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1. Introduction 

From business to education to research, one of the most common needs in today’s 
world is the ability to efficiently and effectively store and organize information. In 
the past several decades, the amount of information required to perform even 
everyday tasks has dramatically increased. In addition, there has been a substantial 
increase in the availability of more sophisticated and complex data, such as 
imagery, multimedia, geospatial and remotely sensed data. As our need for more 
extensive and complex information has increased, so has the size and complexity 
of databases used to store this information. To even further complicate the 
situation, needed data often resides in various independent, distributed databases 
as well as in unstructured forms such as social media and web sites. This has 
resulted in a greater need for more flexible, scalable and efficient database  
technology that can be used to store, query and combine massive amounts of 
various types of data that are distributed over multiple structured and unstructured 
data sources [1; 2; 3].  
 



 
1.1. Relational Database Systems and Structured Query Language (SQL) 
 
The majority of commercial data systems in use to today are relational databases. 
These database systems have been developed based on the Relational Data Model 
proposed by Codd in 1970 and subsequently updated in 1990 [4][5].  A relational 
database is composed of one or more two-dimensional tables, each of which 
contains data fields, or attributes, in the form of columns, and data records, or 
tuples, in the form of rows. Relationships between tables are implicit, by cross-
referencing data values in fields found on different tables. The Relational Data 
Model has a number of advantages that have contributed to the prevalence of these 
systems including: (1) it has rigorous design methodologies (e.g., normalization), 
alleviating redundancy and inconsistency, (2) the database schema is easily 
modifiable by the addition of tables and fields, and (3) the database has flexible 
and powerful well-defined operations, such as join, that is based on the algebraic 
set theory [6].  
 
One of the biggest advantages of relational databases is the use of Structured 
Query Language (SQL) as the standard query syntax in most relational database 
products. In its basic form, the syntax is simple and relatively easy to understand 
and use: Select fields From tables Where conditions. SQL can be used directly on a 
database, or as embedded SQL within general-purpose languages, or as an 
intermediary language via a standard communication protocol such as Open 
Database Connectivity (ODBC) protocol, Java Database Connectivity (JDBC) 
protocol or Object Linking and Embedding (OLE).  
 
Relational database systems have become a staple in modern technology. 
However, the data needs of today’s world are increasingly changing at a very 
rapid pace. As a result, today’s technology is becoming overtaxed and obsolete at 
an increasingly faster rate as more sophisticated solutions are required. As this 
pressure on technology has increased, the limitations of relational databases have 
come more to the forefront.  For example, relational databases are designed for 
organizing information that is easily categorized by common characteristics, and 
described by simple string or number data. Complex data, such as images, spatial 
and remotely sensed data, and multimedia products, are not easily described or 
categorized in this manner. Increased storage and utilization of massive amounts 
of complex data tends to lead to the implementation of more complex database 
schemas. Due to the difficulty in effectively handling these complex structures, 
this can lead, in turn, to isolation of complex relational database systems where 
information cannot be easily shared between those systems [1]. 
 
There are also challenges involved in the use of SQL. Although in its basic form, 
SQL is a relatively simple and easy to understand syntax, rarely will a simple 
query be sufficient to provide users with the data results that they require. This is 
particularly true for the more common, complex systems in use today. The 
effective use of SQL in most real-world relational databases requires technology 



specialists who have extensive training in the principles of relational databases, 
and complex and efficient SQL query design. They must also have a thorough 
understanding of the structure of the database of interest. This is because the 
relationship between tables in a relational database is implicit rather than explicit, 
and data of interest of is often found across various tables in the database. When 
creating a query, users must explicitly identify each table and provide a formula 
relating the various tables in order to effectively achieve the desired data results. 
The more abstract and complex the relationships are between tables in the 
database, the more difficult it becomes to create accurate and efficient queries. 
 
These highly skilled database technology specialists are also needed when 
designing and implementing a new relational database or making changes to the 
structure of an existing system. Because relational databases are so easy to 
modify, some untrained users mistakenly believe that one can simply add new 
tables and fields without much thought. However, this flexibility makes it easy to 
create poor, inefficient database designs that do not meet the needs of end users. 
These complex solutions require thorough analysis and planning, and are quite 
expensive and time consuming to implement or change. 
 
 
1.2. Overcoming the Limitations of Relational Databases 
 
In recent years, there have been a number of efforts to overcome the limitations of 
relational database systems. Semantic and object-oriented databases have been 
introduced that provide improvement on the structure of the database itself, such 
as allowing explicit relationships between classes of objects, and the inclusion of 
super-categories, sub-categories and inheritance. However, to be effective, these 
improvements to the structure of the database have historically required the 
addition of enhanced query language [7]. Although this can provide more 
powerful capabilities, it has also precluded the ability to use standard SQL for 
effective querying of these databases, as well as the use of standard relational 
database interface tools. 
 
Approaches that allow semantic and object oriented query interfaces over 
relational databases have also been proposed, including SQL3, Object query 
Language (OQL), and various graphical query languages [7][8]. While these 
provide the advantages of the object approach, changes to the data models and 
syntax of SQL are required to enable syntax expressiveness. This requires users to 
study new syntax and does not allow the utilization of the very extensive existing 
middleware and end-user GUIs that interface in standard SQL. Also, while the 
new languages work well with new database implementations based on object 
models, it does not provide improvement to existing relational databases. Further, 
these approaches require additional training and a change in how users must 
approach their programming. Standard SQL is a purely declarative language, 
whereas SQL3 and OQL, in particular, are semi-procedural. 
 



Graphical query languages attempt to make query interfaces more user friendly. 
Through the use of approaches such as hypertext language, menu-driven queries 
and Query-By-Example (QBE), users theoretically need not learn SQL syntax. In 
real world applications, however, these approaches only work well for very simple 
databases and very simple queries. Attempting to use these types of approaches 
for complex queries often leads to frustration when trying to follow the required 
procedures, and produces irrelevant results once the user completes the process. In 
order to be successful when creating complex queries, users must still have full 
knowledge of the logical structures of the database of interest, and understand how 
to express the needed joins correctly.  
 
It is clear that there is a need for a more dynamic solution that overcomes the 
increasing pressures and limitations of relational databases, while, at the same 
time, avoids some of the obstacles encountered by other object oriented 
approaches. To address and overcome these many challenges, Semantic Wrapper 
technology has been created. The Semantic Wrapper is a   middleware system that 
provides semantic views over legacy relational databases. As middleware, this 
system provides straight-forward, easy access to legacy relational databases 
without requiring users to switch from their existing GUI to a new, unfamiliar 
GUI. It further greatly improves usability by allowing the use of standard SQL 
syntax to access the semantic layer via more simplified and concise SQL queries 
than what would be required for direct querying of a standard relational database. 
This approach is also applicable in a heterogeneous multi-database environment 
that can include both structured (relational and semantic databases) and 
unstructured data (social media and related Internet sites). 
 
The remainder of this article presents an overview of the Semantic Wrapper and 
its major components. Section 2 discusses the Semantic Wrapper’s primary 
features and compares it to other systems. This is followed by discussions of the 
capabilities and integration of its three major components in Section 3.  
 

2. Semantic Wrapper Overview 

The Semantic Wrapper is a set of middleware tools developed to quickly and 
easily access and query relational databases, semantic databases and unstructured 
data such as Internet data sources. To accomplish this, the Semantic Wrapper 
creates a semantic schema view over relational and legacy databases. This schema 
is then used by the system to provide users with the ability to query the data 
quickly and easily. This technology allows the use of standard SQL queries to 
access the semantic schema via simple and concise syntax. It enables the use of 
3rd-party interfaces to formulate queries, allowing users continued use of familiar 
interfaces while still providing them with the Semantic Wrapper’s powerful 
capabilities. 
 



The system is based on the semantic modeling approach [9], and employs the 
Semantic Binary Object Data Model (Sem-ODM) and Semantic SQL query 
language (Sem-SQL) for improved data querying and usability[10]. Various 
aspects and application of this and related technology are discussed in [11; 12; 13; 
14; 15]. This platform provides the system with powerful and adaptive 
capabilities. When the semantic features of these technologies are employed, they 
have been found to provide a high level of efficiency when compared to relational 
databases [16]. 
 
 
2.1. Capabilities of the Semantic Wrapper 
 
There are a number of object oriented approaches that are focused on overcoming 
the problems inherent in the Relational Model’s inability to effectively deal with 
modern data needs. To address these issues, other approaches have implemented 
improvements to database structures, enhancements to standard query languages, 
and the use of graphical user interfaces to improve ease of use. However, each of 
these attempts has created their own challenges and limitations. These challenges 
include: 
 

 Inability to be implemented with existing relational databases and legacy 
systems 

 Increased complexity and decreased user friendliness due to changes to 
query languages 

 Attempts to improve ease of use that also result in significantly decreased 
functionality 

 
The Semantic Wrapper has been designed to provide a powerful, yet easy to use, 
system that improves our ability to work with various types of heterogeneous data 
without encountering the above challenges.  
 
The Semantic wrapper can be implemented either independently, or, as can be 
seen in Figure 1, over an existing relational database. A number of the object 
oriented approaches discussed in Section 1.2 incorporate improvement on the 
structure of the database itself to provide a greater capability to handle various 
types of data. While this was a major step towards more efficiently and effectively 
dealing with the shortcomings of a relational schema, it does not allow for the 
ability to implement the system with existing relational and legacy database 
systems whose structures are not be amenable to structural change. The Semantic 
Wrapper has overcome this obstacle by avoiding any changes to existing database 
structures. Instead, a separate semantic schema is constructed that allows a 
compact and logical semantic view while still providing an accurate reflection of 
the original database. This, in essence, provides the system with the improved 
database structure sought by other systems, without the same limitations. Thus, the 
Semantic Wrapper can be used to construct new applications, or as an additional 
interface to existing relational databases. 



 
 
 

                
 

Figure 1. High-level architectural view of the Semantic Wrapper 
 
 
The Semantic Wrapper uses Semantic SQL, which is syntactically identical to the 
standard relational SQL, but exploits the semantics of relationships. This, in turn, 
makes Semantic SQL queries much more concise and clear. Specifically, 
Semantic SQL queries refer to a virtual relational schema that consists of inferred 
tables defined as spanning trees containing all reachable relations from a given 
category. Complications of multiple table references and keys are eliminated. As a 
result, users have no need to explicitly express joins. Instead, when a user queries 
the database, it is as if there is a universal table for each category. This 
significantly reduces the complexity of queries, and significantly increases the 
user friendliness of the system’s querying capabilities [17]. 
 
Attempts by other approaches, such as graphical query languages, to improve user 
friendliness of database systems have succeeded in terms of simplifying the 
process needed for very basic queries. However, these have also lead to significant 
reductions in the ability to create even moderately complex queries that are more 
commonly used in the real world. Even though the Semantic Wrapper’s increased 
user friendliness is partially through the use of more simplified query syntax, 
because of the use of Semantic SQL in combination with the Semantic Wrapper’s 
structure and the various tools that are part of the Semantic Wrapper, there is no 
decrease in functionality. Specifically, the mapping and query translation 
processes that are used to create the semantic schema (see Section 3.1) and 
subsequently query the database (see Section 3.3) merely hide the complexity 



from the user without actually limiting functionality. In other words, the system 
does much of the work for the user, without loss of functionality or an increase in 
errors. 
 
In sum, the Semantic Wrapper is a solution that provides users with the ability to 
view multiple data sources as one, centralized virtual database through a semantic 
database schema, and access needed data via a standard, easy-to-use and flexible 
interface. This standard interface allows users to interact and query data in a more 
intelligent and friendlier manner that is based on the stored meaning of the data. 
Further, 3rd party tools that the user is already familiar with can be deployed with 
the system. The system can be implemented independently for new applications, 
or over an existing legacy relational database. Other advantages of using the 
Semantic Wrapper include comprehensive enforcement of integrity constraints, 
greater flexibility, and substantially shorter application programs [10].  
 

3. Technical Background 

3.1. Semantic Schemas 
 
A key component of Semantic Wrapper technology is the use of a semantic 
schema that is functionally equivalent to a corresponding relational database. Use 
of an equivalent semantic schema has numerous advantages over a relational 
schema, including: 
 

 Knowledge is described at a conceptual level rather than at a table layout 
level 

 Meaning of information in a semantic schema is retained and stored 
within the schema itself 

 Relationships between categories are explicitly represented 
 It is significantly easier to formulate queries as any relationship can be 

queried and joins are not required to be explicitly defined 
 
For example, a subschema of a Hydrology database that was developed for the 
Everglades National Park can be seen in Figure 2 and its normalized relational 
counterpart can be seen in Figure 3. As the semantic subschema is a conceptual 
representation, its structure is more analogous to how the real world is 
conceptualized by humans. This makes it easier for users to understand the types 
of information contained in the database, as well as how data within the database 
is conceptually related. 
 
 



 
 

Figure 2. Semantic sub-schema for Physical Observations 
 
 
 
As can be seen in Figure 4, Semantic SQL queries are an order of magnitude 
shorter than the corresponding relational SQL query. This query is representative 
of the types of real world information that might be needed by a user. In this case, 
the user would be a scientist or environmentalist needing data about 
environmental conditions over time (see Figure 2 and Figure 3 for the semantic 
and relational subschemas). The question of interest, “Give me all of the 
observations with all of their attributes since January 1, 1993 and the location of 
the observing stations”, requires a very short and easy to compose query to the 
semantic schema. As can be seen, if the same query were written for a relational 
schema, the query would be substantially longer and more complex.  
 



 

PHYSICAL-OBSERVATION-STATION 
physical-observation-station-id-key:Integer      1:1;      comments:String;      
housing:String;      structure:String; 
is-part-of--physical-observation-station-id:Integer; 
_______________________________________________________________  
LOCATION 
north-UTM-in-key:Number; east-UTM-in-key:Number; elevation-ft:Number; 
description:String; 
_______________________________________________________________  
ORGANIZATION 
name-key:String 1:1; description:String; 
_______________________________________________________________  
PROJECT 
name-key:String 1:1; description:String; comments:String; starting-date:Date; 
ending-date:Date; 
_______________________________________________________________  
MEASUREMENT-TYPE 
name-key:String 1:1; measurement-unit:String; upper-limit:Number; lower-
limit:Number; 
_______________________________________________________________  
FIXED-STATION 
physical-observation-station-id-key:Integer  1:1;  platform-height-ft:0..50.000;  
located-at--north-UTM:Number; 
located-at--east-UTM:Number; 
_______________________________________________________________  
MEASUREMENT 
observation-id-key:Integer      1:1;      comment:String;      time:Date-time;      
value:Number;      of--name:String; 
by--physical-observation-station-id:Integer; 
_______________________________________________________________  
IMAGE 
observation-id-key:Integer       1:1;       comment:String;       time:Date-time;       
image:Raw;       subject:String; 
direction-of-view:0..360; comments:String; type:Char(3); by--physical-
observation-station-id:Integer; 
_______________________________________________________________  
PHYSICAL-OBSERVATION-STATION--BELONGS-TO--
ORGANIZATION 
physical-observation-station-id-in-key:Integer; organization--name-in-
key:String; 
_______________________________________________________________  
ORGANIZATION--RUNS--PROJECT 
organization--name-in-key:String; project--name-in-key:String; 
_______________________________________________________________ 
PHYSICAL-OBSERVATION-STATION--SERVES--PROJECT 
physical-observation-station-id-in-key:Integer; project--name-in-key:String; 
_______________________________________________________________  
ORGANIZATION--IS-PART-OF--ORGANIZATION 
organization--name-in-key:String; organization-2--name-in-key:String; 

Figure 3. Relational sub-schema for Physical Observations



 
 
3.2. The Semantic Binary Model 
 
The semantic schemas used by the Semantic Wrapper are based on the Semantic 
Binary Model (SBM) [9]. The SBM is a flexible, new generation data model that 
is natural, simple, non-redundant, and implementation-independent. Its strength 
lies in its ability more accurately capture the meaning of information, while, at the 
same time, providing a succinct, high-level description of that information. Its use 
of objects, categories and their relationships is very easy for users to conceptualize 
as they are reflective of the manner in which users already think about the real 
world. A sample semantic schema can be seen in Figure 5. 
 
Objects - The central notion of semantic models is the concept of an object. 
Objects are defined as any real world object or entity that we wish to store 
information about in the database. Examples of objects include a student, 
department, course and course name. Objects can be further classified as concrete 
objects, which are printable objects such as course name, or abstract objects, 
which are non-value objects in the real world such as a course itself.  
 
Categories - Objects that have common properties are considered in the same 
category in the database. As with objects, categories can be concrete (consisting of 

 
Figure 4. Comparison of a Semantic SQL Query to a corresponding 

Relational SQL Query 



only concrete objects) or abstract (consisting of only abstract objects). Objects 
may also belong to more than one category at a time. For example, an object can 
be both a student and instructor at the same time (see Figure 5). A schema may 
also contain subcategories. A category is a subcategory of another category if 
every object in that category is always an object in the latter category. For 
example, a student is always also person. Therefore, STUDENT is a subcategory 
of PERSON. On the opposite end of the spectrum, categories can be disjoint. Two 
categories are disjoint if no object can ever be a member of both categories at the 
same time. For example, a student can never also be a course; therefore, 
STUDENT and COURSE are disjoint categories.  
 
Relationships - A binary relationship is a connection between two objects 
indicating that they are related by a certain property.  Such a property is called a 
binary relation. At every moment in time, a binary relation R is descriptive of a 
set of pairs of objects (x,y) which are related at that time. This is denoted as xRy.  
For example, an instructor WORKS-IN a department (see Figure 5). The relation is 
WORKS-IN, and is denoted as i WORKS-IN d.  
 
Binary relations may be m:1 (many-to-one), 1:m (one-to-many), m:m (many-to-
many) or 1:1 (one-to-one).. A binary relation R is m:1 if there is never a time 
when xRy and xRz where y≠z. For example, every person has only one birth year, 
therefore, BIRTH-YEAR is m:1. A binary relation R is 1:m if there is never a time 
when xRy and zRy where x≠z. For example, every student can have at most one 
major. If we had a relation MAJOR-STUDENT (instead of MAJOR-DEPARTMENT, 
which is m:1), then that relation would be 1:m. ). A binary relation R is m:m if it is 
neither m:1 or 1:m. For example, every instructor can work in more than one 
department, and every department can employ more than one instructor. Thus, 
WORKS-IN is a m:m relation. A binary relation R is 1:1 if it is always both m:1 and 
1:m. For example, if every course is uniquely identified by its name (there is no 
character string that can be the name of two or more courses), then COURSE-NAME 
is 1:1. 
 
The domain of a relation is the smallest category such that for every xRy, x always 
belongs to the category.  The range of a relation is the smallest category such that 
for every xRy, y always belongs to the category. For example, the domain of 
WORKS-IN is INSTRUCTOR and the range is DEPARTMENT.. A binary relation 
is total if for every object x in its domain, there always exists an object y such that 
xRy. For example, the domain of the relation BIRTH-DATE is PERSON. Although 
every person has a date of birth, that date of birth is not always known. Therefore, 
BIRTH-DATE is not total.  
 
 
 
 
 
 



 
 
 

PERSON 
 

last_name:String 
first_name:String 
birth_year:String 

address:String 

 
STUDENT 
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name:String 1:m 

COURSE_ 
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Figure 5. Semantic Schema of a University Application 



A binary relation whose range is a concrete category is called an attribute. Thus, 
the phrase “a is an attribute of C” means that a is an attribute and its domain is 
category C. For example, LAST-NAME, FIRST-NAME and BIRTH-YEAR are attributes 
of PERSON. 
 
 
 
3.3. Semantic SQL 
 
The Semantic SQL language paradigm is the core interface of the Semantic 
Wrapper both to the end user and as a middleware. Semantic SQL was originally 
designed to query semantic and object oriented databases, and, as part of the 
Semantic Wrapper, it is used to query a semantic schema that is reflective of the 
underlying relational schema.  Semantic SQL is syntactically identical to Standard 
SQL but assumes a virtual schema comprised of infinitely-wide tables, one table 
per semantic category with all the fields reachable from it.  In the middleware 
mode, the fact that the user refers to this virtual schema is technically transparent 
to third-party tools, thus allowing for standard protocols, such as ODBC and 
JDBC.   Thus, for example, the user can utilize a third-party GUI to create a query. 
The input is user clicks, the GUI output is SQL.  The complexity of the input is 
proportional to the complexity of the output. Because the formulation of a query in 
Semantic SQL is very concise in the output, so is the user’s input as measured by 
the number of clicks and the intellectual complexity of the task. 
 
Because Semantic SQL syntax is identical to the relational SQL syntax, it supports 
standard database access interfaces such as ODBC and JDBC. Thus, Semantic 
SQL, like standard SQL, is a purely declarative query language. This is 
particularly advantageous for users as there no need to learn new query syntax or a 
new programming approach. Where Semantic SQL and relational SQL differ is in 
the simplicity of Semantic SQL queries as compared to relational queries. Because 
semantic databases use real world concepts such as objects and categories, 
Semantic SQL is able to query schemas at the conceptual level instead of the table 
layout level.  
 
Semantic SQL queries refer to a virtual relational schema that consists of inferred 
tables defined as spanning trees containing all reachable relations from a given 
category. A virtual table is implicitly defined for each category in the semantic 
schema, where all related data is grouped together. Appendix 1 provides a formal 
definition of this grouping. Referring back to our semantic schema in Figure 5, the 
following is an example of some of the fields in the virtual table for the category 
STUDENT. 
 
 
 
 
 



Full Attribute Name  Abbreviation  Type  Sample 
STUDENT  ­ surrogate 123235 
last_name  ­ string Smith 
birth­year  ­ integer 1990 
the_student___the_offer__the_
quarter__year 

year integer 2011 

the_student___the_offer__the_
quarter__season 

season string Spring 

the_student___final_grade final_grade integer 75 
Major  ­ surrogate CS 
Minor  ­ surrogate ECE 
major__name  ­ string CompSci 
minor__name  ­ string Electrical 
 
In the virtual table for STUDENT, the attribute STUDENT__major__name 
(where STUDENT is the category, MAJOR is the relationship, and NAME is the 
attribute) refers to “the name of the department in which a student majors.”  
 
For ease of use, every attribute in a virtual table has a short semantic name and a 
long semantic name. A short semantic name is created by removing prefixes in the 
long attribute name, and can be used for queries so long as there is no ambiguity 
within that virtual table. For example, in the virtual table STUDENT, the long 
semantic name for one attribute is the_student___the_offer__the_quarter__year 
and its short semantic name is year. As there is no other attribute of the same 
depth with the name year in this virtual table, no ambiguity arises from use of this 
short semantic name. Conversely, using the abbreviated attribute name would lead 
to ambiguity as there would be two possible attributes of the same depth that this 
could represent: the_student__major__name and the_student__minor__name. In 
this case, it can be disambiguated by using either major__name or minor__name. 
 
With relational SQL, users usually need to define a join operation to link two 
tables together. While inner joins are hard enough to define, most realistic queries 
require an outer join (left outer join), which is very hard to define in relational 
SQL. As can be seen in the above example, Semantic SQL relieves users of the 
need to explicitly express joins. Instead, joins are expressed in the names of the 
attributes found in the virtual table. Because of the semantic information inherent 
in the schema, there is no ambiguity in the query. This results in simpler query 
construction for the user. For example, if a user wants to retrieve the first name 
and last name of a student whose major department is ‘computer science’, the 
Semantic SQL query is a follows: 
 
 select first_name, last_name  from  STUDENT 
 where major__name = ‘computer science’ 
 



In the relational SQL, however, the same query might be composed as follows 
(depending on the relational schema): 
 
 select first_name, last_name  from STUDENT, DEPARTMENT 
 where STUDENT.deptID = DEPARTMENT.deptID and 
  DEPARTMENT.name = ‘computer science’ 
 
Semantic SQL queries requesting the retrieval of more complex combinations of 
information are still simple. For example, a query to retrieve the student’s 
last_name, first_name, address, major, name of each course, final_grade for the 
course, year and semester the course was taken, for every student would be: 
 

select last_name, first_name, address, major__name, 
the_course__name, final_grade, season, year 

from  STUDENT 
 
Should a user prefer to explicitly express join conditions, they can still do so. As 
Semantic SQL is completely compatible with relational SQL, the syntax is exactly 
the same for both query languages.  
 
Queries to update against a virtual relational database are inherently ambiguous. 
Semantic SQL provides disambiguating semantics on the underlying semantic 
schema (see Appendix 2 for formal definitions). As with queries for retrieving 
data, standard SQL syntax, such as insert, delete and update, is used. An example 
of a simple update is: 
 

Delete students whose final grade is less than 50: 
Structure: delete from C where condition  
Example: delete from STUDENT where FINAL_GRADE<50 
 

4. Components of the Semantic Wrapper 

The Semantic Wrapper is primarily comprised of three engineering components 
that can be used as either a standalone application or as middleware This section 
provides a high-level description of each of these components, a description of 
how these components interact with each other to produce the desired results, and 
an example that illustrates the Semantic Wrapper’s capability to be implemented 
as middleware. 
 
4.1. The Knowledge Base Tool: Reverse Engineering of a Semantic Schema 
 
In order to interpret Semantic SQL queries to a relational database, a semantic 
view of the database must be created. This is the primary function of the 
Knowledge Base Tool (KDB Tool). By using this tool, the user is able to create 
semantic information for a relational database of interest via the construction of a 



semantic schema that accurately reflects the information in and structure of data in 
the relational database. This can include the specification of inheritance of 
categories and many-to-many relations.  
 
The KDB Tool’s capabilities are designed to ensure the integrity of the mapping 
between the original relational database and the corresponding semantic schema. 
This is accomplished by enforcing a rule at every step of the creation process that 
keeps specific mapping information between the relational database tables and 
semantic schema categories and relations intact. The system will not allow 
changes to be made to the semantic schema that would damage the integrity of the 
mapping information.  
 
Use of the KDB Tool on a standard relational database involves a possible total of 
eight steps, four of which are automated and four of which involve the skills and 
knowledge of the relational database’s administrator [18]. To automatically 
generate the initial semantic schema, it is assumed that metadata regarding tables, 
attributes, primary keys and other constraints are available via the relational 
database management system in use. The first four steps needed to create the 
semantic schema are as follows: 
 

1. A category in the semantic schema is created for each table in the 
relational database 

2. Within each semantic category, an attribute is created for every field (i.e., 
column) in the corresponding relational table 

3. A semantic relation is created for each functional dependency in the 
relational database 

4. Within each semantic category, attributes that correspond to foreign keys 
in the relational database are removed (these are reflected in the relations 
that are created in step 3, rendering these attributes redundant) 

 
A sample relational database structure can be seen in Figure 6, along with its 
transformation through step 4 to the semantic schema seen in Figure 7. Perusing 
both figures, it is easy to discern the correspondence between the relational and 
semantic schemas. For example, the relational table CURRENCY_FOR_COUNTRY 
corresponds to the semantic category CURRENCY-FOR-COUNTRY. The functional 
dependency between CURRENCY_FOR_COUNTRY and CURRENCY relational tables 
transformed into a semantic relationship, ‘the-currency’, and the foreign key, 
THE_CURRENCY__CODE_KEY, was removed as it is reflected in the semantic 
relationship between CURRENCY-FOR-COUNTRY and CURRENCY semantic 
categories. 
 



 
 

Figure 6. Relational Schema of a Geography Database 
 
 
Once steps One through Four are completed, a valid semantic view of the database 
has been created. This view, however, can be further refined to create a more 
accurate reflection of the application’s semantics by completing steps Five 
through Eight, which require human intervention, i.e. the skills and knowledge of 
the relational database’s administrator (DBA). The reasons for this include the 
ease at which a database domain expert can understand semantic databases, the 
DBA’s in-depth knowledge of the structure of the relational database, the DBA’s 
intimate understanding of needed userviews and end-user needs, and the DBA’s 
responsibility for the correct functioning of the database tools.  
 
 
Steps Five through Eight of the semantic schema creation process are as follows: 
 

5. Any semantic categories that correspond to a relational table whose sole 
purpose is to represent many-to-many relations should be replaced with 
actual many-to-many relationships in the semantic schema 

 



 
 
 
 
 
 
 
 
In our sample schema, this type of transformation can be seen in Figure 8. In 
short, the relational table CURRENCY_FOR_COUNTRY, contains only foreign keys 
and has two many-to-one relationships. This is reflected in the semantic schema as 
a category, CURRENCY-FOR-COUNTRY, that has no attributes and two many-to-one 
relationships. Thus, it is clear that the sole purpose of this category is to represent 
a many-to-many relationship in the relational schema, which can be directly 
replaced in the semantic schema as a many-to-relationship. 
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Figure 7. Geography Semantic Schema after Transformation through Step 4 



 
6. Any semantic categories that correspond to relational tables whose sole 

purpose is to represent a recursive reference should be replaced with an 
is-part-of relationship in the corresponding semantic category. This 
relationship may have a cardinality of many-to-one or many-to-many. 

 
In our sample schema, this type of transformation can be seen in Figure 9. In 
short, the relational table CITY_NEAR_CITY, contains only foreign keys and has two 
many-to-one relationships with the CITY relational table. This is reflected in the 
semantic schema as a category, CITY-NEAR-CITY, that has no attributes and two 
many-to-one relationships with the semantic category CITY. Thus, it is clear that 
the sole purpose of the CITY-NEAR-CITY category is to represent a recursive 
reference in the relational schema. 
 

7. Any semantic categories that correspond to relational tables whose sole 
purpose is to represent a one-to-many relationship should be replaced 
with a one-to-many attribute in the corresponding semantic category. 
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Figure 8. Step 5 of the KDB Tool on the Geography database 



In our sample schema, this type of transformation can be seen in Figure 10. In 
short, the relational tables COUNTRY_OTHER_NAME and COUNTRY have attributes 
that contain the same information (the name of a country). Further, the table 
COUNTRY_OTHER_NAME has no other attributes and only a one-to-many 
relationship with the COUNTRY relational table. This is similarly reflected in the 
semantic schema. Thus, it is clear that the sole purpose of the COUNTRY-OTHER-
NAME category is to represent a one-to-many relationship in the relational schema 
and should be replaced with a one-to-many attribute, other-name, in the COUNTRY 
semantic category. 
 
 

8. Include the relevant category inheritance hierarchy into the semantic 
schema. 

 
Step Eight introduces an additional level of abstraction to the semantic schema. In 
our sample schema, this type of transformation can be seen in Figure 11. In short, 
the relational tables COUNTRY, CITY and AIRPORT all have an attribute in common; 
that is, they all have a name. Because of this commonality, a supercategory, 
GEOGRAPHICAL-ENTITY, with the attribute name can be introduced into the 
schema, and the name attribute can be removed from the aforementioned 
categories. 
 
In addition, prior to defining a virtual table, the name of every category and 
relation is “cleaned” as follows: 
 

1. replace all non-alphanumeric characters with "_" 
2. if the name begins with a digit or "_", prepend "A" 
3. if the name ends with "_" append "Z" 
4. collapse multiple "_" into a single "_" 
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Figure 9. Step 6 of the KDB Tool on the Geography Database 



 
Once this is completed, the systems checks to ensure that no ambiguity has been 
introduced. If this process does introduce any ambiguity, the schema is rejected. 
 
 
4.2. Knowledge Base (KB) 
 
The Semantic Wrapper’s Knowledge Base (KB) is the interface between the KDB 
Tool and the Query Translator. All of the mapping information that is generated 
by the KDB Tool during semantic schema creation is saved in the KB. The KB is 
an Extensible Markup Language (XML) [19] file that will subsequently be used to 
translate Semantic SQL queries into standard SQL queries by the Query 
Translator (see Section 3.3). Specifically, the KB stores all the needed information 
for both the relational and semantic database schemas, as well all derivation rules 
for query translation. Its XML format, in particular, provides a flexible, robust and 
easy to use avenue for capturing complex semantic information in conjunction 
with the relational and semantic schemas. 
 
Along with the KDB Tool, the KB includes sets of inference rules that can be used 
to generate new knowledge that is needed during query translation. This is 
particularly useful when there is not enough information to complete the 
transformation of the semantic query, such as when the Semantic Wrapper is 
being used to integrate data from heterogeneous multi-database environments. 
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Figure 10. Step 7 of the KDB Tool on the Geography Database 
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Figure 11. Step 8 of the KDB Tool on the Geography database 



4.3. Query Translator: Automatic Query Conversion 
 
The Query Translator is the central processor of the Semantic Wrapper. This 
component is responsible for transforming the easy to use Semantic SQL queries 
that are based on the semantic schema into the more complex corresponding 
relational SQL queries on the relational database. While this component translates 
Semantic SQL queries into relational SQL queries that are significantly more 
complex, they are still semantically equivalent to the original query posed by the 
user. 
 
To accomplish this, the Query Translator interfaces with the KB to retrieve and 
use the semantic and relational schema information recorded during the semantic 
schema creation (see Section 4.1), as well as any needed derivation rules. Once the 
Query Translator retrieves needed information from the KB, it generates the 
appropriate projections on virtual tables via the use of temporary views. Query 
results are generated through the application of outer joins or sub-queries 
explicitly in the Where clause between these temporary views. The constructed 
relational SQL queries are subsequently transmitted to the relational database 
management system via a standard interface. 
 
Semantic SQL queries are often an order of magnitude shorter than the 
corresponding relational SQL queries. The complexity involved in transforming a 
Semantic SQL query into a relational SQL query is best seen by a direct 
comparison of SQL statements on a real world semantic schema and its relational 
counterpart. Referring back to Figure 2 and Figure 3, some examples of real world 
Semantic SQL queries and their functionally equivalent relational SQL queries on 
these subschemas include: 
 

Example 1: List of the time and housing of temperature measurements 
over 50 degrees 

Semantic SQL Statement Relational SQL Statement 
select housing,time from 
MEASUREMENT where 
of__name=’Temperature’ and 
value>50  

select housing, time 
from 
PHYSICAL_OBSERVATION_STATION, 
MEASUREMENT 
where exists 
(select * from MEASUREMENT-TYPE 
where name_key = of__name and 
name_key = ’Temperature’ and 
by_physical_observation_station_id = 
physical_observation_station_id_key 
and 
value > 50) 

 
 



Example 2: The descriptions of organizations and locations of their fixed  
stations 
Semantic SQL Statement Relational SQL Statement 
select description, LOCATION 
from ORGANIZATION 

select description, 
LOCATION.north_UTM_in_key, 
LOCATION.east_UTM_in_key  from 
ORGANIZATION, LOCATION where 
exists (select * from FIXED_STATION 
where exists (select * from 
PHYSICAL_OBSERVATION_STATION__B
ELONGS_TO__ORGANIZATION  where 
name_key = 
organization__name_in_key  and 
PHYSICAL_OBSERVATION_STATION__B
ELONGS_TO__ORGANIZATION. 
physical_observation_station_id_in_yy = 
FIXED_STATION. 
physical_observation_station_id_key 
and located_at__north_UTM = 
north_UTM_in_key and 
located_at__east_UTM = 
east_UTM_in_key )) 

 
Example 3: The observations since January 1, 1993 (including images, 
measurements and their types) with location of the stations 

Semantic SQL Statement Relational SQL Statement 
select OBSERVATION__, 
of__, LOCATION from 
OBSERVATION  where 
time>’1993/01’ 

(select MEASUREMENT_TYPE.*, 
LOCATION.north_UTM_in_key, 
LOCATION.east_UTM_in_key, 
MEASUREMENT.*, NULL, NULL, NULL, NULL, 
NULL, NULL, NULL, NULL, NULL from 
MEASUREMENT_TYPE, LOCATION, 
MEASUREMENT where time > ’1993/01’ and 
exists (select * from FIXED_STATION where 
by__physical_observation_station_id = 
physical_observation_station_id_key and 
located_at__north_UTM = north_UTM_in_key 
and located_at__east_UTM =east_UTM_in_key 
and of__name = name_key )) union (select 
MEASUREMENT_TYPE.*, NULL, NULL, 
MEASUREMENT.*, NULL,NULL, NULL, NULL, 
NULL, NULL, NULL, NULL, NULLfrom 
MEASUREMENT_TYPE, MEASUREMENT where 



time > ’1993/01’  and not exists (select * from 
FIXED_STATION 
whereby__physical_observation_station_id = 
physical_observation_station_id_key and 
of__name = name_key )) union (select NULL, 
NULL, NULL, NULL, 
LOCATION.north_UTM_in_key, 
LOCATION.east_UTM_in_key, NULL, NULL, 
NULL, NULL, NULL, NULL, IMAGE.*  from 
LOCATION, IMAGE  where time > ’1993/01’  
and exists (select * from FIXED_STATION 
where by__physical_observation_station_id = 
physical_observation_station_id_key and 
located_at__north_UTM = north_UTM_in_key 
and located_at__east_UTM = 
east_UTM_in_key )) union (select NULL, NULL, 
NULL, NULL, NULL, NULL, NULL, NULL, NULL, 
NULL, NULL, NULL, IMAGE.*  from IMAGE 
where time > ’1993/01’  and not exists (select 
* from FIXED-STATION where 
by__physical_observation_station_id = 
physical_observation_station_id_key)) 

 
 
As can be seen in theses three examples, the relational SQL queries that are 
constructed by the Query Translator are often substantially larger and more 
complex than the semantic SQL queries created by users.  
 
4.4. Semantic Wrapper as Middleware 
 
The Semantic Wrapper is a middleware system that provides semantic views over 
legacy relational databases. As middleware, this system provides straight-forward, 
easy access to legacy relational databases without requiring users to switch from 
their existing interfaces to a new, unfamiliar interface. As is illustrated in Figure 
12, the Semantic Wrapper can be employed in many environments and for 
numerous applications, including as middleware for web applications. 
 
The Semantic Wrapper greatly improves usability by allowing the use of standard 
SQL syntax to access the semantic layer via more simplified and concise SQL 
queries than what would be required for direct querying of a standard relational 
database. This approach is also applicable in a heterogeneous multi-database 
environment that can include both structured (relational and semantic databases) 
and unstructured data (social media and related Internet sites). 
 
 



 
 
 

 
 

5. Conclusion 

The Semantic Wrapper is a middleware system that can be used to greatly 
improve the ability to meet the intense and ever-changing data management needs 
of today’s world. The Semantic Wrapper provides an easy to use method for 
accessing legacy and relational databases, while still maintaining the ability to be 
implemented as a standalone solution. It allows users to continue to use familiar 

Figure 12. Overall Architecture of the Semantic Wrapper as Middleware for a 
Web Application 



GUIs and greatly decreases the complexity of SQL syntax needed from users to 
fulfill their data requests. Finally, the system can be used over both structured and 
unstructured, heterogeneous data sources, providing a set of tools that can easily 
incorporate new and diverse sources of data. 
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Appendix 1: Semantic SQL Virtual Tables Formal Definition 

 
The virtual table T(C) for a category C, recursive definition: 

1.     The first attribute of T: 

C — attribute of T, range: C   (m:1) 

2.     For every attribute A of T, for every relation r applicable to the range of A: 

A__r — attribute of T, range: range(r)   (m:1) 

Note: this virtual table is infinite.  When interpreting a specific query, a finite 
projection of this table is assumed as further explained in Technical Notes. 

The name of T is the same as of C. 

Note: to-many original relations are reduced to to-one attributes of the virtual 
table. 

If  the  semantic  relation  r  is  many-to-many  or  one-to-many,  the  new  
attribute  would  be many-to-one, but many virtual rows would exist in the table T, 
one for each instance of the tree.  If r has no value for an object, a null value will 
appear in the virtual relational table. 

The relation r may be inferred.  The range of a virtual attribute may be of multi-
media types: numbers with unlimited varying precision and magnitude, texts of 
unlimited size, images, etc. 

Abbreviation of prefixes 

• Every  component  relation  r  in  the  virtual  attribute  name  may  be  
named  by  its  full semantic name or, if no ambiguity arises, by its short 
semantic name. 

• The attribute names of T contain long prefixes. These prefixes can be 
omitted when no ambiguity arises, i.e.: attribute y is an abbreviated 
synonym of the unabbreviated attribute x__y of T if T has no other 
unabbreviated attribute z__y where depth (z ) ≤ depth (x ). 

depth (x ) is the number of relations present in x. 

Surrogates 

All attributes of T(C) of type Abstract are replaced by their surrogates of type 
String.  

Definition of the extension of a table 

The virtual table T for a category C is logically generated as follows: 

1. Initially, T[C]=C,  i.e.  T  contains  one  column  called  C,  whose  values  
are the  objects  of  the category. 



2. For every attribute A of T, for every schema relation or attribute r whose 
domain may intersect range(A), let R be the relation r with its domain 
renamed A and range renamed A__r, let T be the natural right-outer-join of T 
with R.  (Unlike a regular join, the outer join creates A__r=null when there is 
no match.) 

3. For a given query q  the virtual table against which q  is interpreted, T [C ,q], 
is a projection of T [C] on the following virtual attributes: 

• the virtual attributes that appear in the query, 
• the unabbreviated prefixes of said attributes (including the surrogate 

attribute C), 
• and the attributes p__r where p is any of said prefixes and r is an original 

printable-type to-one attribute of the semantic schema. 

Note: the projection operation here is a set operation with duplicated tuples 
eliminated. 

User-control of table depth 

(Used  only  by  sophisticated  users  trying  to  outsmart  $MAXDEPTH  defined  
by  a  graphical  user interface; not needed by users posing direct SQL queries 
without a GUI.) 

• For  each  category  C,   in  addition  to  the  default  table  named  C,  of  
depth  limited  by $MAXDEPTH, there are also tables called C_i for any 
positive integer i, with the depth limited by i rather than $MAXDEPTH.  
Also, there is a table C_0 which includes only the original to-one  
attributes  and  relations  whose  domain  is  C  or  a  supercategory of  C  
and  the  surrogate attribute of C . 

ODBC schema queries 

• The ODBC request for the names of all tables is interpreted as: for every 
category get the primary virtual table C and the tables C__0 and C__1. 

• The ODBC request for the names of all attributes of a given virtual table 
T returns all attributes maximally abbreviated.  If the request is for the 
virtual table corresponding to a category C, only attributes of C__2 are 
returned 

• The ODBC  request  to  browse  the  virtual  table  is  denied.   (Browsing  
of  C__0  is  permitted. Browsability of C__1 is not guaranteed)  

  



 

Appendix 2: Disambiguation of Arbitrary Semantic SQL 
Updates 

Let C be a category against which an update operation is performed. 

Notation: 

T = T(C) — the virtual table of C . 

A — the list of full names of attributes of T that are assigned values in the 
operation. 

R1,...,Rn— the set of relations of C  such that for some suffix s , Ri__s is in A.  
(That is, Ri__s is a two-step or deeper attribute.) 

C1,...,Cn— the ranges of R1,...,Rn. 

Si— list (s | Ri__s in A) in the order of appearance in A. 

V (a) — For every attribute a in A let V(a) be the value being assigned to the 
attribute a .  For every s in Si let V(s) be the value assigned to Ri__s.  Let V(Si) be 
the list of V(s) where s in Si. 

Ei— the list of assignments s = V(s) for s in Si. 

1) delete from C where condition 
a) perform: select C from C where condition 
b) for every resultant object o in C: remove o from C . 

Example: 

delete from STUDENT where FINAL_GRADE<50 

2)  insert into C (attributes) values (assignments) 
a) Create a new object in  C .  Let this object  be  denoted o. Its one-step 

relationships are assigned values from the assignments.  If a one-step 
relationship is m:m or 1:m then only one value may be assigned. 

b) For every category Ci in C1...Cn do: 

(1) if Ri__Ci is in A  and V(Ri_Ci)="new" 

then recursively perform: 

insert into Ci ( Si) values ( V(Si) ); 

let v be the object inserted above 

     else do: 

(2.1) perform: select Ci from Ci where Ei 

(2.2) if the above select results in exactly one object, 



then denote that object v 

else abort with an error message 

(2) relate: o Ri v 

Example: create a new student James in the department in which Johnson works 
and enroll Jim in the only existing offering of "Magnetism": 

insert into STUDENT 

( FirstName,      Major__WorksIn___LastName,      Enrollment,      
The_Course ) 

values (’James’, ’Johnson’,        ’new’, ’Magnetism’) 

3) insert into C ( attributes ) query 
a) Evaluate the query, resulting in a set of rows. 
b) For each row r perform: insert into C ( A ) values ( r ) 

Example: For every instructor create a department named after him and make him 
work there: 

insert into DEPARTMENT 
( Name, WorksIn_ ) 

select  LastName, Instructor 
from  Instructor 

4) update C set assignments where condition 
a) perform: 

select C from C where condition 

b) for every object o in the result of the above query perform: 

(1) The object’s one-step relationships are assigned values from the 
assignments, i.e.: for every one-step attribute Ai in A perform: o.Ai:= V(Ai) 

(2) For every category Ci in C1...Cn do: 

(2a)  if Ri__Ci is in A  and V(Ri_Ci)="new" 

then recursively perform: 

(2a1)  insert into Ci ( Si ) values ( V(Si) ); 

(2a2)  let v be the object inserted above 

(2b)   else do: 

(2b1) perform: select Ci from Ci where Ei 

(2b2) if the above select results in exactly one object, 

then denote that object v 

else abort with an error message 



(2c) o.Ri := v 

5) insert into C__R ... 

Allows creation of multiple relationships R.  This cannot be accomplished with 
previous commands when R is many-to-many and many values need to be 
assigned.  Note: C__R has been defined as a virtual table. 

Example: let Johnson work in Physics 

insert into INSTRUCTOR__WorksIn (INSTRUCTOR, 
DEPARTMENT) 
select distinct INSTRUCTOR, DEPARTMENT 
from INSTRUCTOR, DEPARTMENT 
where INSTRUCTOR.LastName=’Johnson’ and 
DEPARTMENT.Name=’Physics’ 

Example: let Johnson work in every department 

insert into INSTRUCTOR__WorksIn (INSTRUCTOR, 
DEPARTMENT) 
select distinct INSTRUCTOR, DEPARTMENT 
from INSTRUCTOR, DEPARTMENT 
where INSTRUCTOR.LastName=’Johnson’ 

6) delete from C__R where condition 

Allows deletion of multiple relationships R. 

Example: do not let Johnson work in any department Smith works in. 

delete from INSTRUCTOR__WorksIn  
where LastName=’Johnson’ and WorksIn ( 
select WorksIn from INSTRUCTOR where LastName=’Smith’) 
 

 7.      Object surrogate assignment: if in an insert statement there is an assignment 
of a user-supplied value to an object being created, that value becomes the object’s 
surrogate, overriding surrogates generated   by    other    algorithms.     In    the    
database    it    is    entered   into    the    attribute UserSuppliedSurrogate,  which  
is  enforced  to  be  1:1.   Further,  if  this  value  begins  with  the character "#" the 
database will derive the internal object id from this value — it may have effect 
only on efficiency.  If this value begins with a "$" it will be automatically erased 
at the end of the session. 

Example: 

insert into INSTRUCTOR (Instructor, FirstName) 
values (’John’, ’John’) 

Note: any expression producing  an  abstract  object  is automatically converted 
into that object’s surrogate.   



 
 
Index terms (alphabetically): 
 
attribute, 13, 14, 16, 19, 20, 30, 31, 32, 33, 

34 
attributes, 2, 16, 18, 19, 20 
binary relations. See relationship 
categories, 3, 7, 10, 13, 16, 17, 19, 20 
category, 6, 16, 18, 19, 20 
complex data, 1, 2 
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