

Answer-Pairs and Processing of Continuous Nearest-
Neighbor Queries*

A. Prasad Sistla Ouri Wolfson Bo Xu
Department of Computer Science

University of Illinois at Chicago

{sistla,wolfson,boxu}@uic.edu

Naphtali Rishe
School of Computing and Information Sciences, Florida

International University

rishen@cis.fiu.edu

ABSTRACT
We consider the problem of evaluating the continuous query of
finding the k nearest objects with respect to a given moving point-
object Oq among a set of n moving point-objects. The query
returns a sequence of answer-pairs, namely pairs of the form (I, S)
such that I is a time interval and S is the set of objects that are
closest to Oq during I. Existing work on this problem lacks
complexity analysis due to limited understanding of the maximum
number of answer-pairs. In this paper we analyze the lower bound
and the upper bound on the maximum number of answer-pairs.
Then we consider two different types of algorithms. The first is
off-line algorithms that compute a priori all the answer-pairs. The
second type is on-line algorithms that at any time return the
current answer-pair. We present the algorithms and analyze their
complexity using the maximum number of answer-pairs.

Categories and Subject Descriptors

D.3.3 [Database Management]: Systems – query processing.

General Terms

Algorithms, Performance, Theory.

Keywords

Nearest-neighbor queries, continuous queries, moving objects
databases, complexity analysis, kinetic data structure.

1. INTRODUCTION
A CkNN query is a query that continuously finds the k nearest
neighbors with respect to a given moving point-object Oq among a
set of n moving point-objects. The query returns a sequence of
answer-pairs, namely pairs of the form (I, S) such that I is a time
interval and S is the set of k objects that are nearest to Oq during I.
CkNN queries see many applications in mobile computing

environments. For example, in a road network, the CkNN query
continuously provides a driver with the locations of the k nearest
vehicles from her location. The query enables the driver to be
aware of the vehicles that are blocked by a truck, a turn, a blind
zone, etc. In a digital battlefield, a vehicle may use the CkNN
query to monitor the k nearest hostile (or friendly) vehicles for
surveillance (or for support).

The processing of CkNN queries has been extensively studied in
the database community (see e.g., [3, 4]). However, existing
studies lack complexity analysis due to limited understanding of
the maximum number of answer-pairs. These studies either do not
provide algorithm complexity analysis (such as [3]), or treat the
number of answer-pairs as an input size that is independent of n
(such as [4]). In order to enable complexity analysis for CkNN

query processing, our paper bounds the value of βk(n) which
represents the maximum number of pairs in an answer to the
CkNN problem with n moving objects. Throughout the paper we
assume that k is a constant. We study both the lower bound and

the upper bound of βk(n).

We start with the linear motion model, in which all the objects,
including Oq, start from different points and move with a constant
velocity-vector in a multi-dimensional space. We adopt a standard
strategy which transforms the problem into the Time-
SquareDistance space, where the square distance between a
moving object Oi and the query object Oq as a function of time is

a parabola curve. With this transformation, βk(n) is upper
bounded by the maximum number of edges in the k-level of an
arrangement of n parabola curves ([8]). It is well known that the
maximum number of edges in the k-level is O(n) when k is a
constant (see e.g. [6]). However, most of the existing literature
only gives order-statistics results. Theorem 3.1 in [2] implies an
exact upper bound of 8k(n-k)+1. In this paper we give an exact

upper bound of k(2n−k−1)+1. Since k(2n−k−1)<8k(n-k) when
k<<n, and for most real applications this is indeed the case, our
bound is tighter.

Now the question is whether the O(n) upper bound is attainable.

In other words, what is the lower bound of βk(n). In this paper we

show that O(n) is also the lower bound of βk(n). We show this by
constructing a feasible configuration in terms of the motion of

objects such that βk(n) is equal to 2(n−k)+1.

Then we bound βk(n) for a second motion model, called the
piecewise linear model, in which the objects change their
velocities a finite number of times denoted by m. In this case, each
object is represented by a sequence of connected parabola-
segments in the Time-SquareDistance space. Using Theorem 2.4

* Research supported by NSF DGE-0549489, IIS-0957394, CNS-
0821345, HRD-0833093, IIP-0829576, IIP-0931517, CNS-1057661,
IIS-1052625, and CNS-0959985.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
FOMC’11, June 9, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0779-6/11/06...$10.00.

in [8], we can easily prove an O(nm2α(nm)) upper bound for βk(n)

where α is the functional inverse of Ackermann’s function (see
[8] for the definition of Ackermann’s function). However, we

prove a tighter bound of O(nmα(n)), utilizing the fact that the
parabola-segments of each individual object are one-by-one

connected. We further show that the lower bound of βk(n) for the

piecewise linear model is 2m(n−k)+1=O(nm). Given the fact that

α(n) is at most 4 for any practical value of n, we can say that the

bound of O(nmα(n)) is nearly tight as it only adds an almost-
constant factor to the lower bound.

In the second part of the paper, we study the processing of CkNN
queries. We consider two different processing styles, namely off-
line processing and on-line processing. The off-line processing
computes a priori all the answer-pairs. The on-line processing at
any time returns the current answer-pair. For off-line processing,
there is an existing simple divide-and-conquer algorithm which
gives the solution for the linear model in O(nlogn) time (see
Theorem 2.6 in [8]). For the piecewise linear model, when k=1,
the algorithm introduced in [1] can be used to give the solution in
O(nmlog(nm)) time. This algorithm treats the parabola-segments
of each individual object as independent functions. In this paper
we present an algorithm which gives the solution for an arbitrary k

value in O(nmα(n)logn) time. Our algorithm utilizes the fact that
the parabola-segments of an object belong to the same function.

Since α(n) is almost a constant, our algorithm is practically more
efficient than the algorithm in [1]. Furthermore, observe that the
time complexity of our algorithm is only higher by a factor of

α(n)logn than the lower bound which is the maximum number of
answer-pairs.

For on-line processing, we develop a kinetic data structure, called
object heap. This data structure allows updates like insertion of a
new object, deletion of an existing object, and velocity-vector
change of an existing object. We analyze the complexity of object
heap under two different conditions, depending on whether there
are updates or not. In either case, we assume that initially each
object moves linearly until updated. When there are no updates,
the cumulative complexity of object heap, i.e., the total cost for
returning all answer-pairs (Recall that on-line processing returns
one answer-pair each time), is O(nlog2n). This is the same as that
of kinetic tournament [5] and kinetic heap [5,7], two classical
kinetic data structures for monitoring the nearest neighbor (i.e.,
k=1) 1 . However, object heap is better at handling updates. In
object heap, insertion, deletion, and velocity-vector change can be
carried out in O(logn) time each. In kinetic tournament and
kinetic heap, these operations require O(log2n) time each. We
prove that if each object can change its velocity-vector at most m
times, then the cumulative complexity of our on-line algorithm is

O(nmα(n)log2n) which is higher than the lower bound by a factor

of α(n)log2n. Furthermore, our data structure satisfies all the four
quality criteria defined in [5] for a kinetic data structure, namely

1 Better complexity is known for kinetic heap when the distance

functions are pseudo-lines (i.e., any pair of distance functions
intersect each other at most once) (see [7]). In our problem, the
square-distance functions are parabolas. Observe that each
parabola can be cut into two pseudo-lines. However, this will
make the square-distance functions partially defined whereas
the analysis in [7] assumes totally defined functions.

responsiveness, compactness, locality, and efficiency. Intuitively,
these criteria mean that the processing does not look too much
ahead because there may be updates coming in that will invalidate
such look-ahead.

In summary, the main contributions of this paper are the
following:

1. We give exact numbers that upper bound and lower bound the
number of answer-pairs in a CkNN query for the linear model for
a given constant k. These bounds prove that the O(n) bound to the
maximum number of answer-pairs is tight.

2. We prove that the upper bound to the maximum number of
answer-pairs in a CkNN query for the piecewise linear model is

O(nmα(n)) and the lower bound is 2m(n−k)+1.

3. We introduce an algorithm that computes answer-pairs for the
piecewise linear model. The algorithm improves the complexity

from the existing O(nmlog(nm)) to O(nmα(n)logn).

4. We introduce a kinetic data structure for on-line processing

which has the cumulative complexity of O(nmα(n)log2n) if each
object can change its velocity-vector at most m times. The
complexity of an update operation improves from the existing
result by a factor of logn.

Table 1.1. Summary of the results.

problem
previous

result
our result

number of
answer-

pairs

linear
lower not studied 2(n−k)+1

upper 8k(n-k)+1 k(2n−k−1)+1

piecewise
linear

lower not studied 2m(n−k)+1

upper O(nm2α(nm))* O(nmα(n))

off-line processing,
piecewise linear

O(nmlog(nm))* O(nmα(n)logn)

on-line
processing

single update O(log2n) O(logn)

cumulative
complexity with m
velocity-changes

per object

not studied O(nmα(n)log2n)

* Results obtained by a straightforward application of existing
techniques.

The rest of this paper is structured as follows. Section 2 analyzes
the bound on the number of answer-pairs. Section 3 discusses
query processing. Section 4 concludes the paper and discusses
future work.

2. MAXIMUM NUMBER OF ANSWER-

PAIRS
Subsection discusses the number of answer-pairs in the case
where objects move linearly. Subsection 2.2 discusses the number
of answer-pairs in the case where objects move piecewise linearly.

2.1 Number of Answer-pairs with Linear

Motion
We consider query processing at a query object Oq

 that is moving.
Oq has an objects database that stores the motion information of
each other data object O1, O2,…, On that is also moving. The

CkNN query requests for every point in time the k nearest
neighbors of Oq among all the data objects. All the objects move
in a linear manner in a multi-dimensional space called the motion

space. That is, each object moves along a straight line with a
constant speed. All the objects start at negative infinity and
continue to positive infinity. Then the square of the distance di
between Oq and a data object Oi is a quadratic function of time t:

cbtattd i ++= 22)(, where a, b, and c are parameters dependent

on the velocities and initial locations of Oq and Oi. The coefficient

a is non-negative and thus the)(2
tdi

 function is convex. The

)(2
td i

 function is a parabola in the Time-SquareDistance space [3]

as illustrated in Figure 2.1. For convenience of presentation, in
the rest of this paper we use object Oi and its square-distance

function)(2
td i

 interchangeably when there is no confusion.

time

square
distance
to Oq

t2 t3

O1

t1

O3O2

0

2-level

p0
p1

Figure 2.1. Example of answer-pairs in the Time-

SquareDistance space

The CkNN query is issued at time 0. At that time Oq has a set of k
nearest neighbors, but as time progresses, the kNN set may change.
A time interval during which the kNN set remains unchanged is
referred to as an answer interval. An answer-pair is a pair
consisting of an answer interval and its associated kNN set.
Answer-pairs are required to be non-redundant in that, for any
pairs (I, S) and (I', S'), the sets S and S' are distinct if I and I' are
contiguous. As an example, in Figure 2.1, if k=2, then the answer-
pairs are:

<[0,t1),{O1, O2}>,

<[t1,t2),{O2, O3}>,

<[t2,t3),{O1, O3}>,

<[t3, ∞),{O1, O2}>

Denote by Ik(G) the number of answer-pairs for an instance G of
the objects database for the CkNN query. Define

βk(n)=max{Ik(G)|G is an instance of the objects database with n
objects}

In words, βk(n) is the maximum number of answer-pairs for the
CkNN query among all the objects database instances with n

objects. First we examine the upper bound of βk(n). Observe that
for any objects database instance, the number of answer-pairs is
upper bounded by the number of times the k-th nearest neighbor
changes. This is because each change of the answer set is always
caused by a change of the k-th nearest neighbor whereas a change
of the k-th nearest neighbor does not necessarily cause a change of
the answer set. Specifically, the answer set changes only when

there is a switch of order between the k-th nearest neighbor and
the (k+1)st nearest neighbor. In the Time-SquareDistance space,
such a switch occurs when a k-th lowest curve is crossed by a
curve from above. For example, in Figure 2.1, at point p1, the 2nd
lowest curve O1 is crossed by O3 from above, and thus the answer
set is changed at p1. Specifically, O1 is removed from the answer
set, and O3 is added to the answer set. On the other hand, the
answer set does not change when a k-th lowest curve is crossed by
a curve from below. For example, in Figure 2.1, at point p0, the
2nd lowest curve O2 is crossed by O1 from below, and thus the
answer set is not changed at p0.

According to the above observation, the number of answer-pairs
is upper bounded by the number of pieces in the envelope formed
by the k-th lowest curves. The latter number has been studied in
the context of arrangements of curves and is formally defined as

follows (see [8]). Given a set Γ of curves where each curve is a

continuous and univariate function, the arrangement A(Γ) of Γ is

the planar subdivision induced by the curves in Γ. That is, A(Γ) is
a planar map the vertices of which are the pair-wise intersection

points of the curves in Γ and the edges of which are maximal
connected portions of the curves that do not contain a vertex. As
an example, Figure 2.1 shows the arrangement of three objects O1,
O2, and O2, where white circles are vertices. The level of a point p

in A(Γ) is the number of curves in Γ not above p, and the level of

an edge e∈A(Γ) is the common level of all the points lying in the

relative interior of e2. The k-level of A(Γ) is the union of all edges

in A(Γ) whose level is k−1. The length of the k-level is the
number of edges in the k-level. In Figure 2.1, the thick curve
shows the 2-level in the arrangement of O1, O2, and O3; its length
is 7.

It is well known that the length of the k-level in an arrangement of
n parabolas, each with an axis of symmetry that is parallel to the
y-axis, is O(n) for any constant k (see e.g. [6]). However, most of
the existing literature only gives order-statistics results. Theorem

3.1 in [2] implies an exact bound of 8k(n−k)+1. In the following
lemma we give a tighter exact bound.

Theorem 2.1. Assume that the query object and data objects all

move linearly. Then for any constant k βk(n)≤k(2n−k−1)+1.

Before proving Theorem 2.1, we introduce some definitions and
denotations. Given the arrangement of data objects in the Time-
SquareDistance space, an intersection point in the arrangement is
referred to as a ≤k-level intersection (respectively >k-level
intersection) if it is an endpoint of an edge the level of which is
smaller than or equal to k (respectively greater than k). Let p be an
intersection of two objects A and B. We use p.time to denote the
time coordinate of the intersection. p is associated with another
two attributes, namely its downward and upward. A is the
downward of p, and A downward-crosses B at p, if A is farther
than B immediately before p.time (and thus closer than B
immediately after p.time). In this case B is the upward of p, and B
upward-crosses A at p. Clearly, for any two objects A and B, A
downward-crosses B at most once and A upward-crosses B at most
once.

2 In the computational geometry literature, the level of a point p is

defined to be the number of curves lying strictly below p. In this
paper we define the level to be the number of curves not above
p, so that the k-level corresponds to the k-th nearest neighbor.

O1

O2

Ok+1

Oj

On

distance to Oq

downward-crosses

Oj

distance to Oq

…
…

higher objects

lower objects

(a) Initial configuration. Oj has to
experience a series of downward-

crosses to reach the (k+1)st
position.

(b) At the time when Oj reaches the
(k+1)st position for the first time,

the objects below it are lower
objects, and the objects above it

(excluding Oj+1, Oj+2,…, On) are
higher objects.

…
…

…

Figure 2.2. The auxiliary figure for the proof of Theorem 2.1.

Proof of Theorem 2.1. We prove by showing that the number of

≤k-level intersections is at most k(2n−k−1). Without loss of
generality, we assume that at the time when the query is
processed, O1 is the first nearest neighbor, O2 is the second
nearest neighbor, …, and On is the n-th nearest (and the farthest)
neighbor (see Figure 2.2(a)). We construct the arrangement in the
same order. That is, we add O1 first, and then add O2, and so on.
We show that for any integer k<j≤n, the addition of Oj can
introduce at most 2k ≤k-level intersections to the final
arrangement of the n objects. To do this, we divide the
intersections introduced by Oj to the arrangement of the first j
objects into two groups, namely the ≤k-level intersections and >k-
level intersections. We call these two groups lower intersections
and higher intersections respectively. Observe that, due to the
later introduction of Oj+1, Oj+2, and so on, some of the lower
intersections may become >k-level intersections in the final
arrangement. However, none of the higher intersections may
become ≤k-level intersections in the final arrangement. Thus the
number of ≤k-level intersections introduced by Oj to the final
arrangement is upper bounded by the number of lower
intersections. In the following we show that the number of lower
intersections is at most 2k.

If Oi never reaches the k-th position, then the statement clearly
holds. If Oj does reach the k-th position, then consider the first
time it reaches the (k+1)st position. Denote that time by T.
Observe that Oj has to experience a series of downward-crosses to
reach the (k+1)st position. We refer to the objects that are closer
to Oq than Oj at time T as the lower objects and the objects that
are farther away from Oq at time T as the higher objects. Clearly
there are k lower objects. In Figure 2.2(b), the objects left to Oj
are the lower objects. The objects right to Oj, excluding Oj+1,
Oj+2,…, On, are the higher objects. Notice that the set of lower
objects and that of higher objects pertain to time T.

(a) Configuration in the motion space.

time

square
distance
to Oq

0

O1

O2

Ok−1

Ok

Ok+1 Ok+2 On

 (b) Arrangement in the Time-SquareDistance space.

Figure 2.3. The auxiliary figure for the proof of Proposition

2.2

Assume that object Oj participates in d lower intersections with
the higher objects after time T. Obviously, Oj can make at most 2k
lower intersections with the lower objects. Observe that for each
lower intersection that Oj makes with an higher object after time
T, that higher object will move to the left of Oj and it can never
move to the right of Oj again, because the downward-cross has
already been consumed before time T.

Now observe that if more than k−d of the lower objects make 2
lower intersections with Oj, it means that an higher object upward
crosses Oj after time T; thus this is impossible. Therefore at most

k−d of the lower objects make 2 lower intersections with Oj and
each one of the rest makes at most one lower intersection with Oj.
Thus if the number of lower intersections of higher objects with
Oj is d, then the maximum number of lower intersections of lower

objects with Oj is 2k−d. Thus the maximum number of lower
intersections is 2k.

So far we have studied the case of k<j≤n. Using similar argument
we can show that in the case of j≤k the number of ≤k-level

intersections introduced by Oj to the final arrangement is 2(j−1).

In summary, the total number of ≤k-level intersections in the final
arrangement is:

)12()1(2)(2
1

−−=−+− ∑
=

knkjknk
k

j

The length of the k-level is upper bounded by the number of ≤k-
level intersections plus one. Thus the number of answer pairs is at

most 1)12(+−− knk .

For some k’s, the exact number given by Theorem 2.1 is tight. For
example, when k=1, the number of answer-pairs is equal to the

length of the 1-level which is tightly bounded by 2n−1 according

to Theorems 2.1 and 3.1 in [8]. Theorem 2.1 gives the same
bound in this case. The order given by Theorem 2.1 (i.e., O(n)) is
tight for all values of k, as shown by the following lemma.

Proposition 2.2. Assume that the query object and data objects

all move linearly. Then for any constant k βk(n)≥2(n−k)+1.

Proof: We construct a feasible case in which the number of
answer-pairs is linear in n. Let objects Oq, O1, O2,…, and Ok be
static in a 2D plane of the motion space such that Oi is the i-th
nearest neighbor of Oq, as shown in Figure 2.3(a). Denote by Ri
the circle the center of which is the location of Oq and the radius
of which is the distance between Oi and Oq. Let object Ok+1 move
in the same 2D plane such that its route intersects Rk twice but

does not intersect Rk−1. Let Ok+2 have the same route as Ok+1 and
move behind Ok+1 such that it enters Rk after Ok+1 leaves Rk.
Construct the same for Ok+3 and so on. Figure 2.3(b) shows the
arrangement of the objects in the Time-SquareDistance space. It is

easy to see that the number of answer-pairs is 2(n−k)+1.

Corollary 2.3. Assume that the query object and the data objects

all move linearly. Then for any constant k βk(n)=Θ(n).

2.2 Number of Answer-pairs with Piecewise

Linear Motion
Now we assume that objects move piecewise linearly in the
motion space. That is, an object moves along a straight line with a
constant speed from point a to point b. At point b the object
changes its velocity-vector and moves to point c; there it changes
the velocity-vector again and moves to point d, etc. Observe that
in the Time-SquareDistance space in this model each object is
represented by a connected sequence of parabola-segments (see
Figure 2.4). It is easy to see that if the motion of Oq has m linear
pieces and that of each Oi also has m linear pieces, then Oi has at

most 2m−1 parabola-segments in the Time-SquareDistance space.

According to Theorem 2.5 of [8], the length of the k-level in an

arrangement of N parabola-segments is O(N2α(N)) where α is the
functional inverse of Ackermann’s function3. Based on this result,

βk(n)= O(nm2α(nm)) because there are at most n(2m−1) parabola-
segments totally for all objects in the Time-SquareDistance space.
However, this derivation treats the parabola-segments of each
individual object as independent segments. It does not utilize the
fact that they are one-by-one connected. With the connectivity
property taken into account, we obtain a tighter bound in the
following lemma.

time

square
distance
to Oq

t10

O1

O2

O1

O2

t2

Figure 2.4. In the piece-wise linear model each object is

represented by a connected sequence of parabola-pieces.

3 See [8] for the definition of Ackermann’s function.

Theorem 2.4: Assume that the query object and the data objects

all move piecewise linearly, where each object can have at most

m linear pieces. Then βk(n)=O(nmα(n)).

Due to the extremely fast growth of Ackermann’s function, its

inverse α(n) grows extremely slowly, and is at most 4 for any
practical value of n.

Proof idea: The proof is inspired by Corollary 3.4 in [8]. The
Corollary implies that the length of the k-level in an arrangement
of n piecewise linear functions, where each function has m linear

pieces, is O(nmα(n)). It can be shown that Corollary 3.4 in [8]
holds for piecewise pseudo-linear functions as well. A piecewise
pseudo-linear function is one that has one-by-one connected
pseudo-linear pieces; two pseudo-linear pieces intersect at most
once. We then cut each parabola into two pseudo-linear pieces

using its axis of symmetry. Thus the O(nmα(n)) bound follows.

The following proposition gives a lower bound of βk(n) in the
piecewise linear model.

Proposition 2.5: Assume that the query object and the data

objects all move piecewise linearly, where each object can have

at most m linear pieces. Then for any constant k βk(n)≥2m(n−k)+1.

Proposition 2.5 tells us that the bound of O(nmα(n)) is very tight
because it only adds an almost-constant factor to the lower bound.

Proof: For the motion in Figure 2.5(a) the curves arrangement is

as in Figure 2.5(b), and the details are as in Proposition 2.2.

x(0,0)

y

O1

O2

Ok-−1

Ok

Oq

Ok+1

Rk

Rk−1

 (a) Configuration in the motion space

time

square
distance
to Oq

0

O1

O2

Ok−1

Ok

1 2 m

Ok+1

 (b) Arrangement in the Time-SquareDistance space

Figure 2.5. The auxiliary figure for the proof of Proposition

2.5.

Corollary 2.6. Assume that the query object and the data objects

all move piecewise linearly, where each object can have at most

m linear pieces. βk(n)=O(nmα(n)) and βk(n)=Ω(nm).

3. Query Processing
In subsection 3.1 we discuss off-line processing and in subsection
3.2 we discuss on-line processing.

3.1 Off-line Processing
When k=1, the processing of a CkNN query reduces to the
construction of the lower envelope in the arrangement of the

square-distance functions of the n data objects (i.e., the)(2
tdi

’s).

In the linear model, the lower envelope can be constructed using a
simple and efficient divide-and-conquer algorithm in O(nlogn)
time (see Theorem 2.6 in [8]). This algorithm divides the objects
database into two subsets S1 and S2, each of size at most 2/n ,

computes the lower envelopes of S1 and S2 recursively, and
merges the two envelopes to obtain the lower envelope of the
objects database.

The same paradigm can be used to compute the lower envelope in
the piecewise linear model. In this case, merging the lower
envelopes of S1 and S2 still takes time proportional to the sum of
|S1| and |S2| as described in [8]. Due to Theorem 2.4,
|S1|+|S2|=O(nmα(n)). Thus the complexity in the piece-wise linear

model is))(()
2

(2)(nnmO
n

TnT α+= , which is O(nmα(n)logn).

When k>1, the answer pairs can be computed in the same fashion.
Details are omitted due to space limitations.

3.2 On-line Processing
In subsection 3.2.1 we describe an existing on-line processing
data structure called kinetic tournament and discuss its
shortcoming. From 3.2.2 to 3.2.5 we present our on-line
processing data structure which overcomes this shortcoming.

3.2.1 Kinetic Tournament
Consider the case in which k=1 and all the objects move linearly.
The query processing in this case translates to the problem of
dynamically maintaining the lower envelope of a set of parabolas
in the Time-SquareDistance space. In computation geometry this
problem is known as kinetic minimum maintenance. The authors
of [5] introduce a solution to this problem, which is called a
kinetic tournament. The idea is to use a simple divide-and-
conquer strategy. The algorithm partitions the data objects into
two approximately equal-sized groups (arbitrarily), and
recursively maintains the minimum of each group. A final
comparison at the top level yields the global minimum. If viewed
from the bottom up, this is exactly a tournament for computing the
global winner. Each comparison of two data objects is associated
with an event that describes when this comparison will be violated
in the future. When a violation happens, the new winner is
produced and is percolated up the tournament tree, until it is
either defeated or declared the global winner.

time

square
distance
to Oq

t2 t3

O2

t1

O3

0

O1

t4

(a)

O1 O2

O3O1, t1

O1, t2

O1 O2

O3O2, t4

O2, t3

(b) (c)

Figure 3.1. Kinetic tournament

Figure 3.1 gives an example of kinetic tournament. 3.1(a) shows
three data objects O1, O2, and O3 in the Time-SquareDistance
space. 3.1(b) shows the tournament tree constructed at time 0.
Two events are scheduled at this moment: (i) O1 crosses O2 at
time t1; (ii) O1 crosses O3 at time t2. Since t1<t2, the O1-crossing-
O2 event is triggered earlier, at t1. In response to this event, the
winner between O1 and O2 is changed, and the new winner is
percolated up (see 3.1(c)). The O1-crossing-O3 event is eliminated,
and two new events are scheduled to be triggered, at time t4 and t3
respectively.

Now examine the complexity of kinetic tournament on processing
each event. The processing of an event involves the percolation of
the new winner. Because a tournament tree is balanced, the
percolation visits at most O(logn) nodes. A visit to each of these
nodes may result in elimination of an existing event and creating
of a new event. If we use a priority queue to store the relevant
events (at most O(n)), then the elimination or creation of an event
takes O(logn) time. Thus, the percolation takes O(log2n) time.

As analyzed above, in kinetic tournament, O(logn) time is spent
on accessing the event queue when processing an event. Indeed,
kinetic tournament schedules an event for each internal node in
the tournament tree, even though some of these events will never
be triggered. In the Figure 3.1 example, the O1-crossing-O3 event
is never triggered because it becomes useless after O2 claims the
global winner. In fact we only need to schedule one event which
is the earliest time at which the current global winner may be
replaced. In this way we eliminate the cost of accessing the event
queue. This is the main idea of our on-line processing data
structure which is presented in the following subsection.

3.2.2 The Object Heap Data Structure
Our kinetic data structure is called object heap and is organized as
follows. As before, we assume that we have a query object Oq and

a set S of data objects such that Oq∉S. We assume that there is a
unique id with each object in S. Let t≥0 be a time instance. An
object heap H over the set S at time t is a full binary tree such that
each node x in it stores two items x.object and x.time satisfying the
following conditions. First, for any internal node x, let
ObjectSet(x) denote the set of objects stored at the leaves of the

sub-tree rooted at x. For a leaf node x, x.time=∞. For an internal

node x, x.time≥t and x.object is the closest object to Oq during the

time interval [t, x.time] among all the objects in ObjectSet(x).
For any internal node x, we let x.left, x.right represent respectively
the left and right child of x. Also, x.parent represents the parent of
x. Figure 3.2 shows the object heap at time 0 for the arrangement
of Figure 3.1(a). From the heap we see that O1 is the closest object
until t1.

Figure 3.2. The object heap at time 0 for the arrangement of

Figure 3.1(a).

An object heap is constructed using the procedure
BuildObjectHeap(S,Oq,Ctime) given below. The procedure takes
the set of objects S, the query object Oq and time Ctime and builds
an object heap at time Ctime. CloserObject(O1,O2,t),
NextTime(O1,O2,t) are functions that take two objects O1, O2 and
time t as parameters and returns values as defined below.
CloserObject(O1,O2,t) returns the object closest to Oq among the
two objects O1, O2 at time t. NextTime(O1,O2,t) returns the earliest

time t'>t such that CloserObject(O1,O2,t′) is different from
CloserObject(O1,O2,t), i.e. when one of the two objects becomes
closer than the other; if no such t' exists then it returns ∞. The
BuildObjectHeap procedure first initializes the heap so that each
object in S is stored at a leaf node. Then it processes nodes in
decreasing order of their levels. For each internal node, it sets its
object to be the closest object to Oq at time Ctime among the
objects stored at its two children; it sets its time to be the
minimum of the time values in its children and the next time when
one of them is going to overtake the other to become closer to Oq.
In this procedure, min is a function that returns the minimum of
three values.

BuildObjectHeap(S,Oq,Ctime)
Initialize();

For each node x in decreasing values of the level of x

If x is an internal node
O1 := x.left.object;
O2 := x.right.object;
x.object := CloserObject(O1, O2, Ctime);
x.time := min(x.left.time, x.right.time, NextTime(O1,O2,Ctime))

It is fairly obvious to see that the worst case time complexity of
BuildObjectHeap() is O(n) where n is the number of objects in S.
Assuming that the start time is zero, the initial object heap is built
by invoking the above procedure with the parameter value of
Ctime set to zero. It is to be noted that if r is the root node of the
object heap then r.object is the closest object until the time r.time.
Thus, at time r.time, the object heap needs to be readjusted. We
call such a readjustment as an implicit update.

3.2.3 Algorithm for Implicit Updates
We classify the internal nodes of an object heap as cross nodes
and minimal nodes as follows. An internal node x is called a cross
node, if x.time is less than both x.left.time and x.right.time. All
internal nodes other than cross nodes are called minimal nodes. If

x is a cross node and O1,O2 are the objects at its children and
x.object=O1, then up to the time x.time object O1 is the closest to
Oq among objects in ObjectSet(x) and at time x.time, O2 will be
the closest object among these objects. If x is a minimal node,
then there is a child y of x such that x.time=y.time.

Roughly speaking, the algorithm for implicit update works as
follows. If the root node r is a cross node then it sets r.object to be
the object, among its children, that is different from the current
value of r.object and sets r.time to be the minimum of the times at
its children. If the root node r is a minimal node then it traverses
along a path of internal nodes x1,...,xg such that x1=r, xg is a cross

node and all nodes x1,...,xg−1 are minimal nodes and the time value
on all these nodes is r.time. After reaching xg, it updates the object
and time value at this node, and retraces the path back to the root
node updating the object and time values on each of these nodes
appropriately. The object heap of Figure 3.3 results when we
perform implicit update on the object heap of Figure 3.2 at time t1.
The modified object heap shows that object O2 is the closest
object from time t1 up to time t2.

Figure 3.3. The object heap resulting from an implicit update

on the object heap of Figure 3.2.

The above algorithm is accomplished by the recursive procedure
ImplicitUpdate(x) given below. This procedure acts as follows. If
x is a cross node and O1,O2 are objects stored in its two children
and x.object=O1 then it sets x.object to O2 and sets x.time to be the
minimal of the times of its children and returns. Otherwise, it
recursively invokes the procedure on a child y such that
y.time=x.time. This recursive invocation may change the object
and time at node y. Thus, when invocation on y returns, it
reevaluates which of the objects at its children is the closest object
and sets x.object to that object and resets x.time and returns. Note
that the actual implicit update is carried out by invoking this
procedure with the root r at time r.time.

ImplicitUpdate(x)
y := x.left; z := x.right;

If x.time<y.time and x.time<z.time (//x is a cross node)

If x.object = y.object
x.object := z.object;

Else x.object := y.object;
x.time := NextTime(y,z,x.time);
return;

If x.time = y.time
ImplicitUpdate(y);

If x.time = z.time
ImplicitUpdate(z);

x.object := CloserObject(y,z,x.time);
x.time := min(y.time, z.time, NextTime(y,z,x.time));
return

Note that for an object heap at time t, with root r, t<r.time, r.time
is less than or equal to x.time for every node x in it, and the

O2, t4

O1 O2

O3

O2, t2

O2, t4

O1 O2

O3

O2, t2

O1, t1

O1 O2

O3

O1, t1

O1, t1

O1 O2

O3

O1, t1

structure satisfies the heap property until r.time. At time r.time,
we invoke the procedure ImplicitUpdate(r). It is fairly
straightforward to show that after invocation of ImplicitUpdate(r)
at time r.time, the structure continues to be an object heap.

We make the assumption, called distinct-sibling-times
assumption, that for every pair of internal nodes y, z, that are

siblings, y.time≠z.time. At the end of this subsection we will
discuss what happens when this assumption does not hold. Under
the distinct-sibling-times assumption, when ImplicitUpdate(r) is
invoked, the algorithm will travel along a single path in the object
heap. Hence, the complexity of executing ImplicitUpdate(r) is
O(h) where h is the height of the object heap. Since h≤logn+1, we
see that the complexity of execution of the ImplicitUpdate is
O(logn). Furthermore, at any point in time there is only one event
to monitor which is the expiration of the root node. Now the
following theorem shows that there can be at most O(nlogn)
implicit updates, i.e., after at most nlogn updates, r.time=∞ and
hence the object heap does not need any further implicit updates.
Thus the object heap is efficient in the sense that the number of
implicit updates is only logn larger than the maximum number of
times that the answer set may change.

Theorem 3.1: Let T be an object heap at time 0 with root r, then

after at most 2nlogn updates, r.time=∞.

Proof: Observe that whenever an implicit update is performed,
the object heap is traversed starting from the root r until a cross
node x is reached. At the cross node x, the value of x.object and
x.time are updated. It should be easy to see that the time when this
update is carried out, i.e., at this time x.time=r.time, and at this
time the closest object to Oq among ObjectSet(x) changes and
hence it is a split point for this set of objects. Since there are at

most 2n1−1 split points for ObjectSet(x) where n1 is the number of
objects in ObjectSet(x), we see that the number of implicit updates

on T that stop at x is bounded by 2n1−1. Let l be the level number
of x. Now the total number of implicit updates that stop at a node
at level l is bounded by twice the number of objects stored in the
sub-trees whose root is at level l. Since the number of all such
objects is the total number of objects, we see that the total number
of implicit updates that stop at a level l node is bounded by 2n.
Since there are logn levels, we see that the total number of
implicit updates is bounded by 2nlogn. Clearly, after at most such
implicit updates r.time=∞. □

Since there are O(nlogn) implicit updates and each such update
takes time O(logn), we see that the cumulative complexity of
performing these updates is O(nlog2n).

If the distinct-sibling-times assumption does not hold then an
invocation of ImplicitUpdate(r) may travel on multiple paths, and
hence the complexity may be higher than O(h); however, its
complexity can be shown to be only O(n). Furthermore, the
cumulative complexity over a number of invocations until
r.time=∞, can easily be shown to be still O(nlog2n).

3.2.4 Explicit Updates and Piecewise Linear Model

Now we show how explicit updates can be implemented
efficiently using object heap. We consider three types of
updates, namely insertion of a new object, deletion of an existing
object, and velocity-vector change of an existing object.

Addition. Assume that we have an object heap H with root

node r storing n objects. In this heap which has 2n−1 nodes,
each leaf node will have a sibling. Assume that the new
object to be inserted is O' at time Ctime which is the current
time. We can assume that Ctime < r.time. We allocate two
new nodes, say y1 and y2 . Let x be the first leaf node in
H , i.e., the leftmost leaf node at the lowest numbered level
(note that if the height of H is h, then there can be
leaf nodes both at level h−1 and h). Also let O'' be the
ob ject in node x. Now we add the two nodes y1 , y2 as
children of x and place objects O' and O'' in these two nodes.
This makes x as an internal node. Now we perform, the
following operation, called f loat(z) with argument x. This
operation f loat(z), is a recursive operation, which acts as
follows. It sets z.object to the ob ject among its children
that is closest to the query object Oq at time Ctime, i.e., to
the object given by the function CloserObject(O1 , O2 , Ctime)
and sets z.time to be the value given by the function
NextTime(O1, O2 , Ctime) where O1 , O2 are the objects
z.lef t.object and z.right.object, respectively. After this, if z is
the root then it stops; else it recursively invokes f loat on the
parent of z. It is not difficult to see that the resulting structure
H is an object heap at time Ctime containing the n+1 objects.
It's complexity is clearly O(logn).

Consider the object heap of Figure 3.2. Assume that t1>1. When
we insert a new object O4 at time 1, the following heap results
(see Figure 3.4). Note that O1 is still the closest object till t1. Also
O3 is the closer of O3 and O4 until t5. Here t5 is assumed to be
greater than t1.

Figure 3.4. The object heap resulting from an explicit update

on the object heap of Figure 3.2.

Deletion. Now we describe the deletion of an object from H .
Assume that the object to be deleted is the object in the last
leaf node, i.e. the right most node in the lowest level (i.e., at
level h). Let y2 be this node and let its sibling be y1 and let x

be their parent. It is not difficult to see that x is the last
internal node of H . We delete both the nodes y1 and y2 and
place the object in y1 in the node x. By this, H loses two
nodes and x becomes a leaf node. Now, we invoke f loat

operation on the parent z of x. After this, the resulting
structure will satisfy the object heap property. Clearly, the
complexity of this operation is O(logn).

Now consider the deletion of an object O' in an arbitrary leaf
node y . To do this, we first delete the object O'' in the last
leaf node of H using the above procedure. In the resulting
object heap, let y ' be the leaf node containing object O'' It
is possible that y ' is different from y . This occurs if y

was the last but one leaf node in H . Now we replace
ob ject O' in y ' by O'' and perform the f loat operation
starting from the parent of y ' . It should be easy to see that
the resulting structure is an object heap containing all objects
of H excepting O'. Clearly, the complexity of this whole

O1, t1

O1 O2

O3, t5

O1, t1

O3 O4

O1, t1

O1 O2

O3, t5

O1, t1

O3 O4

procedure is O(logn).

Velocity-vector Change. When the speed and/or the direction of
an existing object O' changes, the square-distance function)(2

' tdO

changes. In this case, find the leaf node y that contains O' and
update)(2

' tdO
. After this, we perform the f loat operation

starting from the parent of y . The complexity of this update is
also O(logn).

Now let us consider the piecewise linear model in which each
object can change its velocity-vector at most m times and we
analyze the cumulative complexity of our on-line algorithm for
maintaining the 1NN set and handling velocity-vector changes.
The cumulative complexity is bounded as follows. Since t he
complexity for handling each velocity-vector update is O(logn),
the total complexity of these updates is O(nmlogn). Note that
implicit updates are carried out between velocity-vector changes
as before, as and when needed. Now, we bound the cumulative
complexity of implicit updates. Observe that each object has a
piecewise linear motion with at most m pieces throughout the
time. Using Theorem 2.4, it is not difficult to see that the total
number of implicit updates that stop at a particular internal
node x is O(n1mα(n1)) where n1 is the number of objects stored
in the sub-tree rooted at x. Using the same argument as given in
Theorem 3.1 for the linear case, we see that the total number of
implicit updates that stop at an internal node at some level say
l is O(nmα(n)). Since there are at most logn levels, we see
that the total number of implicit updates is O(nmα(n)logn).
Since the cost of each implicit update is O(logn), we see that the
cumulative time complexity of implicit updates is
O(nmα(n)log2n). This is also the cumulative complexity of all
the updates both implicit as well as explicit.

3.2.5 Extension to k>1
For k>1, each internal node x in the object heap stores two items
x.set and x.time such that x.set is the set of the k closest objects to
Oq up to time x.time among all the objects in ObjectSet(x). To
achieve this goal, we modify the procedure
BuildObjectHeap(S,Oq,Ctime) as follows. For each internal node
x, x.set is set to be the kNN set at time Ctime among the objects
stored at its two children; x.time is set to be the minimum of the
time values in x’s children and the next time when the kNN set
among the objects stored at x’s two children is going to change.

Now consider how to process an implicit update that is triggered
at time t. Similar to k=1 case, the implicit update algorithm
traverses along a path of internal nodes x1,...,xg such that x1=r, xg
is a cross node and all nodes x1,...,xg−1 are minimal nodes and the
time value on all these nodes is r.time. After reaching xg, it sets
xg.set to be the kNN set at time t among the objects stored at xg’s
two children and sets xg.time to be the minimum of the time
values in xg’s children and the next time when xg.set is going to
change.

Explicit updates can be extended in the same fashion. It is not
difficult to see that, when k is a constant, the complexity of our
on-line algorithm for k>1 is the same as that for k=1.

4. Conclusion and Future Work
The results developed in this paper are summarized in Table 1.1
in section 1. In the rest of this section we discuss the future work.

CkNN with location uncertainty. Due to continuous motion,
communication delays and positioning errors, it is normal that
there is uncertainty associated with the locations of moving
objects. In this case, a CkNN query may ask for objects that are
possibly the k nearest neighbors, or the objects that are definitely
the k nearest neighbors. In terms of the location uncertainty
model, the uncertainty region at any point in time can be a circle,
an ellipse, a line segment, a fan area, etc. We will study the
complexity and processing of CkNN queries under various query
semantics and various location uncertainty models.

Indexing in the Time-SquareDistance space. In the existing
literature, indexes are built in the motion space. Would it be more
efficient if we build indexes in the Time-SquareDistance? That is,
we index the distance curves using a spatial indexing structure
such as a quadtree. A quick observation is that the distance curves
are invariable in time unless there are updates. On the other hand,
the locations of moving objects change continuously in the
motion space even if there are no updates. Thus intuitively an
index structure in the Time-SquareDistance space would be more
stable than one in the motion space.

5. References
[1] J. Hershberger. Finding the upper envelope of n line

segments in O(nlogn) time. Information Processing Letters,
33(4):169-174, 1989.

[2] K. L. Clarkson and P. W. Shor. Applications of Random
Sampling in Computational Geometry, II. Discrete and

Computational Geometry, 4(1):387-421, 1989.

[3] Y. Li, J. Yang, and J. Han: Continuous K-Nearest Neighbor
Search for Moving Objects. SSDBM 2004: 123-126.

[4] G. Iwerks, H. Samet, K. Smith. Continuous K-Nearest
Neighbor Queries for Continuously Moving Points with
Updates. VLDB, 2003.

[5] J. Basch and L. J. Guibas. Data Structures for Mobile Data.
Journal of Algorithms, 31:1-28, 1999.

[6] P. K. Agarwal and M. Sharir. Arrangements and Their
Applications. In Handbook of Computational Geometry,
edited by J. R. Sack and J. Urrutia, North-Holland, 2000.

[7] G. D. da Fonseca and C. M. H. de Figueiredo. Kinetic heap-
ordered trees: tight analysis and improved algorithms.
Information Processing Letters 85(3):165-169, 2003.

[8] P. K. Agarwal and M. Sharir. Davenport-Schinzel Sequences
and Their Geometric Applications. In Handbook of
Computational Geometry, edited by J. R. Sack and J. Urrutia,
North-Holland, 2000.

[9] T. H. Cormen, C. E. Leiserson, R. L. Rivest. Introduction to

Algorithms. McGrwHill Publishers, 2001.

