
N. Rishe. "Interval-based approach to lexicographic representation and compression of numeric data."
Data and Knowledge Engineering, 8, 4 (1992), pp. 339-351.
Copyright © 1992

Interval-based approach to lexicographic representation and
compression of numeric data

Naphtali Rishe

School of Computer Science
Florida International University -

The State University of Florida at Miami
University Park, Miami, FL 33199

Abstract. This paper proposes a new method of encoding numbers by variable-length byte
strings. The primary property of the encoding is that the lexicographic comparison of the
encoded numbers corresponds correctly to the order of the real numbers. The encoding is
space-efficient. Further, unlike the fixed-length representations of numbers (fixed-point,
floating-point, etc.,) the encoded numbers are not limited in their magnitude or the number of
their significant digits. The paper also elaborates the application of the encoding method to
the storage of numeric data in databases. The proposed application for databases is a uniform
format for all the numbers, regardless of their types and attributes (fields). All the numbers
are represented in a form of lexicographically-comparable byte-strings. This form simplifies
the data management software (only one format to deal with at the physical database level)
and hardware (when associative memory and storage devices etc. are used); makes the appli
cations more flexible (by removing limitations on the sizes of numbers); and is space-efficient
for all numbers while being especially concise for those numbers that are used more fre
quently in databases.

Keywords : numeric data fields, number encoding, comparison operations, databases, file
structures, compactness of data, data independency, formats, floating point, variable-length
data fields, real numbers, data compression.

1. INTRODUCTION
Many applications require compact variable-length representations of arbitrary numbers.
Among such applications are some advanced database management systems. These systems
make the data formats transparent to the user. Furthermore, these systems should allow a
logical field to hold numbers of unpredictably large or small magnitude and unpredictably
varying precision, if the user's logic warrants this. I shall call this requirement
"unboundness." The typical representations of numbers, such as floating point or fixed point
formats, fail the "unboundness" requirement. (For example, in any fixed-point format the
number of bits, n, is the application's constant, and, therefore, when a datum exceeding 2n is

This research has been supported in part by grants from the U.S. Department of the Interior and
Florida High Technology and Industry Council.

Rishe-92-IB p. 1

mput, 1t cannot be represented.) A representation which satisfies the "unboundness"
requirement is the standard mathematical notation (on paper) using a variable-length string of
arabic numerals and exponent (e.g. -3.57x10-101), or its imitation in computer printouts (e.g.,
-3.57E-101).

A further requirement on the number representation is the efficiency of the application's
typical operations. The predominant operations performed on stored numbers in databases
and many other applications are comparisons (=, >, etc.), rather than the arithmetic operations
(i.e., +, x, etc., which are more typical for applications involving engineering calculations).
This is true even in those databases where the bulk of updates involve arithmetic adjustment
of values (e.g. accounting databases) - most of the effort in such databases is spent on
finding the data in the database, which involves comparisons, not arithmetics. Consider, for
example, a search for a record with a given key value in an index-sequential or B-tree file, or
in associative memory or storage device (e.g. a disk with a controller capable of string search
and comparison). The efficiency of such applications would benefit if numbers could be
handled as character strings. For example, in most cases the result of a lexicographic
comparison of two long character strings can be found by comparing their short prefixes,
while the whole strings need not be scanned or even retrieved from the storage devices. This
would also simplify the hardware and lower-level software (i.e. microcode or software
resident in the storage device or its controller) since they would not have to distinguish
between numbers and character strings, i.e. they would store and compare numbers in the
same way they work for character strings. I shall call this requirement "lexicographic
comparability."

This paper proposes an encoding of numbers which is unbound, lexicographically
comparable, and compact. The properties of the encoding are fully defined in Section 2.
Section 3 describes the proposed method of representing numbers. The method can be
adopted to different types of applications by choosing a "tree of intervals" which is more
efficient for a particular type. Section 4 proposes such a "tree of intervals" for database
applications.

2. SPECIFICATION OF REQUIREMENTS

The encoding of numbers E :Numbers~ByteStrings proposed in this paper satisfies the
following requirements:

1. Bitwise-lexicographic comparison of the encodings* will coincide with the meaningful
comparison of numbers, i.e. the order of the real numbers. This is essential for fast
search of sorted and indexed files containing character strings and numeric data. (This

strings reals

means that E (n 1) ::;; E (n 2) iff n 1 ::;; n 2. Thus, e.g., if n 1 is encoded by a byte string
b lb],b] and n 2 is encoded by a byte string b lb}b}b}, where b],<b} (i.e. the first byte
in this example is identical in the two strings, while the second byte of the second string
is greater than the second byte of the first string,) then n 1 <n 2.)

* A bit-string (or byte-string) v is (bitwise-) lexicographically ::;; than a string w iff w =vu for
some string u (i.e. v is a prefix of w) or for some strings x, y, and z, v =xy and w =xz and the
first bit of y is O and the first bit of z is "1 ". (x may be empty.)

Rishe-92-IB p. 2

The conventional representations of numbers do not allow bitwise comparison.
(Consider, for example, the representation of floating point numbers by mantissa and
exponent.)

2. There 1s no bm1t on arfotranly large, arfotranly small, or arfotranly precise numbers.
(The precision of a number is the number of its significant digits in the standard
mathematical notation on paper.) In a database or a file we wish to be able to compare
and store integers, real numbers, numbers with very many significant digits, and
numbers with just a few significant digits. We wish to have one uniform format to
represent all these kinds of numbers. We do not wish to set a limit on the range of the
data at the time of the design of the file formats. For example, the number 1t truncated
after the first 1000 digits is a very precise number of 1000 significant digits. The
number 10100 is large, but not precise - it has only one significant digit. We need one
common format convention to represent both numbers.

3. Every number bears its own precision, i.e. the precision is not uniform. (In a database,
the varying precision will allow us to treat integers, reals, and values of different
attributes with different precisions, in a uniform way in one file in the database.)

4. The encodings are of varying length and are about maximally space efficient with
respect to their informational content. For example, consider the following three
numbers having only one significant digit each: 3,000,000; 5; 0.000,000,000,000,000,7.
Each of these three numbers should require only a few bits each, while the number
12345678.90 should require many more bits. The number of bits in the representation of
a number should be approximately equal to the amount of information* in that number.

5. No additional byte(s) are required to store the length of the encoded representation or to
delimit its end: the representation should contain enough information within itself so
that the decoder would know where the representation of one number ends and where
that of the next number begins (within the same record in the file.) The absence of
delimiters facilitates the handling of records. It also results in the saving of space, at
least for numbers whose encodings are short. E.g. , if we were to use a scheme with
delimiters, the shortest numbers would be represented by two bytes: one for the contents
and one for the delimiter; in a non-delimiter scheme one byte will suffice for the shortest
numbers.

* The amount of information in an arbitrary number roughly corresponds to the size of the most
compact representation of that number. The amount of information in a decimal number is rough
ly the number of its significant digits times log210. Thus, the amount of information in 0.00056
is roughly 2xlog210=6.6, because this number has only two significant digits. This rough esi
mate does not include the usually small information contained in non-redundant leading and trail
ing zero digits. If the number of such zero digits is z then the additional information is log2z.
The number 0.00056 has three such zeros; thus the additional information amounts to approxi
mately log23=1.6. The number 123,456,789,000,000,000,000 has 9 significant digits and 12
non-redundant trailing zeros. Its amount of information is approximately
9xlog210+log212=33.5. The above way to estimate the amount of information is appropriate
to arbitrary numbers that do not come from a known context or application or distribution frequen
cies. A deeper discussion on the subject can be found in [Salton-89].

Rishe-92-IB p. 3

6. The representat10n of numbers IS one-to-one. For example, there should not be several
representations for the number zero, as there are in the mathematical notation on paper:
0, 0.00, -0.0, OE23, OEO. (This means that the encoding E is a function. Furthermore E
IS 1: 1. Thus, E (x)=E (y) Iff x =y .)

7. The encoding and decoding should be relatively efficient (linear in the length of the data
string), but they need not be as efficient as comparisons. The database system can
handle encoded numbers in all the internal operations, and translate them only on
input/output to the external user. The translation can be done in user interfaces.

The conventional computer encodings of numbers do not satisfy the requirements of
lexicographic comparability, unboundness, and others. The lexicographic comparability
requirement is satisfied by a method proposed in [Matula&Kornerup-83]. Their encoding
works nicely with small integers and with rational numbers p/q where p and q are of the same
order of magnitude. It is not useful for numbers with large exponents. Nor can their
encoding be tuned for databases as discussed in Section 4. On the other hand, their encoding
has interesting properties useful for numeric processing, which is not a goal of the method
that I propose below. [Matula&Kornerup-83] is based on the continued fraction theory. The
encoding that I propose below is based on building an infinite tree of intervals of the real
numbers, with the interval (-00,00) at the root. The children of a node partition the parent
interval into sub-intervals. (Although the tree is infinite, the algorithm by which the children
of a node are generated is finite.)

Among applications of the encoding method proposed in this paper is the
implementation of the Semantic Binary Database Model ([Rishe-88-DDF], [Rishe-91-DDS],
[Rishe-89-SD]) by an efficient data structure [Rishe-91-FS] and by a database machine
[Rishe&al.-89-AM].

3. THE METHOD OF REPRESENTING NUMBERS

The input number vis translated into a sequence (string) of bytes.

The least significant bit* of each byte is the continuation bit: "1" means "more bytes to
follow", "O" means "the current byte ends the number's encoding". The other 7 bits of the
byte give partial information about the number v by specifying which one of 128 intervals the
number falls into. The intervals are not necessarily of equal length, and some may be infinite.
Thus, the first byte specifies a partitioning of (-oo, +oo) into 128 intervals

(-oo,a1), [ai,a2), [a2,a3), ... ,[a127,oo)

All the intervals except the first one are closed on the left and open on the right. The
interval boundaries a 1, ... ,a 127 are constants (they may depend on the application: one
partitioning is better for database management systems, while another may be preferable for
manufacturing control).

* A byte is regarded as a bit strings of 8 bits. Its least-significant bit (for the purpose of com
parison) is the rightmost bit of the string. Thus, the least significant bit of 101010102 is "O".

Rishe-92-IB p. 4

The first seven bits of the byte give the mterval number, i + 1 (1=0, 1, ... , 127), of one of the
128 intervals [ai ,ai+1). When the continuation bit is zero, the number v is ai, which is the
lower boundary of the interval. (Notice that there is no lower boundary in the first interval,
(-oo,a 1), since it is open on the left.) Otherwise, when the continuation bit is "1 ", it is known
that v is inside the interval (ai ,ai+l) and further information is provided by the bytes that
follow.

The boundaries of the intervals are selected in such a way as to minimize the average
length of encoding of numbers in the application. Particularly, numbers which appear most
frequently in the application should be encoded by just one byte. That is, those numbers must
be the lower boundaries of the intervals in the partitioning specified by the first byte.

The second byte partitions the interval (ai ,ai+l) into 128 sub-intervals:

(ai,b 1), [bi,b 2), · · ·, [b 127,ai+l)

and so forth in the bytes that follow.

The interval boundaries can and must be chosen in such a manner so as to satisfy all the
requirements from the encodings as listed above.

The tree of all intervals is infinite, but the interval boundaries must be constants hard
coded in the application's encoding algorithms. Thus, the algorithm must be able to generate
those constants by a finite number of interval-partitioning methods known to the algorithm.
The simplest interval-partitioning method is the "arithmetic sequence": an interval (x ,y),
where both x and y are finite, is partitioned into

y-x
(X X+) · · ·

' 128 ' '
y-x y-x

[x+ xi,x+ x(i+l)),
128 128

[x+ ;~; x127, y)

(In the above, the first interval is open, and the remaining 127 left-closed intervals correspond
to i=l,2, ... ,127.)

However, for most intervals the use of the "arithmetic sequence" is either impossible
(e.g., one cannot partition an infinite interval into equal subintervals) or would violate some
of the requirements of the encoding. In some incorrect partitionings it would happen that the
decimal precision of v is less than the size of an interval, but v is not the lower boundary of
the interval and many additional bytes would be needed to zero down on the number v. That
would not be a compact representation. A correct partitioning must avoid such situations.

Consider, as an example, a possible encoding of the number 35.01237 as shown in
Figure 1. Assume that one of the intervals in the first byte is [35, 36). Say, e.g., it is the
interval #38. It may be, that the algorithm further partitions the interval (35, 36) so that there
is a sub-interval #13 which is [35.012, 35.013). The second byte would indicate interval #13
and continuation bit '1 '. It may be that the algorithm further partitions the interval [35.012,
35.013) so that there is a sub-interval #56 which is [35.01237, 35.01238). Since the original
number is the lower boundary of this sub-interval, the third and last byte would indicate
interval #56 and continuation bit 'O'.

Rishe-92-IB p. 5

An example of a correct tree of intervals particularly suitable for database applications is
given in the last section.

Theorem. Bitwise lexicographic comparison of the encodings coincides with the
meanmgful companson of numbers, i.e. the order of the real numbers.

A proof is given in the Appendix 1.

4. A TREE OF INTERVALS SUGGESTED FOR DATABASE SYSTEMS

In many database applications, the most frequent numbers include: zero, small positive
integers, the number "-1" (which is often abused to represent null values), numbers with two
decimal digits after the period (representing dollars and cents). Also, most numbers in a
database normally have originated in a decimal form from a human user, or are the results of
simple arithmetic operations on those decimal numbers. (Notice that the precision of a
number as measured by the number of its significant digits crucially depends on the digit
base, e.g. the number 1/8 has only 1 significant octal digit: 0.1 8, but three significant decimal
digits: 0.125 10; whereas the opposite holds for the number 1/10.) The tree of intervals for
databases should provide an especially concise representation of the numbers occurring more
freqenutly in databases, but also to satisfy all the requirements of Section 2 for all the rational
numbers having a finite number of significant decimal digits.

The following is a recommendation for the tree of intervals for database management
systems. Although the tree is infinite, it is fully defined by 7 small fixed tables. There are
seven types of partitioning within the tree:

1. "first-byte", for the initial interval (-=,+=) (Table 1.) The partitioning scheme
proposed for the first byte, i.e. the interval (-oo,+oo), is designed in such a way that:

a. Many most frequently used integers of many typical applications are represented
by just one byte, i.e. the first byte is terminal.

b. The above is also true for many single-significant-digit numbers, e.g. 2000,
300000, 1000000.

c. The sub-intervals grow larger and larger towards the edges of the interval.

d. The interval boundaries are established in such a way so as to allow a short
representation of the remainder of the number being encoded by successive bytes.

2. "successive-integers", normally partitioned into 128 equal sub-intervals (Table 2.) This
is useful for partitioning intervals like [1512, 1640), so that e.g. the number 1545 could
be encoded by just two bytes.

3. "semi-arithmetic", in which an interval is partitioned into 97 sub-intervals of size 1 %
and 30 sub-intervals of size 0.1 % of the original interval (Table 3.) This is useful for
partitioning intervals like [5,6); [800,900); [21.5436456546, 21.5436456547.) Thus, a
byte with semi-arithmetic partitioning adds at least two significant decimal digits to the
information about the number. In some cases it adds 3 significant digits. The author has
chosen to cluster the latter cases at the edges of the interval because he believes that
numbers like 500.1 and 599.9 are somewhat more frequent in databases than 535.7, due
to the rounding errors. In the proposed scheme, the numbers 500.1 and 599.9 are
represented by two bytes each, whereas 535.7 requires 3 bytes. If it were not for

Rishe-92-IB p. 6

roundmg-error cons1derat10n, 1t would not matter where to cluster the 3-d1g1t sub
intervals.

4. "semi-progressive to +oo" (Table 4), used for intervals of type [L ,oo)

5. "senn-progress1ve to -00 11 (Table 5)

6. "semi-progressive to +O" (analogous to -oo.) This is used for intervals like (O,H), where
H is a number of very small absolute value.

7. "semi-progressive to -0" (analogous to +oo) This is used for intervals like (L ,0), where
L is a negative number of very small absolute value.

The above encoding satisfies the requirements of Section 2 and also the following property of
short representation of numbers frequently used in databases:

127 numbers are represented in a single byte (including the delimiter). These numbers
include:

• all integers from -1 to 80;

• all positive numbers having only one significant digit from 90 through the number
1,000,000.

16383 numbers are represented by at most two bytes (including the delimiter.) These
numbers include:

• all integers from -100 to +2000

• all dollars-and-cents between $-1.00 and $80.00

• all positive numbers having only three or less significant digits from the number 1
through the number 1,000,000.

Numbers with many significant digits require on the average less than 0.5 bytes per
significant digit.

Table 6 gives an example of encoding the number 35.01237 by the 3-byte self-delimiting
string 010010110001100101101110, i.e. hexadecimal 4B 196E.

The algorithm of encoding has been implemented and runs efficiently under the UNIX
and VMS operating systems. More discussion of this can be found in Appendix 2.

Acknowledgement

The Author thanks Michael Alexopoulos, Scott Graham, and Wei Sun for their
comments and Vijaykumar Narayanan and Michael Alexopoulos for writing a programs
implementing the encoding. The Author is grateful for the suggestions of the anonymous
referees and the Editor; these suggestions have resulted in a significant improvement of the
revised version of the paper.

Rishe-92-IB p. 7

Table 1. Partitioning of' (-00,00) in the first byte.

sub-interval# sub-interval partitioning of sub-interval
1. (-oo, -1) "semi-progressive to -oo"
2. [-1, 0) "semi-progressive to -0"
3. [0, 1) "semi-progressive to +O"
4. [1, 2) "semi-arithmetic"
5. [2, 3) "semi-arithmetic"

...
82. [79, 80) "semi-arithmetic"
83. [80, 90) "semi-arithmetic"
84. [90, 100) "semi-arithmetic"
85. [100,200) "semi-arithmetic"
86. [200,300) "semi-arithmetic"
87. [300,400) "semi-arithmetic"
88. [400,500) "semi-arithmetic"
89. [500,600) "semi-arithmetic"
80. [600, 700) "semi-arithmetic"
91. [700,800) "semi-arithmetic"
92. [800,900) "semi-arithmetic"
93. [900, 1000) "semi-arithmetic"
94. [1000, 1128) "successive-integers"
95. [1128, 1256) "successive-integers"
96. [1256, 1384) "successive-integers"
97. [1384, 1512) "successive-integers"
98. [1512, 1640) "successive-integers"
99. [1640, 1768) "successive-integers"
100. [1768, 1896) "successive-integers"
101. [1896, 2000) "successive-integers"
102. [2000, 3000) "semi-arithmetic"
103. [3000, 4000) "semi-arithmetic"

. ..
109. [9000, 10000) "semi-arithmetic"
110. [10000, 20000) "semi-arithmetic"
111. [20000, 30000) "semi-arithmetic"

...
117. [80000, 90000) "semi-arithmetic"
118. [90000, 1E5) "semi-arithmetic"
119. [1E5, 2E5) "semi-arithmetic"
120. [2E5, 3E5) "semi-arithmetic"

...
127. [9E5, 1E6) "semi-arithmetic"
128. [1E6, +oo) "semi-progressive to +oo"

Rishe-92-IB p. 8

Table 2. Successive-integers partitioning of' interval (L,R).

All the sub-intervals of (L ,R) have the "semi-arithmetic" partitioning (see Table 3).
Examples are given for interval (1000, 1128).
When R-L=128, the success1ve-mtegers part1t1omng becomes "anthmet1c sequencmg".
(R-L:;t:128 only for the interval (1896, 2000)).

sub-interval# sub-interval example
1. (L,L+l) (1000, 1001)
2-128 for j=2 .. 128 [L+j-1, L+j) [1001, 1002)

...
[1127, 1128)

Table 3. Semi-arithmetic partitioning of interval (L,R).
All the sub-intervals have the "semi-arithmetic" partitioning as well.

Examples are given for interval (7,8). (That is, L=7, R =8.)

sub-interval # sub-interval example

1. (L L R-L)
' + 1000

(7, 7.001)

2-20 for j=2 .. 20 [L+U-1) ~o~~, L+j ~o~~) [7.001, 7.002)

...
[7.019, 7.02)

21-117 forj=3 .. 99 [L+U-l)~~~ ,L+j~o~~ [7.02, 7.03)

...
[7.98, 7.99)

118-127 for j=991..1000 [L+U-1) ~o~~, L+j ~o~~) [7.990, 7.991)

...
[7.999, 8)

Rishe-92-IB p. 9

Table 4. Semi-progressive to += partitioning of interval (L,R).
Examples are given for interval (1E6, oo).

sub-interval # sub-interval example sub-interval partitioning
1. (L, 2L) (1E6, 2E6) "semi-arithmetic"
2-99 for j=2 .. 99 [jL, L+jL) [2E6, 3E6) "semi-arithmetic"

...
[99E6, 1 OOE6) "semi-arithmetic"

100-108 for j=l..9 [lOOjL, lOOL+ lOOjL) [1E8, 2E8) "semi-arithmetic"
...
[9E8, 10E8) "semi-arithmetic"

109-117 for j=l..9 [lOOOjL, lOOOL+ lOOOjL) [1E9, 2E9) "semi-arithmetic"
...
[9E9, 10E9) "semi-arithmetic"

118-126 for j=l..9 [lOOOOjL, lOOOOL+ lOOOOjL) [lElO, 2E10) "semi-arithmetic"
...
[9E10, lOElO) "semi-arithmetic"

127. [L*1E5, min(R,L*lElO)) [lEl 1, 1El6) "semi-progressive to+="
128. [L*lElO, R) [1E16, oo) "semi-progressive to+="

Rishe-92-IB p. 10

Table 5. Semi-progressive to -oo partitioning of interval (L,R).
Examples are given for interval (-oo, -1E6).

sub-interval # sub-interval example sub-interval partitioning
1. (L, R*lElO) (-=, -1E16) "semi-progressive to -oo"

2. [max(L,R*lElO), R*1E5) [-1E16, -lEll) "semi-progressive to -oo"

3-11 for j=9 .. 1 [lOOOO(j+l)R, lOOOOjR) [-lOElO, -9E10) "semi-arithmetic"
...
[-2E10, -lElO) "semi-arithmetic"

12-20 for j=9 .. 1 [lOOOR+lOOOjR, lOOOjR) [-10E9, -9E9) "semi-arithmetic"
...
[-2E9, -1E9) "semi-arithmetic"

21-29 for j=9 .. 1 [lOOR+lOOjR, lOOjR) [-1 OE8, -9E8) "semi-arithmetic"
...
[-2E8, -1E8) "semi-arithmetic"

30-128 for j=99 .. 1 [R+jR, jR) [-1 OOE6, -99E6) "semi-arithmetic"
...
[-2E6, -1E6) "semi-arithmetic"

Table 6. An example of encoding the number 35.01237

byte interval interval binary for continuation byte
nbr. nbr. (intrv#-1) bit code

1 [35, 36) 38 0100101 1 01001011
2 [35.012, 35.013) 13 0001100 1 00011001
3 [35.01237, 35.01338) 56 0110111 0 01101110

Rishe-92-IB p. 11

Byte 1
Interval#: 38
Continuation Bit: 1

Byte2
Interval#: 13
Continuation Bit: 1

Byte 3
Interval#: 56

-00

35.012

Continuation Bit: 0

V =35.01237

35 36

35.013

35.01237

Interval
#56

+oo

35.01238

Figure 1. Encoding of the number 35.01237 by 3 bytes.

Rishe-92-IB p. 12

Appendix 1: Proof of the theorem

Theorem. Bitwise lexicographic comparison of the encodings coincides with the
meanmgful companson of numbers, i.e. the order of the real numbers.

Proof.

Consider two input numbers v1>v2. Assume v1 is encoded by a byte string
E 1=blblb} · · · bn1 and v2 is encoded by a byte string E 2=b'fb:J:b'f · · · bl:i. We have to
show that lexicographically E 1 > E 2.

Assume the contrary: E 1 ~E 2. This can be one of the following cases:

1. For some k >0, b/<b/ and b/=b? for l~i <k. (This means that the two encodings have
an identical, possibly empty prefix, after which the byte in E 2 is greater than the
corresponding byte in E 1.)

a. If b/ and b/ differ only in the least significant bit, then the k-th byte puts both
numbers in the same interval 1. The least significant bit of b/ is thus '1 ', meaning
that v2 is inside 1, while the least significant bit of b/ is 'O', meaning that v1 is the
lower boundary of 1. Thus, v1 <vi, a contradiction.

b. The first seven bits of b/ are lexicographically less than those of b/. Therefore, v 1

falls into an interval 11 and v2 into 12, where 11 precedes 12. Thus v1 <v2 in
contradiction.

2. E 1 is a prefix of E 2, i.e.: E 2 = E 1s, where s is any string. The last byte of every
encoding has continuation bit 'O' (meaning it is the end of the string). Thus, the last
byte of E 1 has continuation bit 'O'. But the last byte of E 1 is also the byte before s in
E 2 (E 2 is E 1 followed by s). Thus, the byte before s has continuation bit 'O', meaning
that it is the last byte in E 2. Thuss must be empty. Thus E 2=E 1. Thus v 1 and v2 are
each the lower boundary of the same interval defined by the byte-string E 1. Thus,
v 1 =Vi, a contradiction.

Appendix 2. An Implementation

We have utilized this scheme for number encoding in our semantic binary database
management system [Rishe-91-FS]. The semantic data model used is a modification
([Rishe-88-DDF], [Rishe-91-DDS]) of the Binary Model of [Abrial-74]. The implementation
is based on an algebra-like low-level access language [Rishe-91-FS], such that an arbitrary
query can be performed as one or several elementary queries of the language. Most
elementary queries, including such non-trivial queries as range queries and others, can be
performed in just one single access to the disk. Queries in higher-level languages, like the
Semantic Predicate Calculus [Rishe-91-PC] and the fourth-generation semantic extension of
Pascal [Rishe-88-TM] are translated into elementary queries of the low-level access language.

Logically, at any moment in time the database is a set of facts about abstract objects ,
which are entities of the real world represented by identifiers invisible to the user. The facts
are: the unary facts xC stating that an object whose identifier is x belongs to a category whose
identifier is C ; and binary facts xRy stating that there is a relationship, R , between x and y ,

Rishe-92-IB p. 13

where x 1s an abstract object's 1dent1fier and y 1s an abstract object's 1dent1fier or a concrete
object, i.e. a number, a character string, a date, etc. Non-binary relationships are decomposed
into binary relationships.

The entue database 1s stored m a smgle file. This file contams all the facts of the
database (xC and xRy) and additional information, called inverted facts, which are described
below. The file is maintained in a format similar to a B-tree. The variation of the B-tree used
here allows sequential access according to the lexicographic order of the items comprising the
facts and the inverted facts, as well as random access by arbitrary prefixes of the facts and
inverted facts. The facts which are close to each other in the lexicographic order reside close
together in the file.

The file contains the original facts and the following "inverted facts":

1. In addition to xC, we store its inverse Cx . (C is the system-chosen identifier to
r~present the inverse information about the category C. For example, it can be defined as
C = 0-C .) Thus, the elementary query to find all the objec~ of the category C, can be
answered by examining the (inverted) facts whose prefix is C. These inverted facts are
clustered together in the lexicographic order of the physical database.

2. In addition to~, where v is a concrete object (a number, a string, or a value of another
type), we store Rvx. Thus, the elementary range query "For given R, l and h find all the
facts xRy such that l ~y ~h" is_satisfieg_ by all and only the inverted facts which are
positioned in the file between Rl and Rh HighSuffix. (HighSuffix is a suffix which is
lexicographically greater than any other possible suffix.) Thus, the result will most
probably appear in one physical block, if it can fit into one block.

3. In addition to xRy, where both x and y are abstract objects, we store yRx. Thus, for any
abstract object x, all its relationships xRy, xRv , zRx, and xC can be found in one place
in the file: the regular and inverted facts which begin with the prefix x..,_ (The infixes are:
categories for xC, relations for xRy and xRv , and inverse relations xRz from which we
find z such that zRx.)

The "records" of the B-tree are the regular and inverted facts. The records are of varying
length. The B-tree-keys of the "records" are normally the entire B-tree-records, i.e. facts,
regular and inverted. (An exception to this is when the record happens to be very long. The
only potentially long records represent facts xRv where v is a very long character string. We
employ a special handling algorithm for very long character strings.) Access to this B-tree
does not require knowledge of the entire key: any prefix will do. All the index blocks of the
B-tree can normally be held in cache.

At the most physical level, the data in the facts is compressed to minimal space. Also,
since many consecutive facts share a prefix (e.g. an abstract object identifier) the prefix need
not be repeated for each fact. In this way the facts are compressed further. The duplication in
the number of facts due to the inverses is 100%, since there is only one inverse per each
original fact. The B-tree causes an additional 30% overhead. (This overhead occurs because
in a B-tree the data blocks are only 75% full on the average, though this can be improved by
periodic reorganization. The overhead due the index blocks of the B-tree is no more than 1-
2 % since they contain only one short fact for every data block.) The total space used for the
database is therefore only about 160% more than the amount of information in the database,

Rishe-92-IB p. 14

i.e. the space minimally required to store the database in the most compressed form with no
regard to the efficiency of data retrieval or update. No separate index files are needed.

The scheme proposed in this paper is employed to encode the numbers in the facts. The
followmg are the most important of the scheme's properties utilized:

1. Bitwise lexicographic comparison of the encodings coincides with the meaningful
comparison of numbers. Our B-tree search algorithms operate on and compare variable
strings like xRy, where y can be character string or a number encoding, transparently to
the low-layer software of file-management.

2. There is no limit on arbitrarily large, arbitrarily small, or arbitrarily precise numbers.
This should be a requirement of any fully-flexible semantic database management
system. Additionally, in our implementation, this requirement is particularly important
since all of the facts xRy for various attribute relations R are stored in the same file and
treated in the same way. We do not wish to set a limit on the range of the data at the
time of the design or creation of the file.

3. Every number bears its own precision, i.e. the precision is not uniform throughout the
database. (This allows integers, reals, and values of different attributes with different
precisions to be treated in a uniform way in one file in the database.)

4. The encodings are of varying length and are approximately maximally space efficient
with respect to their informational content.

5. No additional byte(s) are required to store the length of the encoded representation or to
delimit its end. The absence of delimiters gives some additional saving in space (at least
for those numbers whose encodings are shorter than 7 bytes), and also facilitates the
handling of records.

The file management software, which is the lowest layer of the DBMS, sees the numbers only
in the encoded form and does not distinguish between numbers, strings, etc.. The same
applies to the intermediate layers of the DBMS, such as fact representation, integrity
handling, concurrency control, query evaluation, etc. The encoding and decoding is done in
the user interface software. This keeps the system simple and efficient.

The user interface layer of the system includes two functions: encode: String ~String
and its inverse decode. The encode function takes a printable number representation (a
variable length string), e.g. "-2.34E107" or "102.3", and converts it into the encoded byte
string. The encode/decode functions work when the data comes from/goes to a human user.
These functions are not quite sufficient when the data originates from or is retrieved into a
user's program. (Such a program may be written in a data manipulation language which is
an extension of a a regular programming language.) In this case, the program's numbers are
first converted into their printable form and then encoded by the function encode .

The source of the functions encode and decode , written in C, will be provided to the
interested readers upon a request e-mailed to rishen@fiu.edu.

The most important properties of the encodings are the lexicographic comparability, the
variable length, and the uniformity between different data types. Another important property
is the compactness (small sizes), as illustrated by the following example.

Rishe-92-IB p. 15

As an example, consider the followmg subschema of a database.

EMPLOYEE

employee-name: String works in PROJECT
birth-year: 0 .. 90

description: String
number-of-dependents: 0 .. 100 (many-to-many)

budget: 0.00 .. 100,000,000
annual-salary: 0.00 .. 6,000,000.00
overtime-hourly-pay: 0.00 .. 100.00

Consider the representation of attribute values for a hypothetical set of 10 employees.

The salaries are: 20500.25, 11700, 9E4, six times 25E3, 1E6. The average size in the
printable format (plus delimiters): 5.3. The average size in the encoded format: 2.2. The size
of each number in the fixed-size decimal float format: 8. (The latter size depends on the
programming language and the environment. Alternatively, a fixed-point 9-digit decimal
format may be used, which takes 5 bytes.)

The numbers of dependents are: seven times 0, 2, 2, 4. The average size in the printable
format (plus delimiters): 2. The average size in the encoded format: 1. The size of each
number in the fixed-size small-integer format: 2.

The overtime hourly pay numbers are: eight times O (meaning: no overtime pay
allowed), 6.35, 12.20. The average size in the printable format (plus delimiters): 2.7. The
average size in the encoded format: 1.2. The size of each number in the fixed-size decimal
format: 3. (Assuming that the programming language allows a fixed-point decimal format
with 5 decimal digits stored in two digits per byte.)

The birth years are: 40, 45, 60, 60, 61, 61, 61, 63, 64, 64. The average size in the
printable format (plus delimiters): 3. The average size in the encoded format: 1. The size of
each number in the fixed-size small-integer format: 2.

If we must have one fixed-size format for all the above numbers (as well as for other
present and future attributes in the database), that would be the decimal float, with the size 8
(depending on the language and the environment and provided no number with more than 12
significant decimal digits will ever be stored in the database.)

The following are some of the facts in this database.

objectl EMPLOYEE
objectl #DEPENDENTS 0
objectl SALARY 9000
objectl WORKS-IN object2
objectl WORKS-IN object3

The objects are represented by integers. For example, objectl is represented by the
number 36. The schema concepts, such as EMPLOYEE and WORKS-IN, are represented by
small integers. Under the assumption that there are less than 80 schema concepts, the above 5
facts' sizes are: 2 (1 byte for the representation of objectl + 1 byte for the representation of
the category - no delimiters needed); 3 (1+1+1); 3 (l+l+l); 3 (1+1+1); 3 (1+1+1). (In this
estimate, objectl is encoded by just 1 byte, encode("36"). When the database grows, some

Rishe-92-IB p. 16

other obJects will be encoded by two or more bytes.)

References

[Abrial-74] J.R. Abrial, "Data Semantics," in J.W. Klimbie and K.L. Koffeman (eds.), Data
Base Management. North Holland, 1974.

[Matula&Kornerup-83] D. Matula and P. Kornerup. "An order preserving finite binary
encoding of rationals.'' Proceedings of the 6-th Symposium on Computer Arithmetics.
IEEE Computer Society Press, 1983.

[Rishe-88-DDF] N. Rishe. Database Design Fundamentals: A Structured Introduction to
Databases and a Structured Database Design Methodology. Prentice-Hall, Englewood
Cliffs, NJ, 1988. 436 pages.

[Rishe-88-TM] N. Rishe. "Transaction-management System in a Fourth-Generation
Language for Semantic Databases," In Mini and Microcomputers: From Micros to
Supercomputers (Proceedings of the ISMM International Conference on Mini and
Microcomputers, Miami Beach, December 14-16, 1988; M.H. Hamza, ed.) Acta Press,
1988, pp. 92-95.

[Rishe-89-SD] N. Rishe. "Semantic Database Management: From Microcomputers to
Massively Parallel Database Machines.'' Keynote Paper, Proceedings of the Sixth
Symposium on Microcomputer and Microprocessor Applications, Budapest, October
17-19, 1989, pp 1-12.

[Rishe-91-DDS] N. Rishe. Database Design: The Semantic Modeling Approach. McGraw
Hill, in press, 550 pages.

[Rishe-91-FS] N. Rishe. "A File Structure for Semantic Databases." Information Systems,
16, 4, pp. 375-385.

[Rishe-91-PC] N. Rishe and W. Sun. "A Predicate Calculus Language for Queries and
Transactions in Semantic Databases,'' in: Databases: Theory, Design and Applications.
IEEE Computer Society Press, 1991 (N. Rishe, S. Navathe, and D. Tai, eds.) pp. 204-
221.

[Rishe&al.-89-AM] N. Rishe, D. Tai, and Q. Li. "Architecture for a Massively Parallel
Database Machine'' Microprocessing and Microprogramming (the Euromicro journal),
25 (1989) 33-38.

[Salton-89] G. Salton. Automatic Text Processing. Addison-Wesley, Reading, Mass., 1989.

Rishe-92-IB p. 17

