
{,''}-,ii',

Wiley Encyclopedia of

ElectriOal
"ndElectronics

Engineeri ng
Volume 1B

John G, Webster, Editor
Department of Electrical and Computer Engineering

U n iversity of Wisconsi n-Madison

A Wi ley-lnterscience Publ ication

John Wiley & Sons, lnc.
New York . Chichester. Weinheim . Brisbane . Singapore . Toronto

5OO REPORT CENERATOR

theorems in point stochastic process theory. The Renyi-
Kninchine-Ososkov theorem (8-10) states that the procedure
of "thinning" any point process (under a suitable normaliza-
tion condition) asymptotically leads to a Poisson process. The
Grigelionis-Pogozhev theorem (11,12) states that a superpo-
sition of point stochastic processes (under some not-so-restric-
tive conditions) also results in a Poisson process asymptoti-
cally. The first theorem is effectively used for reliability
analysis of highly reliable redundant systems where system
failures are "rare events". The second one is a background for
the use ofa Poisson process for the description offailure pro-
cess of multicomponent renewable series systems. Discussion
on application ofthese approaches to reliability theory can be
found in Ref. 4. We also find heuristic methods for analyzing
renewable systems there.

For a fairly complex renewable systems like communica-
tion network, ana\rtical results are difficult to obtain. Monte
Carlo simulation can be recommended (5,13) for such sys-
tems. For highly reliable systems, whose Monte Carlo model-
ing takes too much computer time and demands huge com-
puter memory, accelerated methods of modeling have been
developed (4) by various authors.

DATA COLTECTION

We need to pay careful attention to collection and analysis of
field data. Effective reliability analysis ofa repairable system
demands developed engineering intuition and experience ow-
ing to many details. This is the proven way to move from
reliability theory to real-world engineering applications. We
remind the readers of the GIGO (Garbage In Garbage Out)
principle in ajocular vein!

There are several ways of reliability data collection. Be-
cause the availability coefficient ofa repairable system is one
ofthe main reliability indices, statistical data collection begin
as special tests to confirm the required availability level.
Tracking the history of each individual failure is important
because system maintenance (spare supply, operation moni-
toring, preventive maintenance, etc.) are based on current re-
liability data. For these purposes, reliability data must be
supplied with all relevant information: environmental condi-
tion at the time of failure, level of loading, regime of its use
(hot or cold), and so on. Individual failure report should then
be consolidated to obtain statistical summary, which might
be used for reliability analysis of newly designed system of a
similar type.

There are two main ways to collect reliability data. First
is recording the failure history for each type of unit (time be-
tween.current and previous failure plus additional related in-
formation). Statistical inference based on the unit data gives
objective information about the units of this t1pe. This infor-
mation is usually collected by unit vendors. Another type is
tracking each repairable unit: from warehouse (as a spare)
to installation, then to failure, repair and back to sparing or
installation. This records the individual unit behavior placed
in a particular set of circumstances and is useful for recogniz-
ing possible weak points in the system.

Data on mean time to repair may be obtained from special
control experiments or from real usage. The MTTR value is
often assigned to a unit on the basis of previous engineering
experience.

Formal reliability analysis of a complex system is only as
useful as the model and the approximations used. If the ulti-
mate goal of reliability analysis of a repairable system is to
ensure some overall reliability threshold for the minimum
cost, we need to understand which components ate more im-
portant in the reliability sense. Sometimes increased compo-
nent level reliability is more effective than a subsystem re-
dundancy (3). Given a concrete set of objective functions,
ingenious analysis and judicious use of redundancy can de-
liver a reliable (fault tolerant) system with inexpensive and
less reliable components. In our opinion, RAID (Redundant
Array of Inexpensive Disks) is one such example (14).

BIBTIOCRAPHY

1. H. Ascher and H. Feingold, Repairable system reliability: Model-
ing, inference, misconceptions and their causes, in D. B. Owen
(ed.), Lecture Notes in Statistics, Vol. 7, New York: Marcel Dek-
ker, 1984.

2. B. Gnedenko, Yu. Belyaev, and A. Solovyev, Mathernatical Meth-
ods in Reliability Theory, New York: Academic Press, 1969.

3. E. Barlow and F. Proschan, Statistical Theorl of Reliability and
Life Testing: Probability Mod,els, New York: Holt, Rinehart and
Winston, 1975.

4. B. Gnedenko and I. Ushakov, in J. Falk Gd.), Probabilistic Reli-
ability Engineering, New York: Wiley, 1995.

5. I. Ushakov (ed.), Handbook of Reliability Engineering, New York:
Wiley, 1994.

6. D. R. Cox, Renewal Theory, Methuen Monographs on Applied
Probability and Statistics, London: Methuen, 1962.

7. W, L. Smith, Renewal theory and its ramifications, J. Roy. Stat.
Soc. '9er. B,20 (2):243-302,L958.

8. A. Renyi, Poisson-folyamat egy jemllem zese., Proc. Inst. Math.,
Hungarian Academy of Sciences, I (4): ll-24, L956.

9. A. Ya. Khinchin, On Poisson stream of random events, Tfuory
Probab. Appt., l:1-23, 1956.

10. A. Ososkhov, A limit theorem for flows of similar evetts, Theory
Probab. Appl., I (2): 89-101, 1956.

11. B. Grigelionis, On the convergence ofsums ofstep stochastic pro-

cesses to a Poisson process, Theory Probab. AppI., 8 (2):27-Bt,
1963.

12. B. Progozhev, Evaluation of deviation of the equipment failure
flow from a Poisson process, in B. N. Bruevich and B. Gnedenko
(eds.), Cybernetics in the Seruice of Comrnunism, Vol. 2 (in Rus'
sian), Moscow: Energia, 1964.

13. B. Gnedenko, I. Pavlov, and I. Ushakov, in S. Chakravarty (ed.)'

Sfu.tistical Reliabitity Engineering, New York: Wiley (forth'
coming),

14. D. Patterson, G. Gibson, and R. Katz, A Case for Redundant
Arrays oflnexpensiue Disks (RAID), University ofBerkeley Report

no. UCB/CSD 87/391.

Icon Usnaxov
SuueNrna CHexnevenrY
QUAICOMM, Inc.

REPORT GENERATOR

Report generators are tools that provide an effective way to

prJsent data retrieved from databases in a customizable and

printable format. Most of the information in a report comes

lrorn un underlying table, query, or structured query lan-

guage (SQL) statement, which is the source of the report's
data. Other information in the report is stored in the report's
design. Users can manipulate the data, perform necessary
mathematical calculations, create charts, and more. Because
one has control over the size and appearance ofeverything on
a report, an end user can display the information the way he
or she wants to see it. The trend today is to generate reports
via Web browsers, and many businesses and information pro-
viders have regarded the Web as the most powerful and ex-
tensible solution for providing up-to-date information for their
clients. One way to do this is to link the information power of
the database to the Web and to provide a tool to manage all
the information needs (1). Through a Web-based report gener-
ator, one can have access to the database in customizable re-
porting capabilities and to every field in the database. In ad-
dition, because the user can have total access to the database,
he or she can even make custom database modifications using
the report generator. This article reviews the state of the art
of database report generators, particularly the current trend
of the Web-based report generators. The article,first surveys
the field of report generators and discusseg the emerging
trend of the Web-based reporting tools. Then it provides some
definitions and concepts related to our topic and discusses the
principles ofWeb-database interaction to report generators. It
finally presents a case study of three report-generating tools
developed at the High Performance Database Research Cen-
ter (HPDRC) at Florida International University.

The case study later in this article presents three tech-
niques and tools that provide database connectivity for HT,Tp
Web servers running on Unix and Windows. Each tool offers
different ways to construct an SQL query, extract data from a
database, and generate Hypertext Markup Language (HTML)
pages to produce interactive and real-time Web reports. More-
over, each tool follows a different strategy and has certain
characteristics. The first tool, WebRG, allows database inte-
grators to develop Web forms and reports for any open data-
base connectivity (ODBC)-compliant database (most rela-
tional databases as well as Web-ODBC semantic database
management systems IDBMSI). This tool merges HTML docu-
ments with database functions to create a powerful dynamic
access to databases using designer-defined macro files. End
users can then query the database through a series ofprede-
fined forms and reports provided by the application developer.
Thus, users can easily publish data from their databases in
the form of Web-enabled reports. The second tool, Web-SQL,
is most effective for users who are familiar with SQL. Users
can edit an SQL query, process it, and retrieve results in a
tabular format at runtime. These tools are also useful for
batch scripts, for production of printed reports, and for data
import/export and post processing. The third tool, Sem-Ac-
cess, allows end users to have automatically generated forms
and standard or customizable reports derived from the con-
ceptual schema of Sem-ODB. This tool is generic in the sense
that it provides a simple and effective method to retrieve and
manipulate the semantic database and generate reports with-
out requiring predefined forms, and to define quickly report
content and format. At runtime, the Sem-Access extracts data
from the semantic database and generates HTML pages to
produce interactive and real-time Web reports. This applica-
tion is built implicitly for the semantic object database man-
agement system to generate reports and to modify the data of
the database. Furthermore, the end user can extract informa-
tion about the schema of the database itself. This can be en-

a REPORT GENERATOR 501

hanced to include whatever information end users and data-
base developers need to know about the database. T?ris
information is provided through a sequence of the user,s in-
teraction with the information provided though the Web
browser.

The objective of the aforementioned tools is to provide the
user with easy access to databases and to generate forms and
reports across all $latforms without requiring the developer
to code a complex application for the task at hand. This in.
creases the speed of development. In addition, using the Web
browsers, the end user can retrieve data from databases di-
rectly whenever needed and do any necessary modifications
and manipulations of data using the Web-formatted forms
and reports, platform independently, and remotely, without
having to open a different application or learn to use an;rthing
but the Web browser.

Other features of these form and report generators are as
follows:

1. Provide automatic SQL generation capabilities.
2. Allow the operator manually to edit and prepare SQL

statements.

3. Provide access to a large variation ofdatabases by the
use of the ODBC protocol.

4. Allow the operator to prepare, store, maintain, and
modify report templates.

5. Allow the operator to generate reports from the Web
on the fly.

6. Allow the operator to update database reports.
7. Allow the operator to generate multiple queries in a

single report.
8. Provide an authentication against the database from

the Web and present the operator with his or her view
ofthe database schema.

9. Allow import/export and postprocessing of ASCII data.
10. Produce printing-friendly HTML and allow batch

printing of reports.
11. Provide an interactive ad hoc report generator.
12. The generators are Web-browser-independent (i.e., can

be run with any high-graphic or low-graphic browser).

REVIEW OF REPORT GENEMTORS

Linking a database to the Web to generate Web-fonhatted
forms and reports presents a challenge to many companies.
The challenge is to make the data available on the Web effi-
ciently and reliably and to provide the user with the ability
and flexibility to create, modify, and generate forms ancl re-
ports using a Web browser dynamically. Another challenge
is to adopt a Web Interface language that would make data
available on the fly cheaply and easily in the form of Web-
enabled forms and reports. A number ofpublications have ad-
dressed different'strategies to connect the database to the
Web and presented different ingredients of the reporting tool.
In Ref. 2, the author discusses a number products for connect-
ing the database to the Web, some of which offer greater sca-
lability since multiple connections can be run to the database
instead of just one as in the case when the Web server is
linked directly. For instance, IBM offers the Net.data Web
application, a tool to generate reports from the Web. This tool

502 REPORT CENERATOR

is invoked. by using Common Gateway Interface (CGI), Net-

scape API (NSAPI) from Netscape communications, and In-
ternet Server API (ISAPI) from Microsoft Corp.

Report generators are designed taking into consideration

the database in question and the benefits and supported fea-

tures they can provide. We will list some of the report genera-

tors that were developed by different companies and we will
discuss the functionalities and other related features ofthese
report generators. FlexQL (DataFlex Corp.), for instance, is

a ielational database writer that can produce reports from
DataFlex, Paradox (Borland Inc.), dBase (Ashton-Tate Corp'),

Lotus 1-2-3 (Lotus Development Corp.), and Btrieve (Perva-

sive Software Inc.). The generated reports can be viewed im-
mediately as they are created ancl modified. In addition,
FlexQL combines data from different file formats within a

single report. It utilizes the power of SQL with report defini-

tions automatically translated into American National Stan-

dards Institute (ANSI) standard SQL scripts. DB-Tech Inc'
has also developed a reporting tool that can bring reports di-

rectly to the Web and allow the user to interact with the re-
ports. DBPower is another report writer that gives users the

advantage ofa friendly user graphical interface (GUI) for cre-

ating presentation quality reports. These reports can include
images, multicolumn text, and business graphics' DBPower
transforms the details of database structure into a graphical

representation of data called views- Based on the view, a re-
port layout can be built by placing report objects in a report
page. Report objects can be labels, database columns and ex-

pressions, runtime parameters, images, tables, and charts'
Another reporting tool, PLAS (product line asset support),

provides the command center operator the capability to per-

iorm database queries and extract information from the data-

base in a tabular format that can be used to develop reports

and documents. The IQ/LiveWeb and IQ/SmartServer, for IQ
Software, provide query processing, such as searching, sort-

ing, data manipulation, output processing, and production re-
porting, and allow complex and repetitive queries or reports

to be created on the desktop. In addition, they allow users to

1. Query data from heterogeneous data sources'

2. Combine charts, multidimensional crosstabs, and free

from layouts on a single Page.

3. Use parent/child reports to pass results from one query

object to another.

4. Add watermarks, bitmaps, and audio and video clips'

Informix Inc. offers Web-DB Publisher, a report generator

that lets users easily publish data from their databases in the

form of Web-enabled reports' Web-DB Publisher lets users ex-

tract data from the Informix database and generate HTML
pages to produce interactive reports. This is accomplished

lhrough the execution of embedded SQL statements directly
within the HTML pages, which retrieves data dyramically
from the Dynamic Server database. Furthermore, it provides

a set of utilities for database management purposes, such as

creating tables, views, and stored procedures. Additionally,
an SQL scheduler is included to automate the execution of
recurring tasks such as report generation.

EasyReporter, by Speedware Corp., is a tool that allows

nontechnical end users to create and run reports' Reports can

be generated from the midrange system and sent straight to

the printer, or downloaded to PCs for more processing with

popular PC packages such as Lotus 1-2-3, dBase, Microsoft

hxc"l, or Microsoft Word. EasyReporter also creates sophisti-

cated reports using calculations. EasyReporter's data re-

trieval methods are transparent. End users do not need to
know the database file structures' setup. All they need to
know is what information they want and how they want their
report to look.

MS Access, by Microsoft, is a relational database that con-

tains tools to design graphical forms and reports' Users can

use SQL to query, update, and manage the interaction with
MS Access database and other relational databases by the use

of the ODBC. When a user creates a query in query Design

view, behind the scenes Microsoft Access constructs the equiv-

alent SQL statements. The user can view or edit the SQL

statement in SQL view.
RepGen is a powerful report generator that can access and

combine information from a relational database' It allows us-

ers to incorporate data from different modules into simple

"column" reports or more complex "panel" reports' A report

type, "grid" reports, allows data to be analyzed numerically.

A gtaphical "field navigator" allows the user,to locate the in-
for-atlo.t required from the various data tables, while power-

ful sorting and querying functions allow complete and subtle

control oflhe final output. To facilitate the production ofcom-

monly needed lists, RepGen is supplied with a library of over

50 predefined reports. These can be edited or modified ac-

.ordi.tg to the user's own needs' In addition, the user can use

elements of these reports, such as sort orders or queries, as

components of his or her own report definitions' RepGen pro-

vides an exceptionally powerful tool for interrogating a da-

tabase.
The report generator, REPORT, is a comprehensive tool for

preparing a wide variety of printed reports' REPORT con-

iains the tools for preparing simple lists, multilevel hierarchi-
cal subtotals, form lltters, bills and checks on preprinted

forms, cross tabulations, and schedules. REPORT contains

facilities for record selection, sorting, computation, table

lookup, record linkage between files, and complex procedural

togic.'RneORT reaJs the report instruction file (REP) and

pr:od.r.". a r6port according to the instructions found there'

th"r" uru two modes of formatting usable in REPORT:

namely, automatic format and explicit format' Automatic for-

mat mode is appropriate for detailed listings in columnar for-

mat and/or summary reports. Explicit formatting, on the

other hand, is used *h".t ih" p".tott writlng the report needs

to specify the exact output formats.
io soppo"t differenthatabases, Open Database Connectiv-

ity (ODIiCl or Java Database Connectivity (JDBC) have been

or"i to permit a Web server to pass data to any SQL data-

base. Obviously, the only problem with this methodology is-

that the ODBC has to be translated to the native language of

the database. However, ODBC provides a uniform access to

heterogeneous databases. For initance, Aspect Software En$-

neerin! has released dbWeb 1.0, which is a software tool that
provides database connectivity for HTTP Web servers run'

,ri.rg on Microsoft Windows Ni. Essentially, dbWeb is a gate'

uf b"t""., ODBC data sources and Web servers, t"th ::
Porveyor and WebSite. DbWeb offers full insert, delete' ano

update capabilities.

CONCEPTS AND DEFINITIONS

To detail the Web/database interaction to generate t"p::,t:
through the Web, it is first necessary to define and exptarr'

briefly the key concepts that are used in this article. These
key concepts help set the stage for the proceeding discussions.

Hypertext Transfer Protocol (HT"TP). The protocol that is
used by Web servers. Client programs that can speak
HTTP are known as browsers. Web browsers are used
to connect to HTTP servers and to view or retrieve infor-
mation.

Hypertext Markup Language (HTML). The formatting lan-
guage used with the Web. It defines how authors can
format information that will be presented on the Web.
For example, if the user wants to write the phrase "the
database and the Web integration" in the center, he or
she needs to enclose it within two tags: (center) the da-
tabase and the Web integration (center).

Uniforrn Resource Locator: (URL). Provides the ability to
specify addresses for particular objects on the Web.

Cornmon Gateway Interface (CGI). Has some limitations;
the main one is its inability to present dynamic infor-
mation on the Web. Therefore, we needed a way to keep
dynamically changing information current. This re-
quired the invention of the Common Gateway Interface
and Java. A CGI program directs its output to an HT"TP
client. In other words, it dynamically generates HTML
code.

Structured Query Ldnguage (SQL). Provides a way to ac-
cess and manipulate data within a database. It selects
columns and rows in a tubular format that match cer-
tain criteria.

Open Database Connectiuity (ODBC). Provides a standard
interface with heterogeneous DBMSs. The ODBC inter-
face allows applications to access data in database man-
agement systems using SQL as a standard for accessing
data. Thus, a single application can access different
DBMS without targeting a specific DBMS. IJsers can
then add modules, called database drivers, which link
an application to their choice of DBMS.

REPORT GENERATOR: SYSTEM ARCHITECTURE

On the lnner Design of a Form and Report Generator

In this article, we reflect the design strategies ofthree reports
generating tools originally developed in conjunction with the
semantic database project, Sem-ODB. TVo of the tools, Web-
SQL and WebRG, interact with the databases via ODBC-SQL
protocol and, thus, work with any ODBC-compliant database.
Another tool, Sem-Access, is specific for the semantic data-
base as it builds ad hoc SQL queries while guiding the user
through the rich semantic structure of the database schema
(3). The tools can be viewed at http://hpdrc.cs.fiu.edu/demos.

The reporting tools access the semantic database in two
different ways:

We implemented ODBC Application Progtamming In-
terface (API) functions that handle the operations on
the semantic database.

We implemented semantic API functions to handle the
interaction and the data access to the objects in the se-

mantic database. The Semantic API functions is then

REPORT CENEMTOR

Data storage

Figure 1. A representation ofthe layers that interface with the se-
mantic database.

the layer that is used as a gateway from the form gener-
ator to the semantic database, as shown in Fig. 1.

In Figure 1, the form and report generator is used as an
interface tool to build and produce forms and reports as well
as send requests to a remote SQL server. The SQL server
accesses data from databases that are distributed along the
Wide Area Network (WAN). Developers make calls to the
SQL client standard API functions to communicate with the
remote SQL server. The client portion contains enough func-
tionality to retrieve the database schema and construct or
submit SQL statements. The SQL server processes clients're-
quests by making direct calls to the semantic database API
functions, converts the standard ODBC SQL query to the
equivalent semantic API functions, and sends the results
back to the client.

Architecture of the Front End of Database Engines

The front end of semantic database is divided into four layers:

User lnterface layer. This layer defines the user interface
for our front end.,It includes the following three components:

l. Forrn generator. Allows users to create, design, and
modify forms.

2. Report generator. Gives the user the ability to create,
modify, and print reports.

3. Query. Provides user the ability to generate ad hoc
queries.

1.

2.

REPORT CENERATOR

Conceptual Layer. This layer defines the conceptual data
types that are needed by the user interface layer. These con-

ceptual data types include the following:

l. Fortn. A form is based on a query, and it has the format
information needed for creating a form-view and some
basic control methods in order for the user to browse
the records through a form.

2. Report. A report consists of queries and format (or

structural) information needed for creating a report.

3. Query. An SQL query such as SELECT, DELETE, iN-
SERT, and UPDATE.

4. View. A view gives a partial information of a schema or
a subschema.

We can look at these concepts as a group ofobjects that work
interactively with each other, transform operations from the
user interface layer to operations of the data model layer, and
pass results from the data model layer to the user interface
layer.

Data Model Layer. This layer defines the semantic data
model needed by the upper layers. It interacts directly with
the Sem-ODB engine, gets all the information needed by the
upper layers, and structures them together. This layer con-
sists of objects needed to access the Sem-ODB, such as

SCHEMA, DATABASE, CATEGORY, ANd RELATION.

Front End: Database Engine lnterface. We have defined an
abstract layer between the data model layer and database en-
gine to tolerate any modification of the engine's interface in
the future. This can also bring a benefit such as a uniform
programming interface for the front-end product, an idea sim-
ilar to ODBC. This architecture is shown in Fig. 2. The data
access functions to the database can then be partitioned into
three distinct areas: client access, application server, and
data source, as shown in Fig. 3.

The SQL Query Builder gives the end users the ability to
aceess database schemas and build various SQL statements.
The user does not need to have any background knowledge of
the database schema or to be previously exposed to the SQL
world. The SQL query builder provides intuitive methods to
access in a constant time algorithm any schema objects and
data on the remote database. The SQL query builder walks
the user through a sequence of interactive screens. After
query building is done, the user can submit the constructed
query t9 the remote SQL server where results are transferred
to the client's desktop. The query builder gives the user the
illusion that the query is executed locally because of fast re-
sponse time in query generation and screen navigation. The
form,lreport designer gives the users the opportunity to design
customized forms and reports on the fly. Syntax verification
ahd formatting is done locally on the client side without con-

sulting the server. This results in a reduction in the amount
of data that transfers between the client and the server. The
form/report presentation is responsible for displaying the out-
puts resulted from executing forms or reports on the server.
The server sends the results back to the client where results
are formatted according to the specification of the forms and
reports.

The server is composed of four components: SQL Query Ex-
ecution, Form/Report Formatting, SQL Generation, and Data

Access. SQL Query Execution is responsible for executing
SQL queries supplied by the clients. Form/Report Format
reads user specified templates, parses the lines in the tem-
plate file, and creates an HTML formatted Web page. The
SQL Generation component is responsible for generating SQL
queries based on a set of commands supplied by the clients.
Finally, the Data Access component is responsible for ac-

cessing data from databases using ODBC drivers or by mak-
ing a direct call to the semantic database engine.

REPORT.CENERATI NG TOOTS

The recent popularity of the World Wide Web (WWW, or Web)
has created a gleat increase in demand for applications that
support access to databases from the Web. The purpose of
these applications is to enable users to access databases re-
motely and to generate Web-based forms and reports in a sim-
ple and efficient way. That is, the user should be able to ac-

cess or manipulate the data of a database without having to
write a complex application that would use database APIs for
every specific task. A powerful solution to this is to use the
database as a back-end or data source for Web applications
and provide a set of functions that would interface with the
database and incorporate those functions with the HTML
statements (4). Combining the Web with the database maxi-
mizes the strengths of its components and achieves two goals:

1. From the application developer's perspective, this is er-
gonomic since the HTML is the formatting language
that is used with the Web and most programmers are
acquainted with this language. In addition, it offers
cross-platform compatibility and high-speed prototyping
capabilities.

2. From the end user's perspective, it offers easy and ergo-
nomic access to databases and manipulation of data as
well as generation of database reports.

This section describes the underlying theory and tools used
to create the Web-based forms and reports generators, using
as a case study our tools WebRG, Web-SQL, and Sem-Access.

Basic Theory

Although different methods have been proposed and used as

a means for integrating the database and the Web in order to
generate reports on the fly from the Web, our tools used CGI
to link the database and the Web. The underlying key to data-
base integration is to create an application that runs on the
Web server, connects to a database through an SQL server' per-
forms a specific operation such as SQL processing and report
construction and formatting, and outputs the results in an
HTML format. Integrating this application with CGI creates
an interface that can send the output of a database query to
the client. This is achieved in seven steps, as shown in Fig. 4'

1. The client machine on a Web browser requests informa-
tion from a URL. This URL is the home page for the
databases that are provided to the clients. After the
page is retrieved, the client can select any database
(usually by a click).

2. The Web server receives the request from the client and
runs an instance ofthe requested CGI application-

3. The CGI application establishes a connection vrith the
SQL server and sends to it the SQL statement.

4. The SQL server'executes the specified SQL statement
from the specified database.

5. The SQL server retrieves the output ofthe SQL query
sent back fror4 the database.

6. The SQl'server then relays the information back to the
CGI application. The CGI program does a further pro-
cessing and mdssaging to the data, such as adding
HTML codes that the browser requires to display the
data before it is returned to the client.

7. Finally, the Web server sends the results that were dy-
namically generated by the CGI application back to the
client. The data returned to the client might be a list of

REPORT GENERATOR 505

User interface layer

Conceptual layer

Data model layer

Figure 2. Architecture of the front end
ofSDB.

categories, attributes, and relations ofa specified data-
base or the results of executing the SQL query format-
ted in a Web-basgd form or report.

In addition, because HTML allows words in a text d.ocument
to become hypertext links to other IIRT,s, the CGI program
can output hypertext links that call the same CGI program
with d.ifferent options or other pTogXams, not negessarily CGI,
to do further database operations.

The Web-Wired Database and Configuration

Essentially, the SQL seryer is a gateway between the Web
server and the ilatabase Fource as well as a gateway between

lnterface between SDB engine and front-end product

Multiple
user

desktops

Forms

Reports

Data storage

Figure 3. Form/report data access and generation.

the ODBC data source and the Web server. The Web server
handles the communications and simply passes the data back
to the client. Multiple instances of the SQL server can be run
by specifring different TCP port numbers.

The Web seryer needs only one connection from the client
to the SQL server. The SQL server, in turn, handles the
transactions with the database transparently. In other words,
the client does not need to worry about how to deal with the
database APIs to complete the specified request. All other cli-
ents connect using standard browsers that are designed to
handle the networking to the Web server. Therefore, the
graphical user interface and other networking drivers have
already been provided and the developer does not need to con-
cern himself or herself with this aspect in the process of the

REPORT CENERATOR

SQL query
building

Form report
design

Form reporl presentation

SQL query
execution

Form report
formatting

SQL generation Database access

application's design. The developer needs only to manage the
information that is sent back from the SQL server. Figure 5
shows the configuration for a database-linked SQL/Web
server. The Web server and the SQL server can be dispersed
geographically. Upon invoking the CGI application on the
Web server, the CGI program establishes a connection with
the SQL server by specifying the IP address ofthe SQL server
and the database name.

Techniques Employed in the Case Studies

WebRG. WebRG is a Web (Internet/Intranet HT"IP) appli-
cation allowing application designers to create dynamic docu-
ments easily. The documents that are created have the sim-
plicity of HTML and the functionality of SQL and CGI.
WebRG makes it easy to add live data to static Web pages.
Live data includes information stored in databases. Moreover,
WebRG has the functionality of creating simple dynamic Web
pages or complex Web-based applications.

With WebRG, a Web macro interface tool, the database ap-
plication designer defines the user interface as "macro file"
that contains SQL, HTML, and control statements. When the
Web server receives a URL that refers to WebRG and a macro
file, the Web server starts an instance of WebRG and passes
initial information to it, including the name of the macro file.
WebRG reads and parses through the macro and interprets
the statements. After all parsing is done and language envi-
ronment processing is completed, all that remains is an
HTML text that can be processed and interpreted by any Web
browser. Then the HTML text is passed back to the Web
server and WebRG terminates. The resulting HTML text is
passed to the Web browser, where the user interacts with it.
This text may be a form requesting user interaction, which
results in the process repeating itselffrom the beginning.

WebRG can be invoked either from an HTML anehor refer-
ence or form or directly as a URL. WebRG starts when an
HTML form input for a WebRG application is sent to the Web
server. The Web server passes to the WebRG application the
name of the Web macro file, the name of the HTML section
in the Web macro file, and any other input variables.

Web server

Send SQL stalement

Call to the report
generator application

CGI, ISAPI, NSAPI
application

Figure 4. Client/server communication.

raw data lo
application

tr

SQL server
Database
storage

Client on a
Web browser

Execute the
SQL statement

Retrieve raw data
from database

www.cs.liu.edu/-hpdrc/reportgen. html
And send client request

formatted

tr

Send
the

Wan/LAN Wan/LAN

Web server

LAN = local area network

WAN = wide area network

Figure 5. Web/database configuration.

REPORT GENERATOR

Wan/LAN

Sql server

WebRG takes yet another approach to produce the re-
sulting HTML document. In this approach, the appearance of
the interface and the database operations are specified
through a series of user.defined forms. Since WebRG form is
a macro file written in HTML in addition to a set of database
interface statements, HTML lines and all WebRG statements
form a database Web interface language for design. WebRG
forms are processed by an interpreter/compiler to produce a
final HTML document. Thus, a database application devel-
oper can create a series of forms and associated SQL state-
ments for the end user's own needs.

The WebRG can also hook other databases, such as rela-
tional databases, to the Web by the use of the ODBC. The
ODBC protocol permits us to connect to any SQL database by
offering uniform API functions that are supported by those
databases. A query, submitted by the client from the Web, is
transferred over the network in ODBC-SQL format. WebRG
extracts data from the data source by connecting first to the
ODBC driver manager. The driver manager, in turn, loads
the driver on behalf of an application. Then the driver pro-
cesses ODBC function calls, submits SQL requests to a spe-
cific data source, and returns results to the application, Ifnec-
essary, the driver moclifies an application's request so that
the request conforms to the syntax supported by the associ-
ated DBMS.

To use this package, the application designer should have
some basic knowledge about HTML and SQL. After getting
familiar with the WebRG statements, the user then can cre-
ate various form-based Web interfaces to the databases,
which are fully user customizable. Whenever the user wants
to change the interface, he or she has only to change the rele-
vant form specifications. As a result, the WebRG tool provides
a framework for both rapid building and easy maintenance of
Web to. database interfaces. A macro file consists of five prin-
cipal parts that can be interlaced and nested:

1. The Define statements-Declare variables.
2. The HTML Input statements-Specify interactive

forms.
3. SQL statements-Specifu databases operations to be

performed.
4. The HTML Report statements-Speci$' outputs.
5. Control statements-Specify execution flow.

These parts contain familiar HTML tags, which makes
writing macro files easy. If the user is familiar with HTML,
building a macro simply involves adding macro statements to
be processed dynamically at the server. Although the macro
looks similar to an HTML document, the Web server accesses
it through WebRG as a CGI program. WebRG incorporates
data from the database into the Web application. WebRG sup-
ports any SQL statements. Users can connect to one database
at a time for each Web macro. However, multiple queries and
updates can be incorporated in a macro file.

The Define Statements. WebRG lets the designer define and
reference variables in a macro file. In addition, the user can
pass these variables from the macro to another macro and so
on. Macro variables are categoized into three types:

!. (Iser-defi.ned, uariables. These are variables the user de-
fines and references in the macro file.

2. Special macro uariables. These are variables that the
user still has to define but that have special msaning to
WebRG.

3. Impl,icit uariables. These are variables that are implic-
itly defined by WebRG and may be referenced by the
user.

Ttre user must always define the variable DATABASE for each
macro that accesses a database. In addition, the user can de-
fine all the different types of variables supported by WebRG.

508 REPORT GENERATOR ,

Syntax Notation. Items to be replaced are in italics.
{ it.tn I denotes repeatable item, I item] denotes op-

tional item. I item I ltem I itern] denotes a choice of
one of the items. There is a one-line and multiple-line syntax:

EDEFINE varname =
and

SDEFINE { luutnu .

vaiue

= rraluel B)

The value specified can be a numeric value (e.g', 5.21) or a
quoted character string (e.g., ' ',:ohn' ').

HTML Input Statements. The HTML input statements de-

fine the HTML form where end users can specify information
they want from the database by entering values in the form
using their Web browsers. Input is dynamically placed in the
user query. WebRG macros do not require an HTML input
section for simple queries. The syntax is

E HTML-INPUT [{ HTML - t ext - on - mu 7 t i p 7 e - 7 i ne s 8}

The HTML text can contain and allow assigning values to
variables.

SQL Statements. The macro file can have multiple SQL
statements or sections, but each section can contain only one

SQL command with an optional report specification and error
message handler. Optionally, the user can name one or more
sections to call them from anywhere in the HTML report us-
ing the section name. The syntax is

BDB (sgl -se ction-name\ lsqT-Statenent
Report-specification Error-Handlinq el

. Sq1-Statement: any SQL statement on one or multiple
lines.

. Report-specif ication: optional

8DB-REPORT { he ader-s pe c i f i c a t i on r ow-hand1 i ng
foot er-spec i f i c at i on &) \

' Header-specification & footer-specification:
are HTML text, which may contain variables.

. Row-handling:

SROW { II"ML - t ext - t o - d i sp 1 ay - o nc e - f o r - e a c h - r ow -
returned &|

Report specification gives the user the ability to customize
the query's output using HTML formatting. If the macro has

no DB-REPORT section, a default table is displayed with col-

umn names at the top. All text and graphics before the SRow

declaration are header information and are displayed at the
top of output. Upon SQL execution, the column names are
placed in special variables Ni, column-name, and Nlrsr
(number of columns), which can be used in header specifica'
tion and row handling. The row handling contains informa-
tion displayed once for each row returned by the SQL query.
The text in the row handling would normally use variables
containing the iow output: V1. .Vi. Inforrriation, includ-
ing text and graphics, following the Row subsection is footer
information and is displayed once after all rows are displayed.

. Error-handl j-ng: optional

UDB-MESSAGE{ loecooe: " warning message"'-
texic I continuell Idefaulc: "defau]-t
message' 'l %)

The error handler allows the user to customize error and
warning messages from SQL commands. If the user places

this declaration inside a SQL statement, it is local only to
the SQL command in that section. If it is outside of all SQL
statements, it is global to the entire macro' Furthermore, the
user can create a table ofoe codes and specify the information
to display following each DB code. The default error message

is shown when a DB code not in the declaration is returned by
the special variable DBcoDE. For positive DB codes, the user
has the option ofexiting or continuing.

If an enor occurs in a SQL command, the execution termi-
nates and a teturn code is given. The warning or error mes-

sage can be any HTML text, including links to other URLs.
HTML Report Statements. An SQL statement is executed

when it is called by ?ExEc-sQl, in the HTML Report state-
ment. The Report statement is executed when WebRG is
started in the report mode.

?HTML-REPOFtT{ HTML-tEXt {8EXEC_SQL (SOL-

section-nanel HTML-text I
HTML-text &I

The user can specify any HTML and include any variables
from the DEFTNE statement section in the HTML code. User's
input from the HTML form overrides variables in the 8oe-
FrNE statement. When a ?EXEC-SQL line is encountered, the
DB section matching the name or defined variable is called.
Using a variable for the SQL section name is an easy way to
allow users to select a query to perform.

If the user does not specifu a sectiQn name, all unnamed
SQL statements are executed in the order they appear in
the macro.

Control Statements. Control statements are used in order
to control the flow of the execution of the statements in the
macro files. We have three types of control statements: IF
statement, assignment statements, and list statement.

lF Statement. The IF statement allows conditional
branching. The IF statement can be incorporated in the
HTML-INPUT section and the DB-REPORT section. The syntax
of the IF statement is

8rF (expressjon) THEN{ { statementl t}
'{ *elsir(expression) rHEN{'{ statementlz} |
ISELSE{1 staLemenrl %}l ENDrF

One can have zero or more ?ELsrF inside the ?rF statement
and zero or one %ELSE statement. Ihe expression is an arith-
metic expression oftlpe rnteqer, Rea1, or Boolean. state-
menc are executable statements in the same program unit as

the IF statement.
Assignment Statement,

. Assignment Statement: varname = va7ue, Assigns a
value to a variable.

Conditional statements are used to determine if a string is
empty. Conditional variables have two main forms:

. varA:varB?vaiue-1: vafue-2
If varB is defined or not empty, varA--va7ue-1, other-
wise varA:val-ue 2.

. varname = ?vafue
varname is null if vaTue is empty, otherwise varname is
set to rza-lue. The va1ue may contain variables. If any of
the variables is empty, then this is an assignment of the
empty string to varname. Otherwise, vaiue is evaluated
and assig:ned to varnatne.

The application designer needs to replace the quotes with
braces {. . s} if the values cover more than one line.

List Statement. The list statement concatenates several
items with delimiters. This is useful when constructing an
SQL query, header lines, output rows, and so on. The de-
signer can select different columns from a table. The syntax is

*LIST " delimiter" variabLe_name
4 a s s ignnent-sta tments I

The list statement must be defined in the neprwE statement
with the associated values. DeTimiter separates the differ-
ent values that are assigned to a variable.

Examples of assignments and list statements are as
follows:

gHTML_INPUT{

<FORM METHOD-''post'' ACTION=''hLtpz / /
www. cs . f i-u . edu / sdbwww/ example . mac / report " >

Select one or more:

<1NPUT TYPE="checkbox" NAME="cond1>Smith

<INPUT TYPE="checkbox" NAME= " cond2">Lee

<INPUT TYPE="SUbMiT" VALUE=''SUbMit QUEry">
</FORM> 8)

The variable s condL and cond2 are HTML input variables
passed from CGI, usually from an HTML-INPUT section.

tLIST "OR" wherecondition
wherecondition = ? "last name LIKE

"$(cond1)""
wherecondiLion = ? "last name LIKE

"$(cond2)""
WhereClause=wherecondition ? "WHERE

S(wherecondition)": "" Zj
8DB SELECT last-name, f irst-name, birthJear

FROM STUDENT $ (WhereClause)
BHTML_REPORT {
BEXEC_SQL 8i

. The preceding &LrsT statement declares the variable
wherecondition with the OR delimiter.

. A conditional statement is made to the wherecTause
variable. The wherecondition is null if no boxes are
checked (where we supply the user with a form that con-
tains two check boxes with condl and cond2), so wher-
eCl-ause is set to the second value (null). If a box is
checked, Conditions, is defined, then [,/herec].ause is
assigned the first value 4HERE $ (Conditions).

The value of g (whereciause) depends on which two boxes
are selected on the form. There are four possible combina-
tions, which result in four different WHERE clauses:

. Neither box is checked. .lrull

. Only srnith is checked. wHERE last-name LIKE
"Smith"

REPORT GENERATOR

. Only lee is checked. wHeRe last-name LIKE "Lee"

. Both boxes are checked. WHERE last-name LII{E
"Smith" OR last-name LIKE "Lee"

Web-SQt, In many cases, a sophisticated user desires to
send a request directly to the database (e.9., issuing an SQL
request from a WWW client manually). For those users who
have a solid knowledge about SQL, a tool for submitting a
native SQL query directly to the SQL server is helpful. Typi-
cally, the user is first presented with a home page, which dis-
plays a list of database names in addition to their locations
in the form of URL. The user then selects the database name
of interest. Once the user has selected the database name, a
request with the database name and the application name is
sent to the Web server. The Web server, in turn, runs an in-
stance of a CGI prograrn, which retrieves the database
schema. The results are then massaged and sent back to the
client. The user would use the schema information provided
as a guideline to submit an accurate and meaningful query.

In addition, a textbox is provided in the same page to give
the user the ability to type a SQL query. After completion of
the SQL query, the query is then sent to the Web seryer,
where the CGI application resides. The CGI program then
sends the SQL query to the SQL server. The SQL server runs
the query on the intended database and sends the raw data
back to the CGI program. Then the CGI program formats the
data in a table or a Web report format that appears as a grid
of rows and columns, its contents typically filled with the re-
sults drawn from a database table. Those results are then
sent back to the client in a Web-formatted report. The user
may return to the query prompt, at which time the user may
enter a new query. The system can handle arbitrary SQL que-
ries and updates. Binary data are treated differently. When
the CGI application receives a SQL query and determines
that some of the fields that are generated of binary values,
automatically an HTML container for the binary data is cre-
ated. The type of the container is determined by reading the
first bytes of the binary data (i.e., a GIF format).

Accessing the database and query editing and processing
is done at runtime using an SQL engine. Since the tool does

not impose restrictions on the syntax and the semantic of the
SQL query, it is a means for a sophisticated user to write
powerful and efficient queries. Password and gtoup manage-
ment is supported when access needs to be restricted to cer-
tain users or groups. The access restriction is based on the
following criteria:

1. Username/password authorization
2. Rejection or acceptance ofconnections based on Internet

address of client
3. A combination of these

Having a preprogrammed interface (e.g., using WebRG)
creates rich reports that can be tailored to a user's needs and
preferences. However, Sem-Access provides a user-friendly
generic ad hoc query tool that serves all kinds ofusers.

Sem-Access. Sem-Access is a tool that gives the user the
ability to navigate through a semantic database schema,

which causes the system to generate appropriate SQL que-

ries, updates, and reports. It is a generic ad hoc querying tool.

510 REPORT CENEMTOR

Sem-Access builds SQL statements automatically. The SQL
queries are built in a sequence of steps as a result of user
interaction and selection of Categories, Relations, and Attri-
butes.

A simple Web form, which is a static HTML file, contains
a list of databases in addition to the user name and password.
As a result of user selection of database fields, a Web form
allowing the user to enter filed values and operators is auto-
matically generated. The system derives such forms from the
database schema and user's navigation. The user is provided
with a set of common interface elements (e.g., check boxes,
radio buttons, data-entry fields) and a way of binding these
elements. As the user fills the forms, SQL segments are gen-
erated. If the sophisticatecl user wishes to formulate a very
complex query beyond what is generated by filling forms, he
or she can manually add SQL segments in a textbox provided.
Sem-Access then assembles an SQL query and submits it to
the SQL seryer.

All pages, including the front Web form page, are gener-
ated on the fly (i.e. based on current content ofthe database).
Thus, whenever a new row enters the database through a nor-
mal insert operation, any resulting new keywords will auto-
matically appear in the Web page. The returned results are
from raw data stored in the database, and query processing
is done at runtime with the SQL engine.

Queries Generation. A checkbox is associated with each
category name. When the user clicks a category, a new form
is generated detailing the attributes and the relations ofthat
category. Each attribute has a listbox and a textbox. The text-
box allows entering attribute values. The listbox contains
some of the following operators: (r), =, (=r)=r <>, Exact,
Prefix, suffix, and Tnfix. The attributes that are of nu-
meric type have the operators t '<' ', t 'S<", ' '-' ', ' '<=
' ' , ' ')= ' ' , ' ' 1)' ' in the listbox as well as other user-enter-
able operators. However, attributes of type string have the
operators "Exact", "Suffix", "Prefix", and
''Inf ix" in the listbox.

The suffix operator, for instance, is used to indicate the
parts of a database that end with some pattern. For example,
consider the category STUDENT s'ith attributes first-name,
last-name, and bj-rth-:.ear. Suppose the user wants the
list of students whose last name ends with "th." The user
would enter 'th' and click 'suf fix', which results in the
SQL Statement ,,SELECT * FROM STUDENT WHERE

last_name LIKE'tth"'.
The interpretation ofuser-supplied value in an attribute's

textbox depends on user's operation: euery (select, TNSERT,
DELETE, OT UPDATE).

Ifthe user clicks a relation, a new form is generated trav-
ersing the relation to the next category. The related category
is expanded with its associated attributes and relations. For
example, consider the category "STUDENT" and its attri-
butes ' ' first_name' ' and ' 'last_name' ', and its rela-
tions "minor" and "major" with the category "oe-
PARTMENT". If the user clicks on "mi-nor", the category
DEPARTMENT is expanded. The path, in this case the relation
"mj-nor", would be displayed next to each qttribute and
relation to indicate the path that the category is derived from.
The user can continue from the expanded category to expand
more categories in the query tree. A tree of the traversal of
the categories and user previous selections and preferences is
stored in every subsequent page. A tree that indicates the

paths of every derived attribute is kept in every page in order
to improve the processing time for further requests. More-
over, as the Sem-Access application executes, guiding the
user from one entry field to the next and encountering fields
that depend on values from previous forms, Sem-Access car-
ries the information on which the fields depend to the current
page. This nesting goes arbitrarily deep into the form stack,
and the Sem-Access keeps track of the nesting path that is
associated with each attribute. Figure 6 presents the process

of interaction with the Sem-Access interface Web page. It dis-
plays a list ofcategories. The category "student" is expanded
due to its selection. As shown, the "student" category contains
a list ofattributes and relations that are also expandable. The
selection of any of these relations results in the expansion of
other categories that are related to the selected relations.

The following four subsections explain and exemplify algo-
rithms to generate SQL queries.

Semantic SQL Statements. The semantic database engine
system Sem-ODB uses the industry-standard SQL language.
It is interpreted against a virtual relational database making
SQL programs much shorter than for an actual relational da-
tabase. A virtual table is defined for each category C as a
spanning tree ofall the relations reachable from C. Therefore,
joins, the main overhead of a relational SQL program are
needless. Thus, a user can pose an arbitrary query against a
semantic database by projecting on a single category. The tree
spawns direct relations -R and inverse relations 8-. We dis-
cuss the algorithm that is used to construct a semantic SQL
query by prompting the user to traverse a semantic data-
base schema.

SqL SELECT Statement. The syntax of the SQL SELECT
statement is

SELECT attributes FRoM categrory WHERE

conditions.

The semantic database query can access multiple categories
without the need to make join between categories. Therefore,
we enable the user to select only one category from the
schema. For instance, suppose the user marks the checkbox
of the category STUDENT. This will lead to the generation of
the FROM clause ' 'FROM STUDENT' ' . If the user checks the
category sTUDENT and then the relation ' 'minor' ', the cate-
gory DEPARTMENT will be expanded to show its associated at-
tributes and relations on the path ''mj-nor' '. The category
DEPARTMENT is expanded because ofthe direct relation ' 'mi-
nor" from STUDENT to DEPARTMENT. Now suppose the user
wants to display all the attributes of the category DEPART-
MENT; this will result in the construction of the following
query:

SELECT minor- FROM STUDENT

Ifthe user wants to display all the attributes of sruorwt by
projecting on DEP.A,RTMEwI, the following query is generated:

SELECT minor_ FROM DEPARTMENT

The attributes that are checked are treated as parts of the
attributes clause. To illustrate, suppose the user checks
the category STUDENT and the attributes first-name and
lasL-name. The category DEPARTMENT is directly derived
from the relation major. If the user checks the attribute
"name" of the category DEPARTMENT, the following sQL

SELECT query will be generated:

REPORT CENERATOR 511

Figure 6. Sem-Access: Viewing query generation process.

SELECT first_name, fast_name, major-name FROM

STUDENT.

On the other hand, ifthe user types in the textbox associated
with the attribute last-name ' 'Adams' ' and selects ' 'Ex-
act' ' from the listbox, the sQL SELECT query will be the fol-
lowing:

SELECT first-name, last-name, major-name FROM

STUDENT WHERE fast-name = 'Adams'.

We will state some examples to illustrate the generation of
the conditions clause. Suppose we want to get the list of
students'names and majors where students'last names begin
with the letter "A" and they have the computer science as a
minor. In this case, the user needs to click on the category
sTUDENII and checks the box that indicates "A11 Att.ri-
butes" and the relation "minor". As a result, the two
categories STUDENT and DEpaRtMENT would be expanded
with their associated attributes and relations. However, as
has been noted, the attributes and relations of the category
DEPARTMENT would have the path "minor" as an indica-
tion ofthe path where the DEPARTMENT category is derived.
Moreover, the user needs to select ' 'Pref ix' ' from the list-
box of the attribute last-name and type "A" in the text-
box. The user also has to select ' 'Exact' ' from the listbox
of the attribute ''name' ' in the category oepeRrMslit and
type ' 'computer science' ' in the textbox. The generated
query is

SELEET STUDENT-, mAJOT- FROM STUDENT WHERE

last-name LIKE 'Ag' AND minor-rldlrl€ =

'Computer Science'.

suppose we want to retrieve all students whose birth year is
greater than 1970. In this case, we need to mark the ''a1I
Attributes' ' field of the category STUDENT and select , , >
'' from the listbox of the attribute birthjear. Further-
more, the user needs to type 1970 in the textbox ofthe corre-
sponding attribute birEhjear. The following query will be
generated:

SELECT STUDENT- FROM STUDENT WHERE

birthjear > 1970

SqL DELETE Statement. The syntax of the SQL DELETE
statement is

DELETE FROM cateErory WHERE conditions.
The FROM clause is constructed by clicking on a category
name. For example, if the user selects the category names
STUDENT, this will be interpreted as DELETE FRoM
STUDENT.

The conditjons clause of the SQL DELETE statement
can be constructed in two ways.

1. Attributes whose check boxes are selected are treated
as part ofthe where clause. Then an operator is selected
for each attribute and a textbox is filled with the appro-
priate values. For example, suppose that the user se-
lects the attributes first-name, last-name ofthe se-
lected category sTUDENT, selects the quantifiers
"Prefix" and "Infix", and types "A" anil
"Brown" accordingly. In addition, suppose that the
user selects the attribute ' 'name' ' ofthe category DE-
PARTMENT derived from the relation ' 'maj or ' ' , selects
the operator ' 'Exact' ', and types ' 'computer Sci-

512 REPORT CENEMTOR

ence ' ' in the corresponding textbox. As a result of
these actions, the following SQL DELETE statement will
be constructed:

DELETE FROM STUDENT WHERE fiTst_name LIKE
'A8' AND last_name LIKE 'ZBrownS' AND
major-name = 'Computer Science' .

This query states that we want to delete students whose
first name start with , *A, , and last name contains
"Brown".

2. Tlte same query can be derived without having the user
check all the boxes ofcertain attributes. In other words,
by only typing some of the information in a textbox that
belongs to certain attribute, the same action results by
considering the information in the textbox as part ofthe
WHERE clause. Considering the previous example, where
the user selects the attributes first_name and
last-name of the category STUDENT, but instead the
user types "computer science' , in the attribute
''name" ofthe eategory DEPARTMENT without having
to select the attribute , ,name, , , the same previous
query will be generated.

SQL UPDATE Staternent. The syntax of the SQL ITPDATE
statement is as follows:

UPDATE cat.eg'ory SET aLtrjbuteT:vaLuel l,
attribute2=vafue2. .l WHERE conditions.

The category clause is constructed similarly to the construc-
tion of the categories that we have already explained in the
preyious sections.

The set clause is a list of one or more attributes and val-
ues. In general, any attribute that is selected, whether the
corresponding category is derived or directly implied (se-
lected), becomes part of the set clause. However, the opera-
tors that are associated with the attributes are disregarded
and not treated as part of the set clause. The reason for this
is that the syntactic structure set clause has the attributes
and the values separated by the operator , ' =, ,. This opera-
tor 1=; is the only valid one in the set clause. Therefore, the
selected attribute and the value ofthe corresponding textboi
are taken into consideration.

The copd-itions clause is constructed by typing data in-
side the textbox that belongs bo some attribute without check-
ing the attribute's check box. That is, the check box ofa par-
ticular attribute should be unchecked and the user should
select the appropriate value ofthe corresponding listbox and
enter data in the textbox that belongs to that attribute. To
illustrate, suppose we want to change the major of the stu-
dgn! "James Fox" who was born in 1970 to Chemistry.
We need to select the attributes first_name, lasl_name,
birth3ear and set their corresponding values , , James : ,

,
"Fox", and " 1950,,. Then, without checking the attri-
bute major, we need to type the value , , chemistry, , in the
field corresponding to the attribute , ,name, , ofthe category
DEPARTMENT derived from the relation major. In addition, the
user selects the operand , , =, , from the listbox that corre-
sponds to the attribute ,,name,,. The following UPDATE
statement will be generated:

UPDATE STUDENT SET major_name = ,Chemistry',
WHERE first_name = ,James,, last._name = ,Fox,,
birth3ear = L970.

Ifan attribute should be both a part ofthe set and condi-
tjons clauses, the only way to specifr a condition on an attri-
bute that is also set is to put it in the ,,Other Condi-
tions' ' box provided.

SQL INSERT Statemcnt. The SQL INSERT statement has
two forms:

]NSERT

and

INSERT

VALUES

SELECT

The tnsnRr INTo statement enters data into a table one re-
cord at a timg. The syntax is

fNSERT INTO category (attributel,
attribute2,. .) VALUES (va7ueL,
vaLue2, . . l

The basic format of the TNSSRf . . VALUES statement adds
a record to a table using the columns the user gives it and
the c6rresponding values he/she instructs it to add.

We have chosen not to discuss the generation ofthe <cat-
egory> clause due to the notable similarities found between
the INSERT and the UPDATE statements.

The attributes clause is constn-rcted by checking the ap-
propriate attribute(s) of a particular category and entering
data in its corresponding textbox. So, if the user checks the
attribute ' 'fast_name, , and enters , , Smith, , in the text-
box that relates to a particular attribute, the following rn-
SERT. .VALUES statement will be generated:

INSERT INTO STUDENT (last_name) VALUES ('Smith').

The rnsnRt. .vALUEs query is useful when adding single
records to a database table. However, to enter substantial
amount of data"efficiently, it is necessary to use the rw-
SERT. . SELECT statement. The syntax of the rNsent.
. . SELECT statement is

INSERT INTO cateEroryX (attributel_,
attributei2,. .) SELECT attrjbutes FROM
categoryY WHERE conditions.

So the output ofthe standard SELECT query is then the in-
put of categoryX.

The SELECT statement embedded in the INSERT.
SELEcT stat6ment is obtained by having the user enter the
sELEcr statemeht in the big textbox that is provided at the
bottom ofthe page. This textbox gives the user the flexibility
to specify more sophisticated query.

Batch Printing and lmport/Expqrt of ASCII Data

Report-generating tools must be able to supply three kinds of
output: viewable,'lprintout, and ASCII data for postpro-
iessing. Each oirtput should be procurable either interactively
or via batch script. Since printing is a vital feature of report
generators, users should be able to print the results retrieved
from the database in'a nice and readable format. We have
empowered users with various ways to print forms and re-
ports. For instance, interactive procurement of printing can
be accomplished using the print facility of Web browsers. Our
reporting tools offer the following features:

1. Our tools make sure that directing outputs to a printer
results in a nice printout (with other arbitrary HTML
text, this is not the case as a document may be nicely
displayed but not designed for properly paginated print-
out).

2. Batch printing is accomplished via a script that submits
a request to the server via a non-interactive browser,
like "1ynx-dump", and sends the output to the
printer.

3. For postprocessing, the user can obtain a standard
ASCII form ofany report.

.

The data retrieved from submitting an SQL query to the
database is composed of columns and rows. Every cq,lumn rep-
resents an attribute ofa table in a database. In ASCII rendi-
tion, tabs separate columns and new lines separate rows. The
structure ofthe standardized ASCII file is

document-tit7e
= /* a delimiter */
7 ines - o f - c oTumn- he ade r s': /* a delimiter */
data

The data portion ofthe file is the rows results retrieved from
the database. Users can then feed this file to any application
tool that would do further processing of the data.

coNcrustoN

Combining the Web technolory with the strengths of database
presents a great challenge. The challenge is to provide an ef-
ficient, fast, and flexible method to link the database to HTTP
servers and to offer a friendly user interface to generate inter-
active Web forms and reports. Three tools, developed in our
labs, were discussed in this article as case studies, each tool
with a different flavor and functionality. The reason for hav-
ing different techniques is to accommodate all types of users
who would utilize the form and report generator. One tool,
WebRG, uses the HTML power and integrates it with SQL
query ability. In WebRG, the desigrrer defines forms and Web-
based reports by constructing macro files. The macro file con-
tains a series of macro language and HTML statements, in-
voked upon executing the WebRG application. We also pro-
vided open data access solution through ODBC support.
Another tool, Web-SQL, allows users to generate standard
formatted reports from the Web. This is accomplished
through the execution of embedded SQL statements directly
within the HTML pages. The user can write SQL statements
based on the schema provided as a guideline and against
which to pose queries. Yet another tool, Sem-Access, allows
users to traverse a semantic database schema while automat-
ically generating SQL queries. This eliminates the users hav-
ing to struggle with the details of database design or having
co learn SQL. Sem-Access provides ttre users with a view of
bhe database schema. A view gives a partial information of a
schema that is defined by the administrator to be granted to
every particular database user. The view is deterrnined upon
authenticating the user name and password against the users
lefined in the database. The user then can construct Web re-
rorts by interacting with the schema components (categories,
attributes, and relations). The tools then submits SQL SE-

REPORT GENERATOR 513

LECT, UPDATE, DELETE, or INSERT statements. This empow-
ers the user to create reports without programming.

Accessing data from the Web is one way to increase the
availability of.data. However, data should be retrieved in a
timely marurer, a feature that is important to decision-mak-
ing systems. Some queries require a large riumber of joins.
Performing those complex queries on large databases can be
very time-consuming' (5). Distribute those databases arnong
multiple machines, and the problems multiply. Multiple ma-
chines give us the ability to execute many operations in paral-
lel, and we are now beginning to encounter multiprocessor
computers that do parallel processing themselves, as well as
new microprocessors that employ on-chip parallel pipelines.
To take full advantage of this new multiprocessing capability,
sofbware should take advantage ofparallel processing, a fea-
ture that is beginning to appear. The major database vendors
are now offering parallel versions of their database engines
(6-8). The goal is always to achieve a radical speed increase
in query response. The area ofparallel queries offers different
strategies and theories to determine the most efficient way to
execute queries. Our report generator offers a feature that
allows clients to view the partial results ofquery as the query
is executed. In other words, as the query is executed on the
SQL server, the application seryer retrieves the partial re-
sults and sends them to the clients without having to wait
until query execution is complete.

ACKNOWLEDGEMENT

This work was supported in part by National Aeronautics &
Space Administration (NASA) (under grants NAGW-4080,
NAGS-5095, and NRA-97-MTPE-05), National Science Foun-
dation (NSF) (CDA-9711582, IRI-9409661, and IIRD-
9707076), Army Research Office (ARO) (DAAH04-96-1-0049
and DAAH04-96-1-0278), US Air Force Research Laboratory
(AI'RL) (F30602-98-C-0037), US Dept. of the Interior (DoI)
(CA-5280-4-9044), North Atlantic Treaty Organization
(NATO) (HTECH.LG 93L449), and the state of Florida.

BIBTIOCRAPHY

1. W. Bosques et al., A spatial data-retrieval & image processing ex-
pert-system for the World-Wide-Web, Comput. Indus. Eng., 83:-
433-436, 1997.

2. J. K. Whetzel, Integrating the World Wide Web and database tech-
rtology, AT &T Technical Jo u r nal, 75 : 38-46, 1996.

3. N. D. Rishe, Database Design: The Semantic Modeling Approach,
New York: McGraw-Hill, 1992.

4. L. Bruno, Web application servers dynamic dividends, Data Com-
ntun. Int. V51:38-42, 1997.

5. M. J. Tucker, Managing your Web-to-database performance, Data-
rnation, 43: 106-108+, 1997.

6. K. Watterson, SQL Server 6.5: one for the Web, Datamation, 42:
57-68+, 1996.

7. R. Grehan, Building.SQl front ends, Bytc, 18 238-242+,1993.
8. O. Sharp, Databases get objective, Byte,2O:13-16+, 1995.

Napnrar,I Rrsns
Kuer,Bo Nesoulsr
Ouru Wor,rsoN
Florida International University

