wsiwm on Programming. Proceedings.
nd M Paul. VI, 262 pages. 1984

IolCompuI-'ImequladManullclulmg
| Rembold. XVI. 528 pages. 1984

ck Shift Registers. il 1-2, 145 pages.

al C on A d D
508 pages. 1984.

.s Decision Problems and Complexity
| by E. Borger, G. Hasenaeger and
1984

ages and Programming Proceedings.
's. VIIl, 527 pages. 1984.

a Types. Proceedings, 1984 Edited by
~d G. Plotkin. V1, 391 pages. 1984

Proceedings, 1984 Edited by J Fuch.
1ons and Boolean Matnx Factonzation,

.ndations ol Computer Science 1984
by M.P Chyti and V. Koubek. XI, 581

guages and Ther Defintion. Ed ted by
es 1984

nve Ergonomics - Mind and Computers.
1y G C.vander Voer. M. J Tauber. TR G
1 pages. 1984.

ply Matrices Faster XI. 212 pages. 1984.

s Interfaces. Proceedings, 1983. Edited
es 1984

Software Technology and Theoretical
«dings, 1984, Edited by M. Joseph and
pages, 1984,

1s
\nual Symposium on Theoretical Aspec!
ceedings. 1985. Edied by K Mehihorn.

ect CIP. Volume |- The Wide Spectrum
2 Language Group. X1 275 pages. 1985.

rks: An Advanced Course. oncnd»nw’.
an, . Manam and D. Shepherd. Vill. 49

ndations of Software Development Pro*
Colloquium on Trees in Algebra l:

£dited by H Ehng. C.Floyd, M. Nivat a
1985

nd Software Development: Proceedings.

1 on Software Engineering (CSE) Edited

«atand J. Thatcher. XIV, 455 pages 1985.

. Tume Senies Package (TSPACK). il

i Nets 1984. Edited by G. Rou"b‘.':
3eanch and G. Roucawrol Vil 467 pag

aragon. XI, 378 pages. 1985,
B Liskov.

Ansart, G Hommel. L. Lamport. Cated b1

aneder, Distributed Systems.
71,573 pages. 1985

araliet
veyol Verdication Techmiques fof P

985,

-

A

Lecture Notes In
Computer Science

Edited by G. Goos and J. Hartmanis

239

Mathematical Foundations
of Programming Semantics

International Conference
Manhattan, Kansas, April 11—-12, 1985
Proceedings

Edited by Austin Melton

Springer-Verlag

Berlin Heidelberg New York London Paris Tokyo

POSTCONDITIONAL SEMANTICS OF DATA BASE
QUERIES

Naphtali Rishe

Department of Computer Science
University of California
Santa Barbara, CA 93106

A data-independent fully non-procedural language model for binary and relational data
bases is designed, in which all partial Turing-computable queries are specifiable. A large class
of the queries is expressible in a natural and user-friendly way. Every query is formulated in
the language as an applied first-order predicate calculus assertion expressing the desired rela-
tionship between the state of the data base, the information needed to be displayed, and auxi-
liary concepts. Interpretation of a query is a partial Turing-computable non-deterministic

transformation which for any input state of the data base gives a minimal output to satisfy
the assertion.

This general model is implementable eflectively but not efficiently. It is intended to serve

in investigation, generation and extraction of sublanguages which are user friendly and
efficiently implementable.

The proposed general language has sublanguages which are intended to restrict use of
undesirable or meaningless operations on objects. One of the important cases differentiates
between abstract objects, representing real-world entitics, and concrete values. A more gen-
eral case is parametrized by a family of permitted operations on the domain of objects and its
subdomains. The sublanguages are able to cxpress every data base transformation reasonable
within the restrictions parametrizing the sublanguages.

276
1. MOTIVATION

An instantaneous data base is a finite structure of facts (elementary propositions) which
is regarded as describing a state of an application world. A data base schema describes time-
independent properties of an application world and is a generator for a set, usually infinite, of
instantaneous data bases for that application world. A data base model is a generator for an
infinite set of structures every one of which can be regarded as an instantaneous data base for
a state of an application world. (The model should be rich enough to provide a representation
for every possible state of every reasonable application world.)

Data base models are supplied with general user languages. Some of them are called
query languages. A query is a specification of information which a user wants to extract or
deduce from an instantaneous data base without knowing its exact extent. A query is inter-
preted as a partial function from instantaneous data bases to some data structures.

Other data base languages are called update (transaction) languages. An update transac-
tion expresses a transition between states of an application world plus a query. It is inter-
preted as a partial function from instantaneous data bases to instantaneous data bases plus
data structures containing information to be displayed. (Unlike interpretation of queries,
interpretation of updates usually also depends on some laws fixed for an application. These
laws are known as integrity and inference laws, as discussed later.) These functions are not
total when the implementing software may loop infinitely in some cases.

It is usually desired that data base user languages possess the following properties:

(1) They should be powerful enough to provide expressions for all "reasonable” requirements
of users for any "reasonable™ application world. A "reasonable query"” must be physical-
data-independent, at least in the following senses of [Bancilhon-78]:

- Its output may not depend on the actual ordering of data in the physical data base.
This is avoided by regarding a query as a transformation on an abstracted model of
data bases, e.g. the relational data base model as defined in [Codd-70] (where an
instantaneous data base is a collection of named n-ary mathematical relations over
domains of values) or a binary data model — [Abrial-74] (where an instantaneous
data base is a collection of named unary and binary relations).

- Its output may not depend on the physical representation of abstract objects in a
data base (In the binary modcl some objects are uninterpreted, representing real-
world entities, and some are concrete values. There is no such clear distinction in the
relational model since all the objects are logically represented there by values sup-
plied by the user.) This principle may be extended by defining several types of
objects:

(i) the uninterpreted objects (the only meaningful mathematical operation on them
is the binary function "'=" yielding a Boolean value),

277

(ii) fully-interpreted objects (e.g. integers, on which every partial recursive function
may be meaningful), and

(iii) semi-interpreted objects, on which a collection of meaningful functions may be
defined (e.g. the comparators >, <, etc. on names of people).

Any of these types may be empty for a particular application. The first two types
are special cases of types of semi-interpreted objects. So all the types can be col-
lapsed into one by defining one set of meaningful functions from tuples of objects to
objects or error elements.

(2) They should allow convenient expression of at least "frequent” requirements.
(3) They should be implementable by software.

There is no consensus on the extent of "reasonable” requirements of a query language's
expressive power beyond the minimal data-independency. Unlike the language proposed
herein, other proposals for query languages did not provide the possibility to express all mean-
ingful queries and used a narrow interpretation of “reasonable requirements". These require-
ments are sometimes restricted to those expressible by Codd’s Relational Algebra (or by Rela-
tional Calculus), and thus languages whose expressivity is equivalent to Relational Calculus
are called Codd-complete (cf. [Codd-72]). [Aho and Ullman - 79] showed that quite reason-
able queries, such as those involving transitive closure are unexpressible in Codd’s Algebra and
proposed to extend the Algebra by a fix-point operator. A more powerful class of languages,
using Horn clauses, is advocated in [Gallaire-78] and [Gallaire-81]. A representative of this
class is Prolog (¢f. [Li-84]). Incomplete expressibility of Horn clauses was shown in [Chandra
and Harel - 82]. [Chandra and Harel - 80] propose a much richer language model which sup-
ports all computable data-independent queries excluding those necessitating generation of new
uninterpreted objects (e.g by an update transaction) and still keeping some restrictions on
com'nutations that necessitates interpretation of values. (Their language has a powerful
capability of calculation of values, including aggregative calculations, e.g. counting, but does
not allow all meaningful computations.) Unfortunately, their language is highly-procedural,
unnatural and inconvenient to use. The exclusion of value-computations is argued by most
authors by the desirability of enforcing the separation between data extraction (specified by a
query) and data computation (specified by a program). Such separation may not always be
justified, especially when one wishes to use queries for updates or for specification of inference
laws,

An objective of this work is to define a query language which possesses the following pro-
perties:

(1) It is absolutely complete, i.e. every computable transformation is expressible in it. (A
computable transformation is a partial recursive function of numbers effectively
representing sets of tuples of objects.)

278

(2) It is user-friendly:

- The user states not how to extract the information, but what properties the
extracted information should possess.

- No query needs to regard types of information which are irrelevant to it.
- Quecrics are independent of representation and of computer-oriented decisions.
- The users are enabled to exploit indeterminism.

- Both the binary-oriented and the table-oriented user are provided with appropriate
syntax.

- The usecr can easily specify calculations on values when needed. Arbitrary aggrega-
tive calculations (such as summation, counting etc.) are also expressible.

- The language is provided with "syntactic sugar” to make it more "friendly” to the
end-user. (More "sugar" is still desired.)

- The same syntax can be used to specify update transactions and integrity and infer-
ence laws.

(3) The language is implementable. Yet, heuristic techniques need to be designed to imple-
ment efficiently some important subsets of the language. Otherwise the language will
serve principally as a model for generation of efficiently-implementable sublanguages and
for comparison of different languages.

(4) For any definition of data-independency expressed by a set of meaningful operations on
objects, there is a restricted syntax of the language, which genecrates all and only the
data-independent queries and transformations.

2. THE PROPOSED LANGUAGE

The proposed language is a set of formulas, called queries, which are interpreted as par-
tial transformations over the set IDB of instantancous relational data bases. In the con-
sidered data base model IDB, an instantaneous relational data base is a finite family of named
finite relations over a fixed denumerable set D, called the domain of objects. (D can be
further subdivided into domains of concrete mathematical values and domains of abstract
objects.) When a instantaneous data base is transformed to another one (by a query or by an
update), the former data basc is called "the input” and the latter "the result”.

The semantics of a query is defined in two steps: First, the formula is assigned with
an assertional interpretation which is a partiai predicate over /DI.. Then, a transforma-
tion is derived from it. It transforms any input data base into a result such that there exists
a data base, called a virtual data base, which:

279

. consists of three distinguishable parts: the input, the result and temporary data;
- satisfies the assertion;

- is minimal for this input: every other data base included in it and having the same
input part contradicts the assertion;

- is (non-deterministically) chosen if other "minimal” data bases exist.

The result can be undefined if all the (virtual) data bases, in which the input is embed-
ded, contradict the assertion, or if for every satisfying the assertion there is a sub-data-base
(i.c. a subset thereof) for which the predicate is undefined.

The following describes the abstracted syntax of queries (before user-friendly “sugar®),
yicelding their assertional semantics. A query is expressed as a closed formula in an applied
first order predicate calculus. For any virtual data base the formula is interpreted as frue,
false or undefined. The formula is composed of:

- constants, which are any objects of D, not necessarily in the virtual data base;
- quantified variables ranging over the set of objccts which appear in the virtual data base;
- a unary predicate symbol interpreted as the equality of its argument to the object "true’;

- a predicate symbol interpreted as the belonging of a tuple of objects to a named relation
in the virtual data base; (The objects are evaluated from terms. The relation-name is
usually specified as a constant, but some rather “unreasonable” queries [see Theorem 4|
may necessitate an evaluation of the name from a term.)

- operators: "and", etc; (In the principle variant of the language, tri-valued parallel logic is
used.)

- function symbols expressing scalar mathematical operations over the domain of objects,
including comparators (>,<, etc.) yielding Boolean values.

Two alternative variants of the language have been developed. The first one, focuses the
asscrtional semantics on data base structure, while the scalar mathematical operations are
expressed, for the sake of separation from information-manipulation, by an infinite set of func-
tion symbols syntaxed as recursive functional expressions having the least-fixed-point seman-
ties. This extension of the set of functional symbols does not contribute to the expressive
power of the language because every scalar function can be expressed by a logical assertion
using only a fixed finite set of standard functions. In the other proposed variant ([Rishe-85]),
only a finite set of "cataloged” function symbols is used, while the rest of computable scalar
operations are generated from them exploiting the principal transformational-assertional

semantics of the language. A very large class of transformations can be specified without func-
tion symbols at all, except the equality symbol "=", inter alia all those queries definable by:
Codd’s Algebra (without use of comparisons of objects; otherwise they are specifiable using
one functional symbol ">"); Codd's Algebra extended by the fixed-point operator; Horn
clauses; queries unexpressible by Horn clauses, e.g. Example 3 of the next section.

Ase o s e o7re

280

Sublanguages have been investigated where some function symbols are used, while other
are prohibited in order to maintain data-independence. In a special case the domain of
objects is split into concrete objects and abstract objects. Only "=" is defined on abstract
objects, and a full function space is defined on the sub-domain of concrete objects.

The language is based on the abstracted syntax specified above and on syntactic "sugar”
- user friendly abbreviations of formal expressions. A complete "sugar” is specified in [Rishe-
85]. Among these “sugar” abbreviations are: a full scope of logic operators; contextual
defaults for quantifiers; abbreviations of sub-assertions expressing aggregative application of
associative scalar functions, e.g., summation, counting ete; substitution of variables by ezam-
ples of objects (inspired by Zloof's Query-By-Ezample); representation of relationships by sim-
ple English phrases; distinct syntax variants for the Relational data base model and the
Semantic Binary data base model. In the following section, some examples of queries with
this "sugar” are given.

3. EXAMPLES OF QUERIES

The examples use the following semantic binary schema, specifying categories (unary rela-
tions) as squares and binary relations as arrows.

WYER m:)
SALE I 1 rerson
I TsELLER il
PRICE 1
1oi_rvee | | PRIC T e

DESCRIPTION —m

1) An example of using a transitive closure.

COMPONCNT

/* who bought a bolt directly or indirectly, e.g., bought a lock, door, train car, train,
ete.? */

YV b,s,c:
(if (b BUYER-input s) A\ (b ITEM-TYPE-input c)
then (s GOT ¢)) A

Y s,c,d:
(if (s GOT ¢) A ((c COMPONENT -input d))
then (s GOT d)) A

281

Vs, x,n:
(if ((x DESCRIPTION.-input ‘bolt’) A\ (s NAME-input n))
A (s GOT x)
then ((X GOT-A-BOLT result))%

The same query using the standard sugar of the language:
if given:
somebody ts the BUYER of a bargain,
car (e.g.,) is the ITEM-TYPE of the bargain
then somebody GOT a car and
if somebody GOT a car (e.g.,) and
given: door (e.g.,) 18 a COMPONENT of car
then somebody GOT a door and
1f somebody GOT something and
given: the DESCRIPTION of something is 'bolt’,
the NAME of somebody is smith (e.g.,)
then result: smith 'GOT A BOLT'

Table-oriented specification.

Table-oriented users would prefer a relational schema as follows:

relation PERSON "D, NA\(E];

relation SALE [BUYER-ID, SELLER-ID, PRICE, ITEM_DESCR];

relation ITEM [DESCRIPTION|;

relation COMPONENT [CONTAINING_DESCR, CONTAINED_DESCR]

The above query could be formulated by them as follows:

3)

1if given:

SALE [BUYER-ID: buyer, SELLER-ID: seller,

PRICE: price, ITEM-DESCR: item|

then GOT [OWNER: buyer, THING: thing] and
if GOT [OWNER: owner, THING: thing| and

given: COMPONENT [CONTAINING_DESCR: thing,

CONTAINED_DESCR: otherthing]

then GOT [OWNER: owner, THING: otherthing| and
f GOT |[OWNER: owner_jd, THING: bolt] and

given: PERSON [ID: owner_jd, NAME: name]

then result THOSE_WilO_GOT_A_BOLT [NAME: n:un'-}

A query which cannot be specified by Horn clauses.

* What items have no less components than the item described as ‘car™ */

282

(This query does not use function symbols.)

given:
‘car’ is the DESCRIPTION of c (e.g.),
watch is the DESCRIPTION of w and
result:
watch HAS-MANY-COMPONENTS and
il stone (e.g.) is PAIRED-TO wheel (e.g.) and
then given:
stone is a COMPONENT of watch,
wheel is a COMPONENT of car and
if stone is PAIRED-TO wheel and
stone i3 PAIRED-TO x
then x=wheel and
if wheel is @ COMPONENT of car
then ezists stone s.t.
given:

stone is PAIRED-TO wheel.

4) /* find every seller’s total income */

if given: man is a PERSON, the NAME of the man is smith
then ezits income s.1.
(income 13 the sum!' of PRICE of
bargain dependent on man s.t. (man is the SELLER
of the bargain)) and
result: the INCOME of smith s income.

4. REVIEW OF MAIN THEOREMS ABOUT THE LANGUAGE

The following is a review of main results about the proposed language model. They are
proven in [Rishe-85]. The proofs of the most important results are outlined in the appendices
of this paper.

1) The language is implementable, i.e. it has an interpreter.

! This phrase, which might look aggregative and sccond order, is a syntaclic sugar
abbreviation for a longer first-order non-aggregative phrase using only one binary func-
tion symbol "+ which is applicd to pairs of integers denoting prices.

283

2) The language is absolutely complete, ie. for every partial computable function
¢: IDB — IDB there exists a query ¢ € L whose semantics is ¢.

3) The sublanguage containing only deterministic queries is absolutely complete too. Thus,
the non-determinism (being desirable for user-friendliness and implementation optimiza-
tion) is not the reason for absolute completeness.

4) Every query whose whose result can be affected only by a finite set of relation-names, i.e.
whose intrinsic meaning does not necessitate quantification over the set of names of rela-
tions (as can be for Data Base Administrator's queries) can be specified using only con-
stants as names of relations. (I.e. the language can be seen syntacticly as first-order with
relations as predicate symbols.)

5) A standard finite set of function symbols defined on the domain of objects is sufficient
for absolute completeness of the language. The other functions on values can be
represented by assertions, although such representations can be undesirable from a
methodological point of view.

6) If the language is further restricted to any set of standard function symbols on values (in
order to permit only meaningful operations on some domains, e.g. only equality-
verification on abstract objects), then every query meaningful within this restrictions is
expressible in the restricted language up to an isomorphism.

More precisely: for every set @ of functions over the domain of objects, for every computable (®, C)
prescrving data base transformation @, there existy a query ¢, using no other functions symhols or con-
stants but ® and C, whose semantics is (PUC Fisomorphic to @

7) The language can be used to specify every update transaction.

8) The language can be used to specily every integrity and inference law in the data base.

9) There is a semantic extension of the language (without alteration of the syntax) to cover
the behavior of queries and update transactions in the presence of integrity and inference
laws.

5. FORMAL SEMANTICS

IDB = INSTANTANEOUS-DATA -BASES?

ASSERTION:

* For the relational model (having a denumerable domain) of objects),

IDB=POWERSET(NAMES —OF —RELATIONSXD*)
n

o

Using the binary model, DUD XD is sufficient instead of D*,

284

|THE -LANGUAGE —|IDB—BOOLEAN || ®
semantics -of -queries:
[THE-LANGUAGE—|IDB—OUTPUT))
tics -of -data ipulation :
[DATA -SEMANTIC-FUNCTIONS —|THE -LANGUA GE—[IDB—IDB,x OUTPUT J)|
DATA-SEMANTIC-FUNCTIONS =
(IDB—IDB, grpog)

semantics-of -laws:

|THE-LANGUAGEXTHE -LANGUAGE—DATA -SEMANTIC -FUNCTIONS)

semanlics-of -queries(query 1db)=

LS ecr vsTanTassobs PATA masks

let $=ASSERTION(query) in

HidbUresult Utemp)\ N
Vudb.

choos: esult t = . "

() {reau emp)’lr 1db Cvdb C(idbUresult Utemp) “h",ll‘)"’,""‘:"'r' i

i then & vdb)= false ! S
ASSERTION,,,,,(idb)=
issrantaseofs para aasts
case query:
Vvariable: ¢ N ASSERTION,,, (sdb)
= in vdb
9109, ASSER TIONV‘(1db)DASSER TI()‘\",__(wdb)®

IsaRelationship(ezpression,,...) (Evaluate(ezpression,),...) € 1db)

IsTrue(ezpression) Evaluate (ezpression) = [ruz|
4

3 X, is XU{L}: L means undcfined
* Uiis a decomposable union: for a,3,7,6 € IDB, 8=(aUAn) iff (a,8,7)=split(é)
% D has a parallel logic tri-valued interpretation:
(false D7) = (?Dtrue) =true; (true D false)= false. In the rest of the cases it is
L (The other operators, e g. /A \/, and ~, are syntactic abbreviations using D))

e g - e 4 o

285

ABSTRACTED SYNTAX

For any given decidable set D of all possible objects, for any given decidable set @ of partial
computable functions from D* to D, THE-LANGUAGE,, 4 is defined by:

Vvariable assertion } 1ariatle

assertion Dassertion

IsaRelationship(ezpression®)”
IsTrue(ezpression)

erpression: EXPRESSIONS) ¢ = DU®XEXPRESSIONS o
variable: VARIABLES — a denumerable set

assertion::=

=\ A, V, =, TRUE, FALSE are standard abbreviations using V, D, IsTrue(false)-

SPECIAL CASES

1) First Order: Relation Names May Not Be Quantified.

The head of any tuple in “IsaRelationship™” is not quantified and stands for a name of a rela-

tion.

2) TheUninterpreted Domain case.

®= (=), (=:DXD—BOOLEAN)
L

Vvariable assertion | ,':,'L‘,‘,:,,",

asseriton Dassertion
IsaRelationship(constant™)
conslant = conslant

assertion::=

constant: D

variable: VARIABLES — a denumerable set

" erpression™ is a tuple. Triples representing binary relationships are sulficient Lo
consider maoce higher-order relations are derivable

i

286

3) An Uninlerpreted Subdomain and a Fully Interpreted Subdomain.
D=UUI;
I=INTEGERS
partial

b= {=}Ul1* — I

computable

APPENDICES

Appendix 1 - The Implementabilty Theorem

The proof of the implementability is sketched here by defining an implementation of a
very high complexity. In practice a heuristic implementation is necded for the language or its
sublanguages.

1. There is a procedure to implement the predicate
VERIFY (g, vdb, idb)

("does the virtual data base vdb satisfy the assertion G?").

The procedure acts as follows. First it checks whether idb is the given part of vdb. If
not, it halts with false. Otherwise it continues. Quantifiers are resolved yielding a finite
number n of atomic formulae connected by logical operators. n parallel processes are issued
to evaluate the clauses. These processes are correlated so that a halting process will cause an
abortion of those processes whose results will not influence the interpretation of the assertion
(as defined by the tri-valued logic above).

2. An effective inclusion-preserving enumeration E of the set IDH of all instantancous data
bases is constructed.

3. The following is a procedure to evaluate a query. The inputs are: ¢ € L, idb € IDB.

The procedure uses an unlimited quantity of parallel processes, but at every instant of
time the number of processes is finite, and thus they can be implemented by one sequential

process,

Let vdb,. vdb,, ..., vdb,,... be the inclusion-preserving enumeration of /DB constructed
in (2).

Let Q be a fixed quantity of time.

Let BUFFER be an unlimited, initially empty, interprocess storage (which will contain
indices of virtual data base found as contradicting assertion q).

287

At the beginning, the first process PR, is invoked.

Every process PR, acts as follows after its invocation:
A - Start computing VERIFY (g,vdb,,idb) until "local” time Q elapsed.
I3 - Invoke the process PR, , |.

C - Continue computing VERIFY (g, vdb,, idb) until true of false is obtained or forever
(unless externally aborted).

D - If false has been obtained then:
D1 - Insert the index n into BUFFER;
D2 - Loop forever (unless externally aborted).
E = If true has been obtained then:
El — If every proper subset of vdb, is in BUFFER, then:
E2 — Output the "result part” of vdb,;
E3 — Abort all the processes, including the current process.

else: repeat El (forever or until internally or externally aborted).
Appendix 2: Completeness Theorems.

A. Absolute completeness of the maximal language.

Theorem. The maximal language L defined above (were ¢ contains every partial recur-
sive function from D to D represented by a recursive expression) is absolutely complete, i.e.,
for every partial computable function ¢: IDB — IDB there exists a query ¢ € L whose seman-
ties is @.

The proof is preceded by its sketch.

A query ¢ is constructed whose semantics is ¢. The assertion of the query consists of

three subassertions:
an assertion implying existence of a special object in the virtual data base encoding the

whole input data base,
an assertion implying existence of an object encoding the resulting data base,
and an assertion relating these two objects by a derivative of é.

These assertions are constructed so that the following is insured:

the query will be deterministic (to be uscd in the next theorem);

288

- the query is convertible for an appropriate query for the language L' not using variables
or expressions as names of relations (to be used in "L’ almost completeness” theorem);

- the conjunction of the assertions is undefined if and only if ¢ is undefined for the input
data base, provided the evaluation is done by parallel communicating processes;

- the conjunction gives false for every subsct of the desired virtual data base.
Proof.
Let ¢: IDB — IDB be a partial computable function.

1) Encode IDB by D.

Let *:D X D — D, sc: THE-SET-OF-ALL-FINITE-SUBSETS-OF(D) — D be two
two-way effective bijections (existence of which is well known). Let tr: IDB — D be the
two-way effective bijection defined by:

tr(db) = sc({r*(a’B) | (a r B) € db}).

Let f =tr . ¢. tr~'. By the Theory of Computability, f is a partial recursive func-
tion from D to D.

2) Define total recursive functions from D? to D simulating set operations:
insert(s,d) = sc(sc™'(s) U {d})
remove(s,d) = sc(sc~'(s) — {d})
in(d,s) = if d € sc™'(s) then ‘truc’ else ‘false’
3) Abbreviate:
(#—code — the constant representing sc(() (i.e. the constant encoding the empty set.)

J, in, insert, remove — recursive expressions representing the corresponding functions f,
in, insert, and remove.

GIVEN (z, r, y) IsaRelationship(z; r, y), where z) is an expression concatenating the
string ‘input' to the value of z (i.e. GIVEN is a predicate stating that a tuple
belongs to the input part of the virtual data base).

RESULT (z, r, y) - analogously.
TEMP (z, r, y) IsaRelationship(z, y, z) (to be used for tuples which are neither in the
input part nor in the result part of the virtual data base.)
4) The query q.
The following sentence abbreviates the assertional syntax of the query and is com-
posed of clauses (marked (), each of which is preceded by a comment (enclosed in
/*...*/) outlining the subassertion expressed by the clause. The names of the unary rela-

tions (categories) of the virtual data base are given in enlarged italics

¢ D S~ | e e

289

/* Coand C;: there is a temporary object encoding the whole input data base ~f

/* Cy: there is a temporary object encoding the empty set t/

r TEMP (J—code ‘encodes a subset of the input db’) and

/* C,: for every existing code of a subset and for every triple in the input db, there is a
temporary object encoding that subset enriched with this triple */.

Vselcode, z,y,r
if TEMP (sctcode ‘encodes a subset of the input db))
and GIVEN (z,r,y) then
TEMP (snsert (setcode (r * (s * y)))
‘encodes a subset of the input db’) and

/* C,: there is a temporary object which equals f(the encoding of the whole input data
base); this object should encode the whole result */

Vinputdbcode
if (Vz,r,y if GIVEN(z,r,y) then
IsTrue(in ((r * (z * y)), inputdbcode)))
then TEMP (f (inputdbcode)
‘encodes a subset of the result) and

* 4 the result is actually what is encoded by the above object *
3 y)

Vsetcode
if TEMP (sctcode ‘encodes a subsct of the result’) then

/* C3,: the encoded set is either empty or contains a resulting triple */

((IsTrue (setcode = J—code) or
Iz,r,y (RESULT (z r y)and
IsTrue(in ((r * (z * y)), setcode)))) and

/* Ca,: inductively, every triple contained in the set must be in the result; but

using the above we invert this thus: */

Vz,r.y
if RESULT (z r y) then
TEMP (remove (setcode, r * (z * y))
‘encodes a subset of the result’)

290

5) Let g be the semantics of ¢. The following proves that 7 = 4.
Let 1db € IDB. Consider two cases:

(i) &idb) is undefined.
It has to be shown that g(idb) is also undefined. Assume the contrary. Then there
exists vdb € IDB satisfying the assertion and containing fdb. By definition of the
“parallel and”, all the four clauses are interpreted to true for vdb. Co N\ C, imply
inductively that there exists inputdbcode = tr(idb) in vdb. This and C, imply that
there is f(inputdbcode) in vdb. Thus f(tr(idb)) is defined and so is ¢(idb) in con-
tradiction to the assumption. Thus g(idb) is undefined.

(ii) @(idd) is well-defined (not 1).
Let vdb be as follows: its input and result parts are idb and ¢(idb) respectively, and
its remainder consists of two instantaneous unary relations: ‘encodes a subset of
the input db' is {tr(S)|S C idb}, ‘encodes a subset of the result’ is
{tr(S)i(S C &(idb)}.

vdb satisfies the assertion. It remains to show that every one of its proper subsets
containing tdb contradicts the assertion.

Assume the contrary. Let idbCuvdt C vdb so that vdt does not contradict the
assertion. Then the interpretation of the assertion for vdV is true or undefined.

Consider both cases:

(a) The interpretation is true. Then idb is the "input part” of vdb’ and all the four
clauses yield true for vdb’. Cy A\ C, imply that the instance of ‘encodes a
subset of the input db’in vdb’ includes {tr(S) | S C idb}. Thus, tr(idb) is
contained in this instance. Then, by C,, f(tr(:db)) is in the instance of
‘encodes a subset of the result’. Then, by Cj, the result part includes &idb)
and the instance of ‘encodes a subset of the result’ includes
{tr(S)}]S C &idb)}. Thus, vdb C vdb’, in contradiction.

(b

The interpretation is undefined. Then, by definition of "parallel and”™ at least
one clause yields undefined for vdb' and no clause yiclds false. All the clauses,
except C’, involve only total functions. Thus, Cy, C) and Cjy yield true and C,
yields undefined.

The "input part” of vdb’ is 1db (othcrwise the assertion would yield false). This
and Cy /A C, imply that there is tr(idb) in the instance of ‘encodes a subset
of the input db’. But f(tr(idb)) = tr='(@(idb)) is defined. (Possibly there is
another setcode in the above relation's instance such that f(setcode) is
undefined and setcode encodes a set containing all the triples of "the input
part".) After the resolution of quantification, C, is a conjunction of many

clauses, none of which yields false (otherwise C, would yield false). Thus, since

291

/(tr(idb)) is defined, the subclause for tr(idb) must yield true. Thus, f(tr(idb))
is in the instance of ‘encodes a subsel of the result’. Continuing the reason-
ing analogous to that of (a), we get: vdb C vdb’, in analogous contradiction.

B. The completeness of deterministic querics.

Theorem. The sublanguage of L containing only deterministic queries is also absolutely
complete.

Proof: Following the proof of the previous theorem, we find that if there is vdb’ satisfying
the assertion, then vdb C vdb’. Thus, no other but vdb can be chosen; so the query is deter-

ministic.

C. Almost-completeness of The First-Order Sublanguage

I shall prove here that any query can be stated so that relations are named only by con-
stants, unless the query must deal with infinitely many relevant relation-names (which usually
would be meaningless in an end-user’s query).

P
Definition. A set S C D contains all relation names relevant for ¢: IDB — IDB iff:

- {r] :lidb € dom(¢), Nz,y € D: (z r y) € Hidb)} C S, i.e,, S contains every relation-
name appearing in some output, and

- for every 1db € IDB
Hidb) = §idb — D X (D-S) X D)

("=" means that either both sides are undefined or they are equal).

Definition. A function ¢: IDB —,: IDB has a finite set of relevant relation-names iff there
is a finite set which contains all the relation-names relevant for ¢.

Note: Transformations which do not have such a finite set intuitively do not represent
specific needs on the application level but rather something on the DBMS level. For example,
copy the whole data base, estimate its extent, list its relation-names.

Theorem. The language L' (i.e., those queries of L which use only constants as names of
relation) generates all the partial computable functions from IDB to IDB having finite scts of
relevant relation-names.

Proof Let ¢ be a partial computable function from /DB to IDB having a finite set S of
relevant relation-names. Denote the elementsof S by ry, ry,...,r,. From the structure of the
query ¢ defined in the proof of the principal completeness theorem, obtain a query g, by
resolving all the quantifications of the variable "r". Thus, "Vr ™ is transformed to
"y Nty A .. A1," where 1, is 1 in which r is substituted for the constant representing r,.
(Respectively, ™ 1r 1" is transformed to "r, V... V. 7,".)

I

292

Let g, be the semantics of g,. Ishall show that g’ = ¢.
Let 1db € IDB.
Consider the following cases:

1) All the relation-names appearing in idb belong to S. So do the relation-names of ¢(idb),
provided this exists. The assertions ¢ and g, are interpreted equivalently, and thus the
queries must yield the same results (or undefined).

2) There is a relation-name rj appearing in idb and not belonging to S. Following the proof
of the principal completeness theorem, we find that g'(idb) = &(idb — D X (D—S) X S)
which in turn, by the condition of the theorem and the definitions above, is equivalent to
&idb).

Thus, in every case ¢(idb) = g'(idb).

Appendix 3: Language Submodels with Restrictions of Value Calculation; Isomor-
phism of Queries.

The purpose of this appendix is to clarify the result 8 in section 4.

Finite set of basic functions without recursion can be sufficient to have the complete
power of the language. (The rest of partial recursive functions ([0 —D|) can be expressed
using the postconditional semantics of the query language). Unlike that “saving”, in the fol-
lowing 1 wish to actually restrict the power of the language by removing from it the ability to
specify computations which are extremely unnatural and should be forbidden in & user's sys-
tem of concepts. The general case needed to be investigated is the one in which a user is pro-
vided with a family of functions on values considered legal for a given data base or a data
base management system. This family does not necessarily contain a basic sct sufficient to
create all the computable functions over the domain of objects using the power of first-order
predicate calculus. Usually no computation on abstract objects in the binary model of data
bases may be regarded meaningful.

Families of special interest are those differentiating between abstract objects and concrete
values. On the subdomain of the abstract objects there are only two meaningful functions:
the characteristic function is-abstract giving true for abstract objects and false for concrete
value, and the binary function equality giving true or false for pairs of objects. The rest of
such a family is a basic set of functions on the subdomain of concrete values. Using this basic
set and a program control power, every computable function on the subdomain of values can
be expressed. (Instead of program control power, a first-order predicate calculus can be used.)

In the following, let @ be a family of operations on the set of objects D, i.e. functions
from D* to DU{undefined}. (@ is not necessarily a special case like described in the previous
paragraph.) D is assumed to contain {error, true, false}.

D*=D°uD uUD*uD?

293

Though binary operations are sufficient to have the complete power of the language, I am
aiming to restrict the power and to be able to model exactly any practical restriction. That's
why | permit here n-ary operations — some of them cannot be generated from binary ones
without choosing them strong enough to permit generation of functions which are beyond a
desired restriction.

Let Lg be the language as defined above but using only function symbols from ® (and no
recursion.)

I claim, intuitively, that Ly has all the power reasonable within the restriction of @,
including:

(a) the ability to generate every function computable using program control and the set of
operations ¢;

(b) the ability to generate vertical functions, such as sum or average of values, i.e. to relate
some objects to applications of functions (a) on sets of values;

(c) the ability to create new objects, including abstract objects:

(d) the ability to specify every data base transformation which does not involve computation
of any values, but ®-basable values, and does not condition data base structure on such
values.

These claims and the following ones will be respecified rigorously after I define isomor-
phism of data base transformations.

In addition to ®, queries of Ly may use constant symbols. But I claim (so far intuitively)
that a query needs to use only those constants which are absolutely relevant to its purpose,
i.e. any program would have to use these constants in addition to ¢.

The use of constants is not obsolete, i.e. the use of constants cannot be substituted by 0-
ary functions from ¢, because:

1) The set @ is fixed for the language Ly due to global restrictions which in a given data
base or DBMS are desired to be imposed on all queries.

2) Not all permitted constants can be gencrated from @ when it is intentionally more res-
tricted. E.g., when social security numbers are considered, only their comparison is per-
mitted in ¢, but we would certainly wish to permit asking a query inquiring about any
specific social security number, appearing as a constant in the query. Usually, the per-
mitted constants are all nonabstract objects.

3) Ifinstead of ¢ we were fixing (globally for the language) a richer set containing (or able
to generate) all the permitted constants, which is generally an infinite sct, then every
query would become undesirably less free and more deterministic due to fixed interpreta-

tion of constants which it does not need.

294

Now I shall formalize the discussion.
Definition
A bijection ¢ : D — D is called a ® - isomorphism iff
Mdy, ..., d,)€D* VY €S [(d) ..., (d,) = u/(d,, . ..,d,)
(Note: the = symbol covers the case when both sides are undcfined.)
Definition

For a given instantaneous data base db, a ®-isomorphism ¢ is called db-preserving iff for
every object d appearing in db,

t(d)=d
Definition
r’
A computable data base transformation ¢: IDB — IDB is ®-preserving if for every
db € IDB and for every $-isomorphism ¢, ¢{c(db)) = ¢(¢§(db).
Definition

Two data base transformations ¢,y are called ®-isomorphic iff for every instantaneous
data base db € IDB there exists a db-preserving ®-isomorphism ¢ such that ¢(db) = «(y{db)).

Definition-

Let C be a finite set of constants, a subset of D. Two data base transformations are
called (®, C)isomorphic iff they are (#UC’)}-isomorphic, where C’ is the set of constant func-
tions, equivalent to C. A d-isomorphism ¢ is called ($,C)isomorphism if it is a (PUC')
isomorphism.

Proposition

For every finite set of constants C C D, every computable (®,C)-preserving data base
transformation is expressible up to a (®,C)isomorphism in Lg with C, ie., for every such
transformation ¢ there exists a query ¢ € Lg using no other constants but C, whose semantics
" is ($,C Fisomorphic to ¢.

Corollary
Every computable ®-prescrving data base transformation is expressible in Ly up to an

isomorphism,

t.e., for every such transformation there exists a query ¢ € L whose semantics ¢ is &

isomorphic to @, and the query ¢ uses no constant symbols.

295

REFERENCES

|Abrial - 74] J.R. Abrial, "Data Semantics”, in J.W. Klimbie and K.L. Koffeman (eds.), Data
Base Management, North Holland, 1974.

[Aho and Ullman-79] A.V. Aho, J.D. Uliman, "Universality of Data Retrieval Languages”, in
Proc. 6th ACM Symp. on Principles of Programming Languages, 1979.

[Bancilhon - 78] F. Bancilhon "On the completeness of query languages for relational data-
bases”. Proc. Seventh Symp. on Mathematical Foundations of Computer Science.
Springer-Verlag 1978.

|Codd - 72] E. F. Codd "Relational Completeness of Data Base Sublanguages” in Data Base
Systems (ed. Rustin). Prentice-Hall, Englewood CIiff, N. J. 1972

[Codd - 70] E. F. Codd. "A Relational Model for Large Shared Data Banks." CACM . v. 13 n.
6. 1970.

|Ghandra and Harel-80] A.K. Chandra and D. Harel, "Computable Queries for Relational
Data Bases", J. of Computer and System Sciences, vol. 21, 1980.

[Chandra and Harel -82] A.K. Chandra and D. Harel, "Horn Clauses and the Fixpoint Query
Hierarchy”, Proceedings of the ACM Symposium on Principles of Database Systems. 1982.

|Gallaire-78) H. Gallaire and J. Minker, eds. Logic and Data Bases. Plenum Press, New York,
1978.

|Gallaire-81] H. Gallaire and J. Minker, eds. Advances in Data Base Theory, Plenum Press,
New York, 1981,

|Li - 84] Deyi Li. A Prolog Database System. Research Studies Press Ltd, John Wiley & Sons
Inc, Letchworth, Hertfordshire, England. 1984,

[IRishe-85] N. Rishe, Semantics of Universal Languages and Informations Structures in Data
Bases. Technical report TRCS85-010, Computer Science Department, University of Cali-
fornia, Santa Barbara, 1985.

