
ISMM

MINI AND
MICROCOMPUTERS
From Micros to Supercomputers

ACTA PRESS
ANAHEIM * CALGARY * ZURICH

MIMI '~

Miami Beach, Florida, U.S.A.
December 14-16, 1988

Editor : M.H. Hamza

A Publication of
The International Society for
Mini and Microcompters - ISMM

ISBN 0-88986-1 07-2

Transaction-management System in a Fourth Generation Language for
Semantic Databases

Naphtali Risht

School of Computer Science
Florida International University -

The State University of Florida at Miami
University Park, Miami, FL 33199

This paper presents a fourth generation language for semantic databases. This
language is an extension of Pascal. Our implementation of the language includes an
interesting transaction-management mechanism.

1. Introduction
The semantic binary database model (IRishe-88-DDF). IRishe-87-
RM]) represents the information of an application 's world as a
collection of elementary facts of two types: unary facts categorit­
ing objects of the real world and binary facts establishing rela­
tionships of various kinds between pairs of objects. The graphi­
cal database schema and the integrity constraints determine what
sets of facts are meaningful, i.e. can comprise an instantaneous
database (the database as may be seen at some instance of
lime.)

The essence of the fourth-generation data manipulation
languages is the stru ctured access to the database. (T his is con­
trasted with earlier data manipulation languages, which provide
no automatic loops to process bulks of information in the data­
base, but only single commands to access one item at a time. A!!
a result , the programmer was left with the responsibility of
"navigating' between different data items in the data'!ia:se.)

This paper presents a fourth generation language for seman­
tic databases. This language is an extension of Pascal. Our
implementation of the language includes an interesting
transaction-management mechanism.

A transaction is a set of interrelated update requests to be
performed as one unit. Transactions are generated by programs
and by interactive users. A transaction can be generated by a
program fragment containing numerous update commands, inter­
leaved with other computations. However, until the last com­
mand within a transaction is completed, the updates are not phy­
sically performed, but rather accumulated by the DBMS. Upon
completion of the transaction the DBMS checks its integrity and
then physically performs the update. The partial effects of the
transaction may be inconsistent. Every program and user sees
the database in a consistent state: until the transaction is com­
mitted, its effects are invisible.

2. The Semantic Binary Model

This section describes the Semantic Binary Model.

The semantic binary database model represents information
of a.n application 's world as a collection of elementary facts of
two types: unary facts categorizing objects of the real world and
binary facts establishing relationships of various kinds between
pairs of objects.

The purpose of the model is to provide a means of simple
natural data-independent flexible and non-redundant specification
of information and its semantics.

A variant of the semantic binary model was first introduced
in /Abrial-74) . Since then several modifications were published ,
inc uding IBracchi-76] and !Rishe-87-RM). The concepts of the
semantic binary model are close to those of the Functional Data
Model (FDM) IShipman-81), Semantic Data Model (SDM)
!Hammer-81), and IFO (Abiteboul-84). A comprehensive descrip­
tion of the Semantic Bmary Model appears in IRishe-88-DDFJ.
Formal mathematical semantics of the semantic binary model IS

defined in IRishe-87-DS] using the methodology proposed in
!Rishe-86-DN]. Design issues of semantic binary schemas are stu­
died in !Rishe-87-RM] and /Rishe-88-DDF] . User languages for
the Semantic Binary Mode are studied in !Rishe-8&-PS] and

1ftisbe-88-DDF].

One of the major advantages of the relational database
model , as compared to the network and hierarchic models, was
the independence of the logical data from the physical aspects of
data storage. The semantic binary model went one step forward
towards the independence of the actual in/ormation from its logi­
cal data representation . Among the semantic advantages of the
semantic binary model relative to the relational model are the
following:

All the information is composed of the elementary facts
describing the real world , so no normalization of a semantic
binary schema is needed;

No category (type) of objects needs to have a key. A key is
collection of attributes which are never null and which
universally identify the objects of the category. (Instead of
having a fixed inflexible key, in the semantic model different
objects of the category may be identifiable by different attri­
'butes or by different relationships with objects of perhafs
other categories. In the real world, keys almost never exist.

Objects are not logically replaced by their keys, when these
exist. So a value of a key is changeable with no influence on
the other information about this object in the database.

An object may belong to several categories simultaneously.

Properties which are common to several categories, can be
specified just once.

It is conceptually simple and schemas ca.n be easily explained
to owners of the information to be stored in the database,
who may have no computer knowledge but must approve
the conceptual schema.

A definition of the model 's concepts follows.

* This work has been supported in part by a grant from the Florida High
Technology and Industry Council.

136-103 92

e
.!
,f
f

_ any item in the real world. It can be either a concrete
object or an abstract object as follows.

or Concrete Object - a printable object, such as a
number, a character string, or a date. A _value can be
roughly considered as representing itself in the computer, or
in any formal system.

Object - a non-value object in the real world. An
abstract object can be, for example, a tangible item {such as
a person, a table, a country), or an event (such as an offering
of a course by an instructor), or an idea (such as a course).

, Abstract objects cannot be represented directly in the com-
puter.
This term is also used for a uSI!T-transparent representation
of such an object in the Semantic Binary Model.

.,.~•-•nrv - any concept of the application's real world which is
a unary property of objects. At every moment in time such a
concept is descriptive of a set of objects which possess the
property at that time.

Unlike the mathematical notion of a set, the category itself
does not depend on its objects: the objects come and go
while the meaning of the category is preserved in time.
Conversely, a set dots depend on its members: the meaning
of a set changes with the ebb and flow of its members.

Categories are usually named. by singular nouns. An objeet
· may belong to several categories at the same time.

categories - Two categories are disjoint if no object
may simultaneously be a member of both categories. This
means that at every point in time the sets of objects
corresponding to two disjoint categories have empty intersec­
tion.

Subcategory - A category is a subcattgorv of another category
if at every point in time every object of the former category
should also belong to the latter. This means that at every
point in time the set of ob1e&! corresponding to a category
contains the set of objects correspon~rrg tl5 ll'ny subcategory
of the category.

Abstract category - a category whose objects are always
abstract.

Concrete category , category of valuee - a category whose
objects are always concrete. Many concrete categories, such
as NUMBER, STRING, and BOOLEAN, have constant--in­
time sets of objects. Thus, those concrete categories are
actually indistinguishable from the corresponding sets of all
numbers, all strings, and the Boolean values ({TRUE,
FALSE}).

2.2. Binary Relatione

Binary Relation - any concept of the application 's real world
which is a binary property of objects, that is, the meaning of
a relationship or connection between two objects. At every
moment in time, the re lation is descriptive of a set of pairs
of objects which are related at that time. The meaning of
the relation remains unaltered in time, while the sets of pairs
of objects corresponding to the relation may differ from t ime
to time; when some pairs of objects cease or begin to be con­
nected by the relation.

Notation: • x R v• means that object :z: is related by the relation
R to object v.

Types of binary relations:

A binary relation R is many-to-one (m :l, functional) if
at no point in time xRv and xRz where v of- z.

A binary relation R is one-to-many (l!m) if at no point in
time xRv and zRv where x of- z.

Relations which are of neither of the above types are called
proper many-to-many (m:m) .

A binary relation which is both m:1 and 1:m (always) is
called one-to-one (1:1).

A binary relation is proper m :1 if it is m :l and not 1:1.

A binary relation is proper 1:m if it is l:m and not 1:1.

Domain and range of a binary relation:

93

A category C is the domain of R if it satisfies the following
two conditions:

a. whenever xRv then x belon~s to C {at every point in
time for every pair of objects); and

b. no proper subcategory of C satisfies (a).

A category C is the range of R if:

a.

b.

whenever xRv then !I belon~s to C (at every point in
time for every pair of objects); aad

no proper subcategory of C satisfies (a).

--

a. an OUj~t.:l. t Ill !,Jlt: C.::iil..t::~UIJ H. 1 d.UU

b. binary relationships tR 1z 1, • , eR.x.

3. Fourth-generation Extension of Paecal
The following oyntactic notation is used herein.

• Language keywords are set in boldface.

• In syntax description templates, items to be substituted
are set in /ower- case italic3.

The following is a fourth-generation extension of Pascal for struc­
tured access to d11tabases.

I. Global parameters - among the global parameters of a
program, such as INPUT and OUTPUT, there are the
names of the database and of the userview. The database
will be accessed through the userview during the execution
of the program. The userview will also be accessed during
the compila tion of the program, in order to check for the
correct usage -cf the names of the categories and relations
and t o correctly interpret the program's commands.

2. Data type ABSTRA CT- a new ba3ic data type, in addi­
tion to INTEGER, BOOL, REAL, CHAR, enumerated types,
and STRING. (The type STRING is not defined in the
standard Pascal, but is used, sometimes with a different
name, in most practical versions of Pascal.)

The variables of type ABSTRACT will contain abstract
objects. (Practically, these variables will contain logical
references to abstract objects. The referencing, however, is
transparent to the user .) The variables of this type are
called abstract variables.

The abstract variables cannot be printed. They cannot
receive a value through a read instruction. There are no
constants of type ABSTRACT.

Assignment to the abstract variables can be done from other
abstract variables, or from the data base, or by the instruc­
tion create as discussed later .

In expressions, the only meaningful operation on arguments
m type ABSTRACT is the test for their equality. The
equality test, 1 = •, produces TRUE if the two arguments are
one and the same object in the database.

3. Extended expressions. There are
can be used in Pascal exprP.s~ions:

(i) (expres8ion-of-type-ABSTRA CT
from-the-uaerview)

new operators which

is a category·

This Boolean expression gives TRUE when the left-side
sub-expression is evaluated into an object which is a
member of the category on the right side. The
membership test is done according to the information in
the instantaneous database at the run time of the pro-
gram.

(ii) (expre&8ion relation-from-the-uHrview expre8sion)

This Boolean expression gives TRUE when the two
sub-expressions yield objects participating in the rela­
tion in the instantaneous database. The types of the
sub-express1ons must be consistent with the relation.
For example, if the relation is between abstract objects
and real numbers, then the type of the left sub­
expression must be ABSTRACT and the type of the
right sub-expression must be REAL.)

Instead of one of the sub-expressions, the keyword null
may appear. Then the Boolean expression would give
TRUE if the object yielded by the remaining sub­
exjllfession is related by the relation to no object in the
instantaneous database.

(iii) (expreuion. functional -relation-from-the -userview)

Reminder: a functional relation is an m:l relation . It
relates every object of its domain to at. most one object
of its range.

Tee expression x.R produces the object related by the
relation R to x , that is , the result is the object v from
the instantaneous database such that (x R y) is TRUE.

lf no such object 11 exists, then a null object results,
which can cause a subsequent execution-time error .

4. Atomic databaJie manipufations .

(i)

(ii)

create new abs tract-variable in abstracl -caiegory-fr • ., .
the -userview
• .-\ new abstract object is created in the database:

• this object is placed into the specified category (the
database is updated to reflect this fact);

• Ja reference toJ this object is M!lgned to the
specified variable.

categorise: expression-of-type-ABSTRA CT is a
categorv

The expression is evaluated to produce an ex•sting
instantaneous data base object, and this object is
inserted into the specified category (in addition to other
cate,ories the object may be a member of) .

{iii) decategorize: expres8ion-of-tvpe-A BSTRACT is no
lton,er a categorv

'itte object is removed from the category .

The object is also automatically removed from the sub­
categories of the category. (Otherwise the database
would become inconsistent.)

The object is also automatically removed from the rela­
tions whose domains or ranges are categories of which
the object is no longer a member. (This automatic
remova.l saves programming effort . This removal is also
necessary to maintain the consistency of the database.)

If after the decategorization the object would not
belong to any category in the database, then the object
is removed from the database.

(iv) relate: expression relation expression

A new fact is added to the database: a relationship
between the objects yielded by the two expressions.

(v) unrelate: expression relation expression

This has the reverse effect of the instruction relate.

(vi) expression.relation := expression

The assignment statement

x.R := y

94

means :

• For every z, unrelate x R z;

• then relate x R V·

5. The for statement.

for variable in categorv
where boolean-expre8sion do statement

The •tatement after do , which may be a compound state­
ment , will be performed once for every object which belongs
to the category and satisfies the boolean-expre8sion.

The for statement is functionally equivalent to the following
algorithm .

Let VEC of length L be the vector of all the categorv's
objects in the instantaneous database. The vector is
arranged in an arbitrary order, transparent to the user.
Then the equivalent algorithm for the for statement is:

A bbrev•·ation:

for i := 1 to L do
begin
variable := VEC Ji J;
if boolean-expres•ion
then 8tatement
end

In the for statement, the "in c.ategorv" part may be omit­
ted . In this case, by default the category is assumed to be a
special category OBJECT which is regarded as the union of
all the abstract categories in the database. Thus, the body
of the loop will be executed for every abstract object (in the
instantaneous database) satisfying the condition of the loop.
Practically , the condition may explicitly or implicitly restrict
the loop to one ·category.

6. The transaction statement..

transaction rnmp~""tl- .•tatrm enl
The effects of 'transaction s• are:

(i) While S is being executed , ihe program containing the
transaction statement and all the other concurrent pro­
grams see the database in its instantaneous state just
before S.

(ii) All the updates are logically performed instantly when
S is completed , provided the new instantaneous data­
base would not violate the integrity constraints and no
error-condition is raised.

Note: .
Among the advantages of this statement is the follow­
ing:

At an intermediate state, the instantaneous information
could be incomplete, which could bring failure of an
integrity constraint and incorrect comprehension of the
data base by concurrent program , -

A database update statement which is not embedded in a
transaction statement is regarded as one transaction.

7. Error exit.

When the system fails to perform a transaction due to an
error , such as a violation of an integrity constraint, it
notifies the program by invoking

procedure Transaction-error-handler (error-description:
String)

The body of this procedure can be specified in the program
by the user . This allows the programmer to decide what to
do in case of error. If the procedure is not defined by the
user in the program, then, by default, the system will insert
the following specification of the body of this procedure:

procedure Transaction-error-handler (error-description:
String);

begin

writeln ('The program was terminated by the
default transaction error handler when a tran­
saction failed with the following error condi­
tion: ' , error-description);

3

4

th
[J
P!
us

in1
se1
hij
co.
pe

Ac

Tb
Vij
Da

Re

IAl

n
it

atop

end

4. Principles of implementation
Every real-world object in the database is user-transparently
represented by a unique integer identifier. The categories (types}
and relations of the schema are also treated as objects and hence
have unique identifiers associated with them. Information in the
database can then be represented using two kinds of tuples,
denoted xC and xR!I, where x is the identifier associated with a
object, C and R are the identifiers associated with a category or
a relation respectively, and y is either an identifier corresponding
to a real-world object or a mathematical object (a number or a
text string). ':z:C • indicates that the object x belongs to the
category C. • xRy 1 indicates that the object x is associated with
the object v by t he relation R. Logically, the instantaneous
database is a set of such tuples.

A completed transaction is composed of a set of facts to be
deleted from the dat.ahase, a set of facts to be inserted into the
database, and additional information needed to verify that there
is no interference between transactions of concurrent programs.
If the verification produces a positive result, then the new instan­
taneous database is: ((the-old-instantaneous-database) - (the­
set-of-facts-to-be-deleted)) U (the-set-of-facts-to-be-inserted)

The execution of a transaction statement is composed of four
stages:
1. transaction accumulation - This is a run of th program seg­

ment comprising the transaction. No updates are done phy­
sically in the database during this stage, but rather the
results of the updating instructions are accumulated in the
sets D (the set of facts to be deleted from the database) and
I (the set of facts to be inserted into the database.) Also
the results of the inquiries into the database performed dur­
ing this stage are accumulated in a set V (information to be
verified to validate concurrency .) The result of the transac­
tion accumulation, i.e. the outcome (V ,D ,I) of the run of
the program segment, is called t he accumulattd transaction.

2. integri ty validation at th is time the system checks
whether if the updatP were to be madP , i.t. the set D
deleted and I inserted , the resulting database would not
violate the integrity constraints. No action update is done at
this stage , but rather an algorithmic decision is made by
examining the sets D, I , the constra ints, and in some cases
by getting some additional information from the database.

3. concurrency validation. It is verified that the results of
inquires kept in V are still the same, i.e. have not been
changed by the concurrent transactions. (This operation
does not actually require recalculation of the inquires.)

4. execution of the accumulated transaction - the new instan­
taneous database is: ((the-old-instantaneou&-database) - D
U I .

We have implemented this language in a prototype DBMS at
the. University of California, Santa Barbara (!Vijaykumar-87),
[Jatn-871). Our implementation allows single-processor multi-user
parallel access to the database. Optimistic concurrence control is
used.
t:
:- Currently, at Florida International University, we are work-
~g on a project, financed by the state government, to extend our
~mantic DBMS implementation into a massively-parallel very­
'·tgh-tbroughput database machine [Rishe-88-AMPDM j. to be
tpmposed of many (thousand(sl) processors, each equipped with a
l?,'!nnanent storage device and a large cache memory.

acknowledges the advice of Narayanan
Nagarajan Prabhakaran, Doron Tal, and

1Abrial-74J J.R. Abrial, "Data Semantics", in J.W. Klimbie and
K.L. Koffeman (eds.), Data Bast Manngtmtnt, North Hol­
land, 1974.

95

(Bracchi-76\ ~racchi,~ .• Paolini, P ., Pelagatti, G. " Binary Logi­
cal Assoc1at10ns m Data Modelings". In G.M. Nijssen {ed.),
Modelmg m Data Base Managemmt Sv~tems. IFIP Working
Conference on Modeling in DBMS's, .1976.

(Jain-87\ A. Jain. Design of a Binary Model Based DBMS and
Conversion of Binary Model Based Schema to an Equivalent

- Schema in Other Major Database Models. M.S. Thesis,
University of California, Santa Barbara 987 .

(Rishe-86-PSj N. Rishe. "Postconditional Semantics of Data Base
Queries .. " Mathem_atical Foundations of Programming
Semantics. Proceedmgs of the International Conference on
Mathematical Foundations of Programming Semantics, April
1985, Manhattan, Kansas (ed. A. Melton); Lecture Notes in
Computer Sctence, val. 239. Springer-Verlag 1986. (pp
275-295.) '

(Rishe-86-DNj N. Rishe . "On Denotational Semantics of Data
Bases ." Mathematical Foundations of Programming Seman­
tics. Proceedings of the International Conference on
Mathematical Foundations of P rogramming Semantics, April
1985, Manhat~an, Kansas (ed. A. Melton); Lecture Notes Hi
Computer Sctence, vol. 239. Springer-Verlag 1986. (pp
~~n4.) '

(Rishe-87-RMI N. Rishe. " On Representation of Medical
Knowledge by a Binary Data Model." Mathematical Model·
ling, val. 8, 1987. (pp. 623-626)

(Rishe-87-DSj N. Rishe, Database S emantics. Technical report
TRCS87-002, Computer Science Department University of
California, Santa Barbara, 1987. ' .

(Rishe-88-0DFl N. Rishe. Database Design Fundamentals: A
Structured Introduction to Databases and a Structured Data­
base Design Methodologv. Prentice Hall Englewood Cliffs
NJ, 1988. ' '

[Rishe-88-AMPDMI N. Rishe , D. Tal , and Q. Li . " Architecture
fo r a Massively Parallel Database Machine" Microprocessing
and Mtcroprogrammsng. The Euromicro Journal. 1988,
accepted.

[S hipman-1!'1 1 D.W. Shipman. "The Fu nctiona l Data Model and
the Data Language DAPLEX", ACM Transactions on Data­
base Systems, v. 6, no. 1, 140-173, 1981.

(Vij aykumar-87\ N. Vijaykumar. Toward the Implementation of
a DBMS based on the Semantic Binary Model. M.S. Thesis ,
University of California, Santa Barbara, 1987 .

