
cro-Pc.
Databases and Parallel Architectures

Proceedings

PARBASE-90
lnt:ernational .:conference on ..

Databases, Parallel Architectures,
and TheirApp,liCations ·
Edited by N. Rishe, S. Navathe, and D. Tal

~

I
~ ----------~/

~

Sponsored by
Florida International University
in cooperation with IEEE and Euromicro

March 7-9, 1990
Miami Beach, Florida

~ IEEE Computer Society Press + Institute of Electrical and Electronics Engineers, Inc.

A Predicate-calculus Based Language for Semantic Databases

Naphta/i Ris/re

School of Computer Science
Aorida Imemational University -

The State University of Aonda at lvl1anu
University Park, Miami. FL. 33199. USA

This paper proposes a non-procedural
language for semantic databases and in particular
for the Semantic Binary Model. The language is
based on a first-order calculus.

1. Introduction
The semantic binary model [Rishe-88-DDF] represents the
information of an application's world as a collection of ele
mentary facts of two types: unary facts categorizing objects
of the real world and binary facts establishing relationships of
various kinds between pairs of objects. The objects are
classified into non-disjoint categories. Inheritance of proper
ties of categories is determined by a graph of sub-categories
and super-categories. The graphical database schema and the
integriry constraints determine what sets of facts are mean
ingful. i.e . can comprise an instantaneous database (the data
base as may be seen at some instance of time.) The database
aggregates information about abstract objects. Abstract
objects stand for real entities of the user 's world. The
representation of abstract objects is transparent to the user
and is unprintable . In addition to the abstract objects, the
database contains, in a subservient role, concrete, or print
able, objects. These are character strings. numbers, dates,
ere.

This paper proposes a non-procedural language for
semantic databases in general, and in particular for the
Semantic Binary Model. The foundation of the language is a
database interpretation of a first-order predicate calculus
[Rishe-88-DDF]. The calculus is enriched with second-order
constructs for aggregation (statistical functions), specification
of transactions, parametrized query forms and other uses.
The language is called SO-calculus (Semantic Database Cal
culus .)

Of special interest is the use of this language for
~recification of bulk transactions, including generation of
' ': ' ' nf new abstract objects . This problem doe~ not exist in
:l:c· r<·l ,itinr.:d c bt~h~ <e< hPr~ tr<t' tht're th,. n <t'r rnntrnl~ the
representation of his objects by data, namely by key attri
butes of those objects. (E.g. persons might be represented in
the relational model by their social security numbers, pro
vided such numbers are unique , always exist for every per
son, and do not change with time. In the semantic models the
user does not care how the persons are represented.)

Another especially interesting feature of the proposed
language is the automatic intuitively-meaningful handling of
null-values, i.e . of application of non-total functional rela
tions.

The language proposed in this paper can also be used
with most other semantic models: Abrial's _Binary Model
[Abrial-74], the IFO model [Abiteboul&Hull-84], SDM
[Hammer&McLeod-81], SEMBASE [K.ing-84], NlAM
([Nijssen-81], [Nijssen& V anBekkum-82], [Leung&Nijssen-
87]), GEM [Tsur&Zaniolo-84], TAXIS [Nixon&al.-87], or
the Entiry-Relationship Model [Chen-76].

The examples in this paper refer to the schema of Figure
1. That schema describes some activities of a Dining Club.

The following syntactic notation is used in the
definitions of syntactic constructs and in the examples:
language keywords are set in boldface; the names of the rela
tions and categories from the database are set in UPPER
(' ASE fT AL!CS: in syntax description templates, items to be
'trh~tituted are set in lower-case italics.

2. Semantic Model Terminology
An ohject is any item in the real world. It can be either a
concrete object or an abstract object as follows. A va lue. or a
concrete object, is a printable object, such as a number. a
character string. or a date. An abstract object is a non-value
object in the real world. An abstract object can be, for exam
ple , a tangible item (such as a person. a table, a country), or
an event, offering of a course by an instructor), or an idea.

A category is any concept of the application 's real
world which is a unary properry of objects. An object may
belong to several categories at the same time . A binary rela
tion is any concept of the application's real world which is a
binary property of objects, that is, the meaning of a relation
ship or connection between two objects. Notation: "x R y"
means that object x is related by the relation R to object y . A
binary relation R is many-to-one (m: l. functional) if at no
point in time xRy and xRz where y ~z . A category C is the
domain of R if it satisfies the following two conditions: (a)
whenever xRy then x belongs to C; and (b) no proper sub
category of C satisfies (a). A category C is the range of R if
it satisfies the following two conditions: (a) whenever xRy
then y belongs to C; and (b) no proper subcategory of C
satisfies (a). A relation R whose domain is C is total if at all
rimes for every object x in C there exists an object y such that
xR_v.

Thi~ re~;~rch ha., been ~upported in part by • grant !rom HorKI• High 1 cchnology •nd lod u ~ttry o... ·•Ui k. ll

CH2728-4/90/0000/0424$01 .00 © 1990 IEEE 424

/
/

/
/

/

--------(

PATRON

MEAL

satisfacrion-grade: 0 .. 100

the party

(m:1)

PERSON

last-name: String
first-name : String

birth-date: 1870 .. 1990
address: String

TABLE

name: String 1 :m

PARTY

the shift
(m :l)

SHIFT

date: Date
period: String

"'' ,
'
',~--------------~

WAITER

the waiter
(m:l)

the account ACCOUNT

(m :1) name: String 1:1

Fi~ure 1-1. A hinary schema for a dining-club application .

3. Preview of the language

Non-procedural language - a language in :-"~ich the user
specifies what is to be done without specifymg how It ts
to be done.

Example 3-} .

What waiters have served every patron?

get waiter.LAST-NAME where

(for every sin PATRON:

exists meal in MEAL:

((meal THE-PATRONs) and

(meal .THE-PARTY. THE
WAITER= waiter)))

425

4. First-order predicate calculus expressions
The First-order Predicate Calculus can be applied to semantic
databases, if we regard the instantaneous database as a finite
structure with binary relations, unary relations (categories),
and functions (functional relations).

Expression - a combination of constants, variables, opera
tors, and parentheses. The syntax and semantics are
given below.

An expression may depend on some variables. When
the variables are interpreted as some fixed objects, the
expression can be evaluated with respect to a given
instantaneous database, and will yield an object, abstract
or concrete. The following are syntactic forms of
expressions:

1. constant

a. number

b.
c.

character-string (in quotes)

Boolean value (TRUE and FALSE)

d. Date

2. variable

A variable is a sequence of letters, digits, and hyphens.
The first character must be a letter.

3. (expression)

Parentheses in expressions may be omitted when no
ambiguity results.

4. (expression basic-binary-operator expression)

The basic binary operators are: +, - , *, I, > , <, 2:, ~. =, ~.
and, or.

Each operator may be used only when the expressions
yield values of types appropriate for the operator. .The
only basic binary operators defined for abstract obJects
are '=' and · ~ · , which produce TRUE or FALSE as
results .

5. (if expression then expression)

"if e 1 then e 2" is equivalent to "(not e 1) or e 2"

6. (expression relation expression)

The relation is a relation from the userview. The result
is TRUE if the two objects are related by the relation in
the instantaneous database.

Example 4-1 .

(x BIRTH-DATE 1960)

The value of this Boolean expression depends on
the variable x.

7. (basic-unary-operator expression)

The basic unary operators are: -, not.

Example 4-2.

(not (I> I)) = TRUE

8. (expression is a category)

This Boolean expression yields TRUE when the object
is in the category in the instantaneous database.

Example 4-3.

xis a PATRON

9. (expression .functional-relation)

x.R is the object related by the relation R to x , it is the
object y from the instantaneous database such that (x R
y) gives rrue . Such an expression is called dot
application .

426

Example 4-4.

x.BIRTH-DATE

e.THE-PARTY.THE-WAITERLAST-NAME

The dot-application is well-defined for total functional
relations. The case of non-total functional relations will
be discussed later.

10. (exists variable in category : expression)

The ':' may be pronounced 'so that the following is
true:'.

The contained expression must be Boolean. The result
is also Boolean.

The result is TRUE when there exists at least one object
in the category which satisfies the Boolean expression.

The expression normally depends on the variable, but
may also depend on additional variables. The . resulting
expression no longer depend~ on the variahlc.

Interpretation:

Let a 1, a 2, ... ,an be all the objects in the category
in the instantaneous database.

Let e 1, e 2, ... • en be obtained from the expression
by substituting each of a 1, a 2 , ... , an for all the
occurrences of the variable in the expression.

Then

exists variable in category : expression

is equivalent to

e 1 or e 2 or ... oren

Example 4-5 .

(exists x in WAlTER : x.BIRTH-DATE = y}

This is TRUE if there is at least one waiter who
was born on date y . The whole expression
depends only on the variable y.

The keyword 'exists' is called 'the existential
quantifier'.

II. (for every variable in category: expression)

The ':' is pronounced 'the following is true : ·.

The expression must be Boolean. The result is also
Boolean. It is TRUE when all the objects of the
category satisfy the Boolean expression. The expres
sion usually depends on the variable, and may also
depend on additional variables. The resulting expres
sion no longer depends on the variable.

Interpretation:

Let a 1• a 2 , an be all the objects in the category
in the instantaneous database.

Let e 1, e 2 , en be obtained from the expression
by substituting each of a 1, a 2 , ... , an for all the
occurrences of the variable in the expression.

Then

for every variable in category : expression

is equivalent to

e 1 and e 2 and ... and en

Example 4-6.

(for every x in WAITER: x.BIRTH-DATE = y)

This is TRUE if all the waiters were born in the
date y. The whole expression depends only on
the variable y.

The keyword 'for every' is called 'the universal
quantifier'.

Note:

for every variable in category : expression

is equivalent to

not (exists variable in category : not expression)

Usage of variables :

The variable after a quantifier in a sub-expression
should not be used outside that sub-expression.
Although many versions of Predicate Calculus do not
have this requirement, this requirement does not
decrease the power of SD-calculus, but improves reada
bility , prevents some typical errors in query
specification. and simplifies the semantics.

Example 4-7.

WRONG:
(exists x in PERSON: x is a PATRON) and (x
BIRTH-DATE 1970)

Here, x appears in the quantifier of the left sub
expression, but also appears in the right sub
expression. Logically , these are two distinct
variables, and they should not be called by the
same name 'x '.

To use the expressions correctly, we shall need to know
what variables are quantified in an expression, and on
what variables an expression depends.

Quantified variable:· variable vis quantified in expression e
if v has an appearance in e immediately after a
quantifier.

Example 4-8 .

The variable vis quantified in:

((z > 0) or (exists v in PATRON: v is a
WAITER))

Expression e depends on variable v if v appears in e and is
not quantified.

427

Example 4-9.

The following expression depends on z and x, but
not on y.

((z > 0) or (exists yin PATRON: x =
y.BIRTH-DATE))

Notation: when an expression e depending on variables x 1,

x 2, .. . , xk is referred to (not in the actual syntax of the
language), it may be denoted as

e (x 1, x 2 , .. . , xk)

(In many sources , a variable on which an expression
depends is called a free variable in that expression. An
expression which depends on no variables is called a
closed expression.)

Condition on variables x 1, x 2, .. . , Xt -a Boolean expression
which depends on x 1, x 2•

Assertion - a Boolean expression which does not depend
on any variable, that is. every variable is restricted by a
quantifier.

Interpretation : for a given instantaneous database, the
assertion produces true or false .

Example 4-10.

Assertion that every patron had a dinner at the
club on 1-Jan-88:

for every pin PATRON:

exists meal in MEAL:

((meal THE-PATRONp) and

(meai .THE-PARTY. THE-SHIFT. THE-
DATE=l-Jan-88))

5. Dot-application of non-total functionat relations
Iff is not total then e.f could be ambiguous. In order to
provide a meaningful intuitive result, the dot-application
· e .f · of a non-total functional relation f to an expression e
.._ ulterpreted by the DBMS by analyzing the whole condition
nr n~<!" rti0n cnnt:~ining the- dot-application .

Example 5-l .

Consider the following assertion which contains
a dot-application of the non-total relation
BIRTH-DATE.

for every yin PATRON: y.BJRTH
DATE> 1980

This assertion will be interpreted by the DBMS
as

for ever~· yin PATRON:

exists x in Integer: y BIRTH-
DATEx and x > 1980

The quantification over the conrete category
Integer is over the finite set of integers
which happen to be present in the instan
taneous database at the time of the
expression's evaluation.

I
II

This interpretation of the dot-application of non-total func
tional relations can be defined formally as follows.

An expression e .f . where e is an expression and f is a
database functional relation, is formally regarded as a syntac
tic abbreviation. Let x 1, ... • xk be the variables on which
the expression e depends. For the above example. the only
such variable is y.

Let t1> be the largest sub-expression (within the whole asser
tion or condition) containing e.f and still depending on all
the variables x 1, .. . • xk, that is, none of these variables is
quantified in the subformula $. ($may depend also on addi
tional variables.) For the above example,

$ = (y.BIRTH-DATE> 1980)

Let C be the range off .

Let 'lf=<tft . (That is , 'l' is obtained from $ by substitution of
a new variable x for all the occurrences of (e.f) in 'lf.) For
the above example,

'l' (x > 1980)

Then $ stands for:

(ex ists x inC: ((e f x) and 'lf))

6. Queries

Specification of a query to retrieve a table. that is . a set of
rows of values:

get expression expression

where (condition-on-the -variables-on-which-the
expressions-depend)

Interpretation of

gete 1 , .•• ,en where(tj)(x 1, xk))

The variables x 1 •. .. . xk are assigned all the possible
tuples of objects from the instantaneous database which
make $ (x I• x") true; the expressions e 1, en are
evaluated for these tuplesand the corresponding results
are ou~ut. (The output IS not printable if any of the
expressiOns produces an abstract object.)

Example 6·1 .

Who has been served by Waiter Smith?

get patron.LAST-NAME where

exists meal in MEAL:

(meal .THE-PATRON=patron and

meal.THE-PARTY. THE-WAITER. LAST
NAME='Smith')

Abbreviation:

Queries which output only one value may be specified
without the "where condition'· part, as:

get expression

(provided the expression depends on no variables).

428

Example 6-2 .

The following is a yes-or-no query which
displays 'TRUE' if every patron has eaten at
least once at the club.

get (for every pin PATRON: exists meal in
MEAL: p=meal.THE-PATRON)

Headings of output columns:

The columns in a table which is an output of ga can be
labeled:

get heading 1: e 1,heading 2: e 1, headingn: en
whE>re conditir>n

Example 6-3.

Print a table with two columns, which associates
patrons to their waiters. Only last names are
printed.

get Waiter-who-served: waiterLAST
NAME, Patron-served: patron.LAST
NAME where

exists meal in MEAL:

meal.THE-PATRON =patron
and

meal.THE-PARTY.THE-WAITER
=waiter

When no heading fo r ei is specified, then. by default ,
the following heading is assumed:

if ei ends in ".relation". then the heading is
the relation :

otherwise the heading is the number i.

Example 6-4 .

The query

get x.LAST-NAME, x.BIRTH-DATE
where xis a PATRON

produces a two-column printout with headings
LAST-NAME, BIRTH-DATE

7. Other features
Other feautures of the language. beyond the limits of this
short paper, include: aggregate operations: sum, count, aver
age; shorthand notation for n-ary relationships; update tran
sactions; parametric query forms; data definition language;
specification of integrity constraints; and specification of
userviews.

8. Implementation
We have implemented this language under the UNIX operat
ing system. We have developed an experimental translator
from this language into C with subroutine calls to our experi
mental semantic database management system. We have also
implemented another translator for a large subset of this
language under the MS-DOS operating system. The latter
translator is intended for personal computers.

\

Acknowledgment

The author gratefully acknowledges the advice of David Bar
ton, Li Qiang, Nagarajan Prabhakaran, and Doron Tal.

References
[Abiteboul&Hull-84) S. Abiteboul and R. Hull. "JFO: A Formal

Semantic Database Model" , Proceedings of ACM SIGACf
SIGMOD Symposium on Principles of Database Systems,
1984.

[Abrial-74] J.R. Abrial, "Data Semantics", in J.W. Klimbie and
K.L. Koffeman (eds.), Data Base Management, North Hol
land, 1974.

[Chen-76] P. Chen. "The Entity-relationship Model: Toward a
unified view of data." ACM Trans . Databas Syst . l , 1, 9-36.

[Hammer&McLeod-81] M. Hammer and D. McLeod. "Database
Description with SDM: A Semantic Database Model", ACM
Transactions on Database Systems, Vol. 6. No. 3, pp. 351-
386. 1981.

[Jain-87] A. Jain. Design of a Binary Model Based DBMS and
Conversion of Binary Model Based Schema to an Equivalent
Schema in Other Major Database Models . M.S. Thesis,
University of California, Santa Barbara, 1987.

[King-84] R.King. "SEMBASE: A Semantic DBMS." Proceed
ings of the First Workshop on Expert Database Systems.
Univ. of South Carolina, l984 . (pp. 151-171)

[Leung&Nijssen-87) C.M.R. Leung and G.M. Nijssen. From a
NIAM Conceptual Schema into the Optimal SQL Relational
Database Schema, Aust. Comput. 1 .. Vol. 19. No.2 .

[Nijssen-81] G.M. Nijssen "An architecture for knowledge base
systems". Proc. SPOT -2 conf., Stockholm, 198 I.

[Nijssen&VanBekkum-82] G.M.A. Nijssen and J. Van Bekkum.
"NlAM- An Information Analysis Method " , in Information
Systems Design Methodologies: A Comparative Review,
T.W. Olle, et al. (eds.), TFIP 1982. North-Holland.

[Nixon&a/ .-87] B. Nixon. L. Chung. I. Lauzen. A. Borgida. and
M. Stanley. implementation of a compiler for a semantic
data model: Experience with Taxis." ln Proceedings of
ACM SIGMOD Conf. (San Francisco). ACM. 1987.

[Rishe-88-DDF] N. Rishe. Database Design Fundamentals: A
Structured Introduction to Databases and a Sn·uctured Data
base Design Methodology. Prentice-Hall . Englewood Cliffs.
NJ. 1988. 436 pages. hardbound. ISBN 0-13-196791-6.

[Tsur&Zaniolo-84] S. Tsur. C. Zaniolo. "An implementation of
GEM - supporting a semantic data model on a relational
backend." ln Proc. ACM SIGMOD Inti . Cnnf. on Manage
ment of Data. May 1984 .

429

