

once. Sybase's implementation of distrib ­
uted query allows access and update of
data from multiple dataservers in the same
transaction. At present, an application
handles the two phase commit, although the
plan is to incorporate this into the data ­
server in a future release . Lastly, multi­
statement retrieval and update transac ­
tions accessing multiple databases on mul­
tiple dataservers are supported, with in­
complete updates automatically rolled
back(J].

Oracle supports remote application access
with a "kernel residing only on nodes with
a database." In this architecture, a sin­
gle SQL references data at one location
only[9], transactions are not coordinated
across databases, and each application is
responsible for table maintenance across
nodes. As a result, although processing
is performed on multiple machines, each
logical database is located at one node
only. Oracle does have support for paral­
lel processors which allows for optimiza ­
tion of the Oracle background processes,
reducing I / 0 bottlenecks and enhancing
performance .

implements multiple database serv­
ers on any number of CPU's. The Ingres
Star Distributed Data Manager receives an
SQL and divides it into subqueries. Each
local data manager executes its subquery
and returns selected data to the applica ­
tion[l6]. The following are also features
of Ingres: 1) two phase commit, 2) auto ­
matic recovery, 3) cable fragmentation,
4) distributed query optimization, and
5) parallel query execution. Ingres sup­
ports multiprocessor UNIX and most popu­
lar networking protocols.

Informix Turbo is built on a requestor /
server model that separates the user in ­
terface (application) from the database
server (engine). Each user has their own
server process and thus multiprocessor
hardware is supported (a single process
server DBMS cannot distr i bute across mul­
tiple processors). "Most popular network
protocols" on a "wide variety of hetero­
genous computer systems" are supported[l2].

Concurrency Control

Interactive time-sharing systems which
support a number of concurrent database
transactions executing simultaneously muse
control the interaction among them to pre­
serve the consistency of the database. A
number of concurrency control schemes in­
cluding locking protocols, timestamp or ­
dering, validation, and multiversion tech­
niques do so by either delaying an opera­
tion or aborting the transaction that is­
sued the operation. A locking protocol is
a set of rules which state when a trans ­
action may lock and unlock each of the

444

data items in the database. A timestamp ­
ordering scheme ensures concurrency con­
trol by selecting an ordering in advance
between every pair of transactions. A val­
idation scheme tests the validity of the
unique fixed timestamp associated with
each transaction and rolls back those
which do not pass . Multiversion concurren­
cy control also uses timestamps to ensure
that a read operation always succeeds,
while write operations may result in the
rollback of a transaction .

Sybase implements user defined transaction
control with BEGIN, COMMIT, ROLLBACK, and
SAVE TRANSACTION SQL statements. Users
also have the option of making normally
shared locks more restrictive. Both dead­
lock (one transaction waits for resources
held by another, which itself waits for
resources held by the first, in an infi ­
nite loop) and livelock (an exclusive lock
is prevented from aquiring resources be­
cause a series of shared locks keeps in­
terfering) are automatically detected and
handled by the dataserver[J]. Sybase han ­
dles integrity enforcement by allowing
table owners to create "stored procedures"
which ensure that whenever changes are
made to tables by applications, none will
violate the consistency required by for­
eign key va l ues and the primary key values
they reference.

Oracle's c oncurrency control mechanism is
based on the use o f shared memory t o con­
tain database l o cks, buffers, cache, and
queues. Oracle does not depend on UNIX for
locking, rather semaphores and signals ar­
bitrate locks providing a more granular
record locking scheme. (It is not clear
that record locking is an advantage when
transactions are distributed across the
pages of a database.) Oracle's integrity
control scheme uses the UNIX "write­
through" buffer cache and, for those sys­
tems that do not support it, raw devices
are used to write data co disk on demand.

The Ingres database lock manager imple­
ments read and write locks on the entire
database, a single table, or a single data
page. Ingres automatically escalates locks
when necessary and provides automatic
deadlock detection and rollback[lS]. Lock­
ing rules can be adjusted. Ingres enforces
referential integrity by "looking up en­
tered values in database tables."

Informix applies locks to either the en­
tire database, a table, a page, or a row.
Read locks, which provide "degrees of iso­
lation from other transactions", include
dirty read, committed read, cursor stabil­
ity, and repeatable read[l2].

I
r
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Crash Recovery

An integral part of a database system is a
recovery scheme which is responsible for
the detection of failures and the restora­
tion of the database to a consistent state
that existed prior to the occurence of the
failure. Put another way, it is the re­
sponsibility of the recovery scheme to en­
sure that all of the instructions associa ­
ted with any transaction are executed to
completion, or none are performed. A com­
mon way of doing this is to log all trans­
actions on disk or tape before the data­
base is updated. In the event of a fail ­
ure, the log can be used to restore con­
sistency. This technique is also called
journaling. A less common method of ensur­
ing consistency is shadow paging, in which
uncommitted transactions are mirrored on
disk. Crash recovery in a distributed
database is more difficult since each
transaction has to be committed everywhere
or aborted everywhere . The two phase corn­
mit strategy is viewed as a way of solving
this problem, but it is not yet implemen­
ted in all of the leading RDBMS's and it
can impose a longer response time.

Sybase's dataserver recovery features in­
clude a write ahead log a~d a user setable
"maximum recovery time" from which an ap­
propriate checkpoint interval for writing
"dirty pages" t o disk is derived. In the
event of a failure, a l l transactions that
were in progress but not yet committed at
th e time of the failure a re undone. Com­
pleted transaction s a re redone if there is
no guarantee that the y were committed
since the last checkpoin t . Sybas e provides
a s oftware irnplernentatior. of d i sk mirror­
ing for either the transaction log or the
entire database, and a "dynamic dump"
utility allows the databa se and transac ­
tion l og t o be backed up while in use, en­
couraging frequent ba ckups.

Oracle stores an "after 1rnage" journal on
a separate disk to prov ide crash recovery.
Applying the journal, a "roll foward" re­
covery, results in the writing of commit­
ted transactions t o a backup copy of the
database. Uncommitted transactions are
rolled back.

Ingres and Inforrnix also implement check ­
points and journaling . Inforrnix keeps both
"before image" and "after image " logs to
facilitate fast recovery of all complete
transactions .

Conclusion

Can one make a choice of which DBMS to
benchmark on the basis of a comparative
design review? Perhaps. Based on the mat­
erial considered here, Sybase appears to
have the best distributed architecture,
the most advanced transaction control,

445

integrity checks, and crash recovery fea­
tures. Are there additional issues to con­
sider? Of course. Application development
tools, security features, portability,
cost and support have not been addressed .
Also, in making this kind of decision,
savvy users will attempt to find someone
who has successfully built an application
with the favored DBMS. It's fair to say
though, that the database systems reviewed
here are all enjoying increasing accep ­
tance along with UNIX , workstations, and
mi~icornputers in general. Any of them
could offer significant advantages if
carefully applied to a given problem. Un­
derstanding the design issues presented
here represents the first step toward
making an informed decision and going on
to a meaningful benchmark.

References

[1) J . Bowman and K. Paulse1l , "The Data­
toolset," Sybase Technical Report
3010 - 3.0, March 1988.

[2) L. Boyd, "Standing on Shaky Ground?
RDBMS pioneer Sybase trading for top
share in distributed databases," The
Sun Observer, September 1989.

[3) M. Darnovsky and S . Emerson, "The
Dataserver," Sybase Technical Report
3000.3.0, March 1988 .

[4) J.L. Hursch and C.J . Hursch, Working
With Oracle, Tab Professional and Ref­
erence Books, 1987.

[5) M. Jarke and J . Koch, "Query Optimiza­
tion in Database Systems," Computing
Surveys, vol . 16, no. 2, June 1984.

[6) F. Pascal, "Sybase Today, SQL Server
Tomorrow," Data Based Advisor, April
1988.

[7) U. Rodgers, "Benchmarking Techniques
for UNIX DBMS's," Database Programming
and Design," November 1988.

[8) S . Roti, "SQL + 4GL = Inforrnix," Data
Based Advisor, September 1988.

[9) L. Schaeffer, "Oracle for UNIX - Gen­
eral Information Manual Version 6.0,"
Oracle Technical Publication 449-V6.0,
August 1988.

[10) M. Stonebraker, "The Distributed Data­
base Decade," Datamation, Sept. 1989 .

[11) "Distributed Databases," Sun Micro­
systems Software Technical Bulletin,
August 1989, p. 1055 .

[12) "Inforrnix Turbo : OLTP Performance for
the Real World," Informix Software
publication 700 - 000 - 001-0, 1988.

[13) "Informix Turbo. On - Line Transaction
Processing Database Engine Version
1.10 . 03," Informix Software publica­
tion 732-000 - 009 - 0, 1989 .

[14) "Ingres / Applications," Relational
Technology pub. MIV-002A- 001, 1987.

[15) "Ingres Base Product," Relational
Technology pub. MIV - OOlR- 001, 1987.

[16) " Ingres -Overview," Relational Tech ­
nology pub . MIN - 0671 - 002, Dec. 1987.

(17] "Ingres Release 6.0," Relational Tech­
nology pub. MIV-OlOS-001, Dec. 1987.

[18] "Oracle: Products and Services Over­
view," Oracle pub. 19172.0189 1250,
1989.

[19] "Oracle: The Relational DBMS Solution
for UNIX," Oracle pub. 19570-0288,
1988.

[20] "Performance Evaluation of an On-Line
RDBMS," Sybase pub. 5012.0588, 1988.

[21] "SQL Server," Sybase pub. 3040.0189,
1989.

[22] "SQL Toolset," Sybase pub. 3030.0189,
1989.

[23] "UNIX On-Line Transaction Processing -
A Brief Definition," Informix Software
1989.

446

