
~ ~·stem 

(G) is 
exists 

:t-free. 
IN} is 
nition 

ElK 

neory. 

orma-

·hron­
mited 

elism, 

Pro-

ElK 

!ernie 

·bern. 

,fath. 

~TOL 

Fundamr/1/o lnformaticac 26 ( / 996)3 /-57 
/OS Prc•ss 

A UNIVERSAL MODEL FOR NON-PROCEDURAL DATABASE 
LANGUAGES 

Naphtali RISHE 
High-petformance Database Research Celller. School of Computer Science. Florida lmernational 
Unil'ersity. Uni1-ersity Park . Miami. FL 33/99. USA 

Abstract. We propose a language which can express every comput­
able query. The language is syntactically based on the first-order predicate 
calculus, but semantically is interpreted as post-conditions, unlike the cus­
tomary calculus query languages. The language has a capability to restrict 
itself to reasonable queries, accepting criteria of reasonability as a parame­
ter. 

1. Introduction 
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Query languages having the expressibility power of the relational calculus (or, 
equivalently, relational algebra) are often called "complete" (Codd-complete [I]). 
However, they cannot express many reasonable queries. Many extensions of the calculus 
were considered in the literature: aggregates, transitive closure, fixed points, Hom clauses 
(in Prolog-like languages), high-order logic. They are able to specify more queries. Yet, 
no proposed non-procedural query language can express all reasonable queries. 

This paper proposes a language which can express every query, provided the query is 
potentially computable. (The computability of queries is formally defined by modifying 
the theory of partial recursive functions to apply to the domain of databases, which may be 
order-less finite sets, rather than to the domain of integers.) 

The language is syntactically based on the first-order predicate calculus, but semantically 
is interpreted as post-conditions, not like the customary calculus query languages. Yet, I 
believe that the postconditional interpretation has a better appeal to intuition and is more 
non-procedural than the customary one. 

Being able to express every query, the language may allow unreasonable queries that 
should be prohibited (e.g . a query to find the average social security number). However, 
the language has a capability to restrict itself to reasonable queries, accepting criteria of 
reasonability as a parameter. This allows for screening out syntactically those queries 
which would be unreasonable according to the parametrically given reasonability criteria. 
(In fact, it is rather a language model, than one language. The model produces particular 
sublanguages according to criteria of reasonability.) 

Additional features of this non-procedural language include : 

It allows non-deterministic queries. This exempts the user from the specification of 
detail s which the user does not consider important. It also gives a greater potential for 
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optimization. Nevertheless, every query can be specified determin istically. if needed. 

It can express not only queries , but also all possible update transactions, integrity 
constraints. userview definitions. etc. in the relational and semantic semantic database 
models. 

In addition to all of the term inating computab le queries. etc., this language can 
express all of the partially computable queries. etc. 

An instantaneous data base is a finite structure of facts (elementary propositions) which is 
regarded as describing a state of an application world. A data base schema describes time­
independent properties of an application world and is a generator for a set, usually infinite, 
of instantaneous data bases for that application world. A data base model is a generator for 
an infinite set of structures every one of which can be regarded as an instantaneous data 
base for a state of an application world. (The model should be rich enough to provide a 
representation for every possible state of every reasonable application world .) 

Data base models are supplied with general user languages. Some of them are query 
languages. A query is a specification of information which a user wants to extract or 
deduce from an instantaneous data base without knowing its exact extent. A query is 
interpreted as a partial function from instantaneous data bases to some data structures. 

Among other data base languages are the update (transaction) languages. An update 
transaction expresses a transition between states of an application world, plus a query . It is 
interpreted as a partial function from instantaneous data bases to instantaneous data bases 
plus data structures containing information to be displayed. (Unlike the interpretation of 
queries, the interpretation of updates usually also depends on integrity and inference rules, 
fixed for the application, as discussed later.) These functions are not total when the 
implementing software may loop infinitely in some cases . 

It is usually desired that data base user languages possess the following properties: 

( I) They should be powerful enough to provide express ions for all "reasonable" 
requirements of users for any "reasonable" application world. A "reasonable query" 
must be physical-data-independent, at least in the following senses of [2] : 

Its output may not depend on the actual ordering of data in the physical data 
base. This is avoided by regarding a query as a transformation on an abstracted 
model of data bases, e.g. the relational data base model as defined in [3) (where 
an instantaneous data base is a collection of named n-ary mathematical relations 
over domains of values) or a semantic binary data model- [4]. [5), [6) (where 
an instantaneous data base is a collection of named unary and binary relations). 

Its output may not depend on the physical representation of abst ract objects in a 
data base. (In the semantic binary model, some objects are uninterpreted, 
representing real-world entities, and some are concrete values. There is no such 
clear distinction in the relational model since all the objects are logically 
represented there by values supplied by the user.) This principle may be 
extended by defining several types of objects: 

(i) the uninterpreted objects (the only meaningful mathematical operation on 
them is the binary function " = " yielding a Boolean value), 
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(ii) fully-interpreted objects (e.g. integers, on which every partial recursive 
function may be meaningful), and 

(iii) semi-interpreted objects, on which a collection of meaningful functions 
may be defined (e.g. the comparators>,<, etc. on names of people). 

Any of these types may be empty for a particular application. The first two types 
are special cases of types of semi-interpreted objects. So, all the types can be 
collapsed into one by defining one set of meaningful functions from tuples of 
objects to objects or error elements. 

(2) They should allow convenient expression of at least "frequent" requirements. 

(3) They should be implementable by software. 

There is no consensus on the extent of "reasonable" requirements of a query language's 
expressive power beyond the minimal data-independency. Unlike the language proposed 
herein, other proposals for query languages did not provide the possibility to express all 
meaningful queries and used a narrow interpretation of "reasonable requirements". 

These "reasonable requirements" are sometimes restricted to the queries expressible 

in Codd's Relational Algebra (or in the Relational Calculus), and thus languages 
whose expressiveness is equivalent to the Relational Calculus are called Codd­
complete (cf. [I]). 

[7] showed that quite reasonable queries, such as those involving transitive closure are 
inexpressible in Codd's Algebra and proposed to extend the Algebra by a fixed-point 

operator. 

A more powerful class of languages, using Hom clauses, is advocated in [8] and [9]. 
A representative of this class is Pro log (cf. [I 0]). Incomplete expressibility of Hom 
clauses was shown in [II] . 

( 12] proposes a much richer language model, which supports all computable data­
independent queries excluding those necessitating generation of new uninterpreted 
objects (e.g by an update transaction) and still keeping some restrictions on ' 
computations that necessitate interpretation of values. (Their language has a powerful 
capability of calculation of values, including aggregate calculations, e.g. counting, but 
does not allow all meaningful computations.) Another difference is that their 

language is highly-procedural. 

The exclusion of value-computations is argued by most authors by the desirability of 
enforcing the separation between data extraction (specified by a query) and data 
computation (speci fied by a program). Such separation may not always be justified, 
especially when one wishes to use queries for updates or for specification of inference 

rules . 

An objective of this work is to design a query language which possesses the following 

properties: 

(I) It is absolutely complete 1• i.e. every computable transformation is expressible in it. 
(A computable transformation is a partial recursive function of numbers effectively 
representing sets of tuples of objects.) (We use the term absolutely complete 
because of the the recent inflation in the meaning of "completeness" of query 
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languages. e.g. the languages equivalent to Codd's Algebra are often called 
"complete", while neither they, nor any other known non-procedural language but 
ours, could express all the reasonable queries .) 

(2) It is user-friendly : 

The user states not how to extract the information. but what properties the 
extracted information should possess. 

No query needs to regard types of information which are irrelevant to it. 

Queries are independent of representation and of computer-oriented decisions. 

The users are enabled to exploit indeterminism. 

Both the semantic-oriented and the table-oriented user are provided with 
appropriate syntax. 

The user can easily specify calculations on values when needed. Arbitrary 
aggregate calculations (such as summation, counting, etc.) are also expressible. 

The language is provided with "syntactic sugar" to make it more "friendly" to the 
end-user. 

The same syntax can be used to specify update transactions and integrity and 
inference rules. 

(3) The language is implementable. Of course, the implementation cannot be efficient 
due to the expressive power of the language. Heuristic techniques can be designed to 
implement efficiently some important subsets of the language. Whether or not the 
language is actually implemented by reasonably efficient software, the language can 
serve as : 

a formalism for reasoning about databases and for high-level specification of 
database operation before they are programmed in a lower-level language; 

a model for generation of efficiently-implementable sub languages; and 

a model for comparison of different languages. 

(4) For any definition of data-independence expressed by a set of meaningful operations 
on objects, there is a restricted syntax of the language, which generates all and only 
the data-independent queries and transformations. This is clarified in the section 
entitled 'Data Independence'. 
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2. Basic Definitions 

Query languages: computability and implementability 

Definition. A query language is a tuple L=(Alph,!DB,L,Sd, where: 

Alph, called the alphabet of the language, is a finite set; 
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/DB, called the data base model, is a denumerable set; its members are called 
[instantaneous] data bases; 

L, called the syntax of the language, is a set of strings, i.e. , a subset of A/ph*; 

every qE L is called a query. 

S L, called the semantics of the language, is a partial function from (L x !DB) to /DB ; 

When a query q is applied to an input instantaneous data base idb, the result is 

SL (q ,idb ). 

If (q ,idb )fi domain (SL ) then SL is undefined for (q ,idb ), i.e. the query q would loop 
for the input data base idb. 

The semantics of a query q is the partial function from /DB to /DB defined by 

SL ,q (idb) = SL (q ,idb ). 

Auxiliary definition. A [partial] function f from a denumerable set U to a denumerable set 
V is called [partial] computable iff there exist a finite set of characters Alph and two­
way-effective bijections Pu: u~Alph * and Pv: V~Alph * such that the function 

Pv 0f op;1 is [partial] recursive. 

Definition. A query language is implementable iff its semantics is a partial computable 
function. 

Definition . A query language is [absolutely] complete if for every partial computable 
function f over its model there is a query whose semantics is f. 

Abstraction of the data base model/DB 

Let A be a fixed finite set of all printable characters. 

Let Objects= Relationnames = D =A*. We require that "true" and "false" be in D . 

Some objects are numerals for numbers in decimal notation. 

We use the following data base model : 

!DB= the set of all finite subsets of ObjectsxRelationnamesx Objects 

Every triple in every instantaneous data base represents a binary relationship whose 
relation-name is in the middle. Binary relations are sufficient because the higher-ranked 
ones are meaningfully expressible by binary relationships, e.g. so: 

P[A 1 : a 1, A 2 : a 2, ... ,An : an] iff ::lz zA 1a 1 /\zA 2a 2 /\ .•• /\zAn an;\ z P null. 

Representation of n-ary relations by binary serves several purposes: it simplifies syntax of 
the queries in the language that we shall define and makes it more convenient to the user; it 
overcomes some update anomalies of relational data bases; it will simplify our formal 



notation and proofs, though it is not vital for their correctness. 

3. The Proposed Language 

The proposed language is a set of formulas, called queries, which are interpreted as partial 
transformations over the set /DB of instantaneous relational data bases. In the considered 
data base model /DB, introduced in Section 2, an instantaneous relational data base is a 
finite family of named finite relations over a fixed denumerable set D. called the domain of 
objects. (D can be further subdivided into domains of concrete mathematical values and 
domains of abstract objects.) When a instantaneous data base is transformed to another 
one (by a query or by an update ), the former data base is called "the input" and the latter 
"the result". 

The syntax and semantics of queries are formally defined in Appendix 3 (A and D 
respectively). Here we describe them in an informal way because that may suffice to many 
readers. 

The semantics of a query is defined in two steps: First, the formula is assigned with an 
ass~rtional interpretation, which is a partial predicate over /DB. Then, a 
transformation is derived from it. It transforms any input data base into a result such that 
there exists a data base, called a virtual data base, which: 

consists of three distinguishable parts: the input, the result, and temporary data. We 
mean by this that there are two fixed unary functions, "input" and "result" from /DB 
to /DB . Then the input part of idb is input (idb ), the result part of idb is result (idb ), 
and the temporary data is what remains when we subtract the input and result parts 
from idb; 

satisfies the assertion; 

is minimal for this input: every other data base included in it and having the same 
input part contradicts the assertion; 

is (non·deterministically) chosen if other "minimal" data bases exist. 

The result can be undefined if all the (virtual) data bases, in which the input is embedded, 
contradict the assertion, or if for every virtual data base satisfying the assertion there is a 
sub-data-base (i.e. a subset thereof) for which the predicate is undefined. 

The following describes the abstracted syntax of queries (before user-friendly "sugar"), 
yielding their assertional semantics. A query is expressed as a closed formula in an applied 
first order predicate calculus. For any (virtual) database the formula is interpreted as true, 
false or undefined. The formula is composed of: 

constants, which are any objects of D, not necessarily in the virtual data base; 

quantified variables ranging over the set of objects which appear in the virtual data 
base; 

a unary predicate symbol interpreted as the equality of its argument to the object 
'true'; 

a predicate symbol interpreted as the belonging of a tuple of objects to a named 
relation in the virtual data base; (The objects are evaluated from terms. The relation-
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name is usually specified as a constant, but some rather "unreasonable" queries [see 
Theorem 4] may necessitate an evaluation of the name from a term. ) 

operators: "and", etc; (In the principal variant of the language, three-valued parallel 
logic is used.) 

function symbols expressing scalar mathematical operations over the domain of 
objects, including comparators (>,<,etc.) yielding Boolean values. 

Two alternative variants of the language have been developed. The first one, focuses the 
assertional semantics on data base structure, while the scalar mathematical operations are 
expressed, for the sake of separation from information-manipulation, by an infinite set of 
function symbols syntaxed as recursive functional expressions having the least-fixed-point 
semantics. This extension of the set of functional symbols does not contribute to the 
expressive power of the language because every scalar function can be expressed by a 
logical assertion using only a fixed finite set of standard functions. In the other proposed 
variant [ 13] , only a finite set of "cataloged" function symbols is used, while the rest of 
computable scalar operations are generated from them exploiting the principal 
transformational-assertional semantics of the language. A very large class of 
transformations can be specified without function symbols at all except the equality symbol 
"="; this includes all those queries definable by: Codd's Algebra (without use of 
comparisons of objects; otherwise they are specifiable using one functional symbol ">"); 
Codd's Algebra extended by the fixed-point operator; Hom clauses; queries inexpressible 
by Hom clauses, e.g. Example 3 of the next section; and many other classes. 

Sublanguages have been investigated where some function symbols are used, while others 
are prohibited in order to maintain data-independence. In a special case the domain of 
objects is split into concrete objects and abstract objects. Only "=" is defined on abstract 
objects, and a full function space is defined on the sub-domain of concrete objects. 

The language is based on the abstracted syntax specified above and on syntactic "sugar" -
user friendly abbreviations of formal expressions. A complete "sugar" is specified in [ 13]. 
Among these "sugar" abbreviations are: a full scope of logic operators; contextual defaults 
for quantifiers; abbreviations of sub-assertions expressing aggregate application of 
associative scalar functions, e.g., summation, counting etc; substitution of variables by 
examples of objects (as in Query-By-Example); representation of relationships by simple 
English phrases; distinct syntax variants for the Relational data base model and the 
Semantic Binary data base model. In the following section, some examples of queries with 
this "sugar" are given. 
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4. Examples of Queries 

The examples use the following semantic binary schema, specifying categories (unary 
relations) as squares and binary relations as arrows. 

ITEM 

description : Text I: I ~ontains 

item type 
(m · I) 

seller 
(m:l) PERSON SALE buyer 

price:$$ 
(m: 1) name: Text 

id: Integer 1: I 

Figure 4-1. The semantic database schema used in the 
examples. A sale is a transaction of a merchandise of the item­
type for the price between the seller and the buyer. The many-to­
many relation contains forms a bill of materiel of item-types. 

Example: 

An example of using a transitive closure. 

/* who bought a bolt directly or indirectly, e.g., bought a lock, door, train 
car, train, etc.?*/ 

Vb,s,c: (if (b BUYER-inputs) A (b ITEM-TYPE-input c) then (s GOT c)) A 

V s,c ,d: (if (s GOT c) A ((c COMPONENT-input d)) then (s GOT d)) A 

V s,x,n: (if ((x DESCRIPTION-input 'bolt') A (s NAME-input n)) A (s GOT 
x) then ((n GOT-A-BOLTresult)). 

Example continued. 

The same query using the standard sugar of the language: 
if given: 

somebody is the BUYER of a bargain, 
car (e.g.,) is the ITEM-TYPE of the bargain 
then somebody GOT a car and 

if somebody GOT a car (e .g.,) and 
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given: door (e.g.,) is a COMPONENT of car 
then somebody GOT a door and 

if somebody GOT something and 
given: the DESCRIPTION of something is 'bolt ' , 

the NAME of somebody is smith (e .g.,) 
then result: smith 'GOT A BOLT' 

Example: 

Table-oriented specification. 

Table-oriented users would prefer a relational schema as follows : 

relation PERSON [ID, NAME]; 

relation SALE [BUYER-ID, SELLER-ill, PRICE, ITEM_DESCR] ; 

relation ITEM [DESCRIPTION]; 

relation COMPONENT [CONT AINING_DESCR, 
CONT AINED_DESCR] 

The above query could be formulated by them as follows: 

if given: 

Example: 

SALE [BUYER-ID: buyer, SELLER-ill : seller, 
PRICE: price, ITEM-DESCR: item] 

then GOT [OWNER: buyer, THING: thing] and 
if GOT [OWNER: owner, THING: thing] and 

given: COMPONENT [CONTAINING_DESCR: thing, 
CONTAIN ED _DESCR: otherthing] 

then GOT [OWNER: owner, THING: otherthing] and 
ifGOT [OWNER: owner_id, THING: bolt] and 

given: PERSON [ID: owner_id, NAME: name] 
then result THOSE_WHO_GOT_A_BOLT [NAME: name] 

A query which cannot be specified by Hom clauses. 

I* What items have no less components than the item described as 'car'? 

*I 
(This query does not use function symbols.) 

given: 'car' is the DESCRIPTION of c (e.g.), watch (e.g.) is the 

DESCRIPTION of w and 

result: watch HAS-MANY -COMPONENTS and 

if stone (e .g.) is PAIRED-TO wheel (e.g.) then given: stone is a 
COMPONENT of watch, wheel is a COMPONENT of car and 
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if stone is PAIRED-TO wheel and stone is PAIRED-TO x then x=wheel 
and 

if wheel is a COMPONENT of car then exists stone s.t. stone is 
PAIRED-TO wheel. 

Example: 

I* find every seller's total income *I 
if given: man is a PERSON, the NAME of the 
man is smith 

then exits income s.t. 
(income is the sum of PRICE of 

bargain dependent on man s.t. (man is the SELLER 
of the bargain)) and 

result: the INCOME of smith is income. 

Note: the above phrase "the sum of', which might look aggregate and 
second order, is a syntactic sugar abbreviation for a longer first-order 
non-aggregate phrase using only one binary function symbol "+", which 
is applied to pairs of integers denoting prices [13) .*1 

Example: 

I* Update: Boards are not components of processors, but vice versa. *I 
if given: 

'Processor' is the DESCRIPTION of p, 
'Board' is the DESCRIPTION of b 

then 

result delete: b is a COMPONENT of p and 

result insert: pis a COMPONENT of b 

Example: 

Example of concrete minimal syntax without "sugar". (This is actually 
the intermediate syntax obtained after translation of a user-oriented 
language.) 

I* Find the prices of all the items *I 

Vprice Vsale Vitem Vitemdescription 
(IsaRelationship (sale 'PRICE-input' price)::::> 
(IsaRelationship (sale 'ITEM-TYPE-input' item)::::> 
(IsaRelationship (item 'DESCRIPTION-input' item-description)::::> 
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(lsaRelationship (item-description 'ITEM-PRICE-result' price)))) 

5. Data Independence 

Several sub models of the language are derived in [ 13). They are intended to restrict the 
use of undesirable or meaningless operations on objects. One of the most important cases 

differentiates between: 

abstract objects, representing real-world entities in the Semantic Binary Database 
Model; (No mathematical operation such as"+" or"<" is meaningful on them.) 

concrete values, which are mathematical objects representing themselves, e.g . 
'234.35', 'abed'. (They have the same meaning in the real world and in the 

computer.) 

A more general case is parametrized by a family of permitted operations on the domain of 
objects and its subdomains. The submodels are proven to be able to express every data 
base transformation reasonable within the restrictions parameterizing the submodels . 

A finite set of basic function symbols is sufficient to have the complete power of the 
language. The rest of partial recursive functions ([D • __,D)) can be expressed using the 
postconditional semantics of the query language. Unlike that "saving" in function 
symbols while keeping the complete power, in the following we wish to actually restrict 
the power of the language by removing from it the ability to specify computations which 
are meaningless and should be forbidden in a user's system of concepts . 

The general case to be investigated is the one in which a user is provided with a family of 
functions on values considered meaningful for a given data base or a data base 
management system. This family does not necessarily contain a basic set sufficient to 
create all the computable functions over the domain of objects using the programming 

power. The functions may be partial. 

Families of functions of special interest are those differentiating between abstract objects 
and concrete values. On the subdomain of the abstract objects there are only two 
meaningful functions: the characteristic function is-abstract giving true for abstract objects 
and false for concrete values, and the binary function equality giving true or false for pairs 
of objects. The rest of such a family is a basic set of functions on the subdomain of 
concrete values. Using this basic set and a program control power, every computable 
function on the subdomain of values can be expressed. 

In the following, let <1> be a family of operations on the infinite set of all possible objects 
D. Every member of <1> is a function from D* to Du (undejined}. (<1> is not necessarily a 
special case like the one described in the previous paragraph.) D is assumed to contain the 
special objects {error. true, false ). 

Though binary operations are sufficient to have the complete power of the language, we are 
aiming to restrict the power and to he ahle to model exactly any practi cal restriction . 
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That's why we permit here n-ary operations - some of them cannot be generated from 
binary ones without choosing them strong enough to permit generation of functions which 
are beyond a des ired restriction. 

Let L<J> he the language as defined above but using only function symbols from <I> (and no 
recursion.) 

I claim, intuitively , that L<l> has all the power reasonable within the restriction of <1>, 
including: 

(a) the ability to generate every function computable using program control and the set of 
operations <I> ; 

(b) the ability to generate vertical functions, such as sum or average of values, i.e. to 
relate some objects to applications of functions (a) on sets of values; 

(c) the ability to create new objects, including abstract objects; 

(d) the ability to specify every data base transformation, which does not necessitate 
interpretation of objects beyond what can be done using the functions <1>. 

These and other objectives will be specified rigorously after I define isomorphism of data 
base transformations. 

In addition to <1>, queries of L<b may use constant symbols. But I claim (so far intuitively) 

that a query needs to use only those constants which are absolutely relevant to its purpose, 
i.e. any program would have to use these constants in addition to <1>. 

The use of constants is not redundant, i.e . the constants cannot be substituted by 0-ary 
functions from <1>, because: 

I) The set <I> is fixed for the language L <b due to global restrictions which in a given data 

base or DBMS are desired to be imposed on all queries. 

2) Not all permitted constants can be generated from <I> when it is intentionally more 
restricted.E.g., when social security numbers are considered, only their comparison is 
permitted in <I>, but we would certainly wish to permit asking a query inquiring about 
any specific social security number, appearing as a constant in the query. Usually, the 
permitted constants are all nonabstract objects. 

3) If instead of <I> we were fixing (globally for the language) a richer set containing (or 
able to generate) all the permitted constants, which is generally an infinite set, then 
every query would become undesirably less free and more deterministic due to fixed 
interpretati on of constants which it does not need. 

Now I shall formalize the discussion. 

Definition 

A bijection t : D --7 D is called a <I> - isomorphism iff 

V(d 1• ... , dn ) E D* Vj E <I> J (t(d 1), .. . , t(dn )) = t(f (d 1• . . . , dn)) 

(Note: the= symbol covers the case when both sides are undefined.) 
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For a given instantaneous data base db, a <l>-isomorphism t is called db-preserving iff for 
every object d appearing in db, 

t (d)= d 

Definition 

p 

A computable data base transformation Q>: /DB ~/DB is <l>-preserving if for every 
db E /DB and for every <I>-isomorphism t, Q>(t(db )) = t(Q>(db )). 

Definition 

Two data base transformations Q>,'lf are called <l>-isomorphic iff for every instantaneous data 
base db E !DB there exists a db -preserving <I>- isomorphism t such that Q>(db) = t('lf(db )). 

Definition 

Let C be a finite set of constants, a subset of D. Two data base transformations are called 
(<l>, C)-isomorphic iff they are (<l>uC ')-isomorphic, where C' is the set of constant 
functions equivalent to C . A <I>-isomorphism t is called (<l> ,C)- isomorphism if it is a 
(<l>uC ')-isomorphism. 

Proposition: 

For every finite set of constants C c D, every computable (<l>,C )-preserving data base 
transformation is expressible up to a (<l>,C)-isomorphism in Lib with C, i.e., for every such 

transformation Q> there exists a query q E Lib using no other constants but C, whose 

semantics 'I' is (<l>,C)-isomorphic to Q>. 

Corollary 

Every computable <l>-preserving data base transformation is expressible in Lib up to an 

isomorphism, 

i.e., for every such transformation there exists a query q E L whose semantics 'I' is 
<l>-isomorphic to Q>, and the query q uses no constant symbols. 

6. Summary of Main Theorems About the Language 

The following is a review of main results about the proposed language model. The proofs 
of the most important results are included in Appendices of this paper. All the listed 
results are proven in detail in [ 13]. 

I) The language is implementable, i.e . it has an interpreter. 

2) The language is absolutely complete, i.e. for every partial computable function 
Q>: /DB ~ !DB there exists a query q E L whose semantics is Q>. 

3) The sublanguage containing only deterministic queries is absolutely complete too. 
Thus, the non-determinism (being desirable for user-friendliness and implementation 

d 1, • ..• dn )) optimization) is not the reason for absolute completeness. 

ned .) 4) Every query whose result can be affected only by a finite set of relation-names, i.e. 
whose intrinsic meaning does not necessitate quantification over the set of names of 
relations (as can be for Data Base Administrator's queries) can be specified using only 



constants as names of relations. (I.e. the language can be seen syntactically as first­
order with relations as predicate symbols .) 

5) A standard finite set of function symbols defined on the domain of objects is sufficient 
for absolute completeness of the language. The other functions on values can be 

represented by assertions. although such representations can be undesirable from a 
methodolog ical point of view . 

6) If the language is further restricted to any set of standard function symbols on values 

(i n order to permit only meaningful operations on some domains, e.g. only equality­
verification on abstrac t objects), then every query meaningful within this restriction is 

expressible in the restricted language up to an isomorphism. 

7) The language can be used to specify every update transaction . 

8) The language can be used to specify every integrity and inference rule in the data 
base . 

9) There is a semantic extension of the language (without alteration of the syntax) to 
cover the behavior of queries and update transactions in the presence of integrity and 
inference rules . 
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APPENDICES 

Appendix 1 - The lmplementability Theorem 

The proof of implementability is sketched here by defining an implementation of a very 
high complexity. In practice a heuristic implementation is needed for the language or its 
sublanguages. 

I. There is a procedure to implement the predicate 

VERIFY (q , vdb, idb) 

("does the virtual data base vdb satisfy the assertion q ? "). 

The procedure acts as follows. First it checks whether idb is the given part of vdb. If not, 
it halts with false . Otherwise it continues. Quantifiers are resolved yielding a finite 
number n of atomic formulae connected by logical operators (this is because vdb is finite 
and all the quantifiers range over its objects). n parallel processes are issued to evaluate the 
clauses. These processes are correlated so that a halting process will cause an abortion of 
those processes whose results will not influence the interpretation of the assertion (as 
defined by the three-valued logic below). 

2. An effective inclusion-preserving enumeration E of the set !DB of all instantaneous 
data bases is constructed. 

3. The fr 

The proced t 

the numbe r 
process. 

Let vdb 1, ~ 

in (2). 

Let Q be a · 

Let BUFFE 
indices of v 

At the begit 

Every proce 

A -Sta. 

B -lnv 

C -Co 

foreve 1 

D -Ifj( 

Dl 

D2 

E -If n 

El 

E 

E 

e 

Appendix : 

A. Absolut 

Theorem. 

recursive ft 
complete, i 
q E L who 

The proof i:­

A query q i 
subassertior 

an assl 
the wr. 



ly as first-

, sufficient 
1es can be 
1le from a 

on values 
· equality­
, trict ion is 

:1 the data 

-;yntax ) to 
egrity and 

N. Rishc!Non-Proccdura l Dawhase Lan~ua~es 45 

3. The following is a procedure to evaluate a query . The inputs are: q e L, idb e /DB. 

The procedure uses an unlimited quantity of parallel processes, but at every instant of time 
the number of processes is finite, and thus they can be implemented by one sequential 
process. 

Let vdb 1, vdb 2, ... , vdbn , ... be the inclusion-preserving enumeration of /DB constructed 

in (2). 

Let Q be a fixed quantity of time. 

Let BUFFER be an unlimited, initially empty, interprocess storage (which will contain 
indices of virtual data bases found as contradicting assertion q ). 

At the beginning, the first process PR 1 is invoked. 

Every process PR" acts as follows after its invocation: 

A -Start computing VERIFY (q ,vdbn ,idb) until "local" time Q elapsed. 

B -Invoke the process PR" + 1• 

C - Continue computing VERIFY (q, vdbn, idb) until true of false is obtained or 
forever (unless externally aborted). 

D -If false has been obtained then: 

ZO (under Dl -Insert the index n into BUFFER; 

~F (under D2 -Loop forever (unless externally aborted). 

of a very 
age or its 

') . If not, 
· a finite 

i~ finite 
;~luatc the 
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E - If true has been obtained then: 

El -If every proper subset of vdbn is in BUFFER, then: 

E2 -Output the "result part" of vdbn; 

E3 - Abort all the processes, including the current process . 

else: repeat E 1 (forever or until internally or externally aborted). 

Appendix 2: Completeness Theorems. 

A. Absolute completeness of the maximal language. 

Theorem . The maximal language L defined above (where <l> contains every partial 
recursive function from D • to D represented by a recursive expression) is absolutely 
complete, i.e., for every partial computable function cp: /DB -?/DB there exists a query 
q e L whose semantics is cp. 

The proof is preceded by its sketch. 

A query q is constructed whose semantics is cp. The assertion of the query consists of three 

subassertions: 

an assertion implying existence of a special object in the virtual data base encoding 
the whole input data ba~e. 
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an assertion implying existence of an object encoding the resulting data base, 

and an assertion relating these two objects by a derivative of q,. 

These assertions are constructed so that the following is insured: 

the query will be deterministic (to be used in the next theorem); 

the query is convertible into an appropriate query for the language LL not using 
variables or expressions as names of relations (to be used in "LL almost 
completeness" theorem); 

the conjunction of the assertions is undefined if and only if q, is undefined for the 
input data base, provided the evaluation is done by parallel communicating processes; 

the conjunction gives false for every subset of the desired virtual data base. 

Proof: 

Let q,: !DB ~!DB be a partial computable function. 

I) I;ncode !DB by D. 

Let * :D x D ~ D, sc: THE-SET -OF-ALL-FINITE-SUBSETS-OF(D) ~ D be two 
two-way effective bijections (existence of which is well known). Let tr: !DB ~ D 
be the two-way effective bijection defined by: 

tr(db)=sc((r*(a.*~) I (a.r ~)E db}). 

Let f = tr • q, . tr-1
. By the Theory of Computability, f is a partial recursive 

function from D to D . 

2) Define total recursive functions from D 2 to D simulating set operations: 

insert(s ,d)= sc(sc-1(s) u {d}) 

remove (s ,d) = sc (sc-I (s ) - { d }) 

in (d ,s) =if d E sc-1(s) then 'true' else 'false' 

3) Abbreviate: 

0-code - the constant representing sc (0) (i.e. the constant encoding the empty 
set.) 

f, in , insert , remove - recursive expressions representing the corresponding 
functions f, in , insert, and remove. 

GIVEN (x, r, y) - IsaRelationship(x 1, r, y ), where x 1 is an expression 
concatenating the string 'input' to the value of x (i.e. GIVEN is a predicate 
stating that a tuple belongs to the input part of the virtual data base) . 

RESULT (x, r, y) - analogously. 

TEMP (x, r, y) - IsaRelationship(x, y, z) (to be used for tuples which are neither in 
the input part nor in the result part of the virtual data base.) 

4) The query q. 
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The following sentence abbreviates the assertional syntax of the query and is 
composed of clauses (marked C; ), each of which is preceded by a comment (enclosed 
in I* ... *I) outlining the subassertion expressed by the clause. The names of the unary 
relations (categories) of the virtual data base are given in enlarged italics. 

I* C 0 and C 1: there is a temporary object encoding the whole input data base *I 

I* C 0: there is a temporary object encoding the empty set *I 

TEMP (0-code ENCODES-A-SUBSET-OF-THE-INPUT-DB ) and 

I* C 1: for every existing code of a subset and for every triple in the input db, there is a 
temporary object encoding that subset enriched with this triple *I. 

Vsetcode, x ,y ,r 
if TEMP (setcode ENCODES-A-SUBSET-OF-THE-INPUT -DB) 

and GIVEN (x ,r ,y) then 
TEMP (insert (setcode ,(r * (s * y ))) 

ENCODES-A-SUBSET-OF-THE-INPUT-DB) and 

I* C 2: there is a temporary object which equals f (the encoding of the whole input 
data base); this object should encode the whole result *I 

Vinputdbcode 
if (Vx ,r ,y if GIVEN (x ,r ,y) then 

IsTrue(in ((r * (x * y )), inputdbcode ))) 
then TEMP (f (inputdbcode) 

ENCODES-A-SUBSET -OF-THE-RESULT) and 

I* C 3: the result is actually what is encoded by the above object *I 

Vsetcode 
if TEMP (setcode ENCODES-A-SUBSET -OF-THE-RESULT) then 

I* C J.( the encoded set is either empty or contains a resulting triple *I 

((IsTrue (setcode = 0-code ) or 
:3x ,r ,y (RESULT (x r y) and 

IsTrue(in ((r * (x * y )), setcode )))) and 

I* C 3_2: inductively, every triple contained in the set must be in the result; but 
using the above we invert this thus: *I 

Vx.r,y 
if RESULT (x r y) then 

TEMP (remove (setcode, r * (x * y )) 
ENCODES-A-SUBSET-OF-THE-RESULT)) 



5) Let q be the semantics of q . The following proves that q = cp. 

Let idb E /DB. Consider two cases: 

(i) cp(idh) is undefined. 
It has to be shown that q (idb) is also undefined . Assume the contrary. Then 
there exists vdb E !DB satisfying the assertion and containing idb. By 
definition of the "parallel and". all the four clauses are interpreted to true for 
wlb. C 0 f.. C 1 imply inductively that there exists inputdbcode = tr (idb) in vdb. 

This and C 2 imply that there is f (inputdbcode) in vdb. Thus f (tr (idb )) is 

defined and so is cp(idb ), in contradiction to the assumption. Thus q (idb) is 
undefined. 

(ii) cp(idb) is well-defined (not undefined). 

Let vdb be as follows: its input and result parts are idb and cp(idb) respectively, 
and its remainder consists of two instantaneous unary relations: ENCODES-A­
SUBSET-OF-THE-INPUT-DB is {tr(S)IS r;;;;. idb }, ENCODES-A-SUBSET­
OF-THE-RESULT is {tr(S)I(S r;;;;. ¢J(idb )/. 

vdb satisfies the assertion. It remains to show that every one of its proper 
subsets containing idb contradicts the assertion. 

Assume the contrary. Let idb r;;;;.vdb' c vdb so that vdb' does not contradict the 
assertion. Then the interpretation of the assertion for vdb' is true or undefined. 

Consider both cases: 

(a) The interpretation is true . Then idb is the "input part" of vdb' and all the 
four clauses yield true for vdb '. C 0 f.. C 1 imply that the instance of 

ENCODES-A-SUBSET-OF-THE-INPUT-DB in vdb' includes 
[tr (S) I S r;;;;. idb j. Thus, tr (idb) is contained in this instance. 

Then, by C 2,/ (tr (idb )) is in the instance of ENCODES-A-SUBSET -OF­
THE-RESULT. Then, by C 3, the result part includes ¢J(idb) and the 
instance of ENCODES-A-SUBSET-OF-THE-RESULT includes 
{ tr (S) IS r;;;;. <1>( idb )/ . Thus, vdb r;;;;. vdb ', in contradiction. 

(b) The interpretation is undefined. Then, by definition of "parallel and" at 
least one clause yields undefined for vdb ' and no clause yields false . All 
the clauses, except C ' , involve only total functions. Thus, C 0, C 1 and C 3 
yield true and C 2 yields undefined . 

The "input part" of vdb' is idb (otherwise the assertion would yield false) . 

This and C 0 f.. C 1 imply that there is tr (idb) in the instance of 

ENCODES-A-SUBSET-OF-THE-INPUT -DB. But 
f ( tr (idb)) = tr- 1($(idb )) is defined. (Possibly there is another setcode in 
the above relation's instance such that f (setcode) is undefined and setcode 
encodes a set containing all the triples of "the input part".) After the 
resolution of quantification, C 2 is a conjunction of many clauses, none of 
which yields false (otherwise C 2 would yield false) . Thus, since 
f (tr (idb )) is defined, the subclause for tr (idb) must yield true. Thus, 
f (tr (idb )) is in the instance of ENCODES-A-SUBSET-OF-THE-
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RESULT. Continuing the reasoning analogous to that of (a), we get: 
vdb c vdb ', in analogous contradiction. 

B. The completeness of deterministic queries. 

Theorem . The sublanguage of L containing only deterministic queries is also absolutely 
complete. 

Proof Following the proof of the previous theorem, we find that if there is vdb ' satisfying 
the assertion, then vdb c vdb '. Thus, no other but vdb can be chosen; so the query is 
deterministic. 

C. Almost-completeness of The First-Order Sub language 

I shall prove here that any query can be stated so that relations are named only by 
constants, unless the query must deal with infinitely many relevant relation-names (which 
usually would be meaningless in an end-user's query). 

p 

Definition . A setS c D contains all relation names relevant for Q! : !DB ~ !DB iff: 

{r I :3 idb E dom (Ql), 3x ,)' E D : (x r y) E Q!(idb )/ c S, i.e., S contains every 
relation-name appearing in some output, and 

for every idb E !DB 

Ql(idb) = Q!(idb - D x (D -S) x D) 

("=" means that either both sides are undefined or they are equal). 
p 

Definition. A function Q!: !DB ~!DB has a finite set of relevant relation-names iff there 
is a finite set which contains all the relation-names relevant for Ql . 

Note: 

I) Transformations which do not have such a finite set intuitively do not represent 
specific needs at the application level but rather something at the DBMS level. For 
example, copy the whole data base, estimate its extent, list its relation-names. 

2) The semantics of update transactions was defined using "delete" and "insert" with 
respect to a pretransaction state. Thus, the above intuitive claim is also true for 

transactions. 

Theorem . The language LL (i.e., those queries of L which use only constants as names of 
relations) generates all the partial computable functions from !DB to /DB having finite sets 
of relevant relation-names. 

Proof: Let q, be a partial computable function from /DB to /DB having a finite set S of 
relevant relation-names. Denote the elements of S by r 1, r 2, ... ,r n . From the structure of 
the query q defined in the proof of the principal completeness theorem , obtain a query q 2 

by resolving all the quantifications of the variable "r". Thus, "Vr 't" is transformed to 
"11 A 1 2 A ... A 'tn" where 't; is 't in which r is substituted for the constant representing r; . 

(Respectively, "3 r 't" is transformed to "11 V ... V'tn ".) 
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Let q 2 be the semantics of q 1. We will show that q' = cp. 

Let idb E !DB. 

Consider the following cases: 

I) All the relation-names appearing in idb belong to S. So do the relation-names of 
~(idb ), provided this exists. The assertions q and q 2 are interpreted equivalently, and 
thus the queries must yield the same results (or undefined). 

2) There is a relation-name r0 appearing in idb and not belonging to S. Following the 

proof of the principal completeness theorem, we find that 
q '(idb) = cp(idb - D x (D -S) x S) which in turn , by the condition of the theorem 
and the definitions above, is equivalent to cp(idb ). 

Thus, in every case Q>(idb) = q '(idb ). 

Appendix 3: Syntax and semantics of the Language 

This section is composed of the following: 

abstracted syntax of the language 

concretization of symbols 

abbreviations used to improve the readability 

semantics of the language 

Intuitively, every query is an assertion about a virtual data base in which there are three 
distinguished parts: an input instantaneous data base, a desired output instantaneous data 
base (for the input) and temporary data. (The parts are distinguished by suffices of names 
of relations.) 

A. Abstracted syntax of queries (and abstracted semantics of symbols) 

A query is a closed formula in an applied first-order predicate calculus using the following 
disjoint decidable sets of symbols belonging to A* : 

I. A set of constants effectively representing the set of all objects D, i.e., there is an 
effective bijection between the sets. 

2. A denumerable set of variables. 

3. A set cl> of functional symbols. 

In the first variant of the language, we let the set cl> be an infinite set effectively 
representing the set of all partial recursive functions from D u D 2 to D. (Effectiveness 

means here that there exists a procedure which for given function symbol and argument 
objects gives the application of the corresponding function .) 

Every term is a constant, a variable, or is the application of a function symbol to one or two 
terms. 

Note: the Boolean functions are covered because: 
"true," "false" E D. 
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4. Two predicate symbols: IS-TRUE (unary) and Is-a-Relationship (ternary) . Atomic 
formulae are composed of application of IS-TRUE to a term or of application of Is-a­
Relationship to a triple of terms. 

We also define a restricted language LL in which the second element (representing a 
relation-name) in the latter triple must be a constant. (It is shown that LL is almost as 
powerful as L: all the queries for which there is a finite number of relevant relation-names 

can be represented in LL.) 

5. The implication symbol "::::>", the universal quantifier 'V', the parentheses, and the 
blank. Atomic formulae are connected to form formulae using these symbols. 

B. Concretization of symbols 

6. Constants are strings over A obtained from objects of D thus: enclose the string in 
quotes (') (if the string already contains a (') , replace with ("), e .g. I'm becomes 

'I"m' .) 

7. 

8. 

Variables are strings containing no blanks and starting with a lower-case letter. 

In the first variant of the language, the function symbols are defined by recursive 
functional expressions as follows. There is a finite set BASIC-FUNCS. called the set 
of basic function symbols, and containing at least the following elements: the strings 

APPEND, EQUAL, IF-TRUE-THEN-NULL-ELSE. 

The rest of the function symbols have the following form: 

(FUNCTION $(a,~)= 't) 

where: 

<P ,a, ~ are strings containing no blanks which are not constants, variables or · basic 

symbols; 

't is obtained from a term by substitution of some occurrences of a variable for a, of 
another variable for ~ and maybe of some occurrences of a basic function symbol for 

$; 

~may be omitted. 

In the first variant of the language, I have chosen to represent the scalar functions by 
recursive expressions because their procedural semantics is well-known and because they 
are quite user-friendly, and in order to clearly distinguish between the logical manipulation 
of the database structure in predicate calculus and arithmetics on scalar~ . However. the 
choice of the representation by recursive expressions is not crucial to the language. ( It is 
shown in [13] that the infinite <1> is not needed for the completeness of the language: it is 
sufficient that <l>=BASIC-FUNCS . However, from the methodological point of view and 
from the point of view of user friendliness, the infinite <1> is preferable.) 
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Example : 

Example of concrete unsugared syntax 
/* find the ages of John' s sons. (Comment.)*/ 

Vman Vson Vage Vname 
(Is-a-Relationship (man 'NAME given' 'John')::::> 
(Is-a-Relationship (son ' FATHER given' man)::::> 
(Is-a-Relationship (son 'AGE given' age)::::> 
(Is-a-Relationship (son 'NAME given' name)::::> 
(Is-a-Relationship (age ' IS THE AGE OF JOHN" S SON- result' 

name) ) ) ) ) 

C. Readability "sugar" 

To improve the readability of queries we define the following abbreviations: 

9. The existential quantifiers 3 and 3 ! are standardly derived from V. The universal 
quantifiers whose scope is the entire query may be omitted. 

lO. ' Abbreviations for operators between formulae: 
"-a" stands for "a::> IS-TRUE ('false')" "not" stands for"-" 
"if a then ~" stands for "a::::> w· 
"a v w·. "a or ~" stand for "-a::::> w 
"a ;\~ ". "a and~" stand for "-(-aV-~)" 
"if a then ~else y'' stands for "(a A~) V (-a A y)" 
"a iff ~" stands for "(a::::> ~) ;\ (~::::> a)" 

11. "IS-TRUE (a)" may be abbreviated as "(a)" 

12. "Is-a-Relationship (a~ y)" may be abbreviated by "TEMP (a~ y)" or just " (a~ y)". "( 

may be omitted if it is the constant standing for the null-string (to signify that the 
relationship is actually unary.) If~ is a constant representing a relation-name having 
no other characters but capitals and the underscore, it may be written without quotes. 

13 . Any virtual data base is considered as consisting of three parts: given, result, and 
temporary . Intending to this we abbreviate: 

"GIVEN (a~ y)" stands for "TEMP (a APPEND(~. ' given ' ) y)", 

"RESULT (a ~ y)" stands for "TEMP (a APPEND(~. 'result') y)". 

14. When no ambiguity arises, an argument triple (a~ y) for TEMP may be written as: 
"("(is a/the ~ of a") or "(the/a ~ of a is y)." If y is null, i.e. a unary relationship is 
represented by a and~. then (a~) may be written (a is a~) . 

15. "(given: w 1 ,w 2 • .. • , wn )" stands for: 
GIVEN (w 1) , A GIVEN (w2) · · · A GIVEN (wn ). 

and analogously for "result." 
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Example: 

(given: john is a BOY, the AGE of john is twelve) 
stands for: 

GIVEN (john 'BOY' ") A GIVEN (john 'AGE' twelve) 

16. For the convenience of table-oriented users (the Relational Model), 

may be written as: 

when no ambiguity arises. 

Example: 

SALE [SELLER: john, BUYER:mike, ITEM: book] 
stands for: 

3 deal (deal SALE) A (deal SELLER john) A 
(deal BUYER mike) A (deal ITEM book) 

Note: Inspired by Zloof's Query-By-Example, we use variables intuitively as examples of 
objects. 

17. Function symbols may be written in prefix, infix, or postfix form. Also there is the 
following abbreviation: "IF a THEN ~ ELSEy' stands for: "APPEND (IF-THEN­
NULL-ELSE (a, y), IF-THEN-NULL-ELSE (NOT( a), ~))" 

18. Constants representing objects containing only digits may be written without quotes. 

Example: 

Example of syntax with "sugar." 

Note: In this example the variables are named to exemplify their contents. 

/* For every adult whose mother is older than his father, find the factorial 
of the difference in ages of the parents. (Relations FATHER, MOTHER, 
AGE, and SURNAME are used.)*/ 

if (twenty~ 18) and (forty -three> forty) and 
give11 : 

AGE of john is twenty, 
AGE of sarah is forty-three, 
AGE of mike is forty, 
mike is the FATHER of john, 



then 
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sarah is the MOTHER of john, 
SURNAME of john is smith 

result: six is the 

am/ 
six = 

'factorial of the difference of the ages of the parents ' 
of smith 

(FUNCTION FACTORIAL(x) = 
IF (x = I) 

THEN I 
ELSE x x FACTORIAL (x-1)) 

(forty-three - forty ) 

D. FORMAL SEMANTICS 

This specification consists of two parts. First we interpret every query as an assertion 
about a virtual data base consisting of three distinguishable parts: the given 
instantaneous data base, the intended resulting data base and temporary data. Such 
interpretation is "true," "false" or "undefined". Then we define the result of the application 
of a query to an input data base to be the result-part of a minimal virtual data base 
satisfying the query . 

The embedding of the given data base, of a result data base, and of temporary data in every 
virtual data base is accomplished by adding the labeling suffixes -given and -result to the 
names of the relations. Thus, the "given part" of vdb e /DB is: 

The "result part" is: 

{ (a r ~)e ObjectsxRelationnamesxObjects l 

(a append(r, ' -given ') ~)e vdb} 

{(a r ~)e ObjectsxRelationnames xObjects i 

(a append(r,' -result') ~)e vdb} 

I. Interpreting a query q as an assertion about a virtual data base vdb e /DB with 
respect to a given data base idb e !DB : 

(a) If the given part of vdb is not the given data base idb, then the interpretation is 

fals e. Otherwise proceed. 

(b) Resolve the quantification defining a finite range for every quantifier as follows: 

D ' = {d e D id appears in a fact in vdb} 

Here "d appears in a fact in vdb" means that there is <a,r,b> in vdb such dis a,r, 
or b. Every "V" should be resolved as a conjunction of clauses, as follows: 

(Vx P (x )) =A (P (x ) I xeD ' }. 
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In the resolved formula there are no more variables. 

(c) Interpret the constants as objects of D. 

(d) Interpret the function symbols. 

55 

The semantics of every function symbol is a function from 
(D u{ undefined })2 to (D u{ undefined}) 

(e) The interpretation of an application of a function symbol to its arguments (which 
may be expressions themselves) is f (va 1, va 2), where f is the semantics of the 
function symbol, va 1 is the semantics of the first argument 
( E D u {undefined}), and va 2 is the semantics second argument , if it appears, 

and is undefined otherwise. 

Note: When there is no intuitively meaningful result for a certain function for 
certain values, the function value need not be undefined. Instead it may be 'error' 
E D. This can be meaningful in intermediate computations within one 
expression and can be a result value in the result part of the data base. 

(f) Interpretation of atomic formulae . There are two predicate symbols: 

IS-TRUE is interpreted as true, false or undefined when its argument is interpreted as 
'true', 'false' or anything else, respectively. 

Is-a-Relationship is interpreted as follows. Let r ,a 1, ••• , an be the interpretations of 
the arguments of this predicate symbol. If any of them equals "undefined", then the 
interpretation of the atomic formula is undefined. Otherwise, if the tuple 
(r ,a 1, • • • , an) belongs to the virtual data base, then the interpretation is true, else it 
is false . 

(g) Interpretation of non-atomic formulae. These are composed of other formulae 
by "parallel implication" whose three-valued truth table is: 

P:::>Q True False 

true true false 

false true true 

undefined true undefined 

Other logical operators are defined as abbreviations: 

-x = Is True( false ')::>x 

xVy= Cx :::>y) 

xA.y = -(-.xV)') 

Undefined 

undefined 

true 

undefined 
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II. Semantics of a querv q E L for a given idh E !DB . 

Definition. A vdb E !DB is called a minimal virtual data base satisfying q E L with 
respect to idb E !DB if the assertion q yields true for vdb (with respect to idb) and yields 
false for every proper subset of vdb. 

Note that there may be 0, I or many such minimal virtual data bases. For the case where 
there are many, we fix a choice function (which is specified in the proof of the 
implementability theorem and is dependent on the implementation machinery) . 

Definition. Let q E L be a query and idb E !DB be a given instantaneous data base. The 
semantics of q for idb , SL (q ,idb ), is the "result part" of the chosen (by the fixed choice 
function) minimal virtual data base vdb E !DB satisfying q with respect to idb, provided 
such vdb exists; if such vdb does not exist, then SL (q ,idb) is undefined. 

Note: The intuitive meaning of SL (q ,idb) being undefined is the looping of the 

implementing software. 
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