
Ot-0)

World Multt=on~nce on
Sy~1Ls.Cy~netiCs

and lnfonnatis

July 22-25, 2001
Orlando, Florida, USA

PR(][EEDINEiS
Volume I

Information Systems Development

Organized by IllS
International
Institute of
Informatics
and Systemics

Member of the International
Federation of Systems Research

IFSR
Co-organized by IEEE Computer Society

(Chapter: Venezuela)

EDITORS
Nagib Callaos

Ivan Nunes da Silva
Jorge Molero

Crawling Distributed Operating System within Multiple
Heterogeneous Operating Systems of Internet-connected Hosts •

Andriy SELIVONENKO, Naphtali RISHE, Toby BERK, Oksana DYGANOV A, Scott GRAHAM,
Daniel MENDEZ

High Perfonnance Database Research Center
Florida International University

Miami, FL 33199, USA

ABSTRACT
Distributed computing within the World Wide Web has
t>een the focus of active research lately. There are various
approaches to creating a heterogeneous distributed
computing framework. We propose a dynamic,
distributed, heterogeneous computing environment that
crawls over Internet hosts. We introduce the concept of a
"Compute-per-View" model, which extends the widely
accepted "Pay-per-View" model. The proposed "Crawling
Distributed Operating System" overcomes limitations of
the "Pay-per-View" model and allows idle network
bandwidth, CPU and disk resources to be used more
efficiently. We demonstrate how Semantic database
technology facilitates distributed databases with code
replication, rollback mechanism support and the
prevention of "racing condition" related problems.

Keywords: . distributed operating system, Compute-per­
View, Pay-per-View, Java Virtual Machine.

1. INTRODUCTION
l.L Scope of the "Crawling Distributed Operating
System" project
There are vast numbers of computing, network, and
storage resources idling oc not fully utilized available on
the Internet [5]. Our goal is to elaborate an approach that
will employ such resources and create benefits for the
hosts that lend their CPU, network. and storage resources.
The project "Crawling Distributed . Operating System"
(COOS) facilitates collaboration of Java components over
the Internet. COOS also facilitates distributed
computations, using applications that were created using
native code compilers (such as CJC++ or Foctran
compilers) and adjusted to specific hardware and
operating systems.

1.2. Conditions and limitations of the Internet­
connected host's hardware and software environment.

The principles of COOS organization should be flexible
enough to span a variety of local host conditions, since the
target of COOS is variety of Internet hosts, each of which
may have different hardware, CPU instruction sets, and
underlying operating system.
• COOS should have a "noo-intrusive" method of
ingesting the COOS seed into the underlying host

operating system. COOS uses the COOS seed, which is
ingested into an Internet b-owser's Java Virtual Machine.
Therefore all machines that run Java-enabled Internet
browsers can participate in the COOS framework.
• The Java-based COOS seed and the Java Virtual
Machine core of COOS operation overcomes security
limitations, which frequently forbid native code
applications that have arrived from the Internet to be
invoked on the host Security restrictions could be lifted
via a security clearance that the user could give to the
COOS seed. COOS could execute native code applications
after being given native code invocation security
clearance. The host browser's Java Virtual Machine
settings might disallow any native code applicatioo
invocation or the user might refuse to give such security
clearance in some cases. COOS could run even within
such restricted conditions, since the COOS framework is
based only on Java code.
• Internet hosts are not reliable. COOS should inherently
deal with reliability issues. Furthermore. the COOS seed
could be purged from the Internet host at any time, when
the user decides to close the Internet b-owser. COOS
should be able to deal with the sudden termination of its
instance on a particular host.

2. CDOS CONCEPT
2.L COOS features.
The "Crawling Distributed Operating System" Java
framework allows the user to:
• participate in distributed Internet computing:

o perform compute-intensive tasks on the user's
machine in background mode without imposing
significant delays to foreground application services

o render temporary storage of intermediate computing
results and make them available to the Internet
community

• get Internet browsing benefits as payback for performing
computing tasks

• bring various parties together to participate in computing
pools. (Payment will be done via direct payments and/or
"barter exchange"; see Figs. 1,2):
o parties with computing requests, who will cover

expenses

• This research was supported in part by NASA (under grants NAG5-9478, NAGW-4080, NAG5-5095, NAS5-97222, and NAG5-6830)
and NSF (CDA-9711582, IRI-9409661, HRD-9707076, and ANI-9876409).

71

o parties with information services, who will get credit
o users with computing resources, who will get credit
o users with information needs, who will cover expenses

2.2. COOS invocation scenario
COOS does not need to be installed on the user computer.
(The COOS seed is shipped as an Internet Java
application, which is executed while the user browses the
Internet) COOS might be populated on a series of Web
servers that are participating in COOS-enabled
computations.

We name such a set of Web servers a "COOS pool." There
could be more than one COOS pool. CDOS is ingested
into machines, which are being operated by end-users
("user hosts") from this pooVthese pools. The COOS start­
up scenario consists of the following steps (see Fig. 6):
• The user comes to a site that participates in one of the
COOS pools.
• The user' s browser downloads the COOS seed as a
.jar/.zip archive, which is included in an HfML page. This
seed has a digital signature, which the browser uses to
validate the seed's content authenticity.
• The seed initiates permission clearance dialog (see Fig.
3). The user accepts the conditions of participating in
COOS pool on one of the following levels:

• full participation -user gives security clearance for
• data staage on hard drives
• connecting to various Internet hosts
• executing native code applications
Such users will receive maximal credit rates. Tasks
that require large data exchanges or contiguous data
storage will be preferentially assigned to these users.

• full directly-connected computing participation
users gives security clearance for
• connecting to various Internet hosts
• executing native code applications
Such users will receive medium credit rates. Compute
and network transfer-intense tasks will be
preferentially assigned to these users.

• storage-only participation - user gives security
clearance for
• connecting to various Internet hosts
• data staage on hard drives
Storage-intense tasks will be preferentially assigned to
these users.

• directly-connected computing participation - user
gives security clearance for
• connecting to various Internet hosts
Such users will receive lower credit rates. Computing
tasks, whose perfonnance does not significantly
degrade when run in a Java Virtual Machine
envirooment rather than as native code, will be
preferentially assigned to these users. An ~xample .of
such computations would be floatmg pomt
computations with a high percentage of trigonometric
functions calculations - the performance of such
calculations does not degrade significantly when they
are performed in Java rather than in C++.

72

Fig. 1. "Compute - per - View" Data Flow Model

Parties whidl have
computation/storage tasks

End-User lnfamatiool
Service Providers

Fig. 2. Commonly accepted alternative to "Pay­
per-View" Model: Advertisement-paid

information services

C View u Advertisement

~ Advertisemen~ ~ I
Information/ $ Advertisers

Internet Service Internet Portal
Information

Provider

• limited pamc1pation - user does not give any
security clearance
Such users will receive the lowest credit rates, and
will be assigned computing tasks similar to those
presented in the "directly-connected computing
participation" case, but with preference giv~ ~o ~
where a limited number of hosts need to partiCipate m
the computations. Such users communicate with a
single Leading Server, which participates in COOS.
The Leading Server for a particular user host instance
of CDOS is the Web server that presented the CDOS
seed into the user host's Internet browser. If a
particular task requires connecti?Ds to ~arious
participating hosts, such requests will be earned out
via a proxy-mechanism using the Leading Server (see
Fig. 4). The Proxy mechanism also enables extended
horizontal and vertical communication in cases of

•limited participation" in COOS by the user host (see

Fig. S).
Most taSks cwld be performed even by a pool of "limited
particiPatiOO" user basts. User hosts where uscn give at
leaSt one security clearance will perform some tasks moce
efficiently.
Furtber steps of the COOS invocation scenario follow:
• User host starts Java COOS seed instance.
• User host broadcasts to "leading" server host and/or to a

pool of server basts (if user initially gave "connecting
to various Internet basts" security clearance)
"Available ftr service" message

• User browser stays on the "Leading" host web-server
via an IP retaining mechanism.

:U CDOS fuodionality description.
The "leading" host ~server employs an IP retaining

. mechanism. This mechanism guarantees that at least one
instance of the browser will stay permanently on the URL,
whae bostname maps to this invariable IP address. To
employ an IP retaining mechanism, the Web server should

Fig. 3. Digital Signature verification process.
Applet requests "contacting and connecting
with other computers over a network"
permission.

73

emulate browsing the Internet either via an HrML frames
approach or via a dynamic liTML transl.ata/converter
where remote URLs are replaced through proxy
emulation.

Fig. 4. Limited participation in COOS by User Host

Participating
Server Leading

Senoer

1 - Direct Request from User Ha;t to Leading Server

2 - Leading Server replies to user host directly

P1 - User Ha;t sends request to Participating Server
through Proxy service of Leading Server

P2 - Participating Server sends reply to User Host
through Proxy service of Leading Server

The COOS seed serves as the core of COOS and supports
the following COOS pimitives:
• broadcasts COOS participating user-node availability
• specifies COOlpUting speed. network connectivity. and
staage amowtt qutta estimates
• respoods to requests about CDOS participating user­
node availability
• replies with current computing speed. network
connectivity and stocage amoont quota
• registers particular services Ooad some algorithm
implementatioo that will compute specific tasks)
• accepts computing/storage task via registen:d service
• monitocs task execution
• saves rollback points for a particular task eu:cution oo
designated COOS pool server host(s) andlcr other user
hosts
• restores failed tasks from the latest available rollbaclc
point
• returns execution results
• monitas the status of underlying operating systems
• detcnnines a non-intrusive current compute quota.
based on current processor(s) load and user's activity
• determines storage quota. based on disk capacity. file
system permission, and disk read/write load

,
• determines network connection quota, based on current
traffic, available bandwidth, and user's activity
• makes calls to underlying operating systems to carry out
services that are unavailable within Java Virtual
Machines, such as launching native code tasks
• COOS addresses problems of fault tolerance.

Portion of the COOS, which is running on host-servers,
makes decisions about tasks execution on particular user­
hosts and coordinates computations/storage.

3. SEMANTIC DATABASE TECHNOLOGY
WimiNCDOS

Semantic database technology serves as a back-end
distributed intelligent storage subsystem. Semantic
Object-Oriented Database System (Sem-ODB), developed
at florida International University's High Perfocmance
Database Center, was used within COOS. [1, 6] Sem-ODB
addresses issues of distributed databases via code
replication, rollback mechanism suppat, and the
prevention of problems related to ''racing conditions."

Fig. 5. Horizontal and Vertical communication in
COOS by user hosts with and without network

security clearance.

Leading
Server for A

equest about Task 1.1

Hsecurity
clearance is OK -

sends reolv

Participating
Servers

Leading
Server forB

Within COOS, SemODB substitutes the file semantics
operations by database transactions. COOS requires all
stream input/output operations to be represented as
streams, which are tunneled via HTTP protocol, on the
user host level. HITP streams could be conveyed further
via proxy fearures of participating servers and via direct
connection for the user hosts with network connectivity
security clearance. Launching of the code, to be executed,
is done via program code loading from the Sem-ODB.
Data needed for program execution, as well as
intermediary and final data are stored in Sem-ODB. Sem­
ODB emulates file system semantics with database
semantics. The Sem-ODB transaction mechanism supp<rts
atomic transactions, which are an efficient means of

74

synchronization and recovery in distributed operating
systems [4].

4. IMPLEMENTATION AND RESULTS
Java is a widely used choice foc implementation of
distributed operating systems that could be executed on
various hardware platforms and host-specific operating
systems [2, 3).

The client side of COOS consists of the COOS seed,
implemented as a Java 1.1 compliant applet (see Fig. 6).
The COOS seed is invoked within the HfML frame,
which is placed in a frameset. At the moment a user
arrives to participate in a COOS Web site, the user's
browser downloads the frameset. The frameset consists of
two frames: one is a hidden frame containing the COOS
seed, while other is an information frame. The information
frame displays desired Web site content and keeps
changing while the user browses the Internet The hidden
frame keeps the client on the IP of the Leading Server and
ensures that COOS seed is permanently loaded. Therefore,
the COOS seed is guaranteed to be resident in the client
browser's Java Virtual Machine. The COOS seed
maintains a live connection to the Leading Server.

Whenever some Participating Server has a job to be
computed, it propagates requests to all Participating
Servers. The Participating Servers try to fetch the job frocn
the job-initiatoc Participating Server's database. This job
will be assigned to the first responding server or via some
other selection algorithm. This job is marked in the
database of the job-initiatoc Server as "in-process" with
timestamp equal to currentTime + JobEstimatedDuration.
JobEstimatedDuration is present in the database as a
characteristic of this job, adjusted to the client's reported
computing capability. This job is unavailable for
execution in the database foc the JobEstimatedDuratioo
time since this job was sent for execution. If a response
signifying job completion does not come within
JobEstimatedDuratioo, the job-initiatoc sends an A Y A
("Are you alive?'') request to the running instance via its
Leading Server. The A YA request is permitted N times as
specified in the characteristics of this job in its database
entry. If N is equal to 0, the job is supposed to be done
within jobEstimatedDuration. If there is an answer
timeout, the job is marked "available" in the database and
the Client Host, which overran the time limit, is
blacklisted against perfocming such a job. Therefore, the
Client Host will not be assigned to this job again, unless
there are no other non-blacklisted candidates to perform
this job.

The COOS seed loads desired Java class(es) via the Java
dynamic class loading mechanism and Java Reflectioo
API:
import java.lang.refled. *;
... .. ./I exception handlers are omitted fer lreYfty
Class loadedCiass = Class.fa"Name("NameOfTlleCiass") ;
Method coocatMethod =

loadedCiass.getMethod("desi"edMetrodName .. , ...);
concatMethod.lnvoke(...);

Fig. 6. Use Case diagram: CDOS Seed ingestion; Leading Server, Participating Server, and Client
Host oortion of COOS interaction

Leading Serwr
,1\
I
I

<include>
I
I
I
I
I

Check Autt-nlly

y -
Request~ Clearance

I
I
\

I
'V-..____ Quota Estimation

Avaiabilly Report ~

0 \

~
.-Seivice Regi&tratbn

<include~

\

/
/

/
I
I

<inclucM>

~
I "'-

~--o-__
Participating Serwr Task rrocessing ' , '

<fiXtllnd>
I

I

6
Storage Processing

~

0

\ .-.Natlw~--:C:-:ode-:--~
Execution" could

I function only I

I
I
\

I

·s.curty Clearance"
was granted

0
Ro» Back Points GeneratDn NatiYa Code Ex.cution

AU classes should be placed in appropriate packages to
avoid name conflict. Class loading requests go to the
Leading Server via http protocol. The Leading Server
resolves these requests as follows:
• maps a Java package name (i.e. "package
edu.fiu.cs.www") to a set of servers, which store Java
classes within this package (i.e. bach.cs.fiu.edu.
miami.cs.fiu.edu . ..)via job-initiator Server DB look-up;
• retrieves desired Java class(es) from one of the servers.
If a retrieval attempt causes a timeout, the retrieval
attempt is repeated with the next server in the set.
• tunnels requested Java class(es) back to Client Host via
proxy mechanism.

enos supports the semantics of an Internet-distributed
file system. There are many attempts to bring distributed

75

files systems to the Internet level and to enrich file
systems with database semantics: SWl is moving its NFS
to WebNFS [7]; the Internet Engineering Task Force is
creating Common Internet File System (CIFS) [8]; Oracle
is merging file systems into database environments
(Oracle Internet File System - iFS) [9]. COOS uses
Internet global addressing for name resolution in its file
system, http protocol as its Wliversal transpcrt media and a
database as its universal staage media Its database
mechanism supports the concurrency, security, and
replication features of file systems.

At the current stage of COOS development, it suppcrts
such file system primitives as open, read. write, and close.
File streams could be opened either for read or for write.
CDOS does not yet support lseek and open in read-write
mode.

COOS supports a rollback procedure that allows
intermediate steps of a particular task's computations to be
stored and allows the retwn to some rollback point. if
needed. The rollback feature allows lengthy computatioo
tasks to be split into portions that could be executed on
different hosts sequentially. This feature is especially
impcxtant in the COOS environment, where the typical life
span of Client Host availability is just a few hours. A
particular job should implement a Java Serializable
interface to support the COOS rollback feature. Thus, a
running Java process should serialize itself into the output
stream upon a ''Save Rollback" request. This stream is
saved as Rollback point into the database and
computations are resumed.

COOS addresses issues of client and/or server crashes.
• If the Leading Server crashes, all COOS seeds on clients
that ingested their COOS seed from this Leading Server
cannot continue their operation. The Leading Server
emulates wlimited browsing of the Internet with the
browser retaining the Leading Server IP. When Leading
Server crashes, the usa will not be able to continue the
Internet browsing and therefore will be forced to close the
browser or type a new URL, which will terminate the
COOS seed. Such termination is obligatocy by browser
and Java Virtual Machine interoperability conventions.
This makes further COOS operation on the client that is
tied to a crashed Leading Server IP impossible. If the
COOS seed were running some task at this time, this task
would be terminated and removed from client memory.
The Job-initiating Server will notice a timeout of the
crashed Leading Server, will mark this job in the database
as "available for execution" and will broadcast an
invitation to execute among Participating Servers. If some
rollbacks were saved before the crash, this job will be re­
executed from the last rollback point
• If COOS crashes on the Client Host or the user closes
the browser and therefore terminates COOS before a
running task is completed and its results saved into the
Job-initiating Server's database, the latter will notice a
timeout and re-execute this task as was demonstrated
above.
• If the Job-initiating Server crashes, the Leading Server
will be unable to store the results of this task or its
requested rollback results. When the COOS seed on the
Client Host gets negative acknowledgement or no
acknowledgement at all from the Leading Server after a
rollback save attempt, it will terminate the current task.

COOS prevents "racing condition" situations via database
transactional mechanisms. On the Client Host. the COOS
seed has only one execution thread. which could load the
task for execution. If the COOS seed notices that a current
task is taking more CPU/network resources than its self­
imposed COOS quota, COOS reduces the priority of the
running task.

If the Leading Server desires to execute more than one
task on a particular Client Host, it gives a signal to the
existing CDOS seed to spawn another instance of the

76

COOS seed. Multiple COOS seeds don't communicate
between themselves on the Client Host side to reduce
coos seed code size and complexity. The Leading Server
makes decisions about COOS seeds spawning and
termination.

5. CONCLUSION
We presented a "Crawled Distributed Operating System."
It facilitates flexible, lightweight Internet computational
media, which works over heterogeneous hardware and
software envirooments without requiring any explicit
running code installations and administration oo the user
side. The proposed COOS was successfully implemented
and the system is scalable and platform independent An
alternative business model "Compute-per-View'' was
introduced. We demonstrated that the COOS approach
makes such model existence possible. We showed that
"Compute-per-View'' extends the traditional "Pay-per­
View" model as well as a conventiooal advertisement­
based Internet content technology. COOS bridges the gap
between the file system semantics, execution control
semantics, and database semantics. We anticipate that
COOS model might be applicable to a wide variety of
computatiooal tasks such as statistical calculations,
thermodynamic/hydrodynamic/ nuclear simulatioos, 3D
rendering, financial analysis, and scientific experiments.

6. REFERENCES
[1] N. Rishe, Database Design: The Semantic Approach,

McGraw-Hill,Inc. N.Y., N.Y, 1992 . .
[2] Tommy Thorn, Programming languages for mobile

code, ACM Comput Surv. 29,3 (Sep. 1997), Pages
213-239

[3] Michael Swaine, Programming paradigms, Dr. Dobbs
J. Nov. 1998, Article 11

[4] Thomas W. Page, Matthew J. Weinstein and Gerald J.
Popek. Genesis: a distributed database operating
system, Proceedings of the 1985 international
conference on Management of data, 1985, Pages 374-
387

[5] Neil Randall, Power to the People, PC Magazine,
April24, 2001, Pages 80-84

[6] N. Rishe, W. Sun, D. Bartoo, Y.Deog, C. Orji, M
Alexopoulos, L., Loureiro, C. Ordonez, M Sanchez,
A. Shaposhnikov, "Florida International University
High Performance Database Research Center",
SIGMOD Record, 1995, vol.24, no. 3, pp.71-76.

[7] http://www .sun.com/softwarelwebnfs/
[8] http://msdn.microsoft.com/workshoplnetworkinglcifs
[9] http://otn.oracle.com/products/ifs/pdf/ifsfol_l.pdf

980-07-7541-2

rrr

