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ABSTRACT 

This paper proposes a method of variable
radix representation of numeric data. The 
method allows compact representation of arbi
trary numbers . Among its properties is that bit
wise lexicographic comparison (">", "<") is 
consistent with correct numeric comparison of 
numbers. 

Keywords: numeric data fields, number encoding, com
parison operations, database::;, file structures, compactness 
of data, data independency, formats, floating point, 
variable-length data fields, real numbers, data compres
SIOn. 

1. Introduction 
Many applications require compact variable-length 
representations of arbitrary numbers . Among such appli
cations are advanced database management systems 
which make the data formats transparent to the user and 
should allow a logical field to hold numbers of unpredict
ably large or small magnitude and unpredictable varying 
precision, if the user's logic warrants this. I shall call this 
requirement "unboundness". The typical representations 
of numbers, such as floating point or fixed point formats, 
fail the "unboundness" requirement. A representation 
which satisfies this requirement is the standard mathemat
ical notation (on paper) using arabic numerals and 
exponent or its imitation in computer printouts (e.g., 
-3.57E-101). 

A further requirement on the number representation 
is the efficiency of the application's typical operations. 
The predominant operations performed on stored numbers 
in databases and many other applications are comparisons 
(=,>,etc.), rather than the arithmetic operations (i.e.,+, x, 
etc., which are more typical for applications involving 
engineering calculations). Consider, for example, a search 
for a record with a given key value in an index-sequential 
or B-tree file, or in associative memory or storage device. 
The efficiency of sucb applications would benefit if 
numbers could be handled as character strings. For exam
ple, in most cases the result of a comparison of two long 
This R:&Carch hu been supported in part by a grant from Aorida HighT echnology and Industry Council 
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character strings can be found by comparing their short 
prefixes, while the whole strings need not be scanned or 
even retrieved from the storage devices. This would also 
simplify the hardware and lower-level software since they 
would not have to distinguish between numbers and char
acter strings, i.e. they would store and compare numbers 
in the same way they work for character strings. I shall 
call this requirement "lexicographic comparability" . 

This paper proposes an encoding of numbers which is 
unbound, lexicographically comparable, and compact. 
The properties of the encoding are fully defined in the fol
lowing section. 

2. Specification of Requirements 

The encoding of numbers proposed in this paper satisfies 
the following requirements: 

1. Bitwise lexicographic comparison of the encodings 
will coincide with the meaningful comparison of 
numbers, i.e. the order of the real numbers . This is 
essential for fast search of sorted and indexed files 
containing character strings and numeric data. Thus, 
if n 1 is encoded by a byte strin~ b lb.Jb~ and n 2 is 
encoded by a byte string b 11b{b 3b], where b.j >bf, 
then n 1>n 2. The standard representations of numbers 
do not allow bitwise comparison. (Consider, for 
example, the representation of floating point numbers 
by mantissa and exponent.) 

2. There is no limit on arbitrarily large, arbitrarily 
small, or arbitrarily precise numbers. In a database or 
a file we wish to be able to compare and store in a 
uniform format integers, real numbers, numbers with 
very many significant digits, and numbers with just a 
few significant digits. We do not wish to set a limit 
on the range of the data at the time of the design of 
the file formats. For example, the number 1t trun
cated after the first 1000 digits is a very precise 
number of 1000 significant digits. The number 10 100 

is large, but not precise - it has only one significant 
digit. We need one common format convention to 
represent both numbers . 

3. Every number bears its own precision , i.e. the preci-



sion is not uniform. (In a database, the varying preci
sion will allow us to treat integers, reals, and values 
of different attributes with different precisions, in a 
uniform way in one file in the database. ) 

4. The encodings are of varying length and are about 
maximally space efficient with respect to their infor
mational content. For example, consider the follow
ing three numbers: 3,000,000 with precision 
500,000; integer 5 with precision 0.5 ; 
0.000,000,000,000,000,7 with precision 
0.000,000,000,000,000,05 . Each of those three 
numbers should require only a few bits each, while 
the number 12345678.90 should require many more 
bits. The number of bits in a number's representation 
should be approximately equal to the amount of 
information in that number. 

5. No additional byte(s) are required to store the length 
of the encoded representation or to delimit its end: 
the representation should contain enough information 
within itself so that the decoder would know where 
the representation of one number ends and where that 
of the next number begins (within the same record in 
the file.) The absence of delimiters gives an addi
tional saving in space, and also facilitates handling of 
records . 

6. The representation of numbers is one-to-one. For 
example, there should not be several representations 
for 0, like 0.00, -0.0, OE23, OEO. 

7. The encoding and decoding should be relatively 
efficient (linear in the length of the data string), but 
they need not be as efficient as comparisons. The 
database system can handle encoded numbers in all 
the internal operations, and translate them only on 
input/output to the external user. The translation can 
be done in user interfaces. 

Among applications of the encoding method proposed in 
this paper is the implementation of the Semantic Binary 
Database Model ([Rishe-88-DDFJ, [Rishe-89-DDSl) by 
an efficient data structure [Rishe-89-EOJ and by aX data
base machine [Rishe et al-89-AM] . 

3. The Method of Representing Numbers 

The input number v is translated into a sequence (string) 
of bytes. 

The least significant bit of .each byte is the continuation 
bit: "1" means "more bytes to follow", "0" means "the 
current byte ends the number's encoding". The other 7 
bits of the byte give partial information about the number 
v by specifying which one of 128 intervals the number 
falls into. The intervals are not necessarily of equal 
length, and some may be infinite. Thus, the first byte 
specifies a partitioning of (-oo, +oo) into 128 intervals 

(-oo,a 1 ), [a 1 ,a 2), [a 2,a 3), · · · ,[a 127 ,oo) 

All the intervals except the first one are closea on the left 
and open on the right. The interval boundaries a 1, ... ,a 127 
are constants (they may depend on the application: one 
partitioning is better for database management systems, 
while another may be preferable for manufacturing con-
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trol.) 

The first seven bits of the byte give the interval number ; 
of one of the 128 intervals [a; ,a;+1). When the contin~a~ 
tion bit is zero , the number v is the lower boundary a; of 
the interval. (There is no lower boundary in the first inter
val, since it is open on the left.) Otherwise, when the 
continuation bit is "1 ", it is known that v is in the interval 
(a; ,a;+l) and further information is provided by the bytes 
that follow. The boundaries of the intervals are selected in 
such a way as to minimize the average length of encoding 
of numbers in the application. Particularly, numbers 
which appear most frequently in the application should be 
encoded by just one byte. That is, those numbers must be 
the lower boundaries of the intervals in the partitioning 
specified by the first byte. · 

The second byte partitions the interval (a; .a;+1) into 128 
sub-intervals: 

(a; ,b 1), [b 1,b 2), · · · , [b m.a;+ 1) 

and so f<Ch in the bytes that follow . 

The interval boundaries can and must be chosen in such a 
manner so as to satisfy all the requirements from the 
encodings as listed above. 

The tree of all intervals is infinite, but the interval boun
daries must be constants hard-coded in the application's 
encoding algorithms. Thus, the algorithm must be able to 
generate those constants by a finite number of interval
partitioning methods known to the algorithm. The 
simplest interval-partitioning method is the "arithmetic 
sequence": an interval (x ,y ), where both x and y are 
finite, is partitioned into 

v-x 
(x,x+·128 ), ·· ·, 

[x+y-x xi ,x+y-x x(i+l)), 
128 128 

[x+y-x x127,y) 
128 

However, for most intervals the use of the "arithmetic 
sequence" is either impossible (e.g., one cannot partition 
an infinite interval into equal subintervals) or would 
violate some of the requirements of the encoding. ln some 
incorrect partitionings i~ would happen that the decimal 
precision of v is less than the s.ize of an interval, but v is 
not the lower boundary of the interval and many addi
tional bytes would be needed to zero down on the number 
v. That would not be a compact representation. A correct 
partitioning must avoid such situations. 

Consider, as an example, a possible encoding of the 
number 35 .01237 as shown in Figure 1. Assume that one 
of the intervals in the first byte is [35, 36). Say, e.g., it is 
the interval #38. It may be, that the algorithm further par
titions the interval (35, 36) so that there is a sub-interval 
#13 which is [35.012, 35.013). The second byte would 
indicate interval # 13 and continuation bit • 1 '. It may be 
that the- algorithm further partitions the interval [35.012, 
35.0 13) so that there is a sub-interval #56 which is 
[35.01237, 35.01238). Since the original number is the 
lower boundary of this sub-interval, the third and last byte 
would indicate interval #56 and continuation bit '0'. 



An example of a correct tree of intervals particularly_ suit
able for database applications is given in the last section. 

4. Lexicographic Comparability 
TMornn. Bitwise lexicographic comparison of the 
encodings coincides with the meaningful comparison of 
numbers, i.e. the order of the real nurnbers. 

Proof. 

Consider two input numbers v1>v2. Assume v1 is 
encoded by a byte string E 1=b fb.Jb 3

1 
• · · b.1 and v 2 is 

encoded by a byte string E z=b fbi b f · · · b ,~. We have to 
show that lexicographically E 1>E 2· 

Assume the contrary: E 15£ 2. This can be one of the 
following cases: 

1. The two encodings have an identical, possibly empty 
prefix, after which the byte in E 2 is greater than the 
correspondinf byte in E 1. This means: for some k >6, 
bk 1<bt and b; =b;2 for lSi <k. 

a. If b/ and bt2 differ only in the least signi_ficant 
bit, then the k-th byte puts both numbers m the 
same interval I . The least significant bit of bl is 
thus ' 1 ' , meaning that v2 is inside I , while the 
least significant bit of b k

1 is '0 ' , meaning that v 1 
is the lower boundary of I . Thus, v1<V2, a con
tradiction. 

b. The first seven bits of b k
1 are lexicographically 

less than those of bt2. Therefore, v 1 falls into an 
interval I 1 and v2 into I 2 where I 1 precedes ! 2. 

Thus v1<V2 in contradiction. 

2. E 1 is a prefix of £ 2 , i.e.: £ 2 = E 1s , where s is any 
string. The last byte of every encoding h~ continua
tion bit '0' (meaning it is the end of the stnng). Thus, 
the last byte of E 1 has continuation bit '0 '. But the 
last byte of E 1 is also the byte before s in E 2 (E 2 is 
E 1 followed by s ). Thus, the byte before s has con
tinuation bit '0' , meaning that it is the last byte in E 2. 

Thus s must be empty. Thus E 1=E 1. Thus v1 and v2 
are each the lower boundary of the same interval 
defined by the byte-string E 1• Thus, v1=v2 , a contrad
iction. 

5. A Tree of Intervals Suggested for Database 

Systems 
Typical frequent numbers in databas~s include zero, small 
positive integers, the number -1 (which ts ofte~ abus~d to 
represent null values). numbers with two decimal digits 
after the period (representing dollars and cents). 

The following is a recommendation for the tree of inter
vals for database management systems. There are seveA 
types of partitioning within the tree: 

"first-byte", for the initial interval (-oo,+oo) (Table 1) 

"successive-integers", normally partitioned into 128 
equal sub-intervals (Table 2) 

"semi-arithmetic", in which an interval is partitioned 
into 97 sub-intervals of size l % and 30 sub-intervals 
of size 0.1% of the original interval (Table 3) 
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"semi-progressive to +oo" (Table 4), used for inter
vals of type [L ,oo) 

"semi-progressive to -oo" (Table 5) -"semi-progressive to +0" (analogously to -oo) 

"semi-progressive to-o" (analogously to +oo) 

The above encoding satisfies the requirements and also 
the following property of short representation of numbers 
frequently used in databases: 

127 numbers are represented in a single byte (includ
ing the delimiter). These numbers include: 

all integers from -1 to 80; 

aU positive numbers having only one significant 
digit from 90 through the number 1 ,000,000. 

16383 numbers are represented by at most two bytes, 
including the delimiter. These numbers include: 

all integers..-.om to +2000 

aU dollars-and-cents between $-l.OO and $80.00 

all positive numbers having only three or less 
significant digits from the number 1 through the 
number 1,000,000. 

Numbers with many significant digits require on the 
average less than 0.5 bytes per significant digit. 

Table 6 gives an example of encoding the number 
35.01237 by the 3-byte self-delimiting string 
010010110001100101101110, i. e. hexadecimal 4Bl96E. 

The algorithm of encoding has been implemented 
and efficiently runs under UNIX and VMS operating sys
tems. 
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Tal>le l. Partitioning of {-oo ,oo ) in the first bj'te. 

sub-interva: # sub-interval _partitioning of sub-interval 
1. (-oo, -1) "semi-progressive to --oo 

2. l-1 ' 0) "semi-progressive to --Q" 

3. [0, 1) "semi-progressive to +0" 
4. [ 1, 2) "semi-arithmetic" 
5. [2, 3) "semi -arithmetic" 

... 
82. [79 , 80) "semi-arithmetic" 
83 . [80, 90) " semi-arithmetic" 
84. [90, 100) "semi-arithmetic" 
85. [ 100, 200) "semi-arithmetic" 
86. [200, 300) "semi-arithmetic" 
87. [300, 400) "semi-arithmetic" 
88. [400, 500) "semi-arithmetic" 
89. [500, 600) "semi-arithmetic" 
80. [600, 700) "semi-arit1unetic" 
91. [700, 800) "semi-arithmetic" 
92. [800, 900) .. semi-arittunet ic" 
93. [900, 1000) "semi-arithmetic" 
94. [ 1000, 1128) "successive-integers" 
95 . [1128 , 1256) "successive-integers" 
96. 11256, 1384) "successive-integers" 
97 . [1384, 1512) "successive- integers" 
98 . [1512, 1640) "successive- integers" 
99. [1640, I768) "successive-integers" 
IOO. [1 768 , 1896) "successive-integers" 
101 . I I 896, 2000) "successive-integers" 
I02. [2000, 3000) "semi-arithmetic" 
103. [3000, 4000) "semi-arithmetic" 

.. . 
I09. [9000, 10000) "semi-arithmetic" 
I 10. [I 0000, 20000) "semi-arithmetic" 
I II. [20000, 30000) " semi-arithmetic" 

... 
117. [80000, 90000) "semi-arithmetic" 
118. [90000, lE5) "semi-arithmetic" 
119. [1E5 , 2E5) "semi-arithmetic" 
I20. [2E5 , 3E5) "semi-arithmetic" - .. 

... 
127. [9E5 , IE6) "semi-arithmetic" 
128. [lE6, +ool "semi-progressive to +oo" 

Table 2. Successive-integers pm·titioning of interval (L,R ). 

All the sub-intervals of (L,R) have the "semi-arithmetic" partitioning (see Table 3). 
Examples are given for L!lterval (1000, 1128). 
When R-L=l28, the successive-integers partitioning becomes "arithmetic sequencing" . 
(R-1#128 only for the interval (1896, 2000)). 

sub-mterval # sub-mterval example 
1. (L , L+l ) (1000, 1001) 
2-128 for j=2 .. 128 [L+j -1 , L+j ) [1001 , 1002) 

.. . 
.... - [1127, 1128) 
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Table 3. Semi-arithmetic partitioning of interval (L,R). 
All the sub-intervals have the "semi-arithmetic" partitioning as well. 

Examples are given for interval (7,8). (That is, L=7, R=8.) 
~ 

sub-interval# sub-interval example 

l. (L L + /( -.L_) (7, 7.001) 
' 1000 R -L R -L 

[7.001, 7.002) 2-20 for j=2 .. 20 [L +(j -1 ) 
1000 

, L + j 
1000 

) 
. . . 

[7.019, 7.02) 

21-117 forj=3 .. 99 [L+(j-1)~~~ ,L+j~o~~ [7.02, 7.03) 
. . . 
[7.98, 7.99) 

118-127 for j=991..1000 [L +(j-1) ~0~~. L+j ~O~~) [7.990, 7.991) 
... 

[7.999, 8) 

Table 4. Semi-progressive to+<><> partitioning of interval (L,Rl. 
Examples are given for interval (1E6, oo). 

~ub-mterval # sub-interval example ~uh-mtcrval parttttonm~ 
l. ~L. 2L) I E6, 2E6) semi-arithmetic 
~-99 or j=2 .. 99 UL, L+jL) 2E6, 3E6) semi-arithmetic" 

. . . 
99E6, lOOE6 "semi-arithmetic" 

l'00-108 or j=l..9 [ lOOjL, lOOL+ lOOjL) [ 1E8, 2E8) 'semi-arithmetic" 
. .. 
9E8, lOE8) 'semi-arithmetic" 

109-117 or j=l..9 [lOOOjL, 1000L+1000jL) 1E9, 2E9) semi-arithmetic" 
... 

9E9, 10E9) . semi-arithmetic" 
118-126 or j=L9 [lOOOOjL, lOOOOL+lOOOOjL 1El0, 2El0) 'semi-arithmetic" 

... 
9E10, lOElO . semi-arithmetic" 

127. ~~ * IE5 , min(R,L * lElO)) !Ell, 1El6) semi-progressive to +<><>" 
128. L* IElO, R) 1E16, oo) 'semi-progressive to+<><>" 

Table 5. Semi-progressive to -oo partitioning of interval '('t,~). 
Examples are given for interval ( -oo, -1 E6). 

~ub-mterval # sub-interval example 
1. L, R*lElU) -oo, -1El6) 

-lE16,-1Ell) 
-lOElO, -9El0 

~- max(L,R*IEIO), R*lE5) 
prll f'orj=9 .. 1 [lOOOO(j+l)R,IOOOOjR) 

-2El0, -lEIO) 
12-20 orj=9 .. 1 [LOOOR+lOOOjR, lOOOjR -10E9, -9E9) 

... 
[-2E9, -1E9) 

~1-29 or j=9 .. l [I OOR + 1 OOjR, l OOjR) -lOE8, -9E8) 
... 
-2E8, -1E8) 

po-128 or j=99 .. 1 [R+jR, jR) -lOOE6, -99E6 
... 

-2E6, -1E6) 
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~ub-mtcrval parttttolllng 
semi-progressive to -oo 

'semi-progressive to -oo" 

'semi -arithmetic" 

'semi-arithmetic" 
'semi-arithmetic" 

'semi-arithmetic" 
semi-aritlunetic" 

'semi-aritlunetic" 
'semi-arithmetic" 

'semi-aritlunetic" 



hvte 
nbr. 

1 
2 
3 

Byle 1 
ln!erval#: 38 
Continuation ·Bit: 1 

Byle 2 
1nlerval#: 13 
Continuation Bi1: 1 

Table 6. An example of encoding the number 35.01237 

1nterval interval IJinar)' for continuation 
niJr. (intrv#- 1) IJit 

_[35, 36) 38 0100101 1 
[35.012, 35.013) 13 0001100 1 

[35.01237, 35.01338) 56 0110111 0 

35 36 

35.012 35.01 3 

By1e 3 
1merve1#: 56 

35 .01 2 35 .01237 35.01238 

Cominuation Bil: 0 

v =35.01237 

l01rrval 
#56 

Figure 1. Encoding of the number 35.01237 by 3 bytes. 
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IJ.vte 
code 

01001011 
00011001 
01101110 


