
~ ~·stem

(G) is
exists

:t-free.
IN} is
nition

ElK

neory.

orma-

·hron­
mited

elism,

Pro-

ElK

!ernie

·bern.

,fath.

~TOL

Fundamr/1/o lnformaticac 26 (/ 996)3 /-57
/OS Prc•ss

A UNIVERSAL MODEL FOR NON-PROCEDURAL DATABASE
LANGUAGES

Naphtali RISHE
High-petformance Database Research Celller. School of Computer Science. Florida lmernational
Unil'ersity. Uni1-ersity Park . Miami. FL 33/99. USA

Abstract. We propose a language which can express every comput­
able query. The language is syntactically based on the first-order predicate
calculus, but semantically is interpreted as post-conditions, unlike the cus­
tomary calculus query languages. The language has a capability to restrict
itself to reasonable queries, accepting criteria of reasonability as a parame­
ter.

1. Introduction

31

Query languages having the expressibility power of the relational calculus (or,
equivalently, relational algebra) are often called "complete" (Codd-complete [I]).
However, they cannot express many reasonable queries. Many extensions of the calculus
were considered in the literature: aggregates, transitive closure, fixed points, Hom clauses
(in Prolog-like languages), high-order logic. They are able to specify more queries. Yet,
no proposed non-procedural query language can express all reasonable queries.

This paper proposes a language which can express every query, provided the query is
potentially computable. (The computability of queries is formally defined by modifying
the theory of partial recursive functions to apply to the domain of databases, which may be
order-less finite sets, rather than to the domain of integers.)

The language is syntactically based on the first-order predicate calculus, but semantically
is interpreted as post-conditions, not like the customary calculus query languages. Yet, I
believe that the postconditional interpretation has a better appeal to intuition and is more
non-procedural than the customary one.

Being able to express every query, the language may allow unreasonable queries that
should be prohibited (e.g . a query to find the average social security number). However,
the language has a capability to restrict itself to reasonable queries, accepting criteria of
reasonability as a parameter. This allows for screening out syntactically those queries
which would be unreasonable according to the parametrically given reasonability criteria.
(In fact, it is rather a language model, than one language. The model produces particular
sublanguages according to criteria of reasonability.)

Additional features of this non-procedural language include :

It allows non-deterministic queries. This exempts the user from the specification of
detail s which the user does not consider important. It also gives a greater potential for

J2

optimization. Nevertheless, every query can be specified determin istically. if needed.

It can express not only queries , but also all possible update transactions, integrity
constraints. userview definitions. etc. in the relational and semantic semantic database
models.

In addition to all of the term inating computab le queries. etc., this language can
express all of the partially computable queries. etc.

An instantaneous data base is a finite structure of facts (elementary propositions) which is
regarded as describing a state of an application world. A data base schema describes time­
independent properties of an application world and is a generator for a set, usually infinite,
of instantaneous data bases for that application world. A data base model is a generator for
an infinite set of structures every one of which can be regarded as an instantaneous data
base for a state of an application world. (The model should be rich enough to provide a
representation for every possible state of every reasonable application world .)

Data base models are supplied with general user languages. Some of them are query
languages. A query is a specification of information which a user wants to extract or
deduce from an instantaneous data base without knowing its exact extent. A query is
interpreted as a partial function from instantaneous data bases to some data structures.

Among other data base languages are the update (transaction) languages. An update
transaction expresses a transition between states of an application world, plus a query . It is
interpreted as a partial function from instantaneous data bases to instantaneous data bases
plus data structures containing information to be displayed. (Unlike the interpretation of
queries, the interpretation of updates usually also depends on integrity and inference rules,
fixed for the application, as discussed later.) These functions are not total when the
implementing software may loop infinitely in some cases .

It is usually desired that data base user languages possess the following properties:

(I) They should be powerful enough to provide express ions for all "reasonable"
requirements of users for any "reasonable" application world. A "reasonable query"
must be physical-data-independent, at least in the following senses of [2] :

Its output may not depend on the actual ordering of data in the physical data
base. This is avoided by regarding a query as a transformation on an abstracted
model of data bases, e.g. the relational data base model as defined in [3) (where
an instantaneous data base is a collection of named n-ary mathematical relations
over domains of values) or a semantic binary data model- [4]. [5), [6) (where
an instantaneous data base is a collection of named unary and binary relations).

Its output may not depend on the physical representation of abst ract objects in a
data base. (In the semantic binary model, some objects are uninterpreted,
representing real-world entities, and some are concrete values. There is no such
clear distinction in the relational model since all the objects are logically
represented there by values supplied by the user.) This principle may be
extended by defining several types of objects:

(i) the uninterpreted objects (the only meaningful mathematical operation on
them is the binary function " = " yielding a Boolean value),

j_

rty

.tse

·an

is
Je-
te,
for
at a
: a

~ry

or

is

ate
: is
,es
of

es,
the

,Je"
ry"

at a
ted
ere
ms
ere

'1 a
c-d,
JCh
.l ly
be

on

N. Rishe!Non-Procedura/ Datahase Lan~uages 33

(ii) fully-interpreted objects (e.g. integers, on which every partial recursive
function may be meaningful), and

(iii) semi-interpreted objects, on which a collection of meaningful functions
may be defined (e.g. the comparators>,<, etc. on names of people).

Any of these types may be empty for a particular application. The first two types
are special cases of types of semi-interpreted objects. So, all the types can be
collapsed into one by defining one set of meaningful functions from tuples of
objects to objects or error elements.

(2) They should allow convenient expression of at least "frequent" requirements.

(3) They should be implementable by software.

There is no consensus on the extent of "reasonable" requirements of a query language's
expressive power beyond the minimal data-independency. Unlike the language proposed
herein, other proposals for query languages did not provide the possibility to express all
meaningful queries and used a narrow interpretation of "reasonable requirements".

These "reasonable requirements" are sometimes restricted to the queries expressible

in Codd's Relational Algebra (or in the Relational Calculus), and thus languages
whose expressiveness is equivalent to the Relational Calculus are called Codd­
complete (cf. [I]).

[7] showed that quite reasonable queries, such as those involving transitive closure are
inexpressible in Codd's Algebra and proposed to extend the Algebra by a fixed-point

operator.

A more powerful class of languages, using Hom clauses, is advocated in [8] and [9].
A representative of this class is Pro log (cf. [I 0]). Incomplete expressibility of Hom
clauses was shown in [II] .

(12] proposes a much richer language model, which supports all computable data­
independent queries excluding those necessitating generation of new uninterpreted
objects (e.g by an update transaction) and still keeping some restrictions on '
computations that necessitate interpretation of values. (Their language has a powerful
capability of calculation of values, including aggregate calculations, e.g. counting, but
does not allow all meaningful computations.) Another difference is that their

language is highly-procedural.

The exclusion of value-computations is argued by most authors by the desirability of
enforcing the separation between data extraction (specified by a query) and data
computation (speci fied by a program). Such separation may not always be justified,
especially when one wishes to use queries for updates or for specification of inference

rules .

An objective of this work is to design a query language which possesses the following

properties:

(I) It is absolutely complete 1• i.e. every computable transformation is expressible in it.
(A computable transformation is a partial recursive function of numbers effectively
representing sets of tuples of objects.) (We use the term absolutely complete
because of the the recent inflation in the meaning of "completeness" of query

V Rllhc•Non -Pmc ·t•dural l>urahcll c' /.c /11~11< / ~t' l

languages. e.g. the languages equivalent to Codd's Algebra are often called
"complete", while neither they, nor any other known non-procedural language but
ours, could express all the reasonable queries .)

(2) It is user-friendly :

The user states not how to extract the information. but what properties the
extracted information should possess.

No query needs to regard types of information which are irrelevant to it.

Queries are independent of representation and of computer-oriented decisions.

The users are enabled to exploit indeterminism.

Both the semantic-oriented and the table-oriented user are provided with
appropriate syntax.

The user can easily specify calculations on values when needed. Arbitrary
aggregate calculations (such as summation, counting, etc.) are also expressible.

The language is provided with "syntactic sugar" to make it more "friendly" to the
end-user.

The same syntax can be used to specify update transactions and integrity and
inference rules.

(3) The language is implementable. Of course, the implementation cannot be efficient
due to the expressive power of the language. Heuristic techniques can be designed to
implement efficiently some important subsets of the language. Whether or not the
language is actually implemented by reasonably efficient software, the language can
serve as :

a formalism for reasoning about databases and for high-level specification of
database operation before they are programmed in a lower-level language;

a model for generation of efficiently-implementable sub languages; and

a model for comparison of different languages.

(4) For any definition of data-independence expressed by a set of meaningful operations
on objects, there is a restricted syntax of the language, which generates all and only
the data-independent queries and transformations. This is clarified in the section
entitled 'Data Independence'.

2.

Quer

De fin

Au.xil.

De fin

De fin

Abstr

Let A

Let O

Some

We u

Ever:
relati<
ones,

Repre
the qt
overc

en called
guage but

1erties the

;isions.

ided with

Arbitrary
:Jressible.

Jly" to the

~ grity and

? efficient
~signed to
)r not the

~uage can

ication of
ge;

Jperations
and only

1e section

N. Rishc/Non-Procedural Datahase Languages

2. Basic Definitions

Query languages: computability and implementability

Definition. A query language is a tuple L=(Alph,!DB,L,Sd, where:

Alph, called the alphabet of the language, is a finite set;

35

/DB, called the data base model, is a denumerable set; its members are called
[instantaneous] data bases;

L, called the syntax of the language, is a set of strings, i.e. , a subset of A/ph*;

every qE L is called a query.

S L, called the semantics of the language, is a partial function from (L x !DB) to /DB ;

When a query q is applied to an input instantaneous data base idb, the result is

SL (q ,idb).

If (q ,idb)fi domain (SL) then SL is undefined for (q ,idb), i.e. the query q would loop
for the input data base idb.

The semantics of a query q is the partial function from /DB to /DB defined by

SL ,q (idb) = SL (q ,idb).

Auxiliary definition. A [partial] function f from a denumerable set U to a denumerable set
V is called [partial] computable iff there exist a finite set of characters Alph and two­
way-effective bijections Pu: u~Alph * and Pv: V~Alph * such that the function

Pv 0f op;1 is [partial] recursive.

Definition. A query language is implementable iff its semantics is a partial computable
function.

Definition . A query language is [absolutely] complete if for every partial computable
function f over its model there is a query whose semantics is f.

Abstraction of the data base model/DB

Let A be a fixed finite set of all printable characters.

Let Objects= Relationnames = D =A*. We require that "true" and "false" be in D .

Some objects are numerals for numbers in decimal notation.

We use the following data base model :

!DB= the set of all finite subsets of ObjectsxRelationnamesx Objects

Every triple in every instantaneous data base represents a binary relationship whose
relation-name is in the middle. Binary relations are sufficient because the higher-ranked
ones are meaningfully expressible by binary relationships, e.g. so:

P[A 1 : a 1, A 2 : a 2, ... ,An : an] iff ::lz zA 1a 1 /\zA 2a 2 /\ .•• /\zAn an;\ z P null.

Representation of n-ary relations by binary serves several purposes: it simplifies syntax of
the queries in the language that we shall define and makes it more convenient to the user; it
overcomes some update anomalies of relational data bases; it will simplify our formal

notation and proofs, though it is not vital for their correctness.

3. The Proposed Language

The proposed language is a set of formulas, called queries, which are interpreted as partial
transformations over the set /DB of instantaneous relational data bases. In the considered
data base model /DB, introduced in Section 2, an instantaneous relational data base is a
finite family of named finite relations over a fixed denumerable set D. called the domain of
objects. (D can be further subdivided into domains of concrete mathematical values and
domains of abstract objects.) When a instantaneous data base is transformed to another
one (by a query or by an update), the former data base is called "the input" and the latter
"the result".

The syntax and semantics of queries are formally defined in Appendix 3 (A and D
respectively). Here we describe them in an informal way because that may suffice to many
readers.

The semantics of a query is defined in two steps: First, the formula is assigned with an
ass~rtional interpretation, which is a partial predicate over /DB. Then, a
transformation is derived from it. It transforms any input data base into a result such that
there exists a data base, called a virtual data base, which:

consists of three distinguishable parts: the input, the result, and temporary data. We
mean by this that there are two fixed unary functions, "input" and "result" from /DB
to /DB . Then the input part of idb is input (idb), the result part of idb is result (idb),
and the temporary data is what remains when we subtract the input and result parts
from idb;

satisfies the assertion;

is minimal for this input: every other data base included in it and having the same
input part contradicts the assertion;

is (non·deterministically) chosen if other "minimal" data bases exist.

The result can be undefined if all the (virtual) data bases, in which the input is embedded,
contradict the assertion, or if for every virtual data base satisfying the assertion there is a
sub-data-base (i.e. a subset thereof) for which the predicate is undefined.

The following describes the abstracted syntax of queries (before user-friendly "sugar"),
yielding their assertional semantics. A query is expressed as a closed formula in an applied
first order predicate calculus. For any (virtual) database the formula is interpreted as true,
false or undefined. The formula is composed of:

constants, which are any objects of D, not necessarily in the virtual data base;

quantified variables ranging over the set of objects which appear in the virtual data
base;

a unary predicate symbol interpreted as the equality of its argument to the object
'true';

a predicate symbol interpreted as the belonging of a tuple of objects to a named
relation in the virtual data base; (The objects are evaluated from terms. The relation-

namt
Theo

oper;!
logic

func•
objeL

Two alte r
assertion a
expressed
function ,
semantics
expressivt
logical as
variant [l
computab
transform.
transform.
~~=~~; this
comparis1
Codd's A
by Hom c

Sublangu;
are proh ir
objects is
objects, a·

The langt.
user frien
Among tr
for quan
associati \
examples
English r
Semantic
this "sug ~'

:d as partial
considered

:a base is a
: domain of
values and
to another

d the latter

(A and D
.:e to many

1ed with an
Then, a

'r such that

data. We
from !DB

e suit (idb),
·esult parts

:; the same

.::mbedded,
there is a

"sugar"),
an applied
~d as true,

rtual data

the object

· a named
e relation-

N. Ri.lhe!Non-Procedura/ Datahas(' Lan11uagcs 37

name is usually specified as a constant, but some rather "unreasonable" queries [see
Theorem 4] may necessitate an evaluation of the name from a term.)

operators: "and", etc; (In the principal variant of the language, three-valued parallel
logic is used.)

function symbols expressing scalar mathematical operations over the domain of
objects, including comparators (>,<,etc.) yielding Boolean values.

Two alternative variants of the language have been developed. The first one, focuses the
assertional semantics on data base structure, while the scalar mathematical operations are
expressed, for the sake of separation from information-manipulation, by an infinite set of
function symbols syntaxed as recursive functional expressions having the least-fixed-point
semantics. This extension of the set of functional symbols does not contribute to the
expressive power of the language because every scalar function can be expressed by a
logical assertion using only a fixed finite set of standard functions. In the other proposed
variant [13] , only a finite set of "cataloged" function symbols is used, while the rest of
computable scalar operations are generated from them exploiting the principal
transformational-assertional semantics of the language. A very large class of
transformations can be specified without function symbols at all except the equality symbol
"="; this includes all those queries definable by: Codd's Algebra (without use of
comparisons of objects; otherwise they are specifiable using one functional symbol ">");
Codd's Algebra extended by the fixed-point operator; Hom clauses; queries inexpressible
by Hom clauses, e.g. Example 3 of the next section; and many other classes.

Sublanguages have been investigated where some function symbols are used, while others
are prohibited in order to maintain data-independence. In a special case the domain of
objects is split into concrete objects and abstract objects. Only "=" is defined on abstract
objects, and a full function space is defined on the sub-domain of concrete objects.

The language is based on the abstracted syntax specified above and on syntactic "sugar" -
user friendly abbreviations of formal expressions. A complete "sugar" is specified in [13].
Among these "sugar" abbreviations are: a full scope of logic operators; contextual defaults
for quantifiers; abbreviations of sub-assertions expressing aggregate application of
associative scalar functions, e.g., summation, counting etc; substitution of variables by
examples of objects (as in Query-By-Example); representation of relationships by simple
English phrases; distinct syntax variants for the Relational data base model and the
Semantic Binary data base model. In the following section, some examples of queries with
this "sugar" are given.

JX .V. Rtsht• iNon-Pmn·clura l !Jatai>tll't ' l .<lll~lla!(n

4. Examples of Queries

The examples use the following semantic binary schema, specifying categories (unary
relations) as squares and binary relations as arrows.

ITEM

description : Text I: I ~ontains

item type
(m · I)

seller
(m:l) PERSON SALE buyer

price:$$
(m: 1) name: Text

id: Integer 1: I

Figure 4-1. The semantic database schema used in the
examples. A sale is a transaction of a merchandise of the item­
type for the price between the seller and the buyer. The many-to­
many relation contains forms a bill of materiel of item-types.

Example:

An example of using a transitive closure.

/* who bought a bolt directly or indirectly, e.g., bought a lock, door, train
car, train, etc.?*/

Vb,s,c: (if (b BUYER-inputs) A (b ITEM-TYPE-input c) then (s GOT c)) A

V s,c ,d: (if (s GOT c) A ((c COMPONENT-input d)) then (s GOT d)) A

V s,x,n: (if ((x DESCRIPTION-input 'bolt') A (s NAME-input n)) A (s GOT
x) then ((n GOT-A-BOLTresult)).

Example continued.

The same query using the standard sugar of the language:
if given:

somebody is the BUYER of a bargain,
car (e.g.,) is the ITEM-TYPE of the bargain
then somebody GOT a car and

if somebody GOT a car (e .g.,) and

N. Rishe!Non-Procedural Darahase Languages

given: door (e.g.,) is a COMPONENT of car
then somebody GOT a door and

if somebody GOT something and
given: the DESCRIPTION of something is 'bolt ' ,

the NAME of somebody is smith (e .g.,)
then result: smith 'GOT A BOLT'

Example:

Table-oriented specification.

Table-oriented users would prefer a relational schema as follows :

relation PERSON [ID, NAME];

relation SALE [BUYER-ID, SELLER-ill, PRICE, ITEM_DESCR] ;

relation ITEM [DESCRIPTION];

relation COMPONENT [CONT AINING_DESCR,
CONT AINED_DESCR]

The above query could be formulated by them as follows:

if given:

Example:

SALE [BUYER-ID: buyer, SELLER-ill : seller,
PRICE: price, ITEM-DESCR: item]

then GOT [OWNER: buyer, THING: thing] and
if GOT [OWNER: owner, THING: thing] and

given: COMPONENT [CONTAINING_DESCR: thing,
CONTAIN ED _DESCR: otherthing]

then GOT [OWNER: owner, THING: otherthing] and
ifGOT [OWNER: owner_id, THING: bolt] and

given: PERSON [ID: owner_id, NAME: name]
then result THOSE_WHO_GOT_A_BOLT [NAME: name]

A query which cannot be specified by Hom clauses.

I* What items have no less components than the item described as 'car'?

*I
(This query does not use function symbols.)

given: 'car' is the DESCRIPTION of c (e.g.), watch (e.g.) is the

DESCRIPTION of w and

result: watch HAS-MANY -COMPONENTS and

if stone (e .g.) is PAIRED-TO wheel (e.g.) then given: stone is a
COMPONENT of watch, wheel is a COMPONENT of car and

39

if stone is PAIRED-TO wheel and stone is PAIRED-TO x then x=wheel
and

if wheel is a COMPONENT of car then exists stone s.t. stone is
PAIRED-TO wheel.

Example:

I* find every seller's total income *I
if given: man is a PERSON, the NAME of the
man is smith

then exits income s.t.
(income is the sum of PRICE of

bargain dependent on man s.t. (man is the SELLER
of the bargain)) and

result: the INCOME of smith is income.

Note: the above phrase "the sum of', which might look aggregate and
second order, is a syntactic sugar abbreviation for a longer first-order
non-aggregate phrase using only one binary function symbol "+", which
is applied to pairs of integers denoting prices [13) .*1

Example:

I* Update: Boards are not components of processors, but vice versa. *I
if given:

'Processor' is the DESCRIPTION of p,
'Board' is the DESCRIPTION of b

then

result delete: b is a COMPONENT of p and

result insert: pis a COMPONENT of b

Example:

Example of concrete minimal syntax without "sugar". (This is actually
the intermediate syntax obtained after translation of a user-oriented
language.)

I* Find the prices of all the items *I

Vprice Vsale Vitem Vitemdescription
(IsaRelationship (sale 'PRICE-input' price)::::>
(IsaRelationship (sale 'ITEM-TYPE-input' item)::::>
(IsaRelationship (item 'DESCRIPTION-input' item-description)::::>

Severa!
use of
differc :

Cl

CC

A morl
objecb
base tr ~

A finit ,

langua=
postcor
symbo
the po\
are me ,

The ge
functi c
manag
create
power.

Famil i
and c1

meani r
and fa .
of obj
con ere
functi ,

In the
D. E·.
specia
specia·

Thoug
aim in

N. Ri.,he!Non-Procrdura/ /)atahase LanRuages 41

(lsaRelationship (item-description 'ITEM-PRICE-result' price))))

5. Data Independence

Several sub models of the language are derived in [13). They are intended to restrict the
use of undesirable or meaningless operations on objects. One of the most important cases

differentiates between:

abstract objects, representing real-world entities in the Semantic Binary Database
Model; (No mathematical operation such as"+" or"<" is meaningful on them.)

concrete values, which are mathematical objects representing themselves, e.g .
'234.35', 'abed'. (They have the same meaning in the real world and in the

computer.)

A more general case is parametrized by a family of permitted operations on the domain of
objects and its subdomains. The submodels are proven to be able to express every data
base transformation reasonable within the restrictions parameterizing the submodels .

A finite set of basic function symbols is sufficient to have the complete power of the
language. The rest of partial recursive functions ([D • __,D)) can be expressed using the
postconditional semantics of the query language. Unlike that "saving" in function
symbols while keeping the complete power, in the following we wish to actually restrict
the power of the language by removing from it the ability to specify computations which
are meaningless and should be forbidden in a user's system of concepts .

The general case to be investigated is the one in which a user is provided with a family of
functions on values considered meaningful for a given data base or a data base
management system. This family does not necessarily contain a basic set sufficient to
create all the computable functions over the domain of objects using the programming

power. The functions may be partial.

Families of functions of special interest are those differentiating between abstract objects
and concrete values. On the subdomain of the abstract objects there are only two
meaningful functions: the characteristic function is-abstract giving true for abstract objects
and false for concrete values, and the binary function equality giving true or false for pairs
of objects. The rest of such a family is a basic set of functions on the subdomain of
concrete values. Using this basic set and a program control power, every computable
function on the subdomain of values can be expressed.

In the following, let <1> be a family of operations on the infinite set of all possible objects
D. Every member of <1> is a function from D* to Du (undejined}. (<1> is not necessarily a
special case like the one described in the previous paragraph.) D is assumed to contain the
special objects {error. true, false).

Though binary operations are sufficient to have the complete power of the language, we are
aiming to restrict the power and to he ahle to model exactly any practi cal restriction .

.V. Risht'i.Von-Pnl< ·cdural Darahasc Lan ~rwges

That's why we permit here n-ary operations - some of them cannot be generated from
binary ones without choosing them strong enough to permit generation of functions which
are beyond a des ired restriction.

Let L<J> he the language as defined above but using only function symbols from <I> (and no
recursion.)

I claim, intuitively , that L<l> has all the power reasonable within the restriction of <1>,
including:

(a) the ability to generate every function computable using program control and the set of
operations <I> ;

(b) the ability to generate vertical functions, such as sum or average of values, i.e. to
relate some objects to applications of functions (a) on sets of values;

(c) the ability to create new objects, including abstract objects;

(d) the ability to specify every data base transformation, which does not necessitate
interpretation of objects beyond what can be done using the functions <1>.

These and other objectives will be specified rigorously after I define isomorphism of data
base transformations.

In addition to <1>, queries of L<b may use constant symbols. But I claim (so far intuitively)

that a query needs to use only those constants which are absolutely relevant to its purpose,
i.e. any program would have to use these constants in addition to <1>.

The use of constants is not redundant, i.e . the constants cannot be substituted by 0-ary
functions from <1>, because:

I) The set <I> is fixed for the language L <b due to global restrictions which in a given data

base or DBMS are desired to be imposed on all queries.

2) Not all permitted constants can be generated from <I> when it is intentionally more
restricted.E.g., when social security numbers are considered, only their comparison is
permitted in <I>, but we would certainly wish to permit asking a query inquiring about
any specific social security number, appearing as a constant in the query. Usually, the
permitted constants are all nonabstract objects.

3) If instead of <I> we were fixing (globally for the language) a richer set containing (or
able to generate) all the permitted constants, which is generally an infinite set, then
every query would become undesirably less free and more deterministic due to fixed
interpretati on of constants which it does not need.

Now I shall formalize the discussion.

Definition

A bijection t : D --7 D is called a <I> - isomorphism iff

V(d 1• ... , dn) E D* Vj E <I> J (t(d 1), .. . , t(dn)) = t(f (d 1• . . . , dn))

(Note: the= symbol covers the case when both sides are undefined.)

Definit ion

For a given in;.
every object d ~

Definition

A computable
db E !DB and f

Definition

Two data base tr
base db e !DB t

Definition

Let C be a finite
(<1>, C)-isomorph !
functions equivaJ
(<l>uC ')-isomorpJ

Proposition:

For every finite ~
transformation is e
transformation 4>

semantics ljl is (<1>,

Corollary

Every computable
isomorphism,

i.e., for every
<I>-isomorphic

6. Summary 0 1

The following is a r
of the most import.
results are proven in

I) The language is

2) The language
<j>: !DB -?/DB

3) The sublanguag
Thus, the non-d<
optimization) is

4) Every query wh
whose intrinsic ;
relations (as can

be generated from
. of functions which

,oJs from <l> (and no

t1e restriction of <l>,

·ontrol and the set of

ge of values, i.e. to

does not necessitate

IOnS <J>.

isomorphism of data

m (so far intuitively)

levant to its purpose,

substituted by 0-ary

which in a given data

is intentionally more
ly their comparison is
query inquiring about
1e query. Usually, the

:her set containing (or
y an infinite set, then

: rministic due to fixed

N Rishe!Non-ProcC'dural Darahase Languages 43

For a given instantaneous data base db, a <l>-isomorphism t is called db-preserving iff for
every object d appearing in db,

t (d)= d

Definition

p

A computable data base transformation Q>: /DB ~/DB is <l>-preserving if for every
db E /DB and for every <I>-isomorphism t, Q>(t(db)) = t(Q>(db)).

Definition

Two data base transformations Q>,'lf are called <l>-isomorphic iff for every instantaneous data
base db E !DB there exists a db -preserving <I>- isomorphism t such that Q>(db) = t('lf(db)).

Definition

Let C be a finite set of constants, a subset of D. Two data base transformations are called
(<l>, C)-isomorphic iff they are (<l>uC ')-isomorphic, where C' is the set of constant
functions equivalent to C . A <I>-isomorphism t is called (<l> ,C)- isomorphism if it is a
(<l>uC ')-isomorphism.

Proposition:

For every finite set of constants C c D, every computable (<l>,C)-preserving data base
transformation is expressible up to a (<l>,C)-isomorphism in Lib with C, i.e., for every such

transformation Q> there exists a query q E Lib using no other constants but C, whose

semantics 'I' is (<l>,C)-isomorphic to Q>.

Corollary

Every computable <l>-preserving data base transformation is expressible in Lib up to an

isomorphism,

i.e., for every such transformation there exists a query q E L whose semantics 'I' is
<l>-isomorphic to Q>, and the query q uses no constant symbols.

6. Summary of Main Theorems About the Language

The following is a review of main results about the proposed language model. The proofs
of the most important results are included in Appendices of this paper. All the listed
results are proven in detail in [13].

I) The language is implementable, i.e . it has an interpreter.

2) The language is absolutely complete, i.e. for every partial computable function
Q>: /DB ~ !DB there exists a query q E L whose semantics is Q>.

3) The sublanguage containing only deterministic queries is absolutely complete too.
Thus, the non-determinism (being desirable for user-friendliness and implementation

d 1, • ..• dn)) optimization) is not the reason for absolute completeness.

ned .) 4) Every query whose result can be affected only by a finite set of relation-names, i.e.
whose intrinsic meaning does not necessitate quantification over the set of names of
relations (as can be for Data Base Administrator's queries) can be specified using only

constants as names of relations. (I.e. the language can be seen syntactically as first­
order with relations as predicate symbols .)

5) A standard finite set of function symbols defined on the domain of objects is sufficient
for absolute completeness of the language. The other functions on values can be

represented by assertions. although such representations can be undesirable from a
methodolog ical point of view .

6) If the language is further restricted to any set of standard function symbols on values

(i n order to permit only meaningful operations on some domains, e.g. only equality­
verification on abstrac t objects), then every query meaningful within this restriction is

expressible in the restricted language up to an isomorphism.

7) The language can be used to specify every update transaction .

8) The language can be used to specify every integrity and inference rule in the data
base .

9) There is a semantic extension of the language (without alteration of the syntax) to
cover the behavior of queries and update transactions in the presence of integrity and
inference rules .

Acknowledgment

This research was supported in part by NASA (under grant NAGW-4080), ARO (under

BMDO grant DAAH04-0024), NATO (under grant HTECH.LG-931449) , NSF (under
grant CDA-9313624 for CATE Lab), and State of Florida.

APPENDICES

Appendix 1 - The lmplementability Theorem

The proof of implementability is sketched here by defining an implementation of a very
high complexity. In practice a heuristic implementation is needed for the language or its
sublanguages.

I. There is a procedure to implement the predicate

VERIFY (q , vdb, idb)

("does the virtual data base vdb satisfy the assertion q ? ").

The procedure acts as follows. First it checks whether idb is the given part of vdb. If not,
it halts with false . Otherwise it continues. Quantifiers are resolved yielding a finite
number n of atomic formulae connected by logical operators (this is because vdb is finite
and all the quantifiers range over its objects). n parallel processes are issued to evaluate the
clauses. These processes are correlated so that a halting process will cause an abortion of
those processes whose results will not influence the interpretation of the assertion (as
defined by the three-valued logic below).

2. An effective inclusion-preserving enumeration E of the set !DB of all instantaneous
data bases is constructed.

3. The fr

The proced t

the numbe r
process.

Let vdb 1, ~

in (2).

Let Q be a ·

Let BUFFE
indices of v

At the begit

Every proce

A -Sta.

B -lnv

C -Co

foreve 1

D -Ifj(

Dl

D2

E -If n

El

E

E

e

Appendix :

A. Absolut

Theorem.

recursive ft
complete, i
q E L who

The proof i:­

A query q i
subassertior

an assl
the wr.

ly as first-

, sufficient
1es can be
1le from a

on values
· equality­
, trict ion is

:1 the data

-;yntax) to
egrity and

N. Rishc!Non-Proccdura l Dawhase Lan~ua~es 45

3. The following is a procedure to evaluate a query . The inputs are: q e L, idb e /DB.

The procedure uses an unlimited quantity of parallel processes, but at every instant of time
the number of processes is finite, and thus they can be implemented by one sequential
process.

Let vdb 1, vdb 2, ... , vdbn , ... be the inclusion-preserving enumeration of /DB constructed

in (2).

Let Q be a fixed quantity of time.

Let BUFFER be an unlimited, initially empty, interprocess storage (which will contain
indices of virtual data bases found as contradicting assertion q).

At the beginning, the first process PR 1 is invoked.

Every process PR" acts as follows after its invocation:

A -Start computing VERIFY (q ,vdbn ,idb) until "local" time Q elapsed.

B -Invoke the process PR" + 1•

C - Continue computing VERIFY (q, vdbn, idb) until true of false is obtained or
forever (unless externally aborted).

D -If false has been obtained then:

ZO (under Dl -Insert the index n into BUFFER;

~F (under D2 -Loop forever (unless externally aborted).

of a very
age or its

') . If not,
· a finite

i~ finite
;~luatc the
10rtion of
_-rtion (as

mtaneous

E - If true has been obtained then:

El -If every proper subset of vdbn is in BUFFER, then:

E2 -Output the "result part" of vdbn;

E3 - Abort all the processes, including the current process .

else: repeat E 1 (forever or until internally or externally aborted).

Appendix 2: Completeness Theorems.

A. Absolute completeness of the maximal language.

Theorem . The maximal language L defined above (where <l> contains every partial
recursive function from D • to D represented by a recursive expression) is absolutely
complete, i.e., for every partial computable function cp: /DB -?/DB there exists a query
q e L whose semantics is cp.

The proof is preceded by its sketch.

A query q is constructed whose semantics is cp. The assertion of the query consists of three

subassertions:

an assertion implying existence of a special object in the virtual data base encoding
the whole input data ba~e.

-16 N. Rish<'uVon-Prtll 'c•cluml Datahtw• La11~uages

an assertion implying existence of an object encoding the resulting data base,

and an assertion relating these two objects by a derivative of q,.

These assertions are constructed so that the following is insured:

the query will be deterministic (to be used in the next theorem);

the query is convertible into an appropriate query for the language LL not using
variables or expressions as names of relations (to be used in "LL almost
completeness" theorem);

the conjunction of the assertions is undefined if and only if q, is undefined for the
input data base, provided the evaluation is done by parallel communicating processes;

the conjunction gives false for every subset of the desired virtual data base.

Proof:

Let q,: !DB ~!DB be a partial computable function.

I) I;ncode !DB by D.

Let * :D x D ~ D, sc: THE-SET -OF-ALL-FINITE-SUBSETS-OF(D) ~ D be two
two-way effective bijections (existence of which is well known). Let tr: !DB ~ D
be the two-way effective bijection defined by:

tr(db)=sc((r*(a.*~) I (a.r ~)E db}).

Let f = tr • q, . tr-1
. By the Theory of Computability, f is a partial recursive

function from D to D .

2) Define total recursive functions from D 2 to D simulating set operations:

insert(s ,d)= sc(sc-1(s) u {d})

remove (s ,d) = sc (sc-I (s) - { d })

in (d ,s) =if d E sc-1(s) then 'true' else 'false'

3) Abbreviate:

0-code - the constant representing sc (0) (i.e. the constant encoding the empty
set.)

f, in , insert , remove - recursive expressions representing the corresponding
functions f, in , insert, and remove.

GIVEN (x, r, y) - IsaRelationship(x 1, r, y), where x 1 is an expression
concatenating the string 'input' to the value of x (i.e. GIVEN is a predicate
stating that a tuple belongs to the input part of the virtual data base) .

RESULT (x, r, y) - analogously.

TEMP (x, r, y) - IsaRelationship(x, y, z) (to be used for tuples which are neither in
the input part nor in the result part of the virtual data base.)

4) The query q.

The

COl'

Ill

rei :.

I * '

I* I

[
I* (
ten

I* (
dat,

I* c

[

not using
.L almost

~d for the
1rocesses ;

D be two
/DB ~D

recursive

he empty

.!sponding

xpression
predicate

neither in

N. Rishe!Non-Procedura/ Database Languages 47

The following sentence abbreviates the assertional syntax of the query and is
composed of clauses (marked C;), each of which is preceded by a comment (enclosed
in I* ... *I) outlining the subassertion expressed by the clause. The names of the unary
relations (categories) of the virtual data base are given in enlarged italics.

I* C 0 and C 1: there is a temporary object encoding the whole input data base *I

I* C 0: there is a temporary object encoding the empty set *I

TEMP (0-code ENCODES-A-SUBSET-OF-THE-INPUT-DB) and

I* C 1: for every existing code of a subset and for every triple in the input db, there is a
temporary object encoding that subset enriched with this triple *I.

Vsetcode, x ,y ,r
if TEMP (setcode ENCODES-A-SUBSET-OF-THE-INPUT -DB)

and GIVEN (x ,r ,y) then
TEMP (insert (setcode ,(r * (s * y)))

ENCODES-A-SUBSET-OF-THE-INPUT-DB) and

I* C 2: there is a temporary object which equals f (the encoding of the whole input
data base); this object should encode the whole result *I

Vinputdbcode
if (Vx ,r ,y if GIVEN (x ,r ,y) then

IsTrue(in ((r * (x * y)), inputdbcode)))
then TEMP (f (inputdbcode)

ENCODES-A-SUBSET -OF-THE-RESULT) and

I* C 3: the result is actually what is encoded by the above object *I

Vsetcode
if TEMP (setcode ENCODES-A-SUBSET -OF-THE-RESULT) then

I* C J.(the encoded set is either empty or contains a resulting triple *I

((IsTrue (setcode = 0-code) or
:3x ,r ,y (RESULT (x r y) and

IsTrue(in ((r * (x * y)), setcode)))) and

I* C 3_2: inductively, every triple contained in the set must be in the result; but
using the above we invert this thus: *I

Vx.r,y
if RESULT (x r y) then

TEMP (remove (setcode, r * (x * y))
ENCODES-A-SUBSET-OF-THE-RESULT))

5) Let q be the semantics of q . The following proves that q = cp.

Let idb E /DB. Consider two cases:

(i) cp(idh) is undefined.
It has to be shown that q (idb) is also undefined . Assume the contrary. Then
there exists vdb E !DB satisfying the assertion and containing idb. By
definition of the "parallel and". all the four clauses are interpreted to true for
wlb. C 0 f.. C 1 imply inductively that there exists inputdbcode = tr (idb) in vdb.

This and C 2 imply that there is f (inputdbcode) in vdb. Thus f (tr (idb)) is

defined and so is cp(idb), in contradiction to the assumption. Thus q (idb) is
undefined.

(ii) cp(idb) is well-defined (not undefined).

Let vdb be as follows: its input and result parts are idb and cp(idb) respectively,
and its remainder consists of two instantaneous unary relations: ENCODES-A­
SUBSET-OF-THE-INPUT-DB is {tr(S)IS r;;;;. idb }, ENCODES-A-SUBSET­
OF-THE-RESULT is {tr(S)I(S r;;;;. ¢J(idb)/.

vdb satisfies the assertion. It remains to show that every one of its proper
subsets containing idb contradicts the assertion.

Assume the contrary. Let idb r;;;;.vdb' c vdb so that vdb' does not contradict the
assertion. Then the interpretation of the assertion for vdb' is true or undefined.

Consider both cases:

(a) The interpretation is true . Then idb is the "input part" of vdb' and all the
four clauses yield true for vdb '. C 0 f.. C 1 imply that the instance of

ENCODES-A-SUBSET-OF-THE-INPUT-DB in vdb' includes
[tr (S) I S r;;;;. idb j. Thus, tr (idb) is contained in this instance.

Then, by C 2,/ (tr (idb)) is in the instance of ENCODES-A-SUBSET -OF­
THE-RESULT. Then, by C 3, the result part includes ¢J(idb) and the
instance of ENCODES-A-SUBSET-OF-THE-RESULT includes
{ tr (S) IS r;;;;. <1>(idb)/ . Thus, vdb r;;;;. vdb ', in contradiction.

(b) The interpretation is undefined. Then, by definition of "parallel and" at
least one clause yields undefined for vdb ' and no clause yields false . All
the clauses, except C ' , involve only total functions. Thus, C 0, C 1 and C 3
yield true and C 2 yields undefined .

The "input part" of vdb' is idb (otherwise the assertion would yield false) .

This and C 0 f.. C 1 imply that there is tr (idb) in the instance of

ENCODES-A-SUBSET-OF-THE-INPUT -DB. But
f (tr (idb)) = tr- 1($(idb)) is defined. (Possibly there is another setcode in
the above relation's instance such that f (setcode) is undefined and setcode
encodes a set containing all the triples of "the input part".) After the
resolution of quantification, C 2 is a conjunction of many clauses, none of
which yields false (otherwise C 2 would yield false) . Thus, since
f (tr (idb)) is defined, the subclause for tr (idb) must yield true. Thus,
f (tr (idb)) is in the instance of ENCODES-A-SUBSET-OF-THE-

B. The con

Theorem.
complete.

Proof Foi l
the asserti c
determinist

C. Almost ­

I shall pro
constants , L

usually wot

Definition.

{r I :=
relatio

for ev

c

Definition.

is a finite s,

Note:

I) Trans
speci:
exam ·

2) The ~

res peL
tran s ~·

Theorem.

relations) ~
of relevan t

Proof Le t
relevant rc

the query '
by resolv i:

"-r 1 A 'tz A
(Respecti"

·ary. Then
idb. By

o true for
h) in vdb.

·r (idb)) is
q(idb) is

-;pectively,
: ODES-A­
-SUBSET-

its proper

1tradict the
rzdefined.

:md all the
1stance of

includes

BSET-OF­
l and the

includes

el and" at
false. All

C' 1 and C 3

.: ld false).
qance of

But
:-etcode in
nd setcode

After the
_·s. none of
hus, since
i ll'. Thus,
-OF-THE-

N. RiJhe!Non- Procedura/ Datahase Language.\ 49

RESULT. Continuing the reasoning analogous to that of (a), we get:
vdb c vdb ', in analogous contradiction.

B. The completeness of deterministic queries.

Theorem . The sublanguage of L containing only deterministic queries is also absolutely
complete.

Proof Following the proof of the previous theorem, we find that if there is vdb ' satisfying
the assertion, then vdb c vdb '. Thus, no other but vdb can be chosen; so the query is
deterministic.

C. Almost-completeness of The First-Order Sub language

I shall prove here that any query can be stated so that relations are named only by
constants, unless the query must deal with infinitely many relevant relation-names (which
usually would be meaningless in an end-user's query).

p

Definition . A setS c D contains all relation names relevant for Q! : !DB ~ !DB iff:

{r I :3 idb E dom (Ql), 3x ,)' E D : (x r y) E Q!(idb)/ c S, i.e., S contains every
relation-name appearing in some output, and

for every idb E !DB

Ql(idb) = Q!(idb - D x (D -S) x D)

("=" means that either both sides are undefined or they are equal).
p

Definition. A function Q!: !DB ~!DB has a finite set of relevant relation-names iff there
is a finite set which contains all the relation-names relevant for Ql .

Note:

I) Transformations which do not have such a finite set intuitively do not represent
specific needs at the application level but rather something at the DBMS level. For
example, copy the whole data base, estimate its extent, list its relation-names.

2) The semantics of update transactions was defined using "delete" and "insert" with
respect to a pretransaction state. Thus, the above intuitive claim is also true for

transactions.

Theorem . The language LL (i.e., those queries of L which use only constants as names of
relations) generates all the partial computable functions from !DB to /DB having finite sets
of relevant relation-names.

Proof: Let q, be a partial computable function from /DB to /DB having a finite set S of
relevant relation-names. Denote the elements of S by r 1, r 2, ... ,r n . From the structure of
the query q defined in the proof of the principal completeness theorem , obtain a query q 2

by resolving all the quantifications of the variable "r". Thus, "Vr 't" is transformed to
"11 A 1 2 A ... A 'tn" where 't; is 't in which r is substituted for the constant representing r; .

(Respectively, "3 r 't" is transformed to "11 V ... V'tn ".)

)() N. Risht•!Non-Pmn•tluml /Joroho.vt• Lan~ua~<' .l'

Let q 2 be the semantics of q 1. We will show that q' = cp.

Let idb E !DB.

Consider the following cases:

I) All the relation-names appearing in idb belong to S. So do the relation-names of
~(idb), provided this exists. The assertions q and q 2 are interpreted equivalently, and
thus the queries must yield the same results (or undefined).

2) There is a relation-name r0 appearing in idb and not belonging to S. Following the

proof of the principal completeness theorem, we find that
q '(idb) = cp(idb - D x (D -S) x S) which in turn , by the condition of the theorem
and the definitions above, is equivalent to cp(idb).

Thus, in every case Q>(idb) = q '(idb).

Appendix 3: Syntax and semantics of the Language

This section is composed of the following:

abstracted syntax of the language

concretization of symbols

abbreviations used to improve the readability

semantics of the language

Intuitively, every query is an assertion about a virtual data base in which there are three
distinguished parts: an input instantaneous data base, a desired output instantaneous data
base (for the input) and temporary data. (The parts are distinguished by suffices of names
of relations.)

A. Abstracted syntax of queries (and abstracted semantics of symbols)

A query is a closed formula in an applied first-order predicate calculus using the following
disjoint decidable sets of symbols belonging to A* :

I. A set of constants effectively representing the set of all objects D, i.e., there is an
effective bijection between the sets.

2. A denumerable set of variables.

3. A set cl> of functional symbols.

In the first variant of the language, we let the set cl> be an infinite set effectively
representing the set of all partial recursive functions from D u D 2 to D. (Effectiveness

means here that there exists a procedure which for given function symbol and argument
objects gives the application of the corresponding function .)

Every term is a constant, a variable, or is the application of a function symbol to one or two
terms.

Note: the Boolean functions are covered because:
"true," "false" E D.

4. T
f,
R

We a!
relatio
power
can be

5. T
b

B. Co

6. c
q·
'I

7. \

8. Ir
ft
0

A

T

\\

4> .a, ~
s:

't is or
ar

Q.

~may

In the
recursi
are qUI
of the
choice
shown
sufficie
from tl

:-names of
lently, and

10wing the

:1d that
e theorem

are three
1eous data
of names

following

1ere is an

ffectively
ctiveness

argument

:-~ e or two

N. Ri.lhl'iNon-PmcNillral Datahase Laii/! IIO[ie.l 51

4. Two predicate symbols: IS-TRUE (unary) and Is-a-Relationship (ternary) . Atomic
formulae are composed of application of IS-TRUE to a term or of application of Is-a­
Relationship to a triple of terms.

We also define a restricted language LL in which the second element (representing a
relation-name) in the latter triple must be a constant. (It is shown that LL is almost as
powerful as L: all the queries for which there is a finite number of relevant relation-names

can be represented in LL.)

5. The implication symbol "::::>", the universal quantifier 'V', the parentheses, and the
blank. Atomic formulae are connected to form formulae using these symbols.

B. Concretization of symbols

6. Constants are strings over A obtained from objects of D thus: enclose the string in
quotes (') (if the string already contains a (') , replace with ("), e .g. I'm becomes

'I"m' .)

7.

8.

Variables are strings containing no blanks and starting with a lower-case letter.

In the first variant of the language, the function symbols are defined by recursive
functional expressions as follows. There is a finite set BASIC-FUNCS. called the set
of basic function symbols, and containing at least the following elements: the strings

APPEND, EQUAL, IF-TRUE-THEN-NULL-ELSE.

The rest of the function symbols have the following form:

(FUNCTION $(a,~)= 't)

where:

<P ,a, ~ are strings containing no blanks which are not constants, variables or · basic

symbols;

't is obtained from a term by substitution of some occurrences of a variable for a, of
another variable for ~ and maybe of some occurrences of a basic function symbol for

$;

~may be omitted.

In the first variant of the language, I have chosen to represent the scalar functions by
recursive expressions because their procedural semantics is well-known and because they
are quite user-friendly, and in order to clearly distinguish between the logical manipulation
of the database structure in predicate calculus and arithmetics on scalar~ . However. the
choice of the representation by recursive expressions is not crucial to the language. (It is
shown in [13] that the infinite <1> is not needed for the completeness of the language: it is
sufficient that <l>=BASIC-FUNCS . However, from the methodological point of view and
from the point of view of user friendliness, the infinite <1> is preferable.)

.V Rr.\lt t'lNo n -P rocc:dura/ Dcuahci.H' L tngullgcs

Example :

Example of concrete unsugared syntax
/* find the ages of John' s sons. (Comment.)*/

Vman Vson Vage Vname
(Is-a-Relationship (man 'NAME given' 'John')::::>
(Is-a-Relationship (son ' FATHER given' man)::::>
(Is-a-Relationship (son 'AGE given' age)::::>
(Is-a-Relationship (son 'NAME given' name)::::>
(Is-a-Relationship (age ' IS THE AGE OF JOHN" S SON- result'

name)))))

C. Readability "sugar"

To improve the readability of queries we define the following abbreviations:

9. The existential quantifiers 3 and 3 ! are standardly derived from V. The universal
quantifiers whose scope is the entire query may be omitted.

lO. ' Abbreviations for operators between formulae:
"-a" stands for "a::> IS-TRUE ('false')" "not" stands for"-"
"if a then ~" stands for "a::::> w·
"a v w·. "a or ~" stand for "-a::::> w
"a ;\~ ". "a and~" stand for "-(-aV-~)"
"if a then ~else y'' stands for "(a A~) V (-a A y)"
"a iff ~" stands for "(a::::> ~) ;\ (~::::> a)"

11. "IS-TRUE (a)" may be abbreviated as "(a)"

12. "Is-a-Relationship (a~ y)" may be abbreviated by "TEMP (a~ y)" or just " (a~ y)". "(

may be omitted if it is the constant standing for the null-string (to signify that the
relationship is actually unary.) If~ is a constant representing a relation-name having
no other characters but capitals and the underscore, it may be written without quotes.

13 . Any virtual data base is considered as consisting of three parts: given, result, and
temporary . Intending to this we abbreviate:

"GIVEN (a~ y)" stands for "TEMP (a APPEND(~. ' given ') y)",

"RESULT (a ~ y)" stands for "TEMP (a APPEND(~. 'result') y)".

14. When no ambiguity arises, an argument triple (a~ y) for TEMP may be written as:
"("(is a/the ~ of a") or "(the/a ~ of a is y)." If y is null, i.e. a unary relationship is
represented by a and~. then (a~) may be written (a is a~) .

15. "(given: w 1 ,w 2 • .. • , wn)" stands for:
GIVEN (w 1) , A GIVEN (w2) · · · A GIVEN (wn).

and analogously for "result."

Exam

or

16. For th

may t

when no ar:

Exam/

St<.

Note: Inspi
objects.

17. Funct:
folio \\
NULL

18. Const

Exam.

Exam

Note:

I* For
of the
AGE.

if

~suit'

universal

a ~ y)". 'Y
I' that the
11e having

quotes.

~ suit, and

ritten as :
onship is

N. Ri.lhc!Non-Pruccdural Darahusr U lllJi rwges 53

Example:

(given: john is a BOY, the AGE of john is twelve)
stands for:

GIVEN (john 'BOY' ") A GIVEN (john 'AGE' twelve)

16. For the convenience of table-oriented users (the Relational Model),

may be written as:

when no ambiguity arises.

Example:

SALE [SELLER: john, BUYER:mike, ITEM: book]
stands for:

3 deal (deal SALE) A (deal SELLER john) A
(deal BUYER mike) A (deal ITEM book)

Note: Inspired by Zloof's Query-By-Example, we use variables intuitively as examples of
objects.

17. Function symbols may be written in prefix, infix, or postfix form. Also there is the
following abbreviation: "IF a THEN ~ ELSEy' stands for: "APPEND (IF-THEN­
NULL-ELSE (a, y), IF-THEN-NULL-ELSE (NOT(a), ~))"

18. Constants representing objects containing only digits may be written without quotes.

Example:

Example of syntax with "sugar."

Note: In this example the variables are named to exemplify their contents.

/* For every adult whose mother is older than his father, find the factorial
of the difference in ages of the parents. (Relations FATHER, MOTHER,
AGE, and SURNAME are used.)*/

if (twenty~ 18) and (forty -three> forty) and
give11 :

AGE of john is twenty,
AGE of sarah is forty-three,
AGE of mike is forty,
mike is the FATHER of john,

then

N. R;"/,. fiV(m· Prtwetlural /Jatahasl' Lan~ua ~es

sarah is the MOTHER of john,
SURNAME of john is smith

result: six is the

am/
six =

'factorial of the difference of the ages of the parents '
of smith

(FUNCTION FACTORIAL(x) =
IF (x = I)

THEN I
ELSE x x FACTORIAL (x-1))

(forty-three - forty)

D. FORMAL SEMANTICS

This specification consists of two parts. First we interpret every query as an assertion
about a virtual data base consisting of three distinguishable parts: the given
instantaneous data base, the intended resulting data base and temporary data. Such
interpretation is "true," "false" or "undefined". Then we define the result of the application
of a query to an input data base to be the result-part of a minimal virtual data base
satisfying the query .

The embedding of the given data base, of a result data base, and of temporary data in every
virtual data base is accomplished by adding the labeling suffixes -given and -result to the
names of the relations. Thus, the "given part" of vdb e /DB is:

The "result part" is:

{ (a r ~)e ObjectsxRelationnamesxObjects l

(a append(r, ' -given ') ~)e vdb}

{(a r ~)e ObjectsxRelationnames xObjects i

(a append(r,' -result') ~)e vdb}

I. Interpreting a query q as an assertion about a virtual data base vdb e /DB with
respect to a given data base idb e !DB :

(a) If the given part of vdb is not the given data base idb, then the interpretation is

fals e. Otherwise proceed.

(b) Resolve the quantification defining a finite range for every quantifier as follows:

D ' = {d e D id appears in a fact in vdb}

Here "d appears in a fact in vdb" means that there is <a,r,b> in vdb such dis a,r,
or b. Every "V" should be resolved as a conjunction of clauses, as follows:

(Vx P (x)) =A (P (x) I xeD ' }.

(c)

(d)

(e)

\
I

c
f

e

(f)

IS-TR
'true '.

Is-a-R

the ar
interp
(r ,a 1•

isjals

(g)

Other

X

X

s'

ts an assertion
the given

·y data. Such
the application
mal data base

y data in every
J -result to the

1) E /DB with

terpretation is

..: r as follows:

b such d is a,r,
follows:

N. Rishe!Non-Proc!'dura/ Database Languages

In the resolved formula there are no more variables.

(c) Interpret the constants as objects of D.

(d) Interpret the function symbols.

55

The semantics of every function symbol is a function from
(D u{ undefined })2 to (D u{ undefined})

(e) The interpretation of an application of a function symbol to its arguments (which
may be expressions themselves) is f (va 1, va 2), where f is the semantics of the
function symbol, va 1 is the semantics of the first argument
(E D u {undefined}), and va 2 is the semantics second argument , if it appears,

and is undefined otherwise.

Note: When there is no intuitively meaningful result for a certain function for
certain values, the function value need not be undefined. Instead it may be 'error'
E D. This can be meaningful in intermediate computations within one
expression and can be a result value in the result part of the data base.

(f) Interpretation of atomic formulae . There are two predicate symbols:

IS-TRUE is interpreted as true, false or undefined when its argument is interpreted as
'true', 'false' or anything else, respectively.

Is-a-Relationship is interpreted as follows. Let r ,a 1, ••• , an be the interpretations of
the arguments of this predicate symbol. If any of them equals "undefined", then the
interpretation of the atomic formula is undefined. Otherwise, if the tuple
(r ,a 1, • • • , an) belongs to the virtual data base, then the interpretation is true, else it
is false .

(g) Interpretation of non-atomic formulae. These are composed of other formulae
by "parallel implication" whose three-valued truth table is:

P:::>Q True False

true true false

false true true

undefined true undefined

Other logical operators are defined as abbreviations:

-x = Is True(false ')::>x

xVy= Cx :::>y)

xA.y = -(-.xV)')

Undefined

undefined

true

undefined

N RHire!Non -P,-,wedllml OarahrH<' Lan~IW~t·s

II. Semantics of a querv q E L for a given idh E !DB .

Definition. A vdb E !DB is called a minimal virtual data base satisfying q E L with
respect to idb E !DB if the assertion q yields true for vdb (with respect to idb) and yields
false for every proper subset of vdb.

Note that there may be 0, I or many such minimal virtual data bases. For the case where
there are many, we fix a choice function (which is specified in the proof of the
implementability theorem and is dependent on the implementation machinery) .

Definition. Let q E L be a query and idb E !DB be a given instantaneous data base. The
semantics of q for idb , SL (q ,idb), is the "result part" of the chosen (by the fixed choice
function) minimal virtual data base vdb E !DB satisfying q with respect to idb, provided
such vdb exists; if such vdb does not exist, then SL (q ,idb) is undefined.

Note: The intuitive meaning of SL (q ,idb) being undefined is the looping of the

implementing software.

References

[I] E. F. Codd "Relational Completeness of Data Base Sublanguages" in Data Base
Systems (ed. Rustin). Prentice-Hall, Englewood Cliff, N.J. 1972

[2] F. Bancilhon "On the completeness of query languages for relational databases."
Proc. Seventh Symp. on Mathematical Foundations of Computer Science. Springer­
Verlag 1978.

[3] E. Codd. "A Relational Model for Large Shared Data Banks." Communications of
ACM, 13:6.

[4] J.R. Abrial, "Data Semantics", in J.W. Klimbie and K.L. Koffeman (eds.), Data Base
Management, North Holland, 1974.

[5] N. Rishe. Database Design Fundamentals: A Structured Introduction to Databases
and a Structured Database Design Methodology. Prentice-Hall, Englewood Cliffs,
NJ, 1988. 436 pp.

[6] N. Rishe. Database Design: The Semantic Modeling Approach. McGraw-Hill, 1992,
528 pp.

[7] A.V. Aho, J.D. Ullman, "Universality of Data Retrieval Languages." Proc. 6th ACM
Symp. on Principles of Programming Languages, 1979.

[8] H. Gallaire and J. Minker, eds. Logic and Data Bases. Plenum Press, New York,
1978.

[9] H. Gallaire and J. Minker, eds. Advances in Data Base Theory, Plenum Press, New
York, 1981.

[10] Deyi Li. A Prolog Database System. Research Studies Press Ltd, John Wiley & Sons
Inc, Letchworth, Hertfordshire, England. 1984.

[II] A.J<
Prot

[12] A.K
Con

[13] N. ;
Scie

· q E L with
!b) and yields

1e case where
;Jroof of the

. ta base. The
fi xed choice

db , provided

'Ping of the

TJ Data Base

databases.''
·e. Springer-

"mications of

), Data Base

·o Databases
wood Cliffs,

.v-Hill , 1992,

•c . 6th ACM

New York ,

' Press, New

\
1iley & Sons

N. Rishe!Non- Procedural Darahase L anfi iiO!ieS 57

[II] A.K. Chandra and D. Hare!, "Hom Clauses and the Fixpoint Query Hierarchy."
Proceedings of the ACM Symposium on Principles of Database Systems. 1982.

[12] A.K. Chandra and D. Hare!, "Computable Queries for Relational Data Bases." J. of
Computer and System Sciences, vol. 21, 1980.

[13] N. Rishe, "Database Semantics." Technical report TR94-15, School of Computer
Science, Florida International University, 1994 .

