
IEEE THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, INC.

COMPUT~R
SOCIETY~
PRESS ~

I

I
•
I

J

•
I
I
I

The papers in this book comprise the proceedings of the meeting mentioned on the cover and tiUe
page. They reflect the authors' opinions and are published as presented and without change, in the
interests of timely dissemination. Their inclusion in this publication does not necessarily constitute
endorsement by the editors, the IEEE Computer Society Press, or The Institute of Electrical and
Electronics Engineers, Inc.

Published by

IEEE Computer Society Press
1730 Massachusetts Avenue, N.W.

Washington, D.C. 20036-1903

Copyright © 1989 by The Institute of Electrical and Electronics Engineers, Inc.

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are
permitted to photocopy beyond the limits of U.S. copyright law for private use of patrons those
articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee
indicated in the code is paid through the Copyright Clearance Center, 29 Congress Street, Salem, MA
01970. Instructors are permitted to photocopy isolated articles for noncommercial classroom use
without fee. For other copying, reprint or republication permission, write to Director, Publishing
Services, IEEE, 345 East 47th Street, New York, NY 10017. All rights reserved.

IEEE Computer Society
Order Department

10662 Los Vaqueros Circle
Los Alamitos, CA 90728-2578

IEEE Computer Society Order Number 1963
Library of Congress Number 88-641433

IEEE Catalog Number 89CH2757-3
ISBN 0-8186-5963-7 (microfiche}

ISBN 0-8186-8963-3 (case)
SAN 264-620X

Additional copies may be ordered from:

IEEE Service Center
445 Hoes Lane
P.O. Box 1331

Piscataway, NJ 08855-1331

IEEE Computer Society
13, Avenue de I'Aquilon

B-1200 Brussels
BELGIUM

• THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, INC.

iv

IEEE Computer Society
Ooshima Building

2-19-1 Minami .Aoyama
Minato-ku, Tokyo 107, JAPAN

Lexicographic Encoding of Numeric Oat a Fields

Naplrta/i Rislre

School of Computer Science
Florida International University

The Stare University of Florida at Miami
University Parle. Miami, FL. 33199

ABSTRACT

This paper proposes a method of variable
radix representation of numeric data. The
method allows compact representation of arbi
trary numbers . Among its properties is that bit
wise lexicographic comparison (">", "<") is
consistent with correct numeric comparison of
numbers.

Keywords: numeric data fields, number encoding, com
parison operations, database::;, file structures, compactness
of data, data independency, formats, floating point,
variable-length data fields, real numbers, data compres
SIOn.

1. Introduction
Many applications require compact variable-length
representations of arbitrary numbers . Among such appli
cations are advanced database management systems
which make the data formats transparent to the user and
should allow a logical field to hold numbers of unpredict
ably large or small magnitude and unpredictable varying
precision, if the user's logic warrants this. I shall call this
requirement "unboundness". The typical representations
of numbers, such as floating point or fixed point formats,
fail the "unboundness" requirement. A representation
which satisfies this requirement is the standard mathemat
ical notation (on paper) using arabic numerals and
exponent or its imitation in computer printouts (e.g.,
-3.57E-101).

A further requirement on the number representation
is the efficiency of the application's typical operations.
The predominant operations performed on stored numbers
in databases and many other applications are comparisons
(=,>,etc.), rather than the arithmetic operations (i.e.,+, x,
etc., which are more typical for applications involving
engineering calculations). Consider, for example, a search
for a record with a given key value in an index-sequential
or B-tree file, or in associative memory or storage device.
The efficiency of sucb applications would benefit if
numbers could be handled as character strings. For exam
ple, in most cases the result of a comparison of two long
This R:&Carch hu been supported in part by a grant from Aorida HighT echnology and Industry Council

241

character strings can be found by comparing their short
prefixes, while the whole strings need not be scanned or
even retrieved from the storage devices. This would also
simplify the hardware and lower-level software since they
would not have to distinguish between numbers and char
acter strings, i.e. they would store and compare numbers
in the same way they work for character strings. I shall
call this requirement "lexicographic comparability" .

This paper proposes an encoding of numbers which is
unbound, lexicographically comparable, and compact.
The properties of the encoding are fully defined in the fol
lowing section.

2. Specification of Requirements

The encoding of numbers proposed in this paper satisfies
the following requirements:

1. Bitwise lexicographic comparison of the encodings
will coincide with the meaningful comparison of
numbers, i.e. the order of the real numbers . This is
essential for fast search of sorted and indexed files
containing character strings and numeric data. Thus,
if n 1 is encoded by a byte strin~ b lb.Jb~ and n 2 is
encoded by a byte string b 11b{b 3b], where b.j >bf,
then n 1>n 2. The standard representations of numbers
do not allow bitwise comparison. (Consider, for
example, the representation of floating point numbers
by mantissa and exponent.)

2. There is no limit on arbitrarily large, arbitrarily
small, or arbitrarily precise numbers. In a database or
a file we wish to be able to compare and store in a
uniform format integers, real numbers, numbers with
very many significant digits, and numbers with just a
few significant digits. We do not wish to set a limit
on the range of the data at the time of the design of
the file formats. For example, the number 1t trun
cated after the first 1000 digits is a very precise
number of 1000 significant digits. The number 10 100

is large, but not precise - it has only one significant
digit. We need one common format convention to
represent both numbers .

3. Every number bears its own precision , i.e. the preci-

sion is not uniform. (In a database, the varying preci
sion will allow us to treat integers, reals, and values
of different attributes with different precisions, in a
uniform way in one file in the database.)

4. The encodings are of varying length and are about
maximally space efficient with respect to their infor
mational content. For example, consider the follow
ing three numbers: 3,000,000 with precision
500,000; integer 5 with precision 0.5 ;
0.000,000,000,000,000,7 with precision
0.000,000,000,000,000,05 . Each of those three
numbers should require only a few bits each, while
the number 12345678.90 should require many more
bits. The number of bits in a number's representation
should be approximately equal to the amount of
information in that number.

5. No additional byte(s) are required to store the length
of the encoded representation or to delimit its end:
the representation should contain enough information
within itself so that the decoder would know where
the representation of one number ends and where that
of the next number begins (within the same record in
the file.) The absence of delimiters gives an addi
tional saving in space, and also facilitates handling of
records .

6. The representation of numbers is one-to-one. For
example, there should not be several representations
for 0, like 0.00, -0.0, OE23, OEO.

7. The encoding and decoding should be relatively
efficient (linear in the length of the data string), but
they need not be as efficient as comparisons. The
database system can handle encoded numbers in all
the internal operations, and translate them only on
input/output to the external user. The translation can
be done in user interfaces.

Among applications of the encoding method proposed in
this paper is the implementation of the Semantic Binary
Database Model ([Rishe-88-DDFJ, [Rishe-89-DDSl) by
an efficient data structure [Rishe-89-EOJ and by aX data
base machine [Rishe et al-89-AM] .

3. The Method of Representing Numbers

The input number v is translated into a sequence (string)
of bytes.

The least significant bit of .each byte is the continuation
bit: "1" means "more bytes to follow", "0" means "the
current byte ends the number's encoding". The other 7
bits of the byte give partial information about the number
v by specifying which one of 128 intervals the number
falls into. The intervals are not necessarily of equal
length, and some may be infinite. Thus, the first byte
specifies a partitioning of (-oo, +oo) into 128 intervals

(-oo,a 1), [a 1 ,a 2), [a 2,a 3), · · · ,[a 127 ,oo)

All the intervals except the first one are closea on the left
and open on the right. The interval boundaries a 1, ... ,a 127
are constants (they may depend on the application: one
partitioning is better for database management systems,
while another may be preferable for manufacturing con-

242

trol.)

The first seven bits of the byte give the interval number ;
of one of the 128 intervals [a; ,a;+1). When the contin~a~
tion bit is zero , the number v is the lower boundary a; of
the interval. (There is no lower boundary in the first inter
val, since it is open on the left.) Otherwise, when the
continuation bit is "1 ", it is known that v is in the interval
(a; ,a;+l) and further information is provided by the bytes
that follow. The boundaries of the intervals are selected in
such a way as to minimize the average length of encoding
of numbers in the application. Particularly, numbers
which appear most frequently in the application should be
encoded by just one byte. That is, those numbers must be
the lower boundaries of the intervals in the partitioning
specified by the first byte. ·

The second byte partitions the interval (a; .a;+1) into 128
sub-intervals:

(a; ,b 1), [b 1,b 2), · · · , [b m.a;+ 1)

and so f<Ch in the bytes that follow .

The interval boundaries can and must be chosen in such a
manner so as to satisfy all the requirements from the
encodings as listed above.

The tree of all intervals is infinite, but the interval boun
daries must be constants hard-coded in the application's
encoding algorithms. Thus, the algorithm must be able to
generate those constants by a finite number of interval
partitioning methods known to the algorithm. The
simplest interval-partitioning method is the "arithmetic
sequence": an interval (x ,y), where both x and y are
finite, is partitioned into

v-x
(x,x+·128), ·· ·,

[x+y-x xi ,x+y-x x(i+l)),
128 128

[x+y-x x127,y)
128

However, for most intervals the use of the "arithmetic
sequence" is either impossible (e.g., one cannot partition
an infinite interval into equal subintervals) or would
violate some of the requirements of the encoding. ln some
incorrect partitionings i~ would happen that the decimal
precision of v is less than the s.ize of an interval, but v is
not the lower boundary of the interval and many addi
tional bytes would be needed to zero down on the number
v. That would not be a compact representation. A correct
partitioning must avoid such situations.

Consider, as an example, a possible encoding of the
number 35 .01237 as shown in Figure 1. Assume that one
of the intervals in the first byte is [35, 36). Say, e.g., it is
the interval #38. It may be, that the algorithm further par
titions the interval (35, 36) so that there is a sub-interval
#13 which is [35.012, 35.013). The second byte would
indicate interval # 13 and continuation bit • 1 '. It may be
that the- algorithm further partitions the interval [35.012,
35.0 13) so that there is a sub-interval #56 which is
[35.01237, 35.01238). Since the original number is the
lower boundary of this sub-interval, the third and last byte
would indicate interval #56 and continuation bit '0'.

An example of a correct tree of intervals particularly_ suit
able for database applications is given in the last section.

4. Lexicographic Comparability
TMornn. Bitwise lexicographic comparison of the
encodings coincides with the meaningful comparison of
numbers, i.e. the order of the real nurnbers.

Proof.

Consider two input numbers v1>v2. Assume v1 is
encoded by a byte string E 1=b fb.Jb 3

1
• · · b.1 and v 2 is

encoded by a byte string E z=b fbi b f · · · b ,~. We have to
show that lexicographically E 1>E 2·

Assume the contrary: E 15£ 2. This can be one of the
following cases:

1. The two encodings have an identical, possibly empty
prefix, after which the byte in E 2 is greater than the
correspondinf byte in E 1. This means: for some k >6,
bk 1<bt and b; =b;2 for lSi <k.

a. If b/ and bt2 differ only in the least signi_ficant
bit, then the k-th byte puts both numbers m the
same interval I . The least significant bit of bl is
thus ' 1 ' , meaning that v2 is inside I , while the
least significant bit of b k

1 is '0 ' , meaning that v 1
is the lower boundary of I . Thus, v1<V2, a con
tradiction.

b. The first seven bits of b k
1 are lexicographically

less than those of bt2. Therefore, v 1 falls into an
interval I 1 and v2 into I 2 where I 1 precedes ! 2.

Thus v1<V2 in contradiction.

2. E 1 is a prefix of £ 2 , i.e.: £ 2 = E 1s , where s is any
string. The last byte of every encoding h~ continua
tion bit '0' (meaning it is the end of the stnng). Thus,
the last byte of E 1 has continuation bit '0 '. But the
last byte of E 1 is also the byte before s in E 2 (E 2 is
E 1 followed by s). Thus, the byte before s has con
tinuation bit '0' , meaning that it is the last byte in E 2.

Thus s must be empty. Thus E 1=E 1. Thus v1 and v2
are each the lower boundary of the same interval
defined by the byte-string E 1• Thus, v1=v2 , a contrad
iction.

5. A Tree of Intervals Suggested for Database

Systems
Typical frequent numbers in databas~s include zero, small
positive integers, the number -1 (which ts ofte~ abus~d to
represent null values). numbers with two decimal digits
after the period (representing dollars and cents).

The following is a recommendation for the tree of inter
vals for database management systems. There are seveA
types of partitioning within the tree:

"first-byte", for the initial interval (-oo,+oo) (Table 1)

"successive-integers", normally partitioned into 128
equal sub-intervals (Table 2)

"semi-arithmetic", in which an interval is partitioned
into 97 sub-intervals of size l % and 30 sub-intervals
of size 0.1% of the original interval (Table 3)

243

"semi-progressive to +oo" (Table 4), used for inter
vals of type [L ,oo)

"semi-progressive to -oo" (Table 5) -"semi-progressive to +0" (analogously to -oo)

"semi-progressive to-o" (analogously to +oo)

The above encoding satisfies the requirements and also
the following property of short representation of numbers
frequently used in databases:

127 numbers are represented in a single byte (includ
ing the delimiter). These numbers include:

all integers from -1 to 80;

aU positive numbers having only one significant
digit from 90 through the number 1 ,000,000.

16383 numbers are represented by at most two bytes,
including the delimiter. These numbers include:

all integers..-.om to +2000

aU dollars-and-cents between $-l.OO and $80.00

all positive numbers having only three or less
significant digits from the number 1 through the
number 1,000,000.

Numbers with many significant digits require on the
average less than 0.5 bytes per significant digit.

Table 6 gives an example of encoding the number
35.01237 by the 3-byte self-delimiting string
010010110001100101101110, i. e. hexadecimal 4Bl96E.

The algorithm of encoding has been implemented
and efficiently runs under UNIX and VMS operating sys
tems.

References

[Rishe-88-DDF] N. Rishe. Database Design Fundamen
tals: A Structured Introduction to Databases and a
Structured Database Design Methodology . Prentice
Hall, Englewood Cliffs, NJ , 1988. 436 pages. 1SBN
0-13-196791 -6.

[Rishe-89-DDSl N. Rishe. Database Design: The
Semantic Modeling Approach. Prentice-Hall, Engle
wood Cliffs, NJ, accepted to appear in 1990, approx.
550 pages.

[Rishe-89-EO] N. Rishe. ''Efficient Organization of
Semantic Databases '' Proceedings of the Third Inter
national Conference on Foundations of Data Organi
zation, Paris, June 21-23, 1989. Springer-Verlag. In
press.

[Rishe et al-89-AM] N. Rishe, D. Tal , and Q. Li.
' 'Architecture for a Massively Paralld Database
Machine" Microprocessing and Microprogram
ming. The Euromicro Journal. 1989, in press.

l

Tal>le l. Partitioning of {-oo ,oo) in the first bj'te.

sub-interva: # sub-interval _partitioning of sub-interval
1. (-oo, -1) "semi-progressive to --oo

2. l-1 ' 0) "semi-progressive to --Q"

3. [0, 1) "semi-progressive to +0"
4. [1, 2) "semi-arithmetic"
5. [2, 3) "semi -arithmetic"

...
82. [79 , 80) "semi-arithmetic"
83 . [80, 90) " semi-arithmetic"
84. [90, 100) "semi-arithmetic"
85. [100, 200) "semi-arithmetic"
86. [200, 300) "semi-arithmetic"
87. [300, 400) "semi-arithmetic"
88. [400, 500) "semi-arithmetic"
89. [500, 600) "semi-arithmetic"
80. [600, 700) "semi-arit1unetic"
91. [700, 800) "semi-arithmetic"
92. [800, 900) .. semi-arittunet ic"
93. [900, 1000) "semi-arithmetic"
94. [1000, 1128) "successive-integers"
95 . [1128 , 1256) "successive-integers"
96. 11256, 1384) "successive-integers"
97 . [1384, 1512) "successive- integers"
98 . [1512, 1640) "successive- integers"
99. [1640, I768) "successive-integers"
IOO. [1 768 , 1896) "successive-integers"
101 . I I 896, 2000) "successive-integers"
I02. [2000, 3000) "semi-arithmetic"
103. [3000, 4000) "semi-arithmetic"

.. .
I09. [9000, 10000) "semi-arithmetic"
I 10. [I 0000, 20000) "semi-arithmetic"
I II. [20000, 30000) " semi-arithmetic"

...
117. [80000, 90000) "semi-arithmetic"
118. [90000, lE5) "semi-arithmetic"
119. [1E5 , 2E5) "semi-arithmetic"
I20. [2E5 , 3E5) "semi-arithmetic" - ..

...
127. [9E5 , IE6) "semi-arithmetic"
128. [lE6, +ool "semi-progressive to +oo"

Table 2. Successive-integers pm·titioning of interval (L,R).

All the sub-intervals of (L,R) have the "semi-arithmetic" partitioning (see Table 3).
Examples are given for L!lterval (1000, 1128).
When R-L=l28, the successive-integers partitioning becomes "arithmetic sequencing" .
(R-1#128 only for the interval (1896, 2000)).

sub-mterval # sub-mterval example
1. (L , L+l) (1000, 1001)
2-128 for j=2 .. 128 [L+j -1 , L+j) [1001 , 1002)

.. .
.... - [1127, 1128)

244

Table 3. Semi-arithmetic partitioning of interval (L,R).
All the sub-intervals have the "semi-arithmetic" partitioning as well.

Examples are given for interval (7,8). (That is, L=7, R=8.)
~

sub-interval# sub-interval example

l. (L L + /(-.L_) (7, 7.001)
' 1000 R -L R -L

[7.001, 7.002) 2-20 for j=2 .. 20 [L +(j -1)
1000

, L + j
1000

)
. . .

[7.019, 7.02)

21-117 forj=3 .. 99 [L+(j-1)~~~ ,L+j~o~~ [7.02, 7.03)
. . .
[7.98, 7.99)

118-127 for j=991..1000 [L +(j-1) ~0~~. L+j ~O~~) [7.990, 7.991)
...

[7.999, 8)

Table 4. Semi-progressive to+<><> partitioning of interval (L,Rl.
Examples are given for interval (1E6, oo).

~ub-mterval # sub-interval example ~uh-mtcrval parttttonm~
l. ~L. 2L) I E6, 2E6) semi-arithmetic
~-99 or j=2 .. 99 UL, L+jL) 2E6, 3E6) semi-arithmetic"

. . .
99E6, lOOE6 "semi-arithmetic"

l'00-108 or j=l..9 [lOOjL, lOOL+ lOOjL) [1E8, 2E8) 'semi-arithmetic"
. ..
9E8, lOE8) 'semi-arithmetic"

109-117 or j=l..9 [lOOOjL, 1000L+1000jL) 1E9, 2E9) semi-arithmetic"
...

9E9, 10E9) . semi-arithmetic"
118-126 or j=L9 [lOOOOjL, lOOOOL+lOOOOjL 1El0, 2El0) 'semi-arithmetic"

...
9E10, lOElO . semi-arithmetic"

127. ~~ * IE5 , min(R,L * lElO)) !Ell, 1El6) semi-progressive to +<><>"
128. L* IElO, R) 1E16, oo) 'semi-progressive to+<><>"

Table 5. Semi-progressive to -oo partitioning of interval '('t,~).
Examples are given for interval (-oo, -1 E6).

~ub-mterval # sub-interval example
1. L, R*lElU) -oo, -1El6)

-lE16,-1Ell)
-lOElO, -9El0

~- max(L,R*IEIO), R*lE5)
prll f'orj=9 .. 1 [lOOOO(j+l)R,IOOOOjR)

-2El0, -lEIO)
12-20 orj=9 .. 1 [LOOOR+lOOOjR, lOOOjR -10E9, -9E9)

...
[-2E9, -1E9)

~1-29 or j=9 .. l [I OOR + 1 OOjR, l OOjR) -lOE8, -9E8)
...
-2E8, -1E8)

po-128 or j=99 .. 1 [R+jR, jR) -lOOE6, -99E6
...

-2E6, -1E6)

245

~ub-mtcrval parttttolllng
semi-progressive to -oo

'semi-progressive to -oo"

'semi -arithmetic"

'semi-arithmetic"
'semi-arithmetic"

'semi-arithmetic"
semi-aritlunetic"

'semi-aritlunetic"
'semi-arithmetic"

'semi-aritlunetic"

hvte
nbr.

1
2
3

Byle 1
ln!erval#: 38
Continuation ·Bit: 1

Byle 2
1nlerval#: 13
Continuation Bi1: 1

Table 6. An example of encoding the number 35.01237

1nterval interval IJinar)' for continuation
niJr. (intrv#- 1) IJit

_[35, 36) 38 0100101 1
[35.012, 35.013) 13 0001100 1

[35.01237, 35.01338) 56 0110111 0

35 36

35.012 35.01 3

By1e 3
1merve1#: 56

35 .01 2 35 .01237 35.01238

Cominuation Bil: 0

v =35.01237

l01rrval
#56

Figure 1. Encoding of the number 35.01237 by 3 bytes.

246

IJ.vte
code

01001011
00011001
01101110

