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Abstract: Extensive prior work has provided 
methods for the optimization of routing based on 
the criteria of travel time and/or the cost of travel 
and/or the distance traveled.  A typical method of 
routing involves building a graph comprised of 
street segments, assigning a normalized weighted 
value to each segment, and then applying the 
weighted-shorted path algorithm to the graph to 
find the best route.  Some users desire that the 
routing suggestion include consideration 
pertaining to the reduction of risk of encountering 
violent crime.  For example, a user desires a 
leisurely walk via a safe route from her hotel in an 
unknown city.  Here, we present a method to 
quantify such user preferences and the risks of 
encountering crime and to augment the standard 
routing methods by assigning weights to safety 
considerations.  The proposed method’s 
advantages, in comparison to other crime-
avoidance routing algorithms, include weighting 
crime types with respect to their potential 
detrimental value to the user, with temporal 
qualification and quantification of crime and its 
statistical aggregation at the geographic resolution 
down to a city block. 

Index Terms: Crime-avoidance, Crime 
classification, Crime data, Crime impact weighting, 
Multi-parametric routing, Navigation, Routing, 
Spatiotemporal analysis of crime 

1. INTRODUCTION 
Previous research [1-9] has developed methods 

for the optimization of routing based on the criteria 
of travel time and/or the cost of travel and/or the 
distance traveled. 
Routing can be in various modalities, such as by 
car, on foot, by bicycle, via public transit, or by 
boat.  A typical method of routing involves building 
a graph comprised of street segments, assigning 
a normalized weighted value to each segment, 
and then applying the weighted-shortest path 
algorithm to the graph in order to find the best 
route.  

Routing can take into account preference 
parameters in addition to time and distance.  For 
example, routing suggestions can include 
consideration pertaining to the reduction of the risk 
of encountering violent crime.  For example, a user 
desires a leisurely walk via a safe route from her 
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hotel in an unknown city.  Here, we present a 
method to quantify such user preferences and the 
risks of encountering crime; we augment the 
standard routing methods by assigning added 
weights to said safety considerations.  

Galburn et al. [4] have utilized crime data to 
optimize the safety aspect of navigation within a 
city.  Their case study involved urban crime data 
from Illinois and Pennsylvania.  Their proposed 
risk model for the street network within a city 
facilitated estimating probabilities of criminal 
incidents that the traveler may encounter on any 
road segment.  In their approach, the same 
importance is assigned to the path traversal time 
and the crime incident risk.  Their method solves 
a dual-objective shortest-path problem.  

Here, we present an improved method to co-
optimize crime avoidance with other criteria.  
Advantages of the proposed method, in 
comparison to other crime-avoidance routing 
algorithms, include weighting crime types with 
respect to their potential detrimental value to the 
user, with temporal qualification and quantification 
of crime and its statistical aggregation at the 
geographic resolution down to a city block. 

Figure 1 shows traditional routing optimizing 
the time and/or distance.  In the example shown, 
the user wishes to walk from a house on the corner 
of 42nd Street and Sheridan Avenue in Miami 
Beach to the corner of Sheridan Avenue and Pine 
Tree Drive.  The traditional routing algorithm offers 
the most direct path to the user’s destination – 
walk northward along Sheridan Avenue. 

In this paper, we present an improved method 
to co-optimize crime avoidance with other 
criteria.  The proposed method’s advantages, in 
comparison to Galburn [4] and the other crime-
avoidance routing algorithms, include: 

(1) weighting crime types with respect to 
their potential detrimental value to the 
user 

(2) with temporal qualification  
(3) quantification of crime and its 

statistical aggregation at the 
geographic resolution down to a city 
block and 

(4) evaluation of the crime detriment to 
the user in each segment by 
considering the needs, exposure, and 
preferences of the user rather than 
merely considering the general crime 
incidence statistics.   

Crime-Avoiding Routing Navigation 
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For example, violent crimes committed outdoors 
have a higher impact on the traveler than non-
violent crimes or crimes committed indoors.  
Severe violence, such as homicide in the street, 
has the highest impact.  Crimes without a direct 
unrelated victim, such as code violations or 
embezzlement, have no impact on travelers.  The 
weights assigned to the different classes of crimes 
depend on the traveler’s mode of transportation.  
For example, pickpockets have an impact on 

travelers in the walking mode but minimal impact 
on travelers by car.  The weights assigned also 
depend on the demographics of the traveler.  For 
example, non-statutory rape may be of high 
concern to a woman walking alone.  For each type 
of traveler and travel modality, the present method 
provides default formulas for the evaluation of 
crime detriment in each segment.    

Additionally, the user may modify the formula by 
assigning greater or lesser importance to various 
types of crimes 

2. METHODOLOGY 
In order to quantify crime risks for each street 
segment, we count police reports that occurred 
close to that segment during a set period of time, 
e.g., a particular year of reference, counting only 
violent and property crimes of the types that would 

directly affect the traveler (e.g., exclude domestic 
violence, exclude insider trading, exclude code 
violations, exclude statutory rape) and can further 
assign weights to various crime types based on 
the impact it may have in the traveler.   

Figure 2 is an example of a query to a crime 
database for an area in mid-Miami Beach (Battery  

Figure 1: Traditional routing that optimizes time and/or distance 

Figure 2: A sample query to a crime database 
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offenses committed in 2018).  The query, as 
formulated in Figure 2, searches the crime reports 
database for the incidents where the offense 
description contains the word “battery” and the 
occurrence date is between 2018-01-01 and 
2018-12-31.  The period for the aggregation of 
offense statistics is chosen arbitrarily, but it must 
be the same for all street segments being 
evaluated.  The query formulation window also 

shows other offense types that appear in the field 
“Description of Offense” in the crime database.  
Among them, the relevant offenses, with varying 
weights depending on the travel modality, user 
demographics, and user-set preferences, include 
Homicide, Assault, Intimidation, Larceny, Rape, 
Robbery, and Vandalism.  

The query in Figure 2 may result in a set of 
incidents (Battery in 2018), as shown on the map 

Figure 3: Map of query results (Battery committed in 2018 in Miami Beach) 

 

Figure 4: Tabular query output: Report of incidents (Battery committed in 2018 in Miami Beach) 
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of query results in Figure 3.  The map in this 
example is centered on Collins Avenue in South 
Miami Beach.   The map frame shows eight battery 
incidents reported in the area in 2018. 

Figure 4 is a tabular output of the same 
sample query (Battery in 2018 in Miami Beach).  
Column 2 in the tabular output is the description of 
the offense (battery), and Column 3 is the date and 
time stamp.  Column 5 is the street address where 
the offense occurred or other location information.  
The query also returns the coordinates of the 
incident, as computed from the address or other 
locational information.  The coordinates are not 

shown explicitly in the output table in this figure. 
Figure 5 specifies a query for homicide 

incidents in 2018, which should be considered 
with a higher detriment weight than battery.  The 
Miami Beach area of the previous example did not 
have homicide reports during the sampling period 
(Year 2018). 

  Recentering the query in Northern Miami-Dade 
County, we see the map of homicides in Figure 
6 and their tabular display in Figure 7.  The sample 

map area in North Miami-Dade County had 20 
homicides in 2018 (12 of them are shown with 
dates in separate pink bubbles, and eight of them 
occurred in three clusters, shown on the map as 
blue cluster circles).  As just an example of the 
assignment of weights to various types of crimes, 
depending on various factors relevant to the user, 
homicides might be assigned a detriment weight 
of 0.8, while batteries might be assigned a 
detriment weight of 0.3.   As the tabular homicide 
query example of Figure 7 shows, there are 
various subtypes of homicides, including murder, 
attempted murder, traffic homicide, etc.  This may 

affect different weight assignments to the 
subtypes.  For example, a detriment weight of 0.9 
may be assigned for murder.  Traffic homicide may 
be assigned the detriment weight of 0.5 in case the 
traveler is driving but only the detriment weight of 
0.1 in case the traveler is walking.     The first 
column in the table of Figure 7 implicitly shows the 
coordinates of the incidents (using directional 
arrows and distances with respect to the query’s 
geographic reference point).  It also shows that 

Figure 5: Homicide query (in 2018) 

Figure 6: Homicide incidents in 2018, query results map centered in North Miami Dade County 
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while most addresses of the incidence were 
precisely geocoded (converted to coordinates), 
the first record’s location was approximated with 
an error margin of 0.31 miles. 

The importance of querying for only specific 
types of crime (and weighting them) is 

demonstrated by the query in Figure 8,   whose 
results are mostly crimes that have no bearing on 
the prospective traveler, as shown in the map in 
Figure 9 and the tabular output in Figure 10.  In 

particular, Row 1 in Figure 10 describes the 
offense as a “prohibited act,” likely a victimless 

Figure 8: Homicide incidents in 2018, query results table centered in North Miami Dade County 

Figure 7: Query not restricting crime types (Any “crime” in 2018) 

Figure 9: Map of the output of a query not restricting crime types (Any “crime” in 2018) 
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crime.  For some travelers, walking past such acts 
is displeasing, and a detriment weight of 0.1 might 
be assigned; for some other types of travelers, this 
might come with a detriment weight of 0.  Row 4 in 
the same table describes the offense of credit card 
fraud.  While there is apparently a victimized 
business, this offense has the detriment weight of 

0 for the traveler, as the traveler would not be a 
potential victim in this case.  

Figure 11 shows a route optimizing travel time 
via a traditional algorithm.  The route traverses 
segments where relevant crimes have occurred 
during the sampling period.  In this example, the 
traveler desires to walk from 340 31st Street in 

Figure 10: Tabular output of a query that does not restrict crime types, including crimes irrelevant for the traveler, e.g., credit 
card fraud 

Figure 11:Time-optimized routing path, going through segments with higher crime potential 
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Miami Beach to 2700 Collins Avenue.  The 
shortest route takes the traveler mostly through 
Collins Avenue, notwithstanding some danger to 
the traveler, since, historically, six relevant crimes 

occurred along this route in 2018: four crimes 
(clustered as a blue circle) on the traversed 
segment of 31st street and two crimes (shown as 

Figure 12: Routing co-optimizing time and crime avoidance 

Figure 13: Time-optimized routing path, going through segments with higher crime potential, for various transportation modalities 
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pink bubbles) along the southern traversed 
segment of Collins Avenue. 

By co-optimizing the walk duration and 
crime encounter probability reduction, we get 
a slightly different route, as shown in Figure 12.  
This safer route takes the traveler first southward 
along Indian Creek Drive, avoiding the crime-
prone segments while only slightly increasing the 
travel time. 

The routing may be different based on the mode 
of walking or transportation, as shown in Figure 
13.  The mode of transportation that the user 
desires affects the route choice both because of 
the traditional navigation issues (such as one-way 
streets and the varying maximal allowed and the 
actual current traffic speed in various segments), 
as well as due to the different detriment weights 
assigned to different types of crimes depending on 
the mode of transportation (e.g., pickpockets 
affect the pedestrian traveler, but not as much the 

driving traveler) The relative importance to the 

 
Figure 15: A weighting triangle with weighting values along all 
three sides, e.g., the weight of crime risk, weight of cost of 
travel, and weight of trip duration 

user of time, cost of travel, and crime avoidance 
can be elicited from the user by utilizing our prior 
work’s technology of the weight selection triangle 
(Figure 14): a touchable triangle allows the user to 
assign importance weights to three interrelated 
decision optimization objectives (Figure 15) using 
a single gesture (Figure 16) [10].  The sides of the 
triangle correspond to the weights that can be 
assigned to three different factors: crime risk, cost 
of travel, and duration of travel.  By moving a finger 
or a pointer within the triangle, the user changes 
the relative weights of the three factors. 

 
Figure 16: A smart device with the weighting triangle displayed 
thereon, showing a user selecting different weighting points, 
e.g., changing from a higher weight of crime avoidance to a 
lower weight, simultaneously with changing the weight of other 
factors. 

We apply our previously published triangular 
selection method to the routing problem discussed 
in the present paper.  Three objectives (A=time, 
B=cost of travel, and C=crime risk) are presented 
in a triangular fashion by the routing app on a 
touch screen.  Figure 14 shows the underlying 
principle of the establishment of a single weight 
wA for Objective A; Figure 15 combines three 
objectives into a single triangle, allowing for the 
establishment of a tri-variable weight function (wA, 
wB, wC).  By applying a finger gesture, the user 
moves an indicator freely inside the triangle 
(Figure 16).  The position of the indicator 
establishes a tri-variable weight function, which, in 
further steps, is then used as input for the co-
optimization algorithm.  When the user is satisfied 
with the established weights, she indicates this, 
e.g., by pressing a touch screen button labeled 
“Go.” 

 

3. THE ALGORITHM 
 

1. Build the Generic Crime Model of crime 
statistics per each street segment in the 
city: 

Figure 14: A weighting triangle with values of the 
importance of crime avoidance along one side of the 

triangle 
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a. Determine the sampling period, e.g., 
one historical year, for which a 
database of crimes reported is 
available, with addresses or other 
geolocation information of each 
crime. 

b. For each segment and for each crime 
type (and subtype), compute the 
number of crimes of the type or 
subtype that occurred on the segment 
during the sampling period: 
Quantity(segment,crime-type). 

2. Build a traditional model of navigation 
data, assigning to each segment and each 
mode of transportation the traversal time 
Time(segment,mode), based on the 
typical travel time (for offline models) or 
the current actual traffic (for real-time 
models). 

3. Build a traditional model of navigation 
data, assigning the monetary cost of travel 
to each segment and mode of 
transportation: Dollars(segment,mode). 

4. Identify the traveler’s demographics.  
5. Identify the traveler’s personal 

preferences. 
6. Identify the traveler’s mode of travel. 
7. Identify the traveler’s relative importance 

of crime avoidance versus the time and 
cost of travel: Weight(factor), where 
factor=crime|time|cost. 

8. From the traveler’s demographics, 
personal preferences, and mode of travel, 
derive weight assignments to the different 
types and subtypes of crimes: 
Weight(crime-type). 

9. From the Generic Crime Model, derive the 
Traveler-specific Crime Model: 
a. For each segment and crime 

type/subtype in the Generic Crime 
Model, compute 
Segment_Crime_Weight(segment, 
crime-type) =  
Quantity(segment,crime-type) x 
Weight(crime-type).   
The latter Weight(crime-type) has 
been derived above from the 
traveler’s demographics, personal 
preferences, and mode of travel.  

b. Assign a cumulative crime risk cost to 
the segment as the sum of all the  
Segment_Crime_Weight(segment, 
crime-type) for all the disjoint crime-
types or subtypes. 

c. Normalize the above per-segment 
cumulative crime risk as 
Crime_risk(segment). 

10. Build a weighted graph (Cost Graph) of 
all the segments by assigning to each 
segment a cost factor as: 
Cost(segment) = Crime_risk(segment) x 
wA + Time(segment) x wB + 
Dollars(segment) x wC,  
where wA, wB, and Wc are the relative 
weights of crime risk, travel time, and 
travel monetary cost, as specified by the 
user or as defaulted based on the user’s 
demographics and other general 
information. 

11. Obtain and geolocate the user’s starting 
point and destination. 

12. Compute the user’s suggested route 
using the conventional weighted graph 
traversal algorithm using the Cost Graph 
and the user’s starting and destination 
points. 

AVAILABILITY OF DATA AND MATERIALS 
The data used in this work is available at 

http://terrafly.com.  The geospatial data sets used 
in case studies to illustrate the method proposed 
herein can be provided by the corresponding 
author with appropriate arrangements.  
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