
A SEQUENCED HYPERCUBE TOPOLOGY FOR A MASSIVELY-PARALLEL
DATABASE COMPUTER

Naphtali RiJhe, Doron Tal, Qiang Li

School of Computer Science
Florida International University

The State University of Florida at Miami
University Park, Miami, Florida 33199

Abstract

The architecture of a massively parallel multi -processor
and multi-disk database computer is presented. The inter
processor communication network ha~ a hypercube topol
ogy- The architectur!' requires selection of linear ordering
of the nodes of a network of processors. A method is de
veloped and presented here which can arrange the nodes
in sequences efficient for management of data. Among the

features of the produced sequences is that the size of the
sequence can grow as the size of the hypercube grows, with
out changing the existing sub-sequt·nces.
Keywords: Massively parallel architecture, lnterprocessor
network, Hypercub!', Sequencing, Database computer.

1. Introduction

The massively parallel database machines offer a way,
perhaps the only way, to meet the ever increasing demands
of information processing. Most of the contemporary ap
proaches seek to achieve this goal by increasing the size of
the processor, memory and disk, and also by employing a
large number of processors . The primary purpose of doing
oo is to increase the parallel processing power and the paral
lel secondary storage accessing power. However, in the over
all structures of the typical systems , the processing units

are one group, and the secondary storage units, possibly
with some preprocessing power, are another. The process
ing unit group and the secondary storage group are con
nected by communication channels . The system's forma-

. tion is still "Processors- I/O Chanucls - Secondary Storage".
The traditional 1/ 0 channel bottleneck is sti ll present . This
problem remains no matter how many processors we add
!o the machine, because the throughput is dominated by
the relatively poor performance of the disk and channel.
One can see the analogy between the processor/ disk split
and the processor / memory split that leads to th!' von Neu
mann bottleneck.

This r<search has been supported in pari by a granl from lhe
Florida High Technology and Industry Council.

'i21

These shortcomings have muti vated the proposal of a
new architectural concept called Linear-throughput Seman
tic Database Machine (LSDM) . We discuss here only those
concepts of LSDM relevant to this paper, and more details
can be found in [7]. LSDM consists of thousands proces
sors coupled with disks . Each processor-di sk unit consists
o f one or a few tairly powerful processors, a dedicated mem
ory module an d a small capacity disk, e.g., a 20 megabyte
disk. The processor-disk units are linked into a tightly cou

pled network.
The processor-disk units comprising the machine work

simultaneously on different segments of the same query and
on concurrent queries as well, offering two levels of. paral
lelism. The hosts receive streams of users' requests. Each
request is dispatched to the processor having the best con
trol of the relevant fragments of the database. The pro
cessor then decomposes the request into smaller operations
and communicates them to subcontracting processors. The
proressors related to a request can <·ommunicate with each
other to gel the data necessary to carry out the operations
concurrently. With the completion of a request, the results
are sent to the host nodes and eventually back to the users.

Our database machine uses the Semantic Binary
Database Model [5]. The Semantic Binary Database Model
represents information of an application's world as a collec
tion of elementary facts of two types: unary facts catego
rizing objects of the real world and binary facts establish
ing relationships of various kinds between pairs of objects.
The purpose of the model is to provide a simple natural
data-independent flexible and non-redundant specification
of information .

In order to fully utilize the parallel processing power
of the proposed architecture, it is essential to have an ap
propriate data structure so that the processor-disk units
have balanced load . lro our implementation of the Seman
tic Binary Database Model, we store the entire database,
including all indexing information , in one logical file. (The
file is organized in a B-tree like structure.) The file is par
titioned into segments of the size that can be stored in
small disks. There is no logical difference between one seg
ment and another. This important property allows us to

I Et.JIO 111
010 - 011

100. 101

000 001

1 A 3-0Hnen51onol Hypercub~ b A 1-0lmensu;wl&l Hypercube

Figure 1: Hypercubes

partition the database based solely on the consideration
of maximum parallelism. In addition, the data is stored
with some small but intelligent duplications which greatly
increase the locality of data accessingJoJ. This implies a
much lower data traffic between the processor-disk units,
resulting in a higher degree of parallelism.

The n-cube topology has been chosen to connect the
network . Then-cube [2,4 ,1 ,9) is defined as follows: Each of
the 2n nodes is labeled from 0 to 2n- t by a unique binary
string of length n. Two nodes are connected iff they differ
in exactly one bit position . Figure 1 shows a 3-dirnensional
and a 4-dimensional hypercube.

2. The sequencing problem

2.1 Database machine sequencing problem

An essential problem is how to map a linear file onto the
hypercube topology which is non-linear. Practical consid
erations, such as heavy data flow between consecutive file
fragments, dictate that any two nodes of the network con
taining consecutive file fragments should be directly con
nected in the network . Therefore, we need a Hamiltonian
path or loop (i.e . a path going through every node exactly
once) in the hypercube so that the i-th partition of the file
can be associated with the i -th node of the path. This is our
Requirement 1. In addition, when more than one database
is stored in the hypercube architecture in an overlapped
fashion (i.e., each database is partitioned among all the
nodes), the databases should be stored in non-coinciding
paths to avoid unbalanced data traffic load . Therefore,
many paths are needed .

There are many sequences that satisfy /lequi1·cmcnt 1.
At least one such sequence is guaranteed to exist because
every hypercube has a Hamiltonian path since the hyper
cube satisfies the known criterion for Hamiltonian cycle:
the graph does not contain the so-called theta-subgraph.
As we shall show later, there are very many sequences which
satisfy Requiremen t / . We shall describe another require
ment in term of sub-hypercu bes.

Let H be a hypercube of dimension d. Let I be a part of
a bit-string (binary number) of length d, i.e . for some posi
tions in the bit -string it assigns hit values. For example, I

?!?....!.-.' '+ y. 1 ±!

522

gives the second and the fifth bits of an 8-dimensional hy

percube node as follows: ?01?1 ?1?, where ? stands for 0
or 1. The sub-hypercube defined by f is the set of all node$
of H having the pattern f. There are as many nodes in the
sub-hypercube as there are the possibilities to fill the ques
tion marks. Notice, that the nodes can be relabeled so that
the sub-hypercube would itself be a hypercube. Its dimen·
sion is the number of question marks in f. For example,
the nodes

00000 00001 00100 00101 01000 01001 01100 01101

form a 3-subcube for /=0??0? in the 5-cube; for /=00?1!
the sub-hypercube is:

00000 00001 00010 00011 00100 00101 00110 00111.

Now we shall define a hierarchy of sub-hypercubes. Con
sider, for example the hierarchy of sub-hypercubes of the
3-cube as defined by the tree of /-patterns in Figure 2.

In the above example, we first varied bit #2, then #1,
then #3, and received a hierarchy of sub-hypercubes con
sisting of 1 cube, 2 square, 4 segments, and 8 points. There
are as many such hierarchical families of sub-hypercubes u
there are orders in which to vary the bits. A more formal
definition follows.

Let p be a permutation of position numbers from 1 to
d. E.g., p = (2, 1, 3) in the above example. The hier
archical family specified by p is the set of the following

-2sq~

-'I Segments

Figure 2: A Sub-hypercube Hierarchy

sub-hypercubes of dimensions 1 to d. For every D, for
every /-pattern assigning constant bit values to positio111
p[l), p[2], ... , p[d - D], the sub-hypercube specified by f ia in
the family. E.g., for the above example, the family consiab
of:

• the 2-dimensional sub-hypercubes specified by the f·
patterns assigning constant bits to position p[l] = 2

1

i.e. to patterns ?0? and ?1 ?;

• the !-dimensional sub-hypercubes specified by the/
patterns assigning constant bits to positions p[1) = 2
and p[2) = 1, i.e. t u patterns 00?, 10?, 01?, and 10!;

• and so forth.

Requirement ! of the sequence is that when a hierarchi
cal family of sub-hypercubes is given, every sub-hypercube
of the family should comprise a contiguous sub-sequence.
This !requirement has several purposes . First, the hyper
cube can be expanded without changing the existing logi
cal sequence. Second, since a sub-hypercube ('an be easily

identified in the sequence as a consecutive sub-sequence,
data backup, trouble shooting and module replacement arc
much easier. Third, because of the simple mapping between
the sub-hypercubes and the sequence, the connections be
tween the positions in the sequence are expected to follow
a systfmatic pattern, which will facilitate the analysis and
simulttion of the system.

There can be many Recp tenc·c·H , cl .. prndinp; on whic·h Ruh
hypercu heR lli'C' f<'IJII i rt •cl lu Jw ('IIII HI'I' III.i VI ' iII lh<• S<' <JIII'II('{' .
For exa111ple, fur the hierarchical fa111ily with p - (1, :l, 3),
the sequence is :

000 001 011 010 110 Ill 101 100;

for the family with p = (2, 3 , I), the sequence is:

000 00 1 I 0 I 100 I 1 0 111 01 I 01 0

In the first sequence, the nodes of the square 000 001 011
010 are consecutive, and in the second they are not. It is
the opposite for the square 000 001 I 01 I 00 . (A square is
a 2-dimensional sub-hypercube.)

2.2 Generalization of the sequencing problem

The sequcn('ing prohlc·lll in a hypncuhl' has 1111>1'<' K"ll
eral applications . Many applications need to 111ap sequen
tial data structures into a hypercube. Some applications,
involve sequential operations between nodes of a hyper
cube, e.g., scanning. Sometimes , several logical sequencl's

are needed at the same time.
The following is a general definition of the requirements.

Let H be a d-dimensional hypercube. Let p be a spec
ification of a hierarchical famil y of sub-hypercubes. Let
L = 2d - 1. A sequence N(O),N(t), ... ,N(L) of all the

nodes of ll is sought, satisfying:

1. For all i in O .. L - I, N(i) and N(i + 1) arc ad
jacent in H. Also, N(L) is adjacent to N(O).

2. For every sub-hypercube S of dimension D in
the famil y spl'cific·rl hy p, for some i, t1u· "'h
beq uencc N(i),N(i 1 l) , ... ,N(i -1 :l/J 1

) is lhc
sub-hypercubeS.

The sequencing method

A problem equivalent to a subset oi our problem has
been solved in the Control Theory. That solution is know n
as the Gray Code]3] for secpJCncing of binary numbers. If

523

it is adapted .to our hypercube problem, we would have Re
quirement 1 satisfied, as well as a portion of Reqmrement 2.
The Gray Code would be consecutive for only one hierar
chical family of sub-hypercubes, while we need to be able to
have an arbitrary family as a parameter to sequencing. We

call the family which happens to be consecutive in the Gray
Code, "The natural family"_ For 5-dimensional hypercube,
the natural family is specified by p = {1,2,3,4,5). As an
other example, the followings are two of the sequences gen
erated for a 4-cu be with p = (1, 2, 3, 4) and p = {3, 1, 4, 2):

• 0000 0001 0011 0010 0110 01110101010011001101
1111 1110 1010 1011 1001 1000

• 0000 0100 0101 0001 1001 1101 1100 1000 1010 1110
ll I I I 0 l 1 00 II 0 1 I 1 0 I I 0 001 0

In tt. .. ahov<' St' <fll< ' lll't'H, eVt'I',Y 11 nocks form a 2-cuhe, and
every 8 nodc•s form a 3-cube.

We have solved the general case of the problem. Our
sequencing algorithm follows. The proof of its correctness

is in]8J.
A parameter to the algorithm is an array p of position

numbers which is a specification of a hierarchical family of
sub-hypercubes.

We shall describe our algorithm in terms of a binary
tree T. The tree T has the following properties. It is a
full binary tree; each node of T has a label. The root has
label "1 ". For any node, its label is greater by 1 than that

+ + + + • • + • • 0 0 0 0 0 0 8 ~ 8 ~ 0 0
0 0 - ~ ~ 9.)! 51 9. " " " " " 0 "' ;:; ~ ., ., ;::: c;

z z z z z z z z z
~ 1 c:: :: ~ ~ ~ ~ "i'

~
"i'

~
"i' ;;; "i' :e :e :e :e :e :e

+ + • +
~ - - -- 0 0 - -
" " " 9.

00 0 <;

z z z z
c:: ~ ~ :: .
"i' ;;; "i' g :e :e :e

• + - ~ -
9. 9.
;:; v
z z
~ ~
"i' ;;;
:e :e

+
~
0

9. .,
z
~
"i' :e

Figure la.
The Tree For
a 4- Cube

Figure lb.
The Sequence
Generated For
p•(J,I,4,2)

of its parent . All the leaves have the label "d", where d is
the dimension of the hypercube. All the nodes at the same
level have equal labels. Figure 3a shows an example of the
tree T for d = 4.

We will use the 2d - 1 nodes of the tree, plus one ad
ditional node , to generate the 2d nodes of the hypercube
sequence. In the algorithm, a variable N is used . The

initial value of N is the first binary number, N(O), in the
sequence to be generated . The rest of the binary numbers
of the hypercube are generated while traversing T in the
inorder order. When a nod<' ofT is visited, one bit of the
contents of N is flipped. If the label of the tree node is a
number i, then the bit position to be flipped is p[i]. Every
change in the value of N generates the next binary number
in the output scqucnct·. The bits arc nurnhncd fro111 left to
right. For example, if N - OOOll,p - (1,3,2,4,!i),i = 3,
then p[i] = 2; we flip bit #2 to receive the next N = 01011.
Since the output sequence will be a cycle, th e first binary
number N(O) can be an arbitrary node of the hypercube.

1. N := 0 (Let 0, i.e. a string of d zero-bits, be
the first number in the sequence, without loss of
generality.)

2. repeat

(a) Get the next node from T according to
the i norder traversal. Let i be the label
of the node.

(b) N : N XOR 2d- plil (flip the p[i] -th bit
of N to get the next hypercube node
numh<'r in the sequence).

until all tht· nodes of the tr<'<' havt• hcc·n tra
versed .

E:r:ample. Using the tree of Figure 3a, the algorithm gener
ates the sequence shown in Figure 3b for the sub-hyp<'rcube

family defined by p = (3, l, 4, 2).
Our program implementing the algorithm does not

physically create a tree, but rather performs analytical cal
culation. The algorithm is linear in the number of nodes of
the hypercube.

4. Discussion

The proposed system can lend itself to a stand alone
database computer as well as a backend connected to hosts.
Several processors can be identified as the hosts or inter

faces to user hosts.
One of the primary goals of ou r architecture is to

achieve a high throughput and approximate linearity of
the throughput in the degree of parallelism. The degree
of parallelism is the numlwr of processor-disk units. The
throughput is mcasun:d as the average number of transac
tions per time unit. The linearity is to be achieved for a
typical transaction load comprised of a large number of rela
tively small, localizable queries and transactions. Under the
current design (several thousands of processor-disk units),
a conservative estimation of the throughput is more than
3000 simple queries per S<'cond per thousand processor-disk
units , provided that th<' host interfaces have the same or
higher throughput.

Currently, we arc impl<'menting our architecture on a
network of 32-bit l NMO~ transputers and 20 nwgahyte

524

Winchester disks.

Acknowledgement

The authors gratefully acknowledge the advice of Dari4
Barton, Nagarajan Prabhakaran, Istvan Ereny.

References

[1] S. Heller. Directed Cube Network: A Practicallntufi..
gation. Technical Report 253, MIT, 1985.

[2] K. Hwang and F. Briggs. Computer Architecture
Parallel Proceuing. McGraw-Hill, 1984.

[3] R.M. Klein. Digital Computer De6ign, pages 33-J&,
Prentice-Hall, Inc., Englewood Cliffs, NJ., 1977.

[4] F .P. Preparata and J. Vuillemin. The cube-coon
cycles: a versatile network for parallel computatioa
Communication6 of the A CM, 24(5):300-309, May 1 1.

[5] N. Rishe. Da!aba6e De4ign Fundamenta/6: A Strud
Introduction to Databa6e and a Structured DatoiHut
3ign Methodology. Prentice-Hall, Englewood Cliff•, .'J,
1988.

[6] N. Rishe. A File Structure for Semantic Date
Technical Report SCS TR 88-001, Florida lnternati

University, 1988.

[7] N. Rishe, D. Tal, and Q. Li. The architecture for
massively parallel database machine.
Journal, Aug 1988. In press.

[8] Naphtali Rishe, Doron Tal, and Qiang Li. A Sequ
Hypercube Topology for a Multi-did: Multi-protei*
Databa6e Computer. Technical Report 88-006, Florit.e
International University, Miami, FL., 1988.

[9] L.G . Valiant and G.J . Brebner. Universal scheme:.
parallel communication. In STOC, ACM Confe
Proceeding6, Milwaukee, 1981.

