
Modeling and Simulating Reconfigurable
Networked Service Composites

Onyeka Ezenwoye
Computer and Information Sciences

Georgia Regents University
Augusta, Georgia 30904

Email: oezenwoye@gru.edu

S. Masoud Sadjadi
School of Computing and Information Sciences

Florida International University
Miami, Florida 33199

Email: sadjadi@cs.fiu.edu

Wei Wang
Department of Computer Science

San Diego State University
San Diego, California 92115

Email: wwang@mail.sdsu.edu

Abstract—Composite services are notoriously prone to failure,
this is particularly true for long-running, and data-intensive
services. Different composition strategies can be employed to
make compositions robust. Any service composition strategy does
impact performance at the lower network layer and needs to be
assessed. Novel approaches are needed to model and evaluate
dynamically reconfigurable service composition strategies. We
propose an extensible framework to modeling and simulating
the behavior of service compositions.

Keywords: software framework, adaptive service composition,
network simulation.

I. INTRODUCTION

We define a service as an application component that is
remotely accessible to other applications and performs some
useful activity (service) on their behalf. The service then is
the behavior of the system, and is characterized by a set
of states which include computation, communication, stored
data, and physical condition. Service composition is achieved
by defining executable abstractions that model the interaction
between services. The complex nature of service compositions
and the distributed and autonomous nature of their execution
environments poses significant problems to building robust
service-based applications. Services may fail due to problems
in their environment or problems concerning the unmanaged
nature of the communication channel. Accounting for all the
dynamics of interactions of composite services is difficult.
This is especially true for data-intensive service compositions
where data movement and management is particularly prob-
lematic [1], [2, ].

Compositions strategies need to meet various application re-
quirements such as performance, and reliability. Composition
decisions do impact multiple layers of the application stack, all
the way to the lower network layer. The cost of composition
strategies to overall performance of the system needs to be
assessed. Due to the dynamic and autonomous nature of the
services in a composition, the evaluation of composition strate-
gies needs to be done in a controlled and repeatable manner
by using simulation software. There are currently no tools for
simulating flexible service compositions strategies in a way
that allows for the nework performance impact of composition
to be assessed. There is a need for the development of exten-
sible frameworks for reconfigurable service composition and

simulation. The framework should allow for the investigation
of the relationship between composition strategy and overall
performance of the system. A software framework provides
libraries and software tools to organize and build applications
in a specific application domain. The application domain in
this case is networked service-based composites. The design
of the framework should address problems at different layers
of the application stack. The composition strategy of the
service does have performance implications at the network
layer because composition strategy determines how data is
moved around the network. The performance impact on the
network can be used to assess the suitability of the composition
strategy.

In this paper, we present the ideas behind a software
framework for modeling and evaluating dynamic service com-
positions. The framework should provide: (1) interface and
coordination protocols for hybrid composition strategies, (2)
extensible policy specification and algorithms for automatic
adaptation at both pre-deployment and run time of the com-
posites, (3) software simulator for modeling and monitoring
service compositions, and execution with varying properties.
A software simulator could build on existing open source
network simulators such as NS-2 [3]. This tool should include
components for modeling the behavior of atomic composable
heterogeneous services whose behavior cover computation,
communication and faults. It should permit modeling and
monitoring of properties that include the type, speed and
reliability of the network links. While allowing for the service
compositions to be created graphically and then executed for
evaluation. These tools will help in the exploration of the
interplay between service composition strategies, and network
properties. An extensible framework can easily evolve to
simulate various application scenarios.

The rest of this paper is structures as follows; we articulate
in Section II a service representation model. Section III
we present a reconfigurable composition model. Section IV
discusses the network layer. Related work and conclusion are
in Sections V and VI respectively. We hope the ideas presented
here will help lay the foundation for this service composition
and simulation framework to support both wired and wireless
networks, across multiple layers, in a data-centric fashion.



II. SERVICE REPRESENTATION

The structure of a composite facilitates its behavior and
structurally the system can be seen as being composed of a
set of interacting services. This definition is recursive since
indeed each service can be another composite. However, the
recursion stops when a service is considered to be atomic
and its internal structure is not composite. A framework for
modeling and simulation of service composition should permit
the abstraction of atomic services. It should be possible to
model attributes concerning:

1) Interprocess communication: Here, it should allow for
algorithms to be defined to model communication meth-
ods from point-to-point to broadcast messaging over a
network. It is important to model this behavior since it is
needed to enable message exchange between reconfig-
urable services. Adaptable composition requires support
for modifiable interprocess communication [4], [5].

2) Timing model: Here, it should allow for algorithms to
be defined to model the timing of events in the service,
related to computation and communication. In most dis-
tributed systems, execution proceeds asynchronously [6]
and at the atomic level a service is inherently asyn-
chronous. Thus the focus should be on an asynchronous
timing model. However, abstractions could be defined
in a way that allows for synchronous and partially
synchronous timing behavior to be added.

3) Failure model: Here, it should be possible for algorithms
to be defined to model faulty behavior which will include
transient and non-transient failures in computation and
communication mechanisms. This will also be useful
since service instances and network partitions can be
transient [4], [7].

Since the focus is on asynchronous timing, we model an
atomic service as a combination of input-enabled process
automata and channel automata [5], [6] that interact with
each other and operate at varying speeds. The actions of the
automata are classified as input, output or internal, where input
and output are used for communication. Figure 1 illustrates the
process and communication automaton with input and output
actions.

Pi Ci, j

decide(v)i receive(m)j, i
send(m)i, j receive(m)i, j

init(v)i send(m)i, j

(a) (b)

Fig. 1. I/O Automata, (a) Process automaton, (b) Channel automaton

For the process Pi, init(v)i represents the receipt of input
value v, while decide(v)i represents a decision on v. The output
action send(m)i,j represents process Pi sending a message m
to Pj, while input action receive(m)j,i represents process Pi

receiving a message from Pj. The channel automaton Ci,j

represents a FIFO message channel with input and output
actions (send and receive respectively). When process and
channel automata are combined, the output of one automaton
is matched to the same-named input of the other automaton.

The set of input and output actions represents the external
interface. For each automaton, the task can be described as the
set of actions performed, so send(m)i,j and decide(v)i are both
regarded as single tasks for process Pi, while receive(m)i, j is
thought of as a single task for channel Ci,j [6]. For performance
measurement at this level, the metric that could be used is task
execution time. That is, the time it takes for a task to complete,
in the absence of failure.

There is a need to not only define framework compo-
nents that accurately combine process and channel behavior
in an extensible manner, but also encapsulates distinctively
the processes and message queue connector communication
mechanisms for loosely coupled message communication.

III. RECONFIGURABLE COMPOSITE MODEL

A composite service is an aggregation of tasks and the tasks
are implemented by the integrated services. Each service is
associated with one or more channels, as well as interfaces.
The composite service itself is a service.

Composite services are described and published as ser-
vice aggregators which are service providers themselves. A
composite service models and coordinates the interactions
between its constituent services. The two main service com-
position strategies are orchestration and choreography [9]. In
orchestration, the interaction between services is coordinated
in a centralized manner by a process which captures the
logic of the interaction between the services. The logic of
the interaction (control and data dependency) is encapsulated
within the composite service.

Some service orchestration platforms do employ decentral-
ized data flow techniques. This approach is typically utilized
for data-intensive composition which is often seen in scientific
workflow applications. In this model, integrated services also
encapsulate data movement and management logic to facilitate
the movement of data in a peer-to-peer manner. Here data
staging tasks can be incorporated as part of the composition.
Data staging allows for the data needed for computation
tasks to be moved to different locations before and after
execution. Control flow logic is retained by the composite thus
issues with scalability persist. The composite service in the
orchestration approach does constitute bottle-neck, and central
point of failure, especially for data-intensive compositions [10]
In contrast to the orchestration model, service choreography
involves two or more services participating to provide ser-
vice, in peer-to-peer manner. This model is characterized by
decentralized control and data flow. Here, each service is
aware of its role in the interaction and its immediate partner.
This presents significant advantages to scalability and more
efficient data flow. However, this model is difficult to manage
especially in exceptional conditions. Dynamic reconfiguration
is difficult since no service has a global view of the overall
integration [11].

In order to support dynamic reconfiguration of service
composites, a hybrid compostion model is needed. The hybrid
model is a combination of orchestration and choreography,
and overcomes some of the limitations of orchestration and



Monitor

Service Service Service

data flow control flow

Fig. 2. A hybrid service composition model

choreography. Figure 2 is an illustration of the hybrid model.
This model has a composite service, which we will refer to as
the monitor. The monitor captures the logic of the interaction
between the services participating in the choreography. Thus
the monitor has the global view of the interaction between the
integrated services [11], [12] This component intervenes only
if necessary to provide required adaptability to the system.
This monitor node observes the data and control-flow of the
choreography. In case of failure, the monitor intervenes and
for instance, assigns the load to another service and provides it
with the information needed to resume the task. This monitor
would encapsulate the behavioral and recovery policies that
allow for the composition to be reconfigured. This hybrid
model is scalable since multiple monitors can observe the same
composition. When multiple monitors are used, the monitors
would need to coordinate between themselves.

This hybrid sort of composition would support a system
for the development and execution of dynamically reconfig-
urable service composites. Figure 3 shows an overview of the
architecture of such an adaptive composition system. On the
left side of Figure 3, the logic of the composite is specified.
This specification should only be concerned with the data
and control flow dependencies of the composition, and not
crosscutting exceptional behavior.

Composite

Model

Automatic

Adapter

original

definition

modified

definition

Legend:

Transparent Data & Control Flow

Data & Control Flow

Model Adapter

Workflow 

P tt

Transparent Data & Control Flow

MonitorPolicy & 

Pattern

Editor
Recovery

Policies

Fault-tolerance

Patterns

Patterns

Policies

Service Service Service

Knowledge Base

Modeling Time Deployment Time Run Time

Fig. 3. Conceptual architecture of a reconfigurable composition system

During deployment time, the resulting composition is passed
to an adapter, which in its turn automatically generates
a functionally equivalent composition but with introduced
redundancy for failure prone tasks. The automatic adapter
will have an algorithm that identifies known composition
patterns. Updated patterns will be stored in the Knowledge
Base. Composition and Fault-tolerance software patterns, and
recovery policy will be specified at a high-level. The generated
composition (modified definition) is then deployed on the
monitor. The monitor itself is a service that encapsulates the

logic of the composition.
At run time, the monitor uses the composite definition as a

global view of the interaction in order to observe the servicse
participating in the integration. The monitor does not expose
the functionality of the composition. The monitor will interact
with the participant services via clearly defined interfaces.
The monitor will implement pattern-matching algorithms that
monitor the behavior of the composition and provides adaptive
behavior when required. The algorithms should be based on
the Recovery Policies, the Composition Patterns, and their
corresponding Fault-Tolerant Patterns. For instance, dead-path
elimination techniques [13] could be applied here in novel
ways to achieve reconfiguration. The policy will be used
to specify parameters for dead-path elimination. Since the
patterns and policy are extensible, other recovery techniques
such as retry and migration can be applied. The policy can
also be used to specify parameters for those techniques.

This approach is modular and achieves separation of con-
cerns since adaptive behavior is driven by externalized poli-
cies, patterns and monitors. A framework for modeling and
simulating of compositions would allow for various compo-
sition stratgies and scenarios to be evaluated in a repeatable
manner. The framwork would support the modeling of the
service interactions by permitting the definition of the se-
quence of execution of the interaction services, as well as
the definition of the channels through which communication
between services is achieved. These definitions can be created
as separate but related direct graph models. Some research
has shown that the specification of a composite service can be
declaratively modeled using finite-state automaton [14], [15].

The separation of interaction sequence and communication
channel representation is useful so that the models can be
simplified while allowing for flexible combinations of chore-
ography and orchestration to be achieved with composabil-
ity of communication mechanisms. Knowledge from existing
standards for specification of Web service composition can be
leveraged. For performance monitoring of composite services,
the overall task completion time (makespan) of the composite
service can be used as a metric. It should be possible to
calculate the makespan since task completion time is also
measured at the atomic service level. The makespan is directly
related to the performance of the network who’s peformance
metrics can be observed as discussed in the next section IV.

IV. NETWORK SIMULATION

To simulate the composition and its effects on the network,
the framework can leverage existing, and widely used network
simulators such as, NS-2 [17]. NS-2 is a discrete event network
simulator that focuses on the simulation of IP networks at
the packet level. Simulation occurs by translating physical
activities to events. These events are queued and processed in
the order of their scheduled occurrences, and time progresses
as the events are processed. NS-2 is widely accepted by
the research community, as it supports many protocols such
as TCP and UDP, router queuing policies, Multicast and
Unicast transport, Multimedia, wired and wireless protocols.



The simulator is a collection of open source object-oriented
network simulation libraries. The implementation language for
NS-2 is C++.

NS-2 is sophisticated enough to model the network and
capture the desired service attributes of the communication,
timing and failure (described in Section II). It should be
possible for the framework to map the model of the composite
service directly onto the NS-2 class library. For performance
monitoring, the metrics available from NS-2 include:

• Number of data packets sent.
• Number of data packets received by the destination host.
• Total number of routing packets.
• Packet delivery fraction - ratio of received packets over

sent packets in percentage.
• End to end delay - average time for a data packet

delivered from host to destination.
These metrics can be used to assess the overall performance of
the system. The performance of the compostion can be mea-
sured as its task completion times (discussed in section III)

V. RELATED WORK

Current tools for modeling and simulation such as Activ-
iti [18] have largely ignored the relationship between service
composition strategy and the underlying network. Traditionally
the research on service composition is focused on applica-
tion layer. Simulators such as GridSim [19], SimGrid [20],
Bricks [21], and MicroGrid [22] focus mainly on the resource
allocation problem in the management domain of the inter-
acting services. A lot of emphasis is put on schedulers for
data-intensive applications. These simulators are not general
enough to support different application areas and composi-
tion strategies. They don’t permit interactions to be modeled
graphically, nor the separation of interaction logic from com-
munication channels. Also, no considerations are made for
the network layer, and failure models are not captured. These
simulators cannot be extended to address these issues.

Accurate simulation of network performance has been stud-
ied in the past decades with several existing simulation tools
such as Qualnet [23], and NS-2 [17]. None of these simulation
tools allow the simulation of service composition. None of
the above simulation platforms consider service composition
at application layer and the complex network interaction at
lower layers. In a dynamic networked service-based system,
high level composition decision are closely associated to low-
level network properties. A desirable framework should con-
sider both service composition and network dynamics jointly,
establishing a novel approach to simulating composite service-
oriented systems.

VI. CONCLUSION

Service composition has inate challenges due to its inter-
action model, networked communication, and heterogeneous
execution environments. Composition decisions do impact
multiple layers of the application stack, all the way to the
lower network layer and thus should not be treated in isolation.
We propose a novel simulation framework for evaluating

the behavior of service compositions. This framework will
allow the investigation of strategies to achieve scalable and
reconfigurable composition, while exploring the relationship
between data movement and service composition schemes.

ACKNOWLEDGMENT

This work is supported in part by the NSF under Grant
Numbers of I/UCRC IIP-1338922, and AIR IIP-1237818.

REFERENCES

[1] F. Rosenberg, P. Leitner, A. Michlmayr, P. Celikovic, and S. Dustdar,
“Towards composition as a service - a quality of service driven ap-
proach,” in IEEE International Conference on Data Engineering, 2009.

[2] G. Kandaswamy, A. Mandal, and D. Reed, “Fault tolerance and recovery
of scientific workflows on computational grids,” in 8th IEEE Interna-
tional Symposium on Cluster Computing and the Grid, 2008.

[3] “Ns-2,” http://www.isi.edu/nsnam/ns/.
[4] A. Nguyen-Tuong, “Integrating fault-tolerance techniques in grid appli-

cations,” Ph.D. dissertation, School of Engineering and Applied Science,
University of Virginia, United States, August 2000.

[5] R. Milner, Communicating and Mobile Systems: the Pi-Calculus. Cam-
bridge University Press, June 1999.

[6] N. A. Lynch, Distributed Algorithms. Morgan Kaufmann, 1996.
[7] V. P. Nelson, “Fault-tolerant computing: Fundamental concepts.” IEEE

Computer, vol. 23, no. 7, pp. 19–25, 1990.
[8] D. Riehle, “Composite design patterns,” in Proceedings of International

Conference on Object-Oriented Programming Systems, Languages and
Applications. ACM Press, 1997.

[9] C. Peltz, “Web services orchestration and choreography,” IEEE Com-
puter, vol. 36, no. 10, pp. 44–52, 2003.

[10] E. Deelman and A. Chervenak, “Data management challenges of data-
intensive scientific workflows,” in 8th IEEE International Symposium on
Cluster Computing and the Grid. IEEE Computer Society, 2008.

[11] O. Ezenwoye and B. Tang, “Monitoring decentralized interacting web
services with a global state choreography model,” in IEEE International
Conference on Web Services. IEEE Computer Society, 2010.

[12] A. Cass, B. Lerner, E. McCall, L. Osterweil, and A. Wise, “Logically
central, physically distributed control in a process runtime environment,”
Department of Computer Science, University of Massachusetts, Tech.
Rep. Technical Report UM-CS-1999-065, 1999.

[13] M. Weidlich, A. Grokopf, and A. P. Barros, “Realising dead path elim-
ination in BPMN,” in IEEE Conference on Commerce and Enterprise
Computing. IEEE Computer Society, 2009, pp. 345–352.

[14] M. H. T. Beek, A. Bucchiarone, and S. Gnesi, “Formal methods for
service composition,” Annals of Mathematics, Computing and Telein-
formatics, vol. 1, no. 5, 2007.

[15] S. Nanz and T. Tolstrup, “Goal-oriented composition of services,” in 7th
international conference on Software composition. Springer, 2008.

[16] Z. Qiu, X. Zhao, C. Cai, and H. Yang, “Towards the theoretical
foundation of choreography,” in Proceedings of the 16th international
conference on World Wide Web. ACM, 2007.

[17] T. Issariyakul, E. Hossain, T. Issariyakul, and E. Hossain, Introduction
to Network Simulator 2 (NS2). Springer US, 2009.

[18] T. Rademakers, Activiti in Action : Executable business processes in
BPMN 2.0, 1st ed. Manning Publications, 2012.

[19] R. Buyya and M. Murshed, “Gridsim: a toolkit for the modeling and
simulation of distributed resource management and scheduling for grid
computing,” Concurrency and Computation: Practice and Experience,
vol. 14, pp. 1175–1220, 2002.

[20] H. Casanova, A. Legrand, and M. Quinson, “Simgrid: A generic
framework for large-scale distributed experiments,” in 10th International
Conference on Computer Modeling and Simulation. IEEE Computer
Society, 2008.

[21] K. Aida, A. Takefusa, H. Nakada, S. Matsuoka, S. Sekiguchi, and
U. Nagashima, “Performance evaluation model for scheduling in global
computing systems,” Int. J. High Perform. Comput. Appl., vol. 14,
August 2000.

[22] H. J. Song, X. Liu, D. Jakobsen, R. Bhagwan, X. Zhang, K. Taura, and
A. Chien, “The microgrid: a scientific tool for modeling computational
gridsr,” in ACM/IEEE Conference on Supercomputing, 2000.

[23] “Qualnet2,” http://www.scalable-networks.com/.


