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[57] ABSTRACT 

The present invention relates to a system and methods for 
?ne-granularity concurrency control in a parallel database. 
Very ?ne granularity (at the level of B-tree records) is 
implemented in a B-tree. Our method applies to B-trees, 
B-trees With variable keys, and their applications, such as 
semantic and object-oriented databases. Our method 
involves accumulating a transaction and then “optimisti 
cally” validating it, While attaining high ef?ciency With 
maximum semantic safety. “LaZy queries”—an ef?cient 
method for ?nding the intersection of tWo large queries—is 
provided for the system. 

8 Claims, 2 Drawing Sheets 
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EFFICIENT OPTIMISTIC CONCURRENCY 
CONTROL AND LAZY QUERIES FOR B 

TREES AND OTHER DATABASE 
STRUCTURES 

BACKGROUND OF THE INVENTION 

This invention relates to a system and method for guar 
anteeing consistent and ef?cient access to a database man 
agement system. More particularly, it relates to a ?ne 
granularity optimistic concurrency control method and a 
query optimization technique for parallel B-trees. 

Finer granularity increases concurrency by reducing con 
tention among transactions. There is a signi?cant body of 
prior art relating to ?ne granularity concurrency control. 
U.S. Pat. No. 5,247,672 “Transaction processing system and 
method With reduced locking” describes a transaction pro 
cessing system that reduces the number of page locks and 
permits to use ?ner granularity for transactions that read 
large quantities of data. U.S. Pat. No. 5,485,607 
“Concurrency-control and apparatus in a database manage 
ment system utiliZing key-valued locking” describes a neW 
pessimistic concurrency control scheme that improves con 
currency by utiliZing an eXpanded set of lock modes that 
permit locks on the key values. 

In prior art, ?ne granularity required a large amount of 
computational resources to perform the con?ict detection, 
and, therefore, optimistic concurrency control algorithms 
available today sacri?ce granularity to improve the overall 
server performance. U.S. Pat. No. 5,263,156 “Parallel, dis 
tributed optimistic concurrency control certi?cation using 
hardWare ?ltering” describes a system Which offers a hard 
Ware solution to cope With high computational overhead of 
con?ict detection in an optimistic concurrency control pro 
tocol. 

BRIEF SUMMARY OF THE INVENTION 

In this invention We propose an ef?cient optimistic con 
currency control method for B-trees. The concurrency con 
trol method proposed in this invention alloWs to accumulate 
the transactions at the user machines and to perform most 
processing at the user machines. This alloWs us to reduce the 
computational load for the servers and implement a very ?ne 
granularity, thus improving the overall server performance. 
This invention also proposes to use logical clocks in opti 
mistic concurrency control protocol, eliminating the need to 
use synchroniZed physical clocks in con?ict detection. 
A frequently eXecuted query in databases is to ?nd an 

intersection of several other queries. For eXample, a library 
database user may need to retrieve all papers that have 
certain keyWords. The simplest Way to eXecute the intersec 
tion query is to actually eXecute all sub-queries and then ?nd 
the intersection of these sub-queries. The problem arises 
When one or several sub-queries are very large, While the 
?nal result is small—the straightforWard algorithm is inef 
?cient because of the large computational and memory load 
necessary to store the intermediate results. A number of 
query optimiZation techniques that use statistical knoWledge 
about the data are knoWn. For eXample, if one of the 
sub-queries is likely to produce a small output, it makes 
sense to retrieve this query ?rst, and then obtain the inter 
section by simply checking the membership predicate of the 
?nal set for each member of the small sub-query. The present 
invention proposes a method called “laZy queries” to ?nd the 
intersection of the sub-queries in a very ef?cient Way, Which 
does not require full eXecution of large sub-queries nor does 
it require any statistical knoWledge about the data. 
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2 
These methods are applied to a parallel B-tree With 

variable length keys and a semantic binary database system. 
Our method also applies to B-trees With ?Xed keys and their 
applications, such as object-oriented databases. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The improvement of the present invention and its advan 
tages Will become more apparent from the description in the 
neXt section of the preferred embodiment in Which: 

FIG. 1 shoWs the eXecution of tWo laZy queries and 
demonstrating its typical optimiZation that reduces the 
server traf?c from 20,000 strings to just 90 strings after 
optimiZation. 

FIG. 2 shoWs the Work of our optimistic concurrency 
control algorithm With logical timestamps, and novel vali 
dation method. 

DETAILED DESCRIPTION OF THE 
INVENTION 

De?nitions 

B-tree is a data type that stores a large number of database 
records (strings). B-tree interface alloWs its users to insert, 
delete, and retrieve a number of strings. For eXample, a 
B-tree can be a data type de?ned as a leXicographically 
ordered set of strings With the folloWing operations: 

1. Elementary query (interval) operator 
[1, r], Where 1 and r are arbitrary strings. 

[1, r]S={XES|l éxér}, Where i is the lexicographic order 
of strings. 

2. Update operator. Let D and I be tWo sets of strings: 

S+(I,D)=(S—D)UI (i.e., We remove a set of strings D and 
insert a set I instead). 

Query OptimiZation 

We Will demonstrate the bene?ts of our query optimiZa 
tion method by applying it to a semantic object-oriented 
database. 

Introduction to Semantic DBMS 

The semantic database models in general, and the Seman 
tic Binary Model SBM ([Rishe-92-DDS] and others) in 
particular, represent the information as a collection of 
elementary facts categoriZing objects or establishing rela 
tionships of various kinds betWeen pairs of objects. The 
central notion of semantic models is the concept of an 
abstract object. This is any real World entity about Which We 
Wish to store information in the database. The objects are 
categoriZed into classes according to their common proper 
ties. These classes, called categories, need not be disjoint, 
that is, one object may belong to several of them. Further, an 
arbitrary structure of subcategories and supercategories can 
be de?ned. The representation of the objects in the computer 
is invisible to the user, Who perceives the objects as real 
World entities, Whether tangible, such as persons or cars, or 
intangible, such as observations, meetings, or desires. 
The database is perceived by its user as a set of facts about 

objects. These facts are of three types: facts stating that an 
object belongs to a category; facts stating that there is a 
relationship betWeen objects; and facts relating objects to 
data, such as numbers, teXts, dates, images, tabulated or 
analytical functions, etc. The relationships can be of arbi 
trary kinds; for example, stating that there is a many-to 
many relation address betWeen the category of persons and 
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texts means that one person may have an address, several 

addresses, or no address at all. 

Logically, a semantic database is a set of facts of three 

types: categorization of an object denoted by XC; relation 
ship betWeen tWo objects denoted by XRy; and relationship 
betWeen an arbitrary object and a value denoted by XRv. 
Ef?cient storage structure for semantic models has been 

proposed in [Rishe-91-FS]. 

The collection of facts forming the database is represented 
by a ?le structure Which ensures approximately one disk 

access to retrieve any of the following: 

1. For a given abstract object X, verify/?nd to Which 
categories the object belongs. 

2. For a given category, ?nd its objects. 

3. For a given abstract object X and relation R, retrieve all 
y such that XRy. 

4. For a given abstract object y and relation R, retrieve all 
abstract objects X such that XRy. 

5. For a given abstract object X, retrieve (in one access) all 
(or several) of its categories and direct and/or inverse 
relationships, i.e. relations R and objects y such that XRy or 
yRX. The relation R in XRy may be an attribute, i.e. a relation 
betWeen abstract objects and values. 

6. For a given relation (attribute) R and a given value v, 
?nd all abstract objects such that XRv. 

7. For a given relation (attribute) R and a given range of 
values [V1, v2], ?nd all objects X and v such that XRv and 

vlévévz. 
The operations 1 through 7 are called elementary queries. 

The entire database can be stored in a single B-tree. This 

B-tree contains all of the facts of the database (XIC, XRv, 
XRy) and additional information called inverted facts: CIX, 
RvX, and yRl-nVX. (Here, I is the pseudo-relation IS-IN 
denoting membership in a category.) The inverted facts 
alloW ansWers to the queries 2, 4, 6, 7 to be kept in a 
contiguous segment of data in the B-tree and ansWer them 
With one disk access (When the query result is much smaller 
than one disk block). The direct facts XIC and XRy alloW 
ansWers to the queries 1, 3, and 5 With one disk access. This 
alloWs both sequential access according to the leXicographic 
order of the items comprising the facts and the inverted 
facts, as Well as random access by arbitrary pre?Xes of such 
facts and inverted facts. The facts Which are close to each 
other in the leXicographic order reside close in the B-tree. 
(Notice, that although technically the B-tree-key is the entire 
fact, it is of varying length and typically is only several bytes 
long, Which is a typical siZe of the encoded fact XRy.). 

Numeric values in the facts are encoded as substrings 
using the order-preserving variable-length number encoding 
of [Rishe-91-IB]. 

Table 1 summariZes hoW the elementary semantic queries 
are implemented using the B-tree interval operators. We use 
notation S+1 to denote a string derived from the original 
string S by adding 1 to the last byte of S. (For strings 
encoding abstract objects, this operation never results in 
over?oW.) 
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TABLE 1 

Implementation of elementary queries 

For most elementary queries (queries 1, 3, 4, 5, and 6) the 
number of binary facts is usually small. Some queries 
(queries 2 and 7), hoWever, may result in a very large 
number of facts, and it may be inef?cient to retrieve the 
Whole query at once. 

A common operation in databases is to calculate an 
intersection of tWo queries. For eXample, consider a query: 
“Find all objects from category Student that have the 
attribute BirthYear 1980”. This query can be eXecuted using 
several scenarios: 

Scenario 1 
a. Retrieve all persons born in 1980. EXecute an elemen 

tary query “BirthYear 1980?” 
b. For each person retrieved in the step a verify that the 

person belongs to the category Student 
Scenario 2 
a. Retrieve all persons born in 1980. EXecute an elemen 

tary query “BirthYear 1980?” 
b. Retrieve all students: eXecute an elementary query 

“Student?” 
c. Find an intersection of the objects retrieved in a and b. 
In Scenario 1 We retrieve all persons from all categories 

(Person, Instructor, and Student) Who Were born in 1980, and 
for each person We eXecute an additional elementary query 
to verify that the retrieved person is a student. In this 
scenario We have to eXecute a large number of small queries. 

In Scenario 2 We eXecute only tWo elementary queries and 
then ?nd an intersection of the results. The problem is that 
the elementary query “Student?” may result in a very large 
set of binary facts. Not only is this very inef?cient in terms 
of eXpensive communication betWeen client and server, but 
also such a big query Would be affected by any transaction 
that inserts or deletes students. Also our query Would be 
aborted more often than the query in the Scenario 1. 

Thus, Scenario 1 is obviously better in our case. Consider 
noW another query: “Find all instructors born in 1970”. The 
number of persons born in 1970 could be larger or compa 
rable With the total number of instructors. In this case, 
Scenario 2 Would be much more efficient because We need 
to eXecute only tWo elementary queries. 

LaZy Queries 
Our technique of laZy elementary query eXecution greatly 

reduces the number of disk accesses, the server traf?c, and 
the transaction con?ict probability by automatically reduc 
ing one scenario to another. For eXample, the intersection 
operator gets a close-to-optimal implementation Without 
keeping any data distribution statistics. 

In our B-tree access method, the actual query eXecution is 
deferred until the user actually utiliZes the query results. We 
de?ne the elementary laZy query programmatic interface in 
a B-tree B as folloWs: 
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1. Q:=[l, r]B—de?ne a lazy query [1, r] but do not execute 
it yet. Let Z be the longest common pre?x of the strings I and 
r. A query result is a set of strings X such that ZxEB and 
lizxir. 

2. Let Q.P be a pointer to future results of the query. 
Initially Q.PA:=", i.e. P points to an empty string. 

3. Seek(Q, x)—moves the pointer Q.P, so that Q.PA= 
min{y|ZyE[l, r]B and zyix}. 

Derived from the above are the actual principal operations 
on the query results: 

1. Read(Q):=Q.PA—reads the current string pointed by the 
logical pointer Q.P. This operation results in an error if 
Q.P=null. 

2. Next(Q):=Seek(Q, Read(Q)+0). We use notation s+0 to 
denote a string derived from the string s by appending a Zero 
byte, i.e. s+0 is lexicographically the loWest string after s. 
When the Seek operation is executed, the string pointed to 

by the neW logical pointer is fetched from the B-tree, and 
normally a small number of lexicographically close strings 
are pre-fetched and placed in a laZy query cache buffer. It is 
likely that the next Seek operation Will request a string 
Which is already in the cache buffer, so only a feW Seek 
operations require actual disk and server access. 
Many queries can efficiently use the Seek operation. For 

example, We can very ef?ciently ?nd the intersection of tWo 
laZy queries Q1 and Q2: construct a neW laZy query (laZy 
intersection) Q3 Where the Seek operation uses the folloWing 
algorithm: 

od; 
if Q1.P = null or Q2.P = null then 

Q3.P: = null 

This algorithm gives an ef?cient solution for the sample 
queries described in the previous section. For the query 
“Find all objects from category Student that have the 
attribute BirthYear 1980” We use three laZy queries: 

a. Q1:=elementary laZy query “BirthYear 1980?” 
b. Q2:=elementary laZy query “Student?” 

Since query Q3 is not actually executed, our algorithm 
that ?nds intersection Will not require retrieving of every 
student from the database: the number of actual disk 
accesses to retrieve the students in the query Q2 Will be less 
than or equal to the number of persons born in 1980. Thus, 
the cost of the laZy query Q3 Will be smaller than the cost of 
the best solution for elementary queries in Scenario 1 
described in the previous section. 

For the query “Find all instructors born in 1970” We use 
three similar laZy queries. Since the number of instructors is 
likely to be small, it is possible that all instructors Will be 
fetched at the ?rst disk access, and the Whole query Will 
require a number of server accesses close to 2, Which is the 
optimal number. 

FIG. 1 shoWs execution of tWo laZy queries Q1 and Q2. 
Each query contains 10,000 strings at the server machine. A 
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6 
laZy query execution algorithm requires only 3 requests 
(Seek operations) to the server of 30 strings each, so that the 
total number of strings retrieved from the server is 90. 
Without our optimiZation, it Would be necessary to retrieve 
both queries With siZe of 20,000 strings from the B-tree 
server to ?nd the intersection. 

LaZy queries can also be used to ef?ciently subtract a 
large set of strings Q2 from a another set Q1. The algorithm 
for subtraction is similar: We retrieve a string from Q1 and 
use the Seek operation to verify that this string does not 
belong to Q2. 

LaZy queries not only result in a smaller number of server 
accesses. We Will shoW that laZy queries alloW the improve 
ment of the granularity of our concurrency control algorithm 
and reduce the transaction con?ict probability. 

Parallel B-tree Structure 

A massively parallel B-tree should perform many queries 
and transactions simultaneously and its siZe should scale to 
hundreds of terabytes even if the underlying computer 
hardWare supports only 32 bit addressing. This is achieved 
by splitting the B-tree into partitions of about 1 gigabyte in 
siZe. The Whole B-tree is then a netWork of computers Where 
each computer holds one or more B-tree partitions. The 
B-tree partitions themselves are indexed by a partitioning 
map. 

Concurrency Control 

Our concurrency control algorithm is an optimistic algo 
rithm that ?rst accumulates a transaction, then performs it 
using a 2-phase commit protocol [Gray-79], and performs a 
backWard validation [Haerder-84] to ensure the serialiZabil 
ity and external consistency of transactions. Our algorithm 
bene?ts from and improves upon the validation technique of 
the [Adya&al-95] algorithm for an object-oriented database. 
Their algorithm uses loosely synchroniZed physical clocks 
to achieve global serialiZation and detects con?icts at the 
object level granularity. In our algorithm, a ?ner granularity 
at the level of strings is attained, and We use logical clocks 
to achieve global serialiZation; nevertheless, our algorithm 
does not require maintaining any extra data per string or per 
client. 

Transaction Accumulation 

In a parallel B-tree, updates and queries made by a client 
should be veri?ed for con?icts With contemporaneous 
updates and queries made by other B-tree clients. A trans 
action is a group of B-tree updates and queries Which is 
guaranteed to be consistent With the queries and updates 
executed concurrently Within other transactions. To create 
such a group of operations We have several B-tree operations 
in addition to the laZy queries: 

1. Insert String x 

2. Delete String x 
3. Transaction Begin 
4. Transaction End 
A transaction is the execution of a series of actions 

betWeen a “Transaction Begin” and “Transaction End”. 
When the Transaction End is executed, all queries and 
updates made since the Transaction Begin are checked for 
con?icts With the queries and updates made by concurrent 
transactions. If there is a con?ict, the transaction is aborted 
and the Transaction End returns an error. 

The updates made Within a transaction do not change the 
B-tree immediately. Instead, these updates are accumulated 
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at the client machine in a set of inserted strings I and a set 
of deleted strings D. The B-tree strings remain unaffected. 
The insert and delete operations Work as follows: 

insert(x)={D:=D-{x}; I:=IU{x}} 

When “Transaction End” is executed, the set D is deleted 
from the B-tree and the set I is inserted into B-tree: 

During the accumulation of a transaction into sets D and 
I, the client machine also accumulates a set V to be used for 
backward validation. The set V contains the speci?cation of 
each subinterval read by a query Within the transaction and 
a timestamp of this reading. A subinterval is a subrange 
Within a query Which Was physically retrieved from one 
database partition at one logical moment in time. The logical 
time at a given database partition is incremented each time 
When a committed transaction physically changes that par 
tition. The subintervals are stamped With this logical time 
and a number that identi?es the partition in the system. Thus 
the set V is {([lk, rk], tk, pk)”k=1}, Where tk is the timestamp 
and pk is the partition number. 

In our validation technique, When committing a transac 
tion T, the system does not need to remember the results of 
T’s queries; it remembers only query speci?cations [1, r], 
Which are checked against concurrent transactions at T’s 
commit time. The validation is done against transaction 
queues, normally Without any disk access. 

LaZy queries can be used to further reduce the validation 
speci?ed by the set V and improve the granularity in con?ict 
detection. Previous examples have shoWn that the user does 
not actually retrieve all facts from the laZy query interval. 
The intersection of laZy queries uses the Seek operation and 
retrieves only a feW strings from the original elementary 
queries. A laZy query automatically keeps track of those 
string subranges that have actually been retrieved by the 
user. This union of subranges can be much smaller than the 
union of the original elementary query intervals. This results 
in a ?ner transaction granularity and smaller con?ict prob 
ability. At the end of transaction execution, the string sub 
ranges from all laZy queries are further optimiZed by merg 
ing intersecting subranges of all laZy queries. This 
optimiZation is done at the client side, Which alloWs us to 
reduce the server Workload and the transaction execution 
time. 
An accumulated transaction is a triple T(I, D, V) of strings 

to be inserted I, strings to be deleted D, and string intervals 
V to be veri?ed. 

Note that even if no updates Were made, a transaction is 
still necessary to ensure the consistency of queries. Thus, a 
query can produce an accumulated transaction T(I, D, V) 
With empty sets D and I. 

Validation Method 

A validation is necessary to ensure tWo important prop 
erties of transactions: serialiZability and external consis 
tency. SerialiZability means that the committed transactions 
can be ordered in a such a Way that the net result Would be 
the same as if transactions ran sequentially, one at a time. 
External consistency means that the serialiZation order is not 
arbitrary: if transaction S Was committed before T began (in 
real time), S should be ordered before T. 
When a client commits a transaction, the accumulated 

transaction T is delivered to one of the database servers. This 
database server is called the transaction’s originator. The 
transaction originator splits the arriving transaction into 
subtransactions Ti according to the partitioning map and 
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8 
distributes the subtransactions among the database parti 
tions. A subinterval ([lk, rk], tk, pk) in the set V is distributed 
to the partition p k (Without consulting the partitioning map). 
This alloWs the detection of con?icts With system transac 
tions that perform load balancing, Which may change the 
partitioning map. 

The transaction originator uses the 2-phase commit pro 
tocol to update the database. In the ?rst phase, the transac 
tion originator distributes the subtransactions among the 
database partitions. Each database partition veri?es that no 
con?icts With any other transaction is possible and sends a 
“ready” or “failed” message to the transaction originator. If 
the transaction originator receives a “failed” message, it 
immediately aborts the other subtransactions and noti?es the 
client. When all database partitions return a “ready” 
message, the transaction originator sends a “commit” mes 
sage to the participating partitions. 

In our backWard validation protocol, the arriving sub 
transaction Tl-(Ii, Di, V) is checked against all transactions 
already validated successfully. In our B-tree, each partition 
maintains a log of recently committed transactions CL and 
a log of transactions Waiting for commit WL. 
We say that a set of string intervals V intersects a set of 

strings A iff there exists an interval [1, r] in V such that [1, 
r]A#® (i.e. for some x€A:l§x§r). 
We also say that tWo transactions T(IT, DT, VT) and S(IS, 

D 5, VS) intersect if: 

2. VS intersects ITUDT 
or 

3. VT intersects ISUDS 
When the subtransaction Ti arrives, it is veri?ed that Ti 

intersects With no transaction S in WL. 
Additional veri?cation is necessary to ensure that no 

query in Ti is affected by a recently committed transaction 
S in CL. We check that each interval ([lk, rk], tk, nk) in Vi of 
Ti does not intersect With the sets IS and D5 of any trans 
action S in CL that has greater timestamp than tk. 

If the subtransaction is successfully veri?ed, it is 
appended to the WL and the “ready” message is sent to the 
transaction originator. OtherWise the “failed” message is 
sent to the transaction originator. 

FIG. 2 shoWs a simple case of transaction accumulation, 
distribution, and validation When only tWo B-tree partitions 
are involved. A client at the Client Machine accumulates a 
transaction T(I, D, V). When the client decides to commit 
the transaction, T(I, D, V) is sent via the netWork to the 
transaction originator machine. The transaction originator 
machine splits the transaction into tWo subtransactions 
T1(I1, D1, V1) and T2(I2, D2, V2) and sends them to the 
corresponding B-tree partitions machines. Partitions 1 and 2 
execute the validation protocol by checking the subtransac 
tions against the committed transactions logs and the Waiting 
for commit logs according to our validation method With 
logical timestamps. When the veri?cation is done, a Ready 
message is sent to the transaction originator, Which imme 
diately sends the Commit message to the B-tree partitions. 

It can be shoWn that our concurrency control algorithm 
satis?es both serialiZability and external consistency 
requirements. 

That Which We claim is: 
1. A concurrency control method for a multiserver data 

base system comprising multiple server machines and mul 
tiple client machines, comprising the steps of: 

incrementing a logical time at each server machine during 
transaction execution at the server machine; 
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accumulating a transaction T(I, D, V) at a client machine 
in three sets, an Insert set I, a Delete set D, and a Verify 
set V, 
the Insert set comprising a set of data items to be 

inserted, 
the Delete set comprising a set of data items to be 

deleted, and 
the Verify set comprising a set of descriptions P, each 

description P comprising information that identi?es 
(a) data retrieval operations performed by the client 
machine With respect to a particular server machine, 
(b) the particular server machine subject to the client 
data retrieval operations, and (c) a logical timestamp 
at the particular server machine; 

delivering transaction T from the client machine to a 
selected server machine, the selected server machine 
being designated as the transaction’s originator server 
machine; 

at the transaction’s originator server machine, splitting 
transaction T into subtransactions Tn per relevant serv 
ers and executing the subtransactions using a tWo-phase 
commit protocol; 

maintaining tWo logs of subtransactions at each server 
machine, a ?rst log comprising a log of committed 
subtransactions (CL) and a second log comprising a log 
of subtransactions ready to commit (WL); and 

performing subtransaction veri?cation at each server 
machine for each incoming subtransaction T”: 
(1) checking that the sets In, D”, and V” do not intersect 

With the sets Ik, Dk, and Vk for each subtransaction 
k in the set WL of the subtransactions ready to 

commit, 
(2) checking that each description P from the set V” 

does not intersect the sets Ik or Dk of any subtrans 
action k in the set CL of the committed subtransac 
tions With the logical timestamp greater than or equal 
to the timestamp of P. 

2. A database management system that uses the concur 
rency control method of claim 1. 

3. The concurrency control method of claim 1, Wherein 
the method is applied to database management systems 
storing facts about objects. 

4. The concurrency control method of claim 1, Wherein 
the method is applied in a semantic binary database system. 

5. The concurrency control method of claim 1, Wherein 
the method is carried out in a B-tree database structure. 

6. A concurrency control method for a parallel B-tree 
comprising multiple server machines and multiple client 
machines, comprising the steps of: 

incrementing a logical time at each server machine during 
transaction execution at the server machine; 

accumulating a transaction T(I, D, V) at a client machine 
in three sets, an Insert set I, a Delete set D, and a Verify 
set V, 
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the Insert set comprising a set of data items to be 

inserted, 
the Delete set comprising a set of data items to be 

deleted, and 
the Verify set comprising a set of descriptions P, each 

description P comprising information that identi?es 
(a) boundaries of intervals of B-tree strings retrieved 
by the client machine With respect to a particular 
server machine, (b) the particular server machine 
subject to the client data retrieval operations, and (c) 
a logical timestamp at the particular server machine; 

delivering transaction T from the client machine to a 
selected server machine, the selected server machine 
being designated as the transaction’s originator server 
machine; 

at the transaction’s originator server machine, splitting 
transaction T into subtransactions Tn per relevant serv 
ers and eXecuting the subtransactions using a tWo-phase 
commit protocol; 

maintaining tWo logs of subtransactions at each server 
machine, a ?rst log comprising a log of committed 
subtransactions (CL) and a second log comprising a log 
of subtransactions ready to commit (WL); and 

performing subtransaction veri?cation at each server 
machine for each incoming subtransaction T”; 
(1) checking that the sets In, Dn, and Vn do not 

intersect With the sets Ik, Dk, and Vk for each 
subtransaction k in the set WL of the subtransactions 
ready to commit, 

(2) checking that each description P from the set V” 
does not intersect the sets Ik or Dk of any subtrans 
action k in the set CL of the committed subtransac 
tions With the logical timestamp greater than or equal 
to the timestamp of P. 

7. Aquery optimiZation method for joining or intersecting 
large queries in databases based on B-trees or other struc 
tures of indeXed blocks of ordered records, the method 
comprising the steps of: 

rather than fully retrieving a query result at once, alloWing 
the user to perform a Seek operation on the query result 
to retrieve a record meeting a condition, prefetching 
and caching certain subsequent records; 

applying the Seek operation to ?nd the intersection of tWo 
large queries comprising: 
retrieving a small subset of records from a ?rst query; 
using the Seek operation to retrieve matching results of 

a second query; 
submitting the matching results of the second query to 

the Seek operation of the ?rst query; and 
repeating the process of applying the Seek operation 

until all matching records are retrieved. 
8. The query optimiZation method in claim 7 applied to a 

database management systems storing facts about objects. 

* * * * * 


