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This paper argues that semantic data models can have potentially 

more efficient implementations than the conventional data models. As a 

step towards realization of this potential, the paper proposes an efficient 

storage structure for semantic databases. 

I. Introduction 

Since (Abrial-74], many semantic data models have been studied in the Computer Sci­

ence literature. Although somewhat different in their terminology and their selection of 

tools used to describe the semantics of the real world, they have several common princi-

ples: 

The entities of the real world are represented in the database in a manner transparent 

to the user. (Unlike that, in the relational model the entities are represented by the 

values of keys of some tables; in the network model the entities are represented by 

record occurrences.) Hereinafter, the user-transparent representation$ of real-world 

entities are referred to as "abstract objects". The "concrete objects", or "printable 

values", are numbers, character strings, etc . The concrete objects have conventional 

representations on paper and in the computer. 

The entities are classified into types, or categories, which need not be disjoint. Meta-

1nis r<search has been supponed in part by a grant from Florida High Technology 

and Industry Council 
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relations of inclusion are defined between the categories. 

Logically-explicit relationships are specified among abstract objects (e .g ., "person pI 

is the mother of person p2") and between abstract objects and concrete objects (e.g ., 

"person pI has first name 'Jack"'). There are no direct relationships among the con­

crete objects. In most semantic models, only binary relations are allowed, since 

higher order relations do not add any power of semantic expressiveness ((Bracchi-

76], [Rishe-87-RM], (Rishe-88-DDF]), but do decrease the flexibility of the database 

and representability of partially-unknown information, and add complexity and 

potential for logical redundancy ([Rishe-88-DDF)). 

The advantages of the semantic models versus the Relational and older models with 

respect to database design, database maintenance, data integrity, conciseness of 

languages, and ease of DML programming are known [Rishe-88-DDF]. This paper advo­

cates the potential of semantic models to have efficient implementation. 

Until now, several semantic data models have been implemented as interfaces to 

database managements systems in other data models, e.g., the relational or the network 

model (Tsur{Zaniolo-84]. (However, there are less typical, direct implementations, q r 

[Lien-811. (Chan-821. (Benneworth-81 ].) The efficiency of an interface implementation 

is limited to that of the conventional DBMS, and is normally much worse due to the 

interface overhead. The direct implementations are also commonly believed to have to be 

less time-efficient than the conventional systems, as a trade-off for the extra services that 

the semantic databases should provide. However, this author contends that the semantic 

models have potential for much more efficient implementation than the conventional data 

models. 11tis is due to two reasons: 

All the physical aspects of representation of information by data are user-transparent 

in the semantic models. This creates greater potential for optimization: more things 

may be changed for efficiency considerations, without affecting the user programs. 

The Relational Model has more data independence than the older models. For exam ­

ple, the order of rows in the tables (relations) is transparent to the user. The semantic 

models have even more user-transparency. For example, the representation of real ­

world entities by printable values is transparent to the user. One may recall that not 

long ago the Relational Model was criticized as less efficient than the Network and 

Hierarchical models. However, it is clear now that optimizing relational database 

systems have potential of much higher efficiency than the network and hierarchical 

systems due to the data independence of the relational model. 
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In the semantic models. the system knows more about the meaning of the user's data 

and about the meaningful connections between such data. Titis knowledge can be 

utilized to organize the data so that meaningful operations can be performed faster at 

the expense of less meaningful or meaningless operations. 

In this paper, I use the Semantic Binary Model (SBM) [Rishe-88-DD~], a descendant of 

the model proposed in [Abrial-74] . This model does not have as rich an arsenal of tools 

for semantic description as can be found in some other semantic models, e.g. the lFO 

modei[Abiteboul/Hull-84], SDM [Hammer/McLeod-8 1] (implementation [Jagannathan­

!!H]), the Functional Model [Shipman-81] (implementation [Chan-82]), SEMBASE 

[King-841, NIAM (jNijssen-81 ], [NijssenNanBek.kum-82], [Leung/Nijssen-87]), GEM 

[TsufiZaniolo-841. TAXIS [Nixon-87], or the semi-semantic Entity-Relationship Model 

!Chen-76[. Nevertheless, the SBM has a small set of sufficient simple tools by which all 

the semantic descriptors of the other models can be constructed. This makes SBM easier 

to use for the novice, easier to implement, and usable for delineation of the common pro­

perties of the semantic models. The results of this paper are practically independent of the 

choice of a particular semantic model, and therefore they apply to almost all other seman­

tic models. 

TI1e semantic binary model represents the information of an application's world as a 

collection of elementary facts of two types: unary facts categorizing objects of the real 

world and binary facts establishing relationships of various kinds between pairs of 

objects. The graphical database schema and the integrity constraints detennine what sets 

of facts are meaningful , i.e. can comprise an instantaneous database (the database as may 

be seen at some instance of time.) 

Formal semantics of the semantic binary model is defined in [Rishe-87-DS] using the 

methodology proposed in [Rishe-86-DN]. The syntax. and informal semantics of the 

model and its languages (data definition languages, 4-th generation data manipulation 

languages, non-procedural languages for queries, updates, specification of constraints, 

userviews, etc .) are given in [Rishe-R!!-DDF]. A non-procedural semantic database 

language of maximal theoretically-possible expressive power is given in [Rishe-86-PS]. 

( In this language, one can specify every computable query, transaction, constraint, etc.) 

'lltc following sct:tion proposes an cllicicnt storage structure for the Semantic Binary 

Model. 
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2. STORAGE STRUCTURE 

I 

2.1. Abstracted level 
J 

Every abstract object in the database is represented by a unique integer identifier. The 

categories and relations of the schema are also treated as abstract objects and hence have 

unique identifiers associated with them. Information in the database can then be 

represented using two kinds of facts, denoted xC and xRy, where x is the identifier associ­

ated with an abstract object, C and R are the identifiers associated with a category or a 

relation respectively, andy is either an identifier corresponding to an abstract object or a 

concrete object (a number or a text string). "xC" indicates that the object x belongs to the 

category C. "xRy" indicates that the object x is associated with the object y by the reiation 

R. Logically, the instantaneous database is a set of such facts. 

2.2. Goals 

2.2.1. Efficiency of retrieval requests 

At the intennediate level of processing queries and program retrieval requests, the queries 

are decomposed into atomic retrieval operations of the types listed bdow. The primary 

goal of the physical file structure is to allow a very efficient perfonnance for each of the 

atomic requests. Namely, each atomic retrieval request normally requires onlv J disk 

access, provided the output information is small enough to fit into one block. ~hen the 

output is large, the number of blocks retrieved is close to the minimal number of blocks 
needed to store the output information. 

I. aC 

2. al~y 

3. a'' '. 

4. '!(' 

5. aR'! 

Verify the fact aC. (For a given abstract object a and category c. ver­

ify whether the object a is in the category c. ) 

Verify the fact aRv. 

For a given abstract object a, find all the categories to which a 

belongs. 

For a !(iven t·alt'~ory, find its ohj<Tts. 

For a given abstract object a and relation R , retrieve all y such that 

aRy. (The objects y may be abstract or concrete.) 
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'!l{a f-or a given abstract object a and relation R, retrieve all abstract 

objects x such that xRa . 

a'!+a'!'!+'!'!a Retrieve all the immediate infonnation about an abstract object. (I.e., 

for a given abstract object a, retrieve all of its direct and inverse rela­

tionships, that is, the relations R and objects y such that aRy or yRa; 

and the categories to which a belongs.) 

'!Rv 

(Although this request can be decomposed into a series of requests of 

the previous types, we wish to be able to treat it separately in order to 

ensure that the whole request normally be performed in a single disk 

access. This will also allow a single-access performance of requests 

which require several, but not all, of the facts about an object, e.g. a 

query to find the first name, the last name, and the age of a given per­

son.) 

For a given relation (attribute) R and a given concrete object (value) v, 

find all abstract objects x such that xRv. 

9. '!!{(vI, v2] For a given relation (attribute) R and a given range of concrete objects 

[••1, •·2], find all objects x and v such that xRv and v 1SvSv 2 . (The com­

parison "s" is appropriate to the type of v.) 

2.2.2. Efliciency of update transactions 

Efficient performance of update transactions is required, although more than one disk 

access per transaction is allowed . 

A transaction is a set of interrelated update requests to be performed as one unit. 

Transact ions are generated hy programs and hy interactive users. A transaction can be 

generated by a program fragment containing numerous update commands, interleaved 

with other computations. However, until the last conunand within a transaction is com­

pleted, the updates are not physically perfonned, but rather accumulated by the DBMS. 

Upon completion of the transaction the DBMS checks its integrity and then physically 

perfonns the update. The partial effects of the transaction may be inconsistent. Every pro­

gram and user sees the database in a consistent state: until the transaction is committed, 

its effects are invisible. 

1\ t·ompktt·d tra11s:Ktion is composed of a set of facts to he deleted from the data­

h:t""· n s•· l ol ln<"t .~ to lw insr1kd ittto thr •lntnhtts1·. 1111<1 ndditiounl inlottntttion nerded to 
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verify that tltere is no interference between transactions of concurrent programs. If the 

~enficatwn produces a positive result, tlten the new instantaneous database is: ((t11e-old -

mstantaneous-database) - (the-set-of-facts-to-be-deleted)) (tl f f u te-set-o - acts-tu-be-
inserted). 

2.3. Solution: a file structure achieving the goals 

The followi~g file structure supports the above requirements. The entire database is 

stored Ill a smgle file. This file contains all the facts of the database (xC and xR•• J and also 

additional information described below and called inverted facts. The file is m;intained as 

a B-tre_e . The v~ation of the B-tree used here allows both sequential access according to 

the lextcographtc order of the items comprising the facts and the inverted facts, as well as 

random access by arbitrary prefixes of such facts and inverted facts . 

The facts which are close to each other in the lexicographic order reside close in the 

file. (Notice, that although technically the B-tree-key is the entire fact, it is of varying 

length and on the average is only several bytes long, which is the average size of the 

~ncoded fact xRy · The total size of the data stored in the index-level blocks of the B-tree 

•s less than I% of the size of the database: e.g. each 10,000-byte data block may be 

represented Ill the mdex level by its first fact --5 bytes_ and block address_ 3 bytes_ 

~hich w~uld amount to 0.08% of the data block. Thus, all the index blocks will fit even 
mto relatively small main memory.) 

1. 

The file contains tlte original fact~ and additionally the following "inverted facts ": 

In addition to xC. we store its inverse Cx . (C is the system-chosen identifier to 

represent tl~e inverse information about the category c. For example, it can be 

defined as C ~ 0-C .) (If a category C 1 is a subcategory of category c 
2

, an object a 

he longs to C 1 and, thus , also to C 2, then we chose to store hoth inverted fat·ts ( · 
- ' . r" 

and C-za. When tl1e user requests the deletion of the fact aC
2

, it triggers automatic 

deletion of tlte facts aC 1. C';a. and Ga in order to guarantee consistency .) 

In addition to xRv, where v is a concrete object (a number, a string, or a value of 

anotlter type), we store iivx . 111Us, tl1e range query '"/R[ v l,v2j" is satisfied by all and 

only the inverted facts which are positioned in the file between fi,.1 and J?,.
2
HighSullix . 

(HighSuffix is a suffix which is lexicographically greater than any other possible 

suffix.) Thus, the result will most prohahly appear in one physical hlock, if it can fit 
into 1111!' hlock . 
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In addition to xRy , where both x and y are abstract objects, we store yRx. Thus, for 

any abstract object x, all its relationships xRy, xRv . zRx. and xC can be found in one 

place in the file: the regular and inverted facts which begin with the prefix x. (~e 
infixes are: categories for xC. relations for xRy and xRv. and inverse relations xRz 

from which we find z such that zRx. ) 

Notice that facts xRa ami xRv (x and a are abstract object~. ,. is a value) are inverted dis­

si milar! f . This is because we have different types of atomic retrieval requests concerning 

abstract and concrete objects: 

There are range queries with concrete objects, e.g. "Find all persons salaried between 

$40 000 and $50,000". In such queries we know the identifier of the relation and par­

tial 'information about the value. Therefore we need to use the inverted facts with ii 

as the prefix. There are no range queries with abstract objects. 

On the other hand, we have multiple-fact retrievals about an abstract object, e.g. 

"Find all the immediate information about a given person p" (while such a request 

about a concrete object would be meaningless: "Find all the information about the 

number 5" makes no sense, as oposed to a meaningful query "Find information about 

item(s) whose price is $5".) llcre we know the object, but do not know the 

idcntilicrs of the inverted relations. We need to cluster toget11er all the inverted rela­

tions of one object. ll1erefore, the inverted relation should appear in t11e infix. 

111e sorted file is maintained in a structure similar to a B-tree. The "records" of the B-tree 

are the regular and inverted facts. The records are of varying length. The B-tree-keys of 

the "records" are normally the entire B-tree-records , i.e . facts, regular and inverted. (An 

exception from this is when the record happens to be very long. The only potentially long 

records represent facts xRv where v is a very long character string. We employ a special 

handling algorithm for very long character strings.) Access to this B-tree does not 

require knowledge of the entire key: any prefix will do. All the index blocks of the B-tree 

can no rmally be held in cache. 

At thl· mos t ph ys ical kvcl. the clata in the facts is compn·sscd to minimal space. 

Also, si ncl' man y L·onsL'l'lltivL' laL·ts shall' a Jlll'lix (l' .!(. an ahst1act ohjL·ct identifier) the 

prelix need not be repeated for each fact. In t11is way t11e facts arc wmpressed furt11er. 

The duplication in the number of facts due to the inverses is 100%, since there is only one 

inverse per each original fact (with a rare exception of the storage of redundant inverses 

of supercategories as described in (I)). The B-tree causes additional 30% overhead. ('This 

overhead is because in a B-tree the data blocks are only 75% full on the average, though 
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t11i s can be improved by periodical reorganization. The overhead for the index blocks of 

the B-tree is no more than 1-2% since they contain only one short fact per every data 

block.) The total space used for the database is therefore only about 160% more than the 

amount of infonnation in the database, i.e. the space minimally required to store the data­

base in the most compre.~sed form with no regard to the efficiency of data retrieval or 

update. Thus , the data structure described herein is more efficient in space and time than 

the conventional approach with separate secondary index files for numerous lields. 

No separate index tiles are needed in the file structure proposed In this paper. The 

duplication of data (i .e. inverted relations) together with the primary sparse index which 

is a part of the B-tree effectively eliminate the need for secondary (dense) indices. Furth­

ennore, it eliminates the horrendous 1/0 operat ions caused by sequentially retrieving 

along a secondary index, since the sequence of infonnation represented by our primary 

sparse index is also stored in consecutive physical locat ions. 

2.4. Secondary aspects of the file structure 

Efficiency (time and storage) and flexibility of t11e file structure are enhanced by compres­

sion and encoding of tlle facts and the items therein, including: abstract objecl~; character 

strings of unlimited leng th; numhcrs with no global minimum, maximum or pre<.:is ion: 

identifiers for categories, relations, and their inverses. 

A special technique [R.ishe-88-CM] is employed to encode the numbers in the facts 

of the file so that: 

I. Bitwise lexicographic comparison of the encodings coincides with the meaningful 

comparison of numbers . Thus, if n 1 is encoded by a byte string b,'bib~ and n2 is 

encoded by a byte string h 1
1hfblbf, where hi >bf , then n 1>n 2• The standard represen­

tations of numbers do not allow bitwise comparison. (Consider, for example, the 

representation of floating point numbers by mantissa and exponent.) 

2. l11ere is no limit on arbitrarily large, arbitrarily small . or arbitrarily precise numbers. 

We wish to lw ahk to comparl' and storl' in a unifor111 fm111at int<"gl'r s, ll'al nlllllhl'l s, 

nurnhL'<S with Vl' l y nrany s igmlicant cllgits, aud 1111111hl'l s With (liSt a kw s1g111hl·aut 

digits. We do not wish to set a limit on the range of the data at the time of the design 

or creation of the file. For example, the number" truncated after first 1000 digits is a 

very precise number ( 1000 significant digits) . The number 1010
" is large (I 0 billion 

decimal digits, hut only one significant digit). We use t11e same format convention to 

represent both numbers. (The length of t11e representation is approximately 
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proportional to the number of significant digits: the representation of the second 

number is only a few bytes long, the representation of the first number is 425 bytes 

long.) 

3. Every number bears its own precision, i.e. the precision is not uniform throughout 

the database. (This allows to treat integers, reals, values of different attributes with 

different precisions, in a uniform way in one file in the database.) 

4. The encodings are of varying length and are about maximally space efficient with 

respect to their informational content. For example, the numbers 3,000,000 (with pre­

cision 500,000), integer 5 (precision 0.5), 0.000,000,000,000,000,7 (with precision 

0.000,000,000,000,000,05) should require only a few bits each, whi le the number 

12345678.90 should require many more bits. The number of bits in a number's 

representation is approximately equal to the amount of information in that number. 

5. No additional byte(s) are required to store the length of the encoded representation or 

to delimit its end: the representation should contain enough information within itself 

so that the decoder would know where the representation of one number ends and of 

the next begins (within the same record in the file.) The absence of delimiters gives 

an additional saving in space, and also facilitates handling of records. 

6. The representation of numbers is one-to-one. For example, there may not be several 

representation for 0, like 0.00, -0.0, OE23, OEO. 

7. The encoding and decoding should be relatively efficient (linear in the length of the 

data string), but they need not be as efficient as comparisons. The database system 

can handle encoded numbers in all the internal operations, and translate them only on 

input/output from/to tl1e external user. 

3. Comparison to performance of implementations of the Relational Model 

The system proposed herein is not less efficient, and normally more efficient, in both 

time and storage space than the relational model's implementations with multiple dense 

indices. 

Let us consider a simple relational database composed of one relation T with attri­

hul<'s A 
1
, A 

2
, •. •• A •. l.cl us assume I hat for each j there are queries of the type 

(Ql) 
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and that each of those queries is required to be performed in a reasonable time. 

The Relational model is technically a subset of the Semantic Binary Model. 

Specifically, the above relational schema is viewed in the Semantic Binary Model as a 

category T and relations A; between the objects ofT and values. 

To assure reasonable time performance in the Relational model for each of the above 

queries, we need a dense index. on each of the attributes A,. There are 11 index files (or 11 

indices combined in one file in some implementations.) The total size of the indices thus 

exceeds the size of the table T itself. Therefore the space overhead in the Relational 

model is greater than 100% and, thus, is greater than the space overhead in the proposed 

semantic implementation. Also, in the semantic implementation there is only one physi ­

cal file, while there are many physical files in the relational implementations (and in some 

implementations there are as many files as 

mrmh~r _of _tahln x( 1 +mmrba _of _arrri!Jutn yer _table ). The management of multiple files i ~ 

not only a hassle but also contributes to additional space overhead due to allocation of 

growth areas for each file . 

With respect to the time required to solve the simple queries of type Ql, it is the 

same in the best relational implementations and in the proposed semantic implementa­

tion. Namely, the time is 

(!+number_ of _ I"Oiues _in_rlr. _output )xtime _to _retrin~ _ mre _block 

(In the relational implementation, there will be one visit to the dense index on A 
1

• and for 

every Ai=c found there, there will be one random access to the main table. In the seman­

tic implementation, first the sub-query ?Aic will be solved, and then for every match , 

found the sub-query xA; ? will be evaluated.) 

If in Q I we desired to print many attributes A, instead of just one, the same time 

results would be obtained in both implementations. Notice that in the semantic impl e· 

mentation proposed herein all the immediate information of an object, including all it ~ 

attributes, is clustered together. 

Now let us consider updates. Insertion of a row into the relational table takes replace· 

ment of one block in the main table and " blocks in the dense indices. In the semarlli< 

implementation there is insertion of the primary facts about the new object "" 

ohA ,,· , . . ,oi•A.•" (alllhc primary facls will app<·ar in corlligunus slorage in one- hln<·k 

and 11 inverse l:u.: ts in possihly dillcrcnt 11 hhx.:ks. Thus, here, as well as in lhc olhcr lypc .. 

of simple updates, the performance of the semantic implementation is not worse than th a 
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of the relational implementations supporting efficiency of queries. 

The advantages in the semantic implementation's performance become even more 

significant for more complex queries and updates. Though the detailed analysis of these 

is beyond the space-limit of this paper, I would like to mention that, for example, queries 

requiring natural join in the relational implementations would be more efficient in the 

semantic implementation because there are direct explicit relationships between the 

categories instead of relalionships represented implicitly by foreign key iQ the Relational 

Model. The gap in performance between the faster semantic implementation and the 

relational implementations increases even more when the relational keys are composed of 

more than one attribute and when the relationships between the tables are many-to-many, 

which requires an extra table to represent the many-to-many relationship in the relational 

implementations. The gap increases with the number of joins in the query. In general, the 

more complex the query is the greater is the advantage in the efficiency of the proposed 

semantic implementation versus the relational implementations. 

Of course, there are also major efficiency advantages in the semantic implementation 

in support of semantic complexities of the real world, which are very awkwardly and 

inefficiently implemented in the relational implementations. These complexities include 

intersecting categories, sub-categories, categories with no keys, varying-length attributes, 

missing ("null") values, multiple values, etc. 

4. CONCLUSION 

We have implemented this data structure in a prototype DBMS at the University of Cali­

fornia, Santa Barbara ([Vijaykumar-87], [Jain-87]). Our implementation allows single­

pmn·ssor mulli -ust·r parallel access tn the database. Optimistic concurrence control is 

used. 

Although the best results are obtained from our DBMS for the Semantic Binary 

Model , it can also be used efficiently with all other major semantic and conventional 

database models. This is due to the fact that the Relational, Network, and Hierarchical 

data models are technically subsets of the Semantic Binary Model (as shown in [Rishe-

88-DDFI). 

Currently, at Florida International University, we are working on a project, financed 

by the state government, to extend our semantic DBMS implementation into a 

massively-parallel very-high-throughput database machine [Rishe-88-AMPDM], to be 
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cor~posed of many (thousand[sj) processors, each equipped with a permanent storage 

devrce and a large cache memory. Our analysis has shown that the proposed file structure 

greatly increases the parallelism in the operations of the DBMS, which can be utilized by 
large-scale parallel machines. 
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