinct-sibling-times assumption, when ImplicitUpdate(r) is 
invoked, the algorithm will travel along a single path in the object 
heap. Hence, the complexity of executing ImplicitUpdate(r) is 
O(h) where h is the height of the object heap. Since h≤logn+1, we 
see that the complexity of execution of the ImplicitUpdate is 
O(logn). Furthermore, at any point in time there is only one event 
to monitor which is the expiration of the root node. Now the 
following theorem shows that there can be at most O(nlogn) 
implicit updates, i.e., after at most nlogn updates, r.time=∞ and 
hence the object heap does not need any further implicit updates. 
Thus the object heap is efficient in the sense that the number of 
implicit updates is only logn larger than the maximum number of 
times that the answer set may change. 

Theorem 3.1: Let T be an object heap at time 0 with root r, then 

after at most 2nlogn updates, r.time=∞. 

Proof: Observe that whenever an implicit update is performed, 
the object heap is traversed starting from the root r until a cross 
node x is reached. At the cross node x, the value of x.object and 
x.time are updated. It should be easy to see that the time when this 
update is carried out, i.e., at this time x.time=r.time, and at this 
time the closest object to Oq among ObjectSet(x) changes and 
hence it is a split point for this set of objects. Since there are at 

most 2n1−1 split points for ObjectSet(x) where n1 is the number of 
objects in ObjectSet(x), we see that the number of implicit updates 

on T that stop at x is bounded by 2n1−1. Let l be the level number 
of x. Now the total number of implicit updates that stop at a node 
at level l is bounded by twice the number of objects stored in the 
sub-trees whose root is at level l. Since the number of all such 
objects is the total number of objects, we see that the total number 
of implicit updates that stop at a level l node is bounded by 2n. 
Since there are logn levels, we see that the total number of 
implicit updates is bounded by 2nlogn. Clearly, after at most such 
implicit updates r.time=∞. □ 

Since there are O(nlogn) implicit updates and each such update 
takes time O(logn), we see that the cumulative complexity of 
performing these updates is O(nlog2n). 

If the distinct-sibling-times assumption does not hold then an 
invocation of ImplicitUpdate(r) may travel on multiple paths, and 
hence the complexity may be higher than O(h); however, its 
complexity can be shown to be only O(n). Furthermore, the 
cumulative complexity over a number of invocations until 
r.time=∞, can easily be shown to be still O(nlog2n). 

3.2.4 Explicit Updates and Piecewise Linear Model 

Now we show how explicit updates can be implemented 
efficiently using object heap. We consider three types of 
updates, namely insertion of a new object, deletion of an existing 
object, and velocity-vector change of an existing object.  

Addition. Assume that we have an object heap H with root 

node r storing n objects. In this heap which has 2n−1 nodes, 
each leaf node will have a sibling. Assume that the new 
object to be inserted is O' at time Ctime which is the current 
time. We can assume that Ctime < r.time. We allocate two 
new nodes, say y1 and y2 . Let x be the first leaf node in 
H , i.e., the leftmost leaf node at the lowest numbered level 
(note that if the height of H is h, then there can be 
leaf nodes both at level h−1 and h). Also let O'' be the 
ob ject in node x. Now we add the two nodes y1 , y2 as 
children of x and place objects O' and O'' in these two nodes. 
This makes x as an internal node. Now we perform, the 
following operation, called f loat(z) with argument x. This 
operation f loat(z), is a recursive operation, which acts as 
follows. It sets z.object to the ob ject among its children 
that is closest to the query object Oq at time Ctime, i.e., to 
the object given by the function CloserObject(O1 , O2 , Ctime) 
and sets z.time to be the value  given  by the  function 
NextTime(O1, O2 , Ctime) where O1 , O2 are the objects 
z.lef t.object and z.right.object, respectively. After this, if z is 
the root then it stops; else it recursively invokes f loat on the 
parent of z. It is not difficult to see that the resulting structure 
H is an object heap at time Ctime containing the n+1 objects. 
It's complexity is clearly O(logn). 

Consider the object heap of Figure 3.2. Assume that t1>1. When 
we insert a new object O4 at time 1, the following heap results 
(see Figure 3.4). Note that O1 is still the closest object till t1. Also 
O3 is the closer of O3 and O4 until t5. Here t5 is assumed to be 
greater than t1. 

 

Figure 3.4. The object heap resulting from an explicit update 

on the object heap of Figure 3.2.  

Deletion. Now we describe the deletion of an object from H . 
Assume that the object to be deleted is the object in the last 
leaf node, i.e. the right most node in the lowest level (i.e., at 
level h). Let y2 be this node and let its sibling be y1 and let x 

be their parent. It is not difficult to see that x is the last 
internal node of H . We delete both the nodes y1 and y2 and 
place the object in y1 in the node x. By this, H loses two 
nodes and  x becomes a leaf node. Now, we invoke f loat 

operation on the parent z of x. After this, the resulting 
structure will satisfy the object heap property. Clearly, the 
complexity of this operation is O(logn). 

Now consider the deletion of an object O' in an arbitrary leaf 
node y . To do this, we first delete the object O'' in the last 
leaf node of H using the above procedure. In the resulting 
object heap, let y '  be the leaf node containing object O'' It 
is possible that y '  is different from y . This occurs if y 

was the last but one leaf node in H . Now we replace 
ob ject O' in y '  by O'' and perform the f loat operation 
starting from the parent of y ' .  It should be easy to see that 
the resulting structure is an object heap containing all objects 
of H excepting O'. Clearly, the complexity of this whole 
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procedure is O(logn). 

Velocity-vector Change. When the speed and/or the direction of 
an existing object O' changes, the square-distance function )(2

' tdO
 

changes. In this case, find the leaf node y that contains O' and 
update )(2

' tdO
. After this, we perform the f loat operation 

starting from the parent of y . The complexity of this update is 
also O(logn).  

Now let us consider the piecewise linear model in which each 
object can change its velocity-vector at most m times and we 
analyze the cumulative complexity of our on-line algorithm for 
maintaining the 1NN set and handling velocity-vector changes. 
The cumulative complexity is bounded as follows. Since t he 
complexity for handling each velocity-vector update is O(logn), 
the total complexity of these updates is O(nmlogn). Note that 
implicit updates are carried out between velocity-vector changes 
as before, as and when needed. Now, we bound the cumulative 
complexity of implicit updates. Observe that each object has a 
piecewise linear motion with at most m pieces throughout the 
time. Using Theorem 2.4, it is not difficult to see that the total 
number of implicit updates that stop at a particular internal 
node x is O(n1mα(n1)) where n1 is the number of objects stored 
in the sub-tree rooted at x. Using the same argument as given in 
Theorem 3.1 for the linear case, we see that the total number of 
implicit updates that stop at an internal node at some level say 
l is O(nmα(n)). Since there are at most logn levels, we see 
that the total number of implicit updates is O(nmα(n)logn). 
Since the cost of each implicit update is O(logn), we see that the 
cumulative time complexity of implicit updates is 
O(nmα(n)log2n). This is also the cumulative complexity of all 
the updates both implicit as well as explicit. 

3.2.5 Extension to k>1  
For k>1, each internal node x in the object heap stores two items 
x.set and x.time such that x.set is the set of the k closest objects to 
Oq up to time x.time among all the objects in ObjectSet(x). To 
achieve this goal, we modify the procedure 
BuildObjectHeap(S,Oq,Ctime) as follows. For each internal node 
x, x.set is set to be the kNN set at time Ctime among the objects 
stored at its two children; x.time is set to be the minimum of the 
time values in x’s children and the next time when the kNN set 
among the objects stored at x’s two children is going to change.  

Now consider how to process an implicit update that is triggered 
at time t. Similar to k=1 case, the implicit update algorithm 
traverses along a path of internal nodes x1,...,xg such that x1=r, xg 
is a cross node and all nodes x1,...,xg−1 are minimal nodes and the 
time value on all these nodes is r.time. After reaching xg, it sets 
xg.set to be the kNN set at time t among the objects stored at xg’s 
two children and sets xg.time to be the minimum of the time 
values in xg’s children and the next time when xg.set is going to 
change. 

Explicit updates can be extended in the same fashion. It is not 
difficult to see that, when k is a constant, the complexity of our 
on-line algorithm for k>1 is the same as that for k=1. 

4. Conclusion and Future Work 
The results developed in this paper are summarized in Table 1.1 
in section 1. In the rest of this section we discuss the future work. 

CkNN with location uncertainty. Due to continuous motion, 
communication delays and positioning errors, it is normal that 
there is uncertainty associated with the locations of moving 
objects. In this case, a CkNN query may ask for objects that are 
possibly the k nearest neighbors, or the objects that are definitely 
the k nearest neighbors. In terms of the location uncertainty 
model, the uncertainty region at any point in time can be a circle, 
an ellipse, a line segment, a fan area, etc. We will study the 
complexity and processing of CkNN queries under various query 
semantics and various location uncertainty models.  

Indexing in the Time-SquareDistance space. In the existing 
literature, indexes are built in the motion space. Would it be more 
efficient if we build indexes in the Time-SquareDistance? That is, 
we index the distance curves using a spatial indexing structure 
such as a quadtree. A quick observation is that the distance curves 
are invariable in time unless there are updates. On the other hand, 
the locations of moving objects change continuously in the 
motion space even if there are no updates. Thus intuitively an 
index structure in the Time-SquareDistance space would be more 
stable than one in the motion space.  
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