
--.ostVm on Programm•no- Proc.eechng!.
nd M Paul. VI. 26'1 pagns. 1084

lOt Computer ltlleqraled Manufac.turong
I Rembold. XVI. ~21 pages 1884.

\Ck Shift ReQ•stera. II , 1~2 . 14~ pages.

tal Cont.,enc• on Autotnaled [)eductton.

:.oepaog ... ,

.. , . Oec•stOn Problema and Comple••ty

1 br E. 80,0.,, G Haaen,.eoer and

1884.

.aqes artd Programmon9 Prrx:eedon9~ .

' ' · VIII. ~27 pa9., 1084.

a Types. Proceed•ngs, 1084 [doled by
nd G. Plollun. VI , 301 pages 1084

Proc.eedongs, 1984. Ed oled by J Folcl'l.

ondahO'\S of Computer Sc•ence 1984.
bJ M. P Cl'ltt•l al'd V. Koubell.. XI, 581

quages and Theu Oofon•hon Ed ted by

n 1984

' '"e Ergononucs - M•nd ill nd Colf'l puters.
' ' G C ... an der Veer M J Tauber. T R G
1 ~qes . 1084.

ply MatriCes Fas:er. XI , 212 paqes. I084.

s Interlaces P•ocHd•"9'· 1983. Ed•ted

... 1084

Software Tec.hnotogy and TheoretiC-II
-dmgs, IOU. [doled by M. Joseph and

pages. 1084.

•nuaJ Sympos•um on Theoret.cal Aspects
cHChn!iJS, 1015. Ed•ted by K Mehlhorn.

eel CIP. Volume 1: The W •de Spec:;;
:. Language Group. XI , 275 pagea. 1 ·

rh : An Acha ncad Course. Proc.eechngs.
o-n, J. Manant af\d 0 . Shepherd. VIII. 497

ndaiiiOna of Software OaveiopmenL Pr,:;
Colloqu•um on Trees 1n Algebra •

£d•tad by H Ehng, C. Floyd. M. N!Y&I and

ltU
~Software QeyMQpmenC Proceed •no;;
"' Of' Software EngonHfl"\1 (CSE) Ed•~5 raland J. Thatcher. XIV, 455 pagea. IO •

. ,.,.... Ser•as Package (TSPACK). m •

..-agon. XI . 371 pages. 1985 .

.\nsal\, G HOMmel . L Lampot1. :d~~~ ... ;
'\netdef. O.stubuted SJSIIf"._

It, $73 pages. li85. P•,."""
... eyot Vetohcabon Techn,quesiOI

9.,,

•

Lecture Notes 1n
Computer Science

Edited by G. Goos and J. Hartmanis

239

Mathematical Foundations
of Programming Semantics
International Conference
Manhattan, Kansas, April 11-12, 1985
Proceedings

Edited by Austin Melton

Springer-Verlag
Berlin Heidelberg New York London Paris Tokyo

POSTCONDITIONAL SEMANTICS OF DATA DASE
QUERIES

Naphtali Ri•hc

Department of Computer Science
University of California

~anta Barbara, CA 93106

J'6-P>

,\ data-independent fully non-procedural language model for binary and relational data
bn>.s is de•igned, in which all partial Turing-computable queries are specifiable. A large class
or the queries is expressible in a natural and user·friendly way. Every query is formul:l.ted in
1 h«' 1:\nguage as an applied first-order predicate calculus a~rtion expre~ing the dt'sired rela
lioa,hip belwten the stale of the data base, the information needed lobe displayed, and auxi
li :uy concepts. Interpretation of a qutry is a parti:1l Turing·computable non·dcterministic
lran, formation which for any input slate of the data base gives a minimal output to satisfy
th~ assertion.

This general model ia implementable effectively but not efficiently. It is intended to serve
in investigation, generation and extraction of sublanguages which are user friendly and
efficiently implementable.

The proposed general language has sublanguages which are intended to restrict use of
uncir~irable or meaningless operation, on objects. One of the important C':\!'es diffcrrntiatcs
br t ''een abstract objects, representing rcal·world entities, and concrete values. :\ more gcn·
tral C"3~e is parametrized by a (amily of pl"rmitted operations on the dom3in of objects and its
~ubd~Jmains . The sublangullges are able to rxprcss e\'rry data base transformation reasonable
"it hin the rc~trictions parametrizing the sublanguagcs.

l 276 ..:.:.~

:;;.:: 1 ~:

1. MOTIVATION

An instantaneous data base is a finite structure of facts {elementary propositions) which
is regarded as describing a state or an application world . A data base schema describes time
indepe ndent properties of an application world and is a generator for a set, usually infinite, of
in.tantaneous data bases for that application world. A data baae model is a generator for an
infinite set of structures every one of which can be regarded as an instantaneous data base for
a slate of an application world. (The model should be rich enough to provide a representation
for every possible state of every reasonable application world.)

Data baae models are supplied with general user language&. Some of them are called
qu ery language3. A query is a specification o(information which a user wants to extract or
d('ducc from an instantaneous data bP.sc without knowing its exact extent. A query is inter
preted ~ a partial function from instantaneous data bases to some data structures.

Other data base languages are called update (transaction) languages. An update transac·
tion expresses a transition between states of an application world plus a query. It is inter·
preted as a partial func t.ion from inst.antA.neous data bMes to instantaneous data bases plus
data structures containing information to be displayed. (Unlike interpretation or queries,
interpr<tation of updates usually also depends on some laws fixed fo r an application. These
laws are known a.s integrity and inference laws, a.s discussed later.) These fun ctions are not.
total when the implementing software ml\y loop infinitely in some cases.

It is usually desired that data base user languages possess the following properties:

(I) They shou ld be powerful enough to provide expressions for all "rea,..,nable" requirements
or user> for any "reasonable" application world . A "reasonable query" must be physical·
data-independent, at lea•t in the following senses of)Uancilhon-78) :

fls OUtput may not depend o n the ACtual Ordering of data in the physical data base.
This is avoided by regarding a query as a t ransformation on an abstracted model of
data bases, e.g. the relational data base model as defined in)Codd-70) (where an
instantaneous data base is a collection of named n ·ary mathematical rclotioru over
domains of values) or a binary data model ·-)Abrial-74) (where an instantaneous
data base is a collection of named unary and binary relations).

Its output may not depend on the physical representation of abstract objects in a
data hase (In the binary model some objects are uninterpreted, representing real
wo rld entities, and so me are concrete values. There is no such clear dist inction in the
relational model si nce all the objects are logically represented there by values sup
plied by the use r.) This princi ple may be extended by defining several types of
objects:

(i) the uninterpreted objects {the only meaningful mathematical operation on them
is the binary fun ction "=' 'yielding a Doolean value),

277

(ii) fully-interpreted object. (e.g. integers, on which every partial recursi ve fun ction
may be meaningful), and

(iii) semi-interpreted objects, on which a collection of meaningful functions may be
defined (e.g. the comparators>,<, etc . on names. of people).

Any of these types may be empty for a particular application. The first two types
are special caaes or types or semi-interpreted objects. So all the types can be col·
lapsed into one by defining one set or meaningful functions from tuples or obj•cts to
objects or error elements.

(2) They should allow convenient expression of at least "frequent" requiremtnts.

(3) They should be implementable by software.

There is no consensus on the extent or "reasonable" requirement!> or a qu ery la nguage 's
expressive power beyond the minimal data-independency. Unlike the language propo,ed
herein, other proposals for query languages did not provide the possibility to express all mean·
ingrul queries and used a narrow interpretation of "reasonable requircmrnts". These require
ments are sometimes restricted to those expressible by Codd's Relational Algebra (or by Rela
tional Calculus), and thus languages whose expressivity is equival rnt to Relational Calculus
arc called Codd-complete (c/.)Codd-721).)Aho and Ullman . 79) showed that quite rr a!!<>n·
Rble queries, such as those involving transitive closure are unexprcssible in Codd's Algebra and
proposed to extend the Algebra by a fix-poi nt operator. A more powerful cl ass of languages,
u•i ng llorn clauses, is advocated in)Gallaire-78) and)G allaire·Sti . A representative or this
cla<S is Prolog (cf .)Li-841). Incomplete expressibility of llorn clauses was shown in)Chandra
and Barel · 82).)Chandra and Hare) • 80) propose a much ri cher language model whi ch sup
por ts all computable data-independent queries excluding those necessitating generation of new
unintrrpreted objects (e .g by an updat e transaction) and sti ll keepi ng some restrictions on
com.outat.ions that necessitates interpretation or values. (Thrir language hns a powerful
cap1\bility or calculation or values, including aggregative calculations, e.g. counting, but does
not allow all meaningful computations.) Unfortuna tely, t hei r language is highly-proced ural,
unnR.lural and inco nvenient. to use. The excl u~ion or valuc·computations is argued by most
authors by the desirabilit.y or enforcing the separ1\tio n brt ween data cxt rar lion (~prf ifa cd by a
query) and data computation (specified by a program). Such separat ion may not always be
justified, especially when one wishes to use queri es for upd ates or for speci fi cation of inference
laws.

An objective of this work is to define a query language which posse"'"" the following pr<>
P<'rties:

(1) It is absolutely complete, i.e. every computable transformation is expressible in it . (A
computable transformation is a partial recursive function or numbers e fT<'c livcly
representing ••13 or tuples of objects.)

L
278 r •

(2) It is u""r-(riendly:

Th~ u~r ~lalr~ not. how to extract the inrormat.lon, hut wfmt p ropcrti~~ thr:
extracted in(ormation should po5Sc,..,,

;o\o query needs to rtgard types o(in(ormation whicl! art irrelevant to it.

QuC' ric~ &rc indrpcndtnt of rr. prc~~Je nt.ation and of computcr-orirntcd dcci!iions.

Tht users are enabled to exploit indeterminism.

Doth the binary-oriented and the table-oriented user arc provided with appropri•te
syntax.

The u•cr can •~•ily spcci(y caleuiiLtions on values when needed . Arbitr&ry aggrcga
ti vt calculations (such as summation, counting etc.) art also cxprcs.•iblc.

The languagt is provided with "syntactic sugar" to m~ke it more "(ricndly" to the
tnd-uscr. (More "sugar" is still desired .)

The sa me syntax can be used to specify update transactions and integrity and in(er
ence laws.

(3) The language is implcmentable. Yet, heuristic tee hniquts nerd to be d""igncd to imple
ment efficiently some important subsets or the language. Otherwi:.c the language will
se rve principally as a model (o r generation o(cfficiently-implementabl e .•ublanguages and
(o r comparison or different languages.

(4) for any definition or data-independency expressed by a set or mcaning(ul operations on
objects, there is a restricted syntax o (the languag•, which generates all and only the
data-independent queries and transformations.

2. THE PROPOSED LANGUAGE

The proposed l:a.ng ua~c is a set o f fo rmulns, called queries, wh ic-h arc intNpret.f'd AS par
ti al transformations ove-r the se t IDD o f instanta neous relational data ba~rs. In the con
sidored data base model !Dll, an instantaneous relot ional data base is a finite (amily o(named
finite relations over a fixed denumerable set D, called the doma in or objects. (D can be
further subdividrd into domains o f concrrte mR.I hematical va lues anrl do mains (I(ah~tract

objects.) \\'hen a instantaneous data base is transformed to another o ne (by a query o r by an

upda te), the (ormcr data bo•e is called "tho input" and the latte r "the r""u lt" .

The ecmantice or a query is defincrl in t.wo sleps: F'iret, t.hr fo rmula. is ftSSi~nrd with
an a..s&ertionl\1 interpretation which is a parlilli predicate ove r 1/J/1. Then , a tramtforma.

tion is derived rro m it. It trans fo rms any in put dala base into a re .n~/t such thaL there e'ICists
a data base, called a virtual data b e , which:

279

r.on~i~ts of three distingui~hable part!~ : th e input, the re ., u./t a nti trmpn r:t.ry clat a:

satisfies the &~Utert.ion;

is minimal for this input.: every othrr data ha!i>C incl uded in it and h:'\ving the sa me

input pa rt contradicts the assertion;

i~ (non-dcterminiatically) chosen if other "miuimal" d!lta ha~rs rxi:-.t.

The result can be undefined i(all the (vi rtual) data bases, in which the input i• eml,.d
cl• ·cl, contradict the assertion, or if for evr-ry eAtil-. fying the a ~'«' rtion thrrr i~ :t suh- l.bl a-ha~e

(i .<'. ~ •ub•ct therco() (or which the prcdi<ate is undrfincd .

The following describes the abstractrtl syntax o f CJIH'ric~ {before u:o.• · r - fri r n • ~ly ""'tlg:l r"),

yit ·lding thei r asscrtional semantics. A query is expressed as a closed formula in an appli l·d

first o rder predicate calculus. For any virtual data base the fo rmula i~ inl('fprctrd as true,

fnl.ot or undefined. The rormula is compov.d or:

constants, which are any objects of D, not necessari ly in the virtual data ba~cj

quantified variables ranging over the set o (objects which appear in the ,·irtual data ba"";

a unary predicate symbol interpreted as the equality o(its argument to the object 'true';

a predicate sy mbol interpreted as the belonging or a tuple or objects to a named relatio n
in the virtual data base; (The objects are evaluated fro m terms . The rrllltion-namr i ~

usually speci fi ed as a constant, but some rather "unreaso nable" queries [see Theorem 4J
may necessitate an evaluation of the name from a term.)

operators: "and", etc; (In the princi ple variant or the language, tri-valued parallel logic is
used.)

function symbols expressing scalar mathematical operations over the domain o f objects,

including comparators(>,<, etc.) yirlding Iloolean values.

Two altnnative variants of the lang uAge h&\'e been developed. Tht first On<', focu~es the
"'"'crtiom\1 semantics on data base structu re, while the .!'t&lar mathentatirRI operatio n~ arc

rxpres.cted, fo r lhe sakt or separation rro m info rmation-manipulation, by an infinite S('t o f funr·

lion symbols sy ntaxed a.a re<'ursive functional expressions having th e lca:r;.t-fi"<l'd-poin t ~eman
tir~ . This extcn~ion o r the set or ru nclionnl ~ymhols dors no l contrihut<' to the l"Xpr<'s.~ i\'e

pnwrr o f the la nguage btcause every ~al a r function ca n be expr<'~d by n logic:a l n.s..;,e rtion

'"in~ only a fixed finite .. tor •tandnrd (unction•. In the other propo'"d variant {illishc-85Jl,
only a finit e !<><'t o r "ratalogtd .. runrtion ~ymbols is used, while tht: r r~t o f romputRhlt• ~ra l:tr

opr.rations art gtntrated rro m tht•m exploiting the prinripaJ tran~form Rtion :d ·A.!\.-.c rtionaJ

~('ffi:lnlics o r the languAge. A ve ry largr. clns.:~ o r lrAn!\fo rmAlions can h<' s p<'rifirrl u·athout func
tion symbols at all , except the equality •ymbol "=", inter alia all tho•r qurries definable by:
Codd's Algrbra (without use or comparisons of ohjccts; othcrwi~e th<'y are ~pccifiab l e using
one (unctional sy mbol ">"); Codd 's Al~cbn extended by the fixed -point operator; !lorn
rl:tU!'\tS; queries unexpressible by Horn claUM"S, e.g. Example 3 or the nrxt sectio n.

L 280 . '""
Su blanguages have been investigated where eome funcUon symbols are used, while other

are prohibited in order to maintain data-independence. In a special case the domain of
objocts is split into concrete objects and abstract objects. Only "= " is defin ed on abstract
objec ts, and a full function space is defined on the sub-domain of concrete objects.

The language is bMed on the abstracted syntax specified above and on syntactic "sugar"
- u•cr friendly abbreviations or formal expressions. A complete "sugar" is specified in [Rishe-
85J. Among these "sugar" abbreviations are: a full scope of logic operators; contextual
dofaults for quantifiers; t.bbreviations of sub-aasertiono expreasing aggregative application or
a~'\Ociative scalar runctions, e.g., summation, counting etc; substitution or vari a.b lcs by t%am
pl-. o(objects (inspired by Zloors Query-8y-E%ample); representation of relationships by sim
ple English phrases; disti nct sy ntax variants for the Relational datiL base model and the
Semantic Binary data base model. In the following section, some examples of queries with
this "sugar'' are given.

3. EXAMPLES OF QUERIES

The examples use the followi ng semantic binary schema, specifying categories (un&ry rela
tions) aa squares and binary relations as arrows.

DCSCAIPTIO#ol

CCJIPOMC HT

I) An example of using a t ra nsitive closure.

r who bought a bolt direct ly or ind irectly, e.g., boug ht a loc k, duor, trai n car, train ,
etc.? • /

Vb,s,c:
(i f (b BUYER-inpul s) !\ (b ITEM-TYPF.-inpul c)

then (sCOT c)) {\
V s,c,d:
(i f (sCOT c) f1 ((c Cm!PONENT-inpul d))

then (s GOT d)) !\

281

'd s,x,n:
(if ((x DESCRIPTION-inpul 'bolt')!\ (s NAME-inpul n))

1\ (s GOT x)
then ((x GOT-A-BOLTwull)).

The same query using the atandard sugar of the language:

if given:
somebody i• the BUYER of a bargai n,
car (e.g.,) is the ITEM-TYPE of the bargain
then somebody GOT t. ear and

if somebody GOT a car (e.g.,) and

give n: door (e.g.,) io a COMPONENT of car
then somebody GOT a door and

if somebody GOT something and
given: the DESCRIPTION of something i• 'bolt ',

the NAME of somebody io smith (e.g.,)

then re•ult: smith 'GOT A BOLT'

2) T able-oriented speel flcation .
Table-oriented u .. ro would prefer a rel•tional schema as follows:
rtlotion PERSON [ID, NAME);
rtlotion SALE [DUYER-ID, SELLER-ID, PRICE, ITE~l.DESCHJ;
rdation ITE~I [DESCRIPTIONJ ;
relation COMI'ONENT JCONTAINII'\GJ)ESCR, CONTAINEDJ)ESCRJ

Tho above query could be formulated by them as follo ws:

if gn1tn:

SALE JBUYER-ID: buyer, SEI.I.EH-11>: "lier,
PRICE: price, ITE~I - DESCH : itemJ

then GOT [OWNEit : buyer, T lll i\'G: th ingJ and
i/GOT JOWNER: owner, TIII:-.IG: thingJ and

given: COl\.IPONEI'\T [CO:\TAI:'\1:'\GJ)ESCit : thing.
COl'\TA I:'\ EDJ>ESCit : othrrthingJ

then GOT JOWNER: owner, TII I:'\C: otherl hingJ and
•/ GOT [OWNER: owner_jd, Till:';(; : holtJ one/

g•ven: PEitSON [ID: owner_jd, 1'\A\IE: n'mrJ
th en rc•ult TIIOSE_\\"iiO_GOT A.JIOi.T J:"A~IE : n~mcJ

:1) A qut>ry whi ch cannoL be epcrificd hy llo rn clau~'~.

r \\'haL items have no less componen ts than the il C'm drsrribed 1\S 'ca r'? • I

l 282

(This query does not use fundion symbols.)

given:

'car ' i• the DESCRIPTION of c (e.g.),
watch i4 the DESCRIPTION of w and

ruult:
watch HAS-MANY-COMPONENTS and

if stone (e .g.) i4 PAIRED-TO wheel (e.g.) and
then given:

s(one i• a COMPONENT of watch,
wheel i• a COMPONENT of car and

if stone i4 PAIRED-TO wheel and
stone i4 PAIRED-TO x

then x=wheel and
if wheel i4 a COMPONENT of car

then exi•t• stone •.t.
given :

s(one i4 PAIRED-TO wheel.

1) r find every se ller 's total income • 1

•·
'

if given: man i4 a PERSON, the NAME of the man i• smith
then ezib income 3.t.

(income i4 the •um11 of PRICE of

bargain dependent on man •. t. (man i• the SELLER
of the bargain)) and

re• ult: the INCOME of smi(h i• income.

.(. REVIEW OF MAIN THEOREMS ADOUT THE LANGUAGE

Tile fo llo wing is a rev iew o f main resulls nho ut the proposed lnngung<' model. Th ey arc
proven in IUishe-85). T he proo fs of the most impo rtant resu lts are outl ined in the appendices
or this pape r.

1) The language is implemcntable, i.e. it has an interpreter.

1 This phrase, • ·hich mith\. look aggrrcative and eccond ordt'r, is a "Ynlaclie lliKat
A.hbreviation for a longer firll -order non· dggrt9olivt ph riUc uAing only one Lina ry rune-
Lion symbol "+,. which j" applied to pairll O(in lC&Ctl denoting pri CCA.

283

2) The language is ab•o/utdy eomplete, i.e. for every parti al computable fun ction
,P: IDD --+ IDD there exists a query q E L whose semantics is ~.

3) The sublanguage containing only deterministic queries is absolutely complete too. Thus.
the non-determinism (being desi rable for user-friendliness and implemen tation optimiu
tion) is not the rea.son for absolute completeness.

~) Every query whose whose resul t can be affected only by & finite set of relation-name•. i.t .
who~e intrinsic meaning does not necessitate quantification over the set of names of rc la~
Lions (as can be for Data Base Administra tor's queries) can be specified using on ly con
stants as names or rel&tions. (/.e. the language can be seen syntacticly as jir.t-order with
relations as predicate symbols.)

5) A standard finite oet of function eymbola defined on the domain or objec ts is suffici ent
for absolute completeness of the language. The other functions on values can be
represented by assertions, al though such repre~ntat ions ca n be undc~irah l r from a
methodologkal point or view.

6) tr the language is further restricted to any set of standard function symbols on values (in
order to permit only meaningful operations on some domains, e.g. only equality.
verification o n abstract objects), then every query meaningful within this rest ri C'tion~ is
expressible in the restricted language up to an isomorphism .

Murf' prt"<'iJ'<'Iy; (or nrry IIC" l ~ o(runrlion~ OVf'r lhf" domain or ohjM'h, for t'VNY C'omputa hl l" (4>, cr
prc-M- rvin tt data ba~ l ranaformuion ~. lht•rf" c-xi"l!l a tjUrry q, U!linK no ot lwr fundllln'l !'flll l tnllt or rnn

!llanlft but 4» and C, whnl'le ecrnantic~ ill (~C)-il'Omo r rhir to t;J.

7) The language can be used to specify every update tr ansaction.

R) The language ca n be used to specify every integrity and inference law in the data base.

9) . There is a semantic extension of the language (without alteration of th.,- !'yn tax) to <'over
the behavior of queries and update transactions in the pre~enfr of intt•grily and in fn<'nce
laws .

6. FORMAL SEMANTICS

1/J/1 = INSTANTANEOUS -DATA -BA SESJ2

ASSERTION:

! For the rt•b.Lional modrl {havinc a drnumrrablc dum:lin D or ohj('('tll),

IDB = PO\VERSET(NAMES-OF-RELA TIONSXD•)
9

U11i n~ the bi nary modt"l, DUDXD i~ 3uffit'irnt iosc('lld or D•.

l
I THE -LA NGUAGE-1/DB -.BOOLEANJI>l

8emanlic8 -of -q1Uric.. :

I THE ·LANGUAGE-[IDB-OUTPUT .JI
•emanlic8 -of -dDta · manipul41ion :

284

[DA TA -SEMANTIC-FUNCTJONS-.[THE-LANGUAGE-+[IDD-.JDD"XOUTPUT .Jii
DATA -SEMANTIC-FUNCTIONS =

(JDR-./DD"·F.IIROHi

•emanlic• -of -/a.,_, :

1 THE -LANGUAGE x THE -LANGUAGE-DATA -SEMANTIC -FUNCTIONS!

semanlic• -of -querie8 (query , idb)=
Till. lt~ o.I ' H:I l\'l U,'Itr4\f ,~;(1•4T4 ll4V_,

let </>= ASSERTION(query) in

choose ((result temp)I 'tlvdb.) I j <l>(idb(Jruult(Jtemp)l\ 14)

" ' lir idbCvdbC(idb(Jruu lt(Jtem) , ; .• , ,
then ¢(vdb):=Jal!lt. p t ·o~f' oUI) ,.ufr t>um 1oour11 11

ASSERTION, ... ,(idb)=
I.\1T.VtTA\fllfl 0AT 4 .A'<Il

case query :

't/l'ariable: q , .0.J,ASS/,'I/TION, :: (•db)

q,:Jqt ASSERTION, ,(idb):JASSh/1 T/O.V,,(otlb)"

lsa Hclationship(ezprt33ion 1 , ...) (E:valuale(u prtm'oro
1
)) E odb)

lsTrue(ezprcs.,.·on) Evaluate (czprCJ.,on) = Lr.u.!.

' X .. " XU{.L}: .l '"""' Jl.1lddi..nL.d .
4 U" a d•·compo"•hle un;un · for o ,/1,),6 E /DB , 6=(nU/Jlh) iff (o,/J,)}=.•plil(b)
" :::> ha!'l a parallel logic Lri -valurd inlrrptrlalion:

(/al.!t:J?) =(?:) true) =true ; (lruc~fal•<)=fal.e . lo <he rr. l of <hr,.,; , ;,
J. {Thr ot hr r OJ>f' r&l ors, r &- f\. V, and , are ~yntal'li c abbrrviAtion.! Ul'Jin~ J)

.l

285

ABSTRACTED SYNTAX

For any given decidable seL D or all poMible objects, ror any given decidable oet <I> or partial
romputable runcLions rrom v• Lo D, THE -LANGUAGEo.• is defin ed by:

tulertion ::= a.!.s~rtio~ ::Ja3.!t:rtio_n I
\ivoriablt a.uerlion l :=~~!~, I

IsaRelat10nshop(czpres .. on •j•l
lsTrue(expression)

upression: EXPRESSIONSo.• = DU<I>XEXPRESSJONS/f•

variable: VARIABLES - a denumerable seL

::1, /\, V, ~. TRUE, FALSE are standard abbreviations using 't/, :J, lsTruc(/abe).

SI'ECI.AL CASES

I) Firat Order: Relation Namea May Not Be Quantified .

The head or any tuple in "IsaRelationship" is noL quantified and stands ror a name or a rela
l ion.

2) TheUninlerprel.<:d Domain ease.

co,utan.t; D

<I>={=}, (= :D XD-+BOOLEAN}
n
D

l
u . bl 1· 1 '~"-'k vt:OriO c _a33tr 10n 1 ~orulut

a.ucrtion ··= 03Jcrhon Jo.1.1trtlon
.. !sa Relationship(corutant•)

con.dant = con.stant

o·ana blc: I'ARIABLES - a denumera ble set

; crpr(331on.• is a tupf,._ Tripi,.. rr prt':'lol ·ntinK binary rc-IILliOh!' hip!' •te sufli1it·nt to
r .. u, ., fn 111nrt highc- r-o rdl't rrlati on• are drr h·ahll" .

l 288

3) An Unil'llerprcletl Subdomain and a Ful/r /l'llerpreletl Sv6domain .

D =UUI ;

l= INT/;GERS
pcrh.t

4>= (=}Uil• - I)
C'O'"P"td&,

APPENDICE S

Appendix 1 - The Im p lemen tabil t y Theore m

The proof of the implementability is oketched here by defining an impleme nta tio n of a

very high complexity. In practice a heuris t ic implementation is needed fo r the language or its
suolanguagcs.

I. There is a procedure to implement the predicate

VERIFY (q , vdb, idb)

("does the vi rtual data base vdb satisfy t he assertion qP").

The proced ure acts as fo llows. First it checks whether idb is the given part of vdb . If
no t , it halts with fal se. Otherwise it continues. Quantifier.s a rc resolved yielding a fmite

numb'!r n of ato mic formulae connected by logical operators. n pa ra llel proccs."'cs are issurd
to e \•aluate the clauses. These processes are correla ted so that a ha lting process will cau!'oc an

abor t ion of those processes whose results will not influence the interpretatio n of the a~crtion
(as defined by the tri-val ued logic above).

2. An effective inclusion-preserving enumeration E of the set IDIJ of all instantanrous data
bases is constructtd.

3. The following is a procedure to evaluate a query. The inputs arc: q E L, idb E 1/) /1 .

The procedure uses an unlimited quant ity of pa rallel proct-sscs, bu t at evt-ry instnnt o f

time the number o f proce~s is finite, and thus they c&n be im plrmcu tC'd by onC' scqucntirLI
proc<"ss.

Let t·db 1• t'db-z, ... , vdb,. be the inclusion-prrscrving enumeratio n o f /DLJ construct ed
in (2).

Let Q be a fixed quantity o f time.

Le l m :FF'ER be an unlimited, initi a lly empty, intcrprocess storage (" hich will contain
inrli c('s o f virtual data base fou nd as contradicting assertio n q).

287

At the beginning, the first process PR 1 is invoked.

Every procc~ PR" acts as fo llows after its invocation:

A -Start computing VERIFY (q ,vdb.,idb) unti l "local" time Q clapS<'d .

II - Invoke the process PR. + 1•

C -Continue computing VERIFY (q , vdb. , idb) until t r ue of false i• obtained o r fo rever

(unless externally aborted).

() - If fat.e has been obta ined t hen:

Dl -Insert the index n into BUFFER;

02 - Loop forever (unless externally aborted).

E - If true has been obtai ned then:

El - If every proper subset or vdb• is in BUFFER, then:

E2 -Output the "result part" or vdb.;

E3 - Abort a ll the processes, including the current prore,..

else: repeat El (forever o r until internally or externally aborted).

Append ix 2: Comple ten""" Theore m o.

A . A bsolute comp le ten""" or the m &><imalla ngua ge.

Theorem. The maximal language L defin ed above (were 4> contains every pa rt ial rec ur
~j ,.,. f,mction from D • to D represented by a recursive expression) is absolutely complete, i.e. ,

fo r every partial computable fu nction ¢: /DB - /DB there exists a query q E L whose se ma n
ti c!'. i!\ ¢.

The proof is preceded by its sketch.

A query q is constructed whose semantics is ¢. The assertion o r the qu ery consists of

1 hn·r subas.w rtions:

a n &!\.'S<"rtion implying existence of a sp<>cial obj<'ct in the virtual data hllsc rncoding the
Y. hole input. d a.ta bast ,

an a~'iNtion implying existence o f an ohjrct <"ncoding th <' rrsulting dala ba!'e,

and an as."'e r tion relating th l'M" two obj t•rts hy a d· ·ri\ati\'f' o f 0.

T IH"'I <' asse rtions a rt con:!lt ructed so that the following is in.su rrJ:

t he query will be deterministic (to be used in thr next theorem):

288

the query is convertible for an appropria~e query for the language L' no~ using variables
or expressions as names of relations (to be used in "L' almost completeness" theorem);

the conjunction of the a""ertions is undefined if and only if 4> is undefined for the input
data base, provided the evaluation is done by parallel communicating procc...,s;

the conjunction gives fal se for every au beet of the desired virtual data base.

Proof.

Let 1$: /DB - /DB be a partial computable function.

I) Encode !DB by D .

Let ' :D X D - D, oc : TIIE-SET-OF-ALJ,FINITE-SUDSJ;"fS.OF(D) - D be two
two-way effective bijections (existence of which is well known). Let tr: IDIJ - D be the
two-way effective bijection defined by:

tr(db) = •c({r'(a'(l) I(<> r (I) E db)).

Let / = tr . 1$. tr - 1• By the Theory of Computability,/ is a partia l recu rsive func
tion from D to D .

2) Ocfinc total recursive functions from D2 to D simulating set opcration'i:

in.ocrt(•,d) = •c(•c - '(•) U {d)}

rcmovc(•,d) = •c(•c-'(•)- {d))

in (d,•) =if dE •c - 1(•} then 'true' else '/a~c'

3) Abbreviate :

0 -code- the constant representing "c(0) (i.e. the constant,·ncc.d ing tlw t· rnpty :-.d.)

/ , in, iMcrt, remove - recursive express ions reprc~t~nting the ru rn ·..,po ndin~ funr tions f,
in, in .u~rt, and rem ove.

CI\'Er\ (.r, r , y) - bkltclatio n:-, hip(.rl. r, y). wlwrc .r 1 is an t');prt· i .. n rPru·att• nating th ('

string 'iuput' to the \'a lue of z (i.<·. GIVEN is a predicate ~tating that a tupl e

belongs to the input pa rt of the virtu al data base).

HESULT (z, r, y) - analogou, ly.

TE~fP (z, r, y) - J..,aH(' Iation!-hip(z , y, z} (to Ue u:-.('d for lup lt-!1 whirh arc neither in the
input pnrt nor in the result part of thl' virtual data base.)

·1) The query q.

The fvl lowing ~e rrt('n cc abbreviatc·~ tllf' a'~erti,ma l syutn.x of th t· quc·ry and is com
po:-,cd of clausrs (marked c.) , each of whi rh i~ pru('ded hy a cOIIIIII<'IIt (rndoscJ in

;• ... • /)outlining the !"uba ... sertio n rxpre~-.l·d by the C'lau!'IC. Ttl!' n :lfl\ ('!'o of tl1c unary n·la
tions (categories) of the virtual data base arc gi\'cn in <•nlargcd it:d i .. .,.

289

/' C0 and C 1: there is a temporary object encoding the whole input data base • f

/' C0: there is a temporary object encoding the empty set • /

TJ>MP (0-codc 'encode3 a 3ubut of the input db? and

;• C 1: for every existin& code of a aubset and for every triple in the input clb, th ('rf'!: i3 a

trmporary object encodi ng that oubset enriched with this triple 'f.
v~r.tcode, z,y,r

;r TEMP (sctcode 'encode3 a 3Ub3et of the input db?
and GTVEN (z,r,y) then
TEMP (inmi (•r.tcod< ,(r '(• • y))}

'encode3 a 3Ub3et of the input db ? and

/' C1: there is a temporary object which equals / (the encoding of the whole input data

I""'); this object should encode the whole result '/

\lonputdhcode

if (\/z,r,y if GJVEN(z,r,y) then
lsTrue(in ((r ' (z 'y)), inpuldbcodc))}

thrn TDIP (I (inputdbcodc)

'e ncode3 a 3ub .. et of the result) and

/' C,: tloe rc•ult is actually what is encoded by the above o~ject '/

V •clcodc

if TEMP (scteode 'encode3 a subset of the resu lt)then

/' C3. 1: the encoded se~ is either empty or contains a resulting triple 'f

((lsTruc (•clcodc = 0-codc) or
J z,r,y (RESULT (z r y) and

lsTrue(in ((r • (z ' y)), u tcodc)))) and

j• C32: inductively, every tripl e contained in the set mu!!.L be in the r e~m lt ; but

using the above we invert this thus: • f
\/z , r.y

if HESULT (z r y) then

TEMP (remove (ulcodc, r • (z • y))
'encode3 a 3Ub3et of the re3ult?l

l 290

;, l l.ot q he the srmantics of q. The fol lowing proves tho.t q = </>.

l.rt idb E ID/J. Conoidcr two ca.'IC.:

(i) O{idb) is undefined.

It has to be show n that q(idb) is also undefined. A'l.•nme the contrary. Then there
exists vdb E !Dn soti•fying the a!<.•crtion and containing idb. lly definition of the
"parallel and", all the four dlluscs are interpreted to true for vdb. C

0
(\ C

1
imply

inductively that there exists inputdbcode = tr(idb) in vdb. Thi< and c, imply that

there is / (inputdbcode) in vdb. Thus /(lr(idb)) is defined and "" is ¢{ idb) in con
trndi<tion to the a!<.•umption. Thu• q(idb) is undefined.

(ii) ¢{idb) is well-defined (not ..L).
Let ••db be as follow.: its input and resu lt parts are idb and ¢{>db) respectively, and
its remainder consists of two instantaneous unary rel atio ns: 'encode~ a .sub.set of
th e input db ' is {tr(S)lS ~ idb}, 'encode3 a subset of the result ' is
{tr{S)l(S ~ ¢{idb)} .

vdb sa.ti:dles the a~rtion. It remains to show that every o ne of it~ proper aubsc lft
containing idb contradicts the as..~rtion.

Aotsurne the contrary. Let. idb c; vdtl C vdb ao t.hat vdll docs not routradict the
as.serlion. Then the interpretation or the as.scrti~n for vdll is true or undefined.

Consider both cases:

(a) The interpretation is true. Then idb is the "input pa rt" of vdb' and a ll the four
clauses yield true for vdb'. C0 f\ C, imply that the instance or 'encodes a
subset of the input db ' in vdb' includes {lr(S) l S ~ idb }. Thus, tr(•db) is
contained in this instance. Then, by C1, f(tr (•db)) is in the in, ta nce of

'encodes a subset of the result'. Then, by C3, the result part ind udl's ¢(•db)

and thr ins tance of 'encodes a 3Ub3et of the re3u/t ' inrludcs
{tr (S)IS ~ ¢(idb)}. Thu•, t•db ~ vdb ', in cont r~diction .

(b) The intrrpr.tation is undefined. Then, by definitio n of "pa r.llcl and" at h·ast
one clause yields undefined for vdb' and no clause yields jat>e . All the clause•,
excrpt C', involve only to tal fun ctions. Thus, C0, C1 and C3 yield true and C

2
yields undefined.

The "input part" of vdb ' is idb (otherwise the assertion wou ld yield ja t.oe). T hi•
and Co f\ C 1 imply that there is tr(idb) in the in• tance of 'encodes a 3ubut
of the input db '. Dut f(tr(idb)) = tr- 1(¢(idb)) i• defined. (Pos.<ibly there ;,
another sc tcode in the above relation's instance euch that f(M:lrode) is
undefined and sctcode encoJ cs a set containing all the triples of "the input
pa rt".) After the resolutio n of quantificat ion, c2 is a co njun C" tio n o f many

clauses, none o f which yields fal>e (otherwise C, would yi eld fal.c). Thus, since

291

f(tr(idb)) is defined , the su bclause for tr{•db) must yidd trur. TJ.u,, f (tr(idb))

i~ in the in~tance o r 'encod~, a ~ub.,ct of th e re.,ult '. C rml inning tlw rf'a Vl n

ing analogous to that of (a) , we get: l'db ~ vdb', in analo~ou~ ro ntradi rtion.

n. T he complet.enCM or determiniet.ic quer ies.

Theorem. The sublanguage of L conla.ining only dclt'rmini!'ltic qurrir!ll i~ i\I"D nb!40iut ,.. Jy

romplctc.

!'roof rollowing the proof or the previou• theorem, we find that if I here is !'db' satbfying

the as.'le rtion , then vdb ~ vdb'. Thus, no other but vdb can be chosen; "" thr query is deter

ministic.

C. AlmOI!It-completeneea of The Firot-Order Sublanguage

I shall prove here that any query can be stated so that relations are named only by con
stants, unless the query must deal with infinitely many relevant relation-names (which usually

would be meaningless in an end-user's query).
p

Definition. A set S ~ D contains all relation nameo releva nt foro: IDD - IDD iff:

{ r I :'.lidb E dom(</>), ::lz,y ED : (z r y) E ¢{idb)} ~ S, i.e ., S contains every relation
name appearing in aome output, and

for •very idb E !DB

¢{idb) a ¢{idb- D X(D-S) X D)

("a" means that either both sides are undefined or they are equal).
p

Definition. A funetion </>: /DB - IDD has a finite set of relevant relation-names iff there
i• • finite set which contains all the relation-names relevant for </>.

1\'ote: Transformations which do not have such a finite set intuitively do not represent
•rerific need• on the applioation level but rather somrthing on the OD~!S level. For example,
ro py the whole data base, estimate its extent, list its relation-names.

Theorem. The language L' (i.e ., tho~ queries of L which usr o nly ca nst ant!" as n:..mcs of
rel a tio n) generates all the partial computablr functions from /DB to IDD having finite sets of
rrlf'v ant rtlation-names.

!'roof Let o be a partial comput•ble fu nc tion from /DB to /DB having a finit e set S or

rclrvant relation-names. Denote the ('h·mcnh or s by 'I• ' 2·····'"' F'rom the SLTU C" Lure of the

flllf'TY q defined in' the proof of the princip:t.J comp)rtcnc!'.S theorem, obt:t.in a query q'l by

T•"·olv ing all the quantifications of thr variable "r". Thus, "\lr r" is transformcd to

'\ f\ ' : f\ ... I\ r,." whe-re r, is r in which r is sub!'l titutrd ror the constant repres<' nling r,.

(Hr. r··ct ivcly , . lr r" is transformed to "r, v ... v T" ".)

, ..
292

Let q2 be the semantics of 92• I shall show that 9' = ~.

Let idb E /DB .

Consider the fo llowing cases:

1) All the rrlat io n-names appearing in idb belong to S. So do the rclat ion-n•mcs or ¢{idb),
provided this exists. The assertions 9 and 92 are interpreted equivalently, and thus the

queries must yield the same results {or undefined).

2) There is a relation-name r0 appearing in idb and not belonging to S. Following the proof

or the principal completeness theorem, we find that q'(idb) = ¢(idb - D X (D-S) X S)
which in turn, by the condition or the theorem and the definitions above, is equivalent to
¢(idb).

Thus, in every case ¢{ idb) =< 9'(idb).

Ap~ndix 3 : Language Submodele with Restriction. or Value Calculation; Lt.omor
phism or Queries.

The purpose of this appendix is to clarify the result 6 in section 1.

Finite set of ba.sic functions without recursion can be eunicient to have the complete
power of the language. {The rest of partial recursive functions (ID '-DJ) ran be exprc"-"Cd
u•ing the postconditional semantics of the query language): Unlik e that ''saving'' , in the fol
lo wing I wish to actually restrict the power of the language by removing from it the ability to
~p~"ri fy computations which are ext remely unnatural and ahould be fo rLiddcn in a user's ft)'!t

l£'01 of concepts. The general case needed to be investigated is the one in which a user i~ pr<r

vidrd wath a family of functi ons on values con~idered legal for a given data base o r a data

base management system. Thi~ family does not necessarily cont ain a basic S<' l ,mfficicnt to
cr1 ·a tr all th e computable functions over the domai n of objects using the power of first-o rder

predicate calculu~. Usually no computation on abstract objects in the binary mode l of da ta
b~!'I'S may be regarded m<'aningful.

Families of ~pcci&l intrrest arc those differentiating between ab.<t trart obJalJ Rnd concrtle
t a l~t-' . On the subdomain of the abstract objects there are only two rn"aningful functions:
t hC' r haracteristic fun ction i.! -abJlract giving true fo r abstract objt't' ts and falJe fo r concrete

ndue, and the binary functi on equality giving lrut or faiJt fo r pairs of objrch . Th e n·~ t or
urh a fa mily is a basic ~ct or functiOII:t on the subdomain o r concrete \'&lurs. Using th i~ basic

!'f'l and a program cont ro l powe r, every com putable function o n tht' subdomai n of va lue!\ can
be f'Xp rcs.o;ed. (Instead of progra m cont ro l po wer, a first-order prt·dirnte ca lcu lu!l can be us.:d.)

In the fo ll owing, let ~ be a family of operations on the set o f objec ts D, i.e. function~

frotn D # to DU{undefintd}. (~is no t nl'ces.sa rily a specia l case like dc~c ribcd in the pre\·ious
paragraph.) D is assumed to contain {error, true, fa/,<te}.

293

Though binary operations are sufficient to have the complete power of the language, I am

ftirning to restrict the power and to be able to model exactly any practical rest rictio n. That's

"l.y 1 permit here n· ary operations - eome of them cannot be generated from binnry on"s
without choosing them strong enough to permit generation of fun ctions which are beyond a

c..lr~irrd restriction .

),et L• be the language as defined above but using only fun ction symbols from <I> (and no

recursion.)

I claim, intuitively, that L• has all the power reasonable within the restriction of <1>,

including:

(A) the ability to generate every function computable using program control and the set of

operations ~

(b) the ability to generate vertical functions, such as oum or overage of values, i.e . to relate
some objects to applications of functions (a) on sets of values;

(r) the ability to create new objects, including abstract objects:

(d) the ability to specify every data base transformation which does not involve computation
of any values, but 4Lbaaable values, and does not condition dn.t& base structure on such

values.

These claims and the following ones will be respecified rigorously after I define isomor
phi .. m of data ba.sc transformations.

In addition to <1>, queries or L• may use constant symbols. But I claim {so far intui tively)

tloAL a query needs to use only those constants which are absolutely relevant to its purpose,

i.t. any program would have to use these constants in addition to <I>.

The u"" of constants is not obsolete, i.e. the use of constants cannot be substituted by (}.
Ar) fun ctions fro m 4>, because:

I) The oct <I> is fixed for the language L• due to global restrictions which in a given data

ha•c or Dll!\1S are desired to be imposed on all queries.

2) f' ot all permittrd constants can be generated from ~ when it is intentionally more re~

tricted. E.fJ ., whrn eocial security numbrrs &rt con!'licierrd, only thri r cornpa ri~on is prr
mittcd in 4>, but we would certainly wish to prrmit a~king a qurry inquiring about any

IIIJ•"cifi c !IIOcial secu rity number, appea ring &s a constant in the query . Usually, the per·
mill C' d cono;tant~ a re all nonab!l. trA.r t ohjrrt!'.

3J If in~tra d of ~ we wert fixing (globally for th e l~tng uftgr) 1'1. rirhN ~d ronti'Lining (or able

to grnC' ratc) alt the permitted ron!->lants, whk h is gt' n<"rally an infinil(' ~ct, th"n evrry
qu1•ry \l. o uld become undesirably Irs.-; fr t·r and more drtrrmini~tic dur to fixed interpreta
tion o f con!St a nls which it docs no t nrcd.

L
:'\ow I shall formalize the discuMion.

/)rfinilion

A bijectio n ' : D -+ D is called a ~ • isomorphism iff

\)(d 1, ••• , d.) ED' \;If E ~ f(t(d 1), ••• , t(d.)) :: t(/(d1, •• • , d.))

(Note : the = symbol covers the case when both sides are un defined .)

Vcfintlion

For a gi\"en instantaneo u• data base db, a <!>-isomorphism t i• called db· pre•erving iff for
<w ry object d appearing in db,

L (d) E d

Dtfinition

A computable data base transformation ,P: /DB :_. /DB is <!>-preserving if for every
db E /DB and for every <!>-isomorphism t, ¢{t(db)) = t(¢{db).

Definition

Two data base transformations t/1,1/J are called ~isomorphi c iff fo r every instantaneous
data base db E /DB there exist• a db -preserving <!>-isomorphism t suc h that ¢{db)= <(II{ db)).

Definihon·

Let C be a finite set of constants, a subset of D . Two data base transformations arc
called (<I>, C}-isomorphic iff they are (<I>UC'}-isomorphic, where C' is the set of constant func
tions, equivalent to C. A <!>-isomorphism ' i• called (<I>,C}-isornorphism if it is a (<I>UC'}
isomorphism.

Propo3it ion

For every finite set of constants C C D, every computable (<I>, C}-prcscrving data base
lrtln o;;formation is cxprcs.-,iblc up to a (4»,C}-isomorphism in L• with C, i.e., for every ~uch
tran '">formation 0 there exists a query q E / ... ~using no other constants but G\ whose semantics

, ·. is (<I> ,C}-isornorphic to¢>.

Corolla ry

Every computable ~preserving dR.tA. base transformation is cxprt'!ii.'iblc in L41 up to an

isomorphism,

i .t ., for every such transform ation tht>rc exists a query q E L who~ semant ics 1/J is $

isomorphic to(>, and the query q U!«l'S no c-onstant :.ymbols.

295

ltF.FF.RENCES

)Ahrial - 71) J .R. Abrial, "Data Scmantico, in J.W. Klimbi e and K.L. Koflr.man (ed<.), Data

Jlo.e Management, North Holland, 197~ .

)Aho and Ullman-79) A.V. Aho, J.D. Ullman, "Universality of Data Retrieval Languages", in
!'roc. 6th A CM Svmp. on Princip/<3 of Programming Languag<3, I 979.

Jlbncilhon • 78) F. Bancilhon "On the completeness of query languages fo r relational data
bases". Proc. Seventh Symp. on Mathematical Foundations of Computr r Science.

Springer-Verlag 1078.

)Codd - 72) E. F . Codd "Relational Completeness of Data Base Sublanguagcs"' in Dolo Da.oe

Sy•tem. (ed. Rustin). Prentice-Hall, Englewood Cliff, N.J. 1972

)Codd- 70) E. F. Codd. "A Relational Model for Large Shared Data Danks." CACM. v. 13 n.

6. 1970.

)Chandra and Harel-80) A.K. Chandra and D. Barel, "Computable Queries for Relational
Data Do.ses", J . of Computer and System Science•, vol. 21, 1980.

)Chandra and llarel -82) A.K. Chandra and D. Harel, "Horn Clau'"'s and the Fixpo int Query
Hierarchy", Proceedings of the ACM Symposium on Principles of Database Sy,tems. 1982.

JG•llaire-78) H. Galla ire and J . Minker, eds. Logic and Dolo Ba.-3. Plenum Press, Ne w York,
1078.

)Gsllairc-81) II . Gallai re and J . Minker, eds. Advanc<3 in Data Ila3< Theory, Plenum PreM,

New York, 1981.

Jl.i - 8·1) Deyi Li . A Prolog Databa.- Sy•tem. Research Studies PreM Ltd, John Wiley & Sons
Inc, Letchworth, llcrtfo rdshire, England. 1981.

)H:,he-85) N. Rishe, Semantic. of Univer•a l /, anguagt.• and l nformatioru Stru cture• in Data

Da.eo. Technical report TRCS85-010. Computer Science Dcp.,tmcnt, t ' niversity of Cali
fornia, Santa Barbara, I 985.

