
Edited by G. Goos and J. Hartmanis

367

W Litwin H.-J. Schek (Eds.)

Foundations of
Data Organization
and Algorithms
3rd International Conference, FODO 1989
Paris, France, June 1989
Proceedings

Springer-Verlag

This series reporis new developments in computer science research and
teaching - quickly, informally and at a high level. The type of material
considered for publication includes preliminary drafts of original papers
and monographs, technical reports of high quality and broad interest,
advanced level lectures, reports of meetings, provided they are of ex­
ceptional interest and focused on a single topic. The timeliness of a manu­
script is more important than its form which may be unfinished or tentative.
If possible, a subject index should be included. Publication of Lecture
Notes is intended as a service to the international computer science com­
munity, in that a commercial publisher, Springer-Verlag, can offer a wide
distribution of documents which would otherwise have a restricted read­
ership. Once published and copyrighted, they can be documented in the
scientific literature.

Manuscripts

Manuscripls should be no Jess lhan 100 and preferably no more lhan 500 pages in lenglh.
They are reproduced by a pholographic process and lherefore musl be lyped wilh exlreme care. Symbols
nol on lhe lypewriler shou ld be inserted by hand in indelible black ink. Correcl ions lo lhe lypescripl
should be made by pasling in lhe new lexl or painling oul errors wi lh while correcloon fl u1d. Aulhors receive
75 free copies and are free lo use lhe malerial in olher publicalions. The lypescripl is reduced slighlfy in
size during reproduclion; besl resufls will nol be oblained unless lhe lexl on any one pagP. is kepi wilhin
I he ovc•all limil of 18 x 26.5 em (7 x 10112 inches). O n requcsl, lhe publisher will supply spec•al paper wilh
I he lypmg area outlined.
Manuscnpls should be senl lo Prof. G . Goos. GMD Forschungsslelle an der Universilal Karlsruhe. Haid- und
NPu·Sir. 7. 7500 Karlsruhe 1, Ge11nany. Prof . J. Harlmanis. Cornell Universily. Dept. of Compuler Science. flhaca,
NY /USA 14853. or direclly lo Spnnger-Verlag Heidelberg.

Springer-Verlag, Heidelberger Platz 3, D-1000 Berlin 33
Springer-Verlag, TiergartenstraBe 17, 0 -6900 Heidelberg 1
Springer-Verlag, 175 Fifth Avenue, New York, NY 10010/USA
Springer-Verlag, 37-3, Hongo 3-chome, Bunkyo-ku, Tokyo 113, Japan

ISBN 3-540-51295-0
ISBN 0-387-5 1295-0

Ellicient Organization of Semantic Databases

Naphtali Rislze

School of Cqmputer ~cie~ce
Florida lntema!tonal Unryerstty --:- .

The State Universtty of Flonda at Mtamt
University Park, Miami, FL 33199

This paper argues that semantic data models can have potentially

more efficient implementations than the conventional data models. As a

step towards realization of this potential, the paper proposes an efficient

storage structure for semantic databases.

I. Introduction

Since (Abrial-74], many semantic data models have been studied in the Computer Sci­

ence literature. Although somewhat different in their terminology and their selection of

tools used to describe the semantics of the real world, they have several common princi-

ples:

The entities of the real world are represented in the database in a manner transparent

to the user. (Unlike that, in the relational model the entities are represented by the

values of keys of some tables; in the network model the entities are represented by

record occurrences.) Hereinafter, the user-transparent representation$ of real-world

entities are referred to as "abstract objects". The "concrete objects", or "printable

values", are numbers, character strings, etc . The concrete objects have conventional

representations on paper and in the computer.

The entities are classified into types, or categories, which need not be disjoint. Meta-

1nis r<search has been supponed in part by a grant from Florida High Technology

and Industry Council

, t 5

relations of inclusion are defined between the categories.

Logically-explicit relationships are specified among abstract objects (e .g ., "person pI

is the mother of person p2") and between abstract objects and concrete objects (e.g .,

"person pI has first name 'Jack"'). There are no direct relationships among the con­

crete objects. In most semantic models, only binary relations are allowed, since

higher order relations do not add any power of semantic expressiveness ((Bracchi-

76], [Rishe-87-RM], (Rishe-88-DDF]), but do decrease the flexibility of the database

and representability of partially-unknown information, and add complexity and

potential for logical redundancy ([Rishe-88-DDF)).

The advantages of the semantic models versus the Relational and older models with

respect to database design, database maintenance, data integrity, conciseness of

languages, and ease of DML programming are known [Rishe-88-DDF]. This paper advo­

cates the potential of semantic models to have efficient implementation.

Until now, several semantic data models have been implemented as interfaces to

database managements systems in other data models, e.g., the relational or the network

model (Tsur{Zaniolo-84]. (However, there are less typical, direct implementations, q r

[Lien-811. (Chan-821. (Benneworth-81].) The efficiency of an interface implementation

is limited to that of the conventional DBMS, and is normally much worse due to the

interface overhead. The direct implementations are also commonly believed to have to be

less time-efficient than the conventional systems, as a trade-off for the extra services that

the semantic databases should provide. However, this author contends that the semantic

models have potential for much more efficient implementation than the conventional data

models. 11tis is due to two reasons:

All the physical aspects of representation of information by data are user-transparent

in the semantic models. This creates greater potential for optimization: more things

may be changed for efficiency considerations, without affecting the user programs.

The Relational Model has more data independence than the older models. For exam ­

ple, the order of rows in the tables (relations) is transparent to the user. The semantic

models have even more user-transparency. For example, the representation of real ­

world entities by printable values is transparent to the user. One may recall that not

long ago the Relational Model was criticized as less efficient than the Network and

Hierarchical models. However, it is clear now that optimizing relational database

systems have potential of much higher efficiency than the network and hierarchical

systems due to the data independence of the relational model.

116

In the semantic models. the system knows more about the meaning of the user's data

and about the meaningful connections between such data. Titis knowledge can be

utilized to organize the data so that meaningful operations can be performed faster at

the expense of less meaningful or meaningless operations.

In this paper, I use the Semantic Binary Model (SBM) [Rishe-88-DD~], a descendant of

the model proposed in [Abrial-74] . This model does not have as rich an arsenal of tools

for semantic description as can be found in some other semantic models, e.g. the lFO

modei[Abiteboul/Hull-84], SDM [Hammer/McLeod-8 1] (implementation [Jagannathan­

!!H]), the Functional Model [Shipman-81] (implementation [Chan-82]), SEMBASE

[King-841, NIAM (jNijssen-81], [NijssenNanBek.kum-82], [Leung/Nijssen-87]), GEM

[TsufiZaniolo-841. TAXIS [Nixon-87], or the semi-semantic Entity-Relationship Model

!Chen-76[. Nevertheless, the SBM has a small set of sufficient simple tools by which all

the semantic descriptors of the other models can be constructed. This makes SBM easier

to use for the novice, easier to implement, and usable for delineation of the common pro­

perties of the semantic models. The results of this paper are practically independent of the

choice of a particular semantic model, and therefore they apply to almost all other seman­

tic models.

TI1e semantic binary model represents the information of an application's world as a

collection of elementary facts of two types: unary facts categorizing objects of the real

world and binary facts establishing relationships of various kinds between pairs of

objects. The graphical database schema and the integrity constraints detennine what sets

of facts are meaningful , i.e. can comprise an instantaneous database (the database as may

be seen at some instance of time.)

Formal semantics of the semantic binary model is defined in [Rishe-87-DS] using the

methodology proposed in [Rishe-86-DN]. The syntax. and informal semantics of the

model and its languages (data definition languages, 4-th generation data manipulation

languages, non-procedural languages for queries, updates, specification of constraints,

userviews, etc .) are given in [Rishe-R!!-DDF]. A non-procedural semantic database

language of maximal theoretically-possible expressive power is given in [Rishe-86-PS].

(In this language, one can specify every computable query, transaction, constraint, etc.)

'lltc following sct:tion proposes an cllicicnt storage structure for the Semantic Binary

Model.

1 17

2. STORAGE STRUCTURE

I

2.1. Abstracted level
J

Every abstract object in the database is represented by a unique integer identifier. The

categories and relations of the schema are also treated as abstract objects and hence have

unique identifiers associated with them. Information in the database can then be

represented using two kinds of facts, denoted xC and xRy, where x is the identifier associ­

ated with an abstract object, C and R are the identifiers associated with a category or a

relation respectively, andy is either an identifier corresponding to an abstract object or a

concrete object (a number or a text string). "xC" indicates that the object x belongs to the

category C. "xRy" indicates that the object x is associated with the object y by the reiation

R. Logically, the instantaneous database is a set of such facts.

2.2. Goals

2.2.1. Efficiency of retrieval requests

At the intennediate level of processing queries and program retrieval requests, the queries

are decomposed into atomic retrieval operations of the types listed bdow. The primary

goal of the physical file structure is to allow a very efficient perfonnance for each of the

atomic requests. Namely, each atomic retrieval request normally requires onlv J disk

access, provided the output information is small enough to fit into one block. ~hen the

output is large, the number of blocks retrieved is close to the minimal number of blocks
needed to store the output information.

I. aC

2. al~y

3. a'' '.

4. '!('

5. aR'!

Verify the fact aC. (For a given abstract object a and category c. ver­

ify whether the object a is in the category c.)

Verify the fact aRv.

For a given abstract object a, find all the categories to which a

belongs.

For a !(iven t·alt'~ory, find its ohj<Tts.

For a given abstract object a and relation R , retrieve all y such that

aRy. (The objects y may be abstract or concrete.)

r..

7.

!! .

118

'!l{a f-or a given abstract object a and relation R, retrieve all abstract

objects x such that xRa .

a'!+a'!'!+'!'!a Retrieve all the immediate infonnation about an abstract object. (I.e.,

for a given abstract object a, retrieve all of its direct and inverse rela­

tionships, that is, the relations R and objects y such that aRy or yRa;

and the categories to which a belongs.)

'!Rv

(Although this request can be decomposed into a series of requests of

the previous types, we wish to be able to treat it separately in order to

ensure that the whole request normally be performed in a single disk

access. This will also allow a single-access performance of requests

which require several, but not all, of the facts about an object, e.g. a

query to find the first name, the last name, and the age of a given per­

son.)

For a given relation (attribute) R and a given concrete object (value) v,

find all abstract objects x such that xRv.

9. '!!{(vI, v2] For a given relation (attribute) R and a given range of concrete objects

[••1, •·2], find all objects x and v such that xRv and v 1SvSv 2 . (The com­

parison "s" is appropriate to the type of v.)

2.2.2. Efliciency of update transactions

Efficient performance of update transactions is required, although more than one disk

access per transaction is allowed .

A transaction is a set of interrelated update requests to be performed as one unit.

Transact ions are generated hy programs and hy interactive users. A transaction can be

generated by a program fragment containing numerous update commands, interleaved

with other computations. However, until the last conunand within a transaction is com­

pleted, the updates are not physically perfonned, but rather accumulated by the DBMS.

Upon completion of the transaction the DBMS checks its integrity and then physically

perfonns the update. The partial effects of the transaction may be inconsistent. Every pro­

gram and user sees the database in a consistent state: until the transaction is committed,

its effects are invisible.

1\ t·ompktt·d tra11s:Ktion is composed of a set of facts to he deleted from the data­

h:t""· n s•· l ol ln<"t .~ to lw insr1kd ittto thr •lntnhtts1·. 1111<1 ndditiounl inlottntttion nerded to

11 9

verify that tltere is no interference between transactions of concurrent programs. If the

~enficatwn produces a positive result, tlten the new instantaneous database is: ((t11e-old -

mstantaneous-database) - (the-set-of-facts-to-be-deleted)) (tl f f u te-set-o - acts-tu-be-
inserted).

2.3. Solution: a file structure achieving the goals

The followi~g file structure supports the above requirements. The entire database is

stored Ill a smgle file. This file contains all the facts of the database (xC and xR•• J and also

additional information described below and called inverted facts. The file is m;intained as

a B-tre_e . The v~ation of the B-tree used here allows both sequential access according to

the lextcographtc order of the items comprising the facts and the inverted facts, as well as

random access by arbitrary prefixes of such facts and inverted facts .

The facts which are close to each other in the lexicographic order reside close in the

file. (Notice, that although technically the B-tree-key is the entire fact, it is of varying

length and on the average is only several bytes long, which is the average size of the

~ncoded fact xRy · The total size of the data stored in the index-level blocks of the B-tree

•s less than I% of the size of the database: e.g. each 10,000-byte data block may be

represented Ill the mdex level by its first fact --5 bytes_ and block address_ 3 bytes_

~hich w~uld amount to 0.08% of the data block. Thus, all the index blocks will fit even
mto relatively small main memory.)

1.

The file contains tlte original fact~ and additionally the following "inverted facts ":

In addition to xC. we store its inverse Cx . (C is the system-chosen identifier to

represent tl~e inverse information about the category c. For example, it can be

defined as C ~ 0-C .) (If a category C 1 is a subcategory of category c
2

, an object a

he longs to C 1 and, thus , also to C 2, then we chose to store hoth inverted fat·ts (·
- ' . r"

and C-za. When tl1e user requests the deletion of the fact aC
2

, it triggers automatic

deletion of tlte facts aC 1. C';a. and Ga in order to guarantee consistency .)

In addition to xRv, where v is a concrete object (a number, a string, or a value of

anotlter type), we store iivx . 111Us, tl1e range query '"/R[v l,v2j" is satisfied by all and

only the inverted facts which are positioned in the file between fi,.1 and J?,.
2
HighSullix .

(HighSuffix is a suffix which is lexicographically greater than any other possible

suffix.) Thus, the result will most prohahly appear in one physical hlock, if it can fit
into 1111!' hlock .

120

In addition to xRy , where both x and y are abstract objects, we store yRx. Thus, for

any abstract object x, all its relationships xRy, xRv . zRx. and xC can be found in one

place in the file: the regular and inverted facts which begin with the prefix x. (~e
infixes are: categories for xC. relations for xRy and xRv. and inverse relations xRz

from which we find z such that zRx.)

Notice that facts xRa ami xRv (x and a are abstract object~. ,. is a value) are inverted dis­

si milar! f . This is because we have different types of atomic retrieval requests concerning

abstract and concrete objects:

There are range queries with concrete objects, e.g. "Find all persons salaried between

$40 000 and $50,000". In such queries we know the identifier of the relation and par­

tial 'information about the value. Therefore we need to use the inverted facts with ii

as the prefix. There are no range queries with abstract objects.

On the other hand, we have multiple-fact retrievals about an abstract object, e.g.

"Find all the immediate information about a given person p" (while such a request

about a concrete object would be meaningless: "Find all the information about the

number 5" makes no sense, as oposed to a meaningful query "Find information about

item(s) whose price is $5".) llcre we know the object, but do not know the

idcntilicrs of the inverted relations. We need to cluster toget11er all the inverted rela­

tions of one object. ll1erefore, the inverted relation should appear in t11e infix.

111e sorted file is maintained in a structure similar to a B-tree. The "records" of the B-tree

are the regular and inverted facts. The records are of varying length. The B-tree-keys of

the "records" are normally the entire B-tree-records , i.e . facts, regular and inverted. (An

exception from this is when the record happens to be very long. The only potentially long

records represent facts xRv where v is a very long character string. We employ a special

handling algorithm for very long character strings.) Access to this B-tree does not

require knowledge of the entire key: any prefix will do. All the index blocks of the B-tree

can no rmally be held in cache.

At thl· mos t ph ys ical kvcl. the clata in the facts is compn·sscd to minimal space.

Also, si ncl' man y L·onsL'l'lltivL' laL·ts shall' a Jlll'lix (l' .!(. an ahst1act ohjL·ct identifier) the

prelix need not be repeated for each fact. In t11is way t11e facts arc wmpressed furt11er.

The duplication in the number of facts due to the inverses is 100%, since there is only one

inverse per each original fact (with a rare exception of the storage of redundant inverses

of supercategories as described in (I)). The B-tree causes additional 30% overhead. ('This

overhead is because in a B-tree the data blocks are only 75% full on the average, though

121

t11i s can be improved by periodical reorganization. The overhead for the index blocks of

the B-tree is no more than 1-2% since they contain only one short fact per every data

block.) The total space used for the database is therefore only about 160% more than the

amount of infonnation in the database, i.e. the space minimally required to store the data­

base in the most compre.~sed form with no regard to the efficiency of data retrieval or

update. Thus , the data structure described herein is more efficient in space and time than

the conventional approach with separate secondary index files for numerous lields.

No separate index tiles are needed in the file structure proposed In this paper. The

duplication of data (i .e. inverted relations) together with the primary sparse index which

is a part of the B-tree effectively eliminate the need for secondary (dense) indices. Furth­

ennore, it eliminates the horrendous 1/0 operat ions caused by sequentially retrieving

along a secondary index, since the sequence of infonnation represented by our primary

sparse index is also stored in consecutive physical locat ions.

2.4. Secondary aspects of the file structure

Efficiency (time and storage) and flexibility of t11e file structure are enhanced by compres­

sion and encoding of tlle facts and the items therein, including: abstract objecl~; character

strings of unlimited leng th; numhcrs with no global minimum, maximum or pre<.:is ion:

identifiers for categories, relations, and their inverses.

A special technique [R.ishe-88-CM] is employed to encode the numbers in the facts

of the file so that:

I. Bitwise lexicographic comparison of the encodings coincides with the meaningful

comparison of numbers . Thus, if n 1 is encoded by a byte string b,'bib~ and n2 is

encoded by a byte string h 1
1hfblbf, where hi >bf , then n 1>n 2• The standard represen­

tations of numbers do not allow bitwise comparison. (Consider, for example, the

representation of floating point numbers by mantissa and exponent.)

2. l11ere is no limit on arbitrarily large, arbitrarily small . or arbitrarily precise numbers.

We wish to lw ahk to comparl' and storl' in a unifor111 fm111at int<"gl'r s, ll'al nlllllhl'l s,

nurnhL'<S with Vl' l y nrany s igmlicant cllgits, aud 1111111hl'l s With (liSt a kw s1g111hl·aut

digits. We do not wish to set a limit on the range of the data at the time of the design

or creation of the file. For example, the number" truncated after first 1000 digits is a

very precise number (1000 significant digits) . The number 1010
" is large (I 0 billion

decimal digits, hut only one significant digit). We use t11e same format convention to

represent both numbers. (The length of t11e representation is approximately

122

proportional to the number of significant digits: the representation of the second

number is only a few bytes long, the representation of the first number is 425 bytes

long.)

3. Every number bears its own precision, i.e. the precision is not uniform throughout

the database. (This allows to treat integers, reals, values of different attributes with

different precisions, in a uniform way in one file in the database.)

4. The encodings are of varying length and are about maximally space efficient with

respect to their informational content. For example, the numbers 3,000,000 (with pre­

cision 500,000), integer 5 (precision 0.5), 0.000,000,000,000,000,7 (with precision

0.000,000,000,000,000,05) should require only a few bits each, whi le the number

12345678.90 should require many more bits. The number of bits in a number's

representation is approximately equal to the amount of information in that number.

5. No additional byte(s) are required to store the length of the encoded representation or

to delimit its end: the representation should contain enough information within itself

so that the decoder would know where the representation of one number ends and of

the next begins (within the same record in the file.) The absence of delimiters gives

an additional saving in space, and also facilitates handling of records.

6. The representation of numbers is one-to-one. For example, there may not be several

representation for 0, like 0.00, -0.0, OE23, OEO.

7. The encoding and decoding should be relatively efficient (linear in the length of the

data string), but they need not be as efficient as comparisons. The database system

can handle encoded numbers in all the internal operations, and translate them only on

input/output from/to tl1e external user.

3. Comparison to performance of implementations of the Relational Model

The system proposed herein is not less efficient, and normally more efficient, in both

time and storage space than the relational model's implementations with multiple dense

indices.

Let us consider a simple relational database composed of one relation T with attri­

hul<'s A
1
, A

2
, •. •• A •. l.cl us assume I hat for each j there are queries of the type

(Ql)

123

and that each of those queries is required to be performed in a reasonable time.

The Relational model is technically a subset of the Semantic Binary Model.

Specifically, the above relational schema is viewed in the Semantic Binary Model as a

category T and relations A; between the objects ofT and values.

To assure reasonable time performance in the Relational model for each of the above

queries, we need a dense index. on each of the attributes A,. There are 11 index files (or 11

indices combined in one file in some implementations.) The total size of the indices thus

exceeds the size of the table T itself. Therefore the space overhead in the Relational

model is greater than 100% and, thus, is greater than the space overhead in the proposed

semantic implementation. Also, in the semantic implementation there is only one physi ­

cal file, while there are many physical files in the relational implementations (and in some

implementations there are as many files as

mrmh~r _of _tahln x(1 +mmrba _of _arrri!Jutn yer _table). The management of multiple files i ~

not only a hassle but also contributes to additional space overhead due to allocation of

growth areas for each file .

With respect to the time required to solve the simple queries of type Ql, it is the

same in the best relational implementations and in the proposed semantic implementa­

tion. Namely, the time is

(!+number_ of _ I"Oiues _in_rlr. _output)xtime _to _retrin~ _ mre _block

(In the relational implementation, there will be one visit to the dense index on A
1

• and for

every Ai=c found there, there will be one random access to the main table. In the seman­

tic implementation, first the sub-query ?Aic will be solved, and then for every match ,

found the sub-query xA; ? will be evaluated.)

If in Q I we desired to print many attributes A, instead of just one, the same time

results would be obtained in both implementations. Notice that in the semantic impl e·

mentation proposed herein all the immediate information of an object, including all it ~

attributes, is clustered together.

Now let us consider updates. Insertion of a row into the relational table takes replace·

ment of one block in the main table and " blocks in the dense indices. In the semarlli<

implementation there is insertion of the primary facts about the new object ""

ohA ,,· , . . ,oi•A.•" (alllhc primary facls will app<·ar in corlligunus slorage in one- hln<·k

and 11 inverse l:u.: ts in possihly dillcrcnt 11 hhx.:ks. Thus, here, as well as in lhc olhcr lypc ..

of simple updates, the performance of the semantic implementation is not worse than th a

124

of the relational implementations supporting efficiency of queries.

The advantages in the semantic implementation's performance become even more

significant for more complex queries and updates. Though the detailed analysis of these

is beyond the space-limit of this paper, I would like to mention that, for example, queries

requiring natural join in the relational implementations would be more efficient in the

semantic implementation because there are direct explicit relationships between the

categories instead of relalionships represented implicitly by foreign key iQ the Relational

Model. The gap in performance between the faster semantic implementation and the

relational implementations increases even more when the relational keys are composed of

more than one attribute and when the relationships between the tables are many-to-many,

which requires an extra table to represent the many-to-many relationship in the relational

implementations. The gap increases with the number of joins in the query. In general, the

more complex the query is the greater is the advantage in the efficiency of the proposed

semantic implementation versus the relational implementations.

Of course, there are also major efficiency advantages in the semantic implementation

in support of semantic complexities of the real world, which are very awkwardly and

inefficiently implemented in the relational implementations. These complexities include

intersecting categories, sub-categories, categories with no keys, varying-length attributes,

missing ("null") values, multiple values, etc.

4. CONCLUSION

We have implemented this data structure in a prototype DBMS at the University of Cali­

fornia, Santa Barbara ([Vijaykumar-87], [Jain-87]). Our implementation allows single­

pmn·ssor mulli -ust·r parallel access tn the database. Optimistic concurrence control is

used.

Although the best results are obtained from our DBMS for the Semantic Binary

Model , it can also be used efficiently with all other major semantic and conventional

database models. This is due to the fact that the Relational, Network, and Hierarchical

data models are technically subsets of the Semantic Binary Model (as shown in [Rishe-

88-DDFI).

Currently, at Florida International University, we are working on a project, financed

by the state government, to extend our semantic DBMS implementation into a

massively-parallel very-high-throughput database machine [Rishe-88-AMPDM], to be

125

cor~posed of many (thousand[sj) processors, each equipped with a permanent storage

devrce and a large cache memory. Our analysis has shown that the proposed file structure

greatly increases the parallelism in the operations of the DBMS, which can be utilized by
large-scale parallel machines.

Acknowledgment

TI1e author gratefully acknowledges the advice of Narayanan v· rjaykumar, Li Qiang.
Nagarajan Prabhakaran, Doron Tal, and David Barton.

References

[Abiteboui/Hull-84) S. Abiteboul and R. Hull " lFO· A Formal s · D b · · emantJc ata ase
Model " , Proceedings of ACM SIGACT-SIGMOD Symposium on Principles of
Database Systems, 1984.

[Abrial-74) J.R. Abrial , "Data Semantics", in J.W. Klimbie and K.L. Koffeman (eds.).
Data Base Managemem, North Holland, 1974.

[Benneworth-81 I R.L. Benneworth, C. D. Bishop, C.J.M. Turnbull, W.O. Holman, F.M.

Monette. "The Implementation of GERM, an Entity-relationship Data Base

Management System"· Proceedings of the Seventh International Conference on

Very Large Data Bases. (Eds. C. Zaniolo & C. Delobel.) IEEE Computer Society
Press, 1981. (pp 465-4 77)

[Bracchi-76] Bracchi,G., Paolini, P., Pelagatti , G. "Binary Logical Associations in Data

Modelings:·· In G.M. Nijssen (ed.), Modeling in Data Base Management Systems.

IFIP Workrng Conference on Modeling in DBMS 's, 1976.

[Chan-1!2) Chan.A .. Danbcrg,Sy, Fox,S., Lin,W-T K Nori A ar11l l'r.cs DR " St
· ·· • ·· '- oragl'

and Access Structures to Support a Semantic Data Model" Proceedings of the Eighth

InternatiOnal Conference on Very Large Data Bases IEEE Co t s · p
1982

. · · mpu er ocrety ress.

[Chen-76] P. Chen. "The Entity-relationship Model: Toward a unified view of data ...
ACM Trans. Darahas Syst. I , I , 9-36.

(Hammer/McLcod-R II M. llarnrner and D. McLeod. " Database Description with SDM :

A Semantic Database Model", ACM Transactions on Database ~~vstems, Vol. 6,
No.3, pp. 351-386, 1981.

126

(Jagannathan-881 D. Jagarutathan, R.L. Guck, B.L. Fritchman, J.P. Thompson, D.M.

Tolbert. "SlM: A Database System Based on Semantic Model." Proceedings of

SIGMOD /memational Conference on Managemelll of Data. Chicago, June 1-3,

1988. ACM-Press, 1988.

]Jain-87 1 A. Jain. Design of a Binary Model Based DBMS and Conversion of Binary

Model Based Schema to an Equivalent Schema in Other Major Database Models.

M.S . Thesis, University of California, Santa Barbara, 1987.

]King-84] R.King. "SEMBASE: A Semantic DBMS." Proceedings of the First

Workshop on Expert Database Systems. Univ. of South Carolina, 1984. (pp. 151-

171)

]Leung/Nijssen-871 C.M.R. Leung and G.M. Nijssen. From a NIAM Conceptual Schema

into the Optimal SQL Relational Database Schema, Aust. Comput. J., Vol. 19, No.

2.

ILien-811 Y.E. Lien, J.E. Shopiro, S. Tsur " DSIS- A Database System with lnterre1a­

tional Semantics". Proceedings of the Seventh International Conference on Very

Large Data Bases. (Eds. C. Zaniolo & C. Delobel.) IEEE Computer Society Press,

1981. (pp 465-477)

]Nijssen-81 1 G.M. Nijssen "An architecture for knowledge base systems", Proc.

SPOT-2 conf., Stockholm, 1981.

(Nijssen/VanBekkum-821 G.M.A. Nijssen and J. Van Bekkum. "NIAM - An Informa­

tion Analysis Method ", in Information Systems Design Methodologies: A Compara­

tive Review, T.W. Olle, et al. (eds.), IFIP 1982, North-Holland.

(Nixon-87] B. Nixon, L. Chung, I. Lauzen, A. Borgida, and M. Stanley. Implementation

of a compiler for a semantic data model: Experience with Taxis.'' In Proceedings of

ACM SIGMOD Conf. (San Francisco), ACM, 1987.

[Rishe-86-DN 1 N. Risne. " On Denotational Semantics of Data Bases. " Mathematical

Foundations of Programming Semalllics. Proceedings of the International Confer­

ence on Mathematical Foundations of Programming Semantics, April 1985, Manhat­

tan, Kansas (ed. A. Melton), Lecture Notes in Computer Science, vol. 239.

Springer-Verlag, 1986. (pp 249-274.)

1 Ris he-86-PS 1 N. Rishe. " Postconditional Semantics of Data Base Queries." Lecture

Notes in Computer Science, vol. 239 (Mathematical Foundations of Programming

Semalltics, ed. A . Melton), pp 275-295. Springer-Verlag, 1986.

127

[Rishe-87-DS] N. Rishe, Database Semalllics. Technical report TRCS87-002, Computer

Science Department, University of California, Santa Barbara, 1987.

(Rishe-87-RM] N. Rishe. "On Representation of Medical Knowledge by a Binary Data

Model. " Joumal of Mathematical and Computer Modelling, vol. 8, 1987. (pp. 623-

626)

[Rishe-88-AMPDM] N. Rishe, D. Tal, and Q. Li . " Architecture for a Massively Parallel

Database Machine " Microprocessing and Microprogramming . The Euromicro

Journal. 1988, in press.

(Rishe-88-CM] N. Rishe. "A Compact Monotonic Universal Encoding of Numbers"

Proceedings of the 26th Annual Conference of Southeast Region of the Association

for Computing Machinery, 1988.

[Rishe-88-DDF] N. Rishe. Database Design Fundamemals: A Strucmred lntmduction

to Databases and a Stmctured Database Design Methodology. Prentice-Hall, Engle­

wood Cliffs, NJ, 1988.436 pages. ISBN 0-13-196791-6.

[Shipman-81 I D.W. Shipman. "The Functional Data Model and the Data Language

DAPLEX" , ACM Transactions on Database Systems, v. 6, no. I , 140-173, 1981.

[Tsur/Zaniolo-841 S. Tsur, C. Zaniolo. " An implementation of GEM- supporting a

semantic data model on a relational backend." In Proc. ACM SIGMOD /mi . Conf.

on Managemelll of Data, May 1984.

[Vijaykumar-871 N. Vijaykumar. Toward the Implementation of a DBMS based on the

Semantic Binary Model. M.S. Thesis, University of California, Santa Barbara, 1987.

