

Semantic Wrapper:

Concise Semantic Querying of Legacy Relational
Databases

Naphtali Rishe, Borko Furht, Malek Adjouadi, Armando Barreto,
Debra Davis
NSF Industry-University Cooperative Research Center for Advanced
Knowledge Enablement (CAKE.fiu.edu) at Florida International and
Florida Atlantic Universities

Ouri Wolfson
Computational Transportation Science Program (CTS.cs.uic.edu) at
the University of Illinois at Chicago

Yelena Yesha and Yaacov Yesha
NSF Industry-University Cooperative Research Center for Multicore
Productivity Research (CHMPR.umbc.edu) at the University of
Maryland Baltimore County

1. Introduction

From business to education to research, one of the most common needs in today’s
world is the ability to efficiently and effectively store and organize information. In
the past several decades, the amount of information required to perform even
everyday tasks has dramatically increased. In addition, there has been a substantial
increase in the availability of more sophisticated and complex data, such as
imagery, multimedia, geospatial and remotely sensed data. As our need for more
extensive and complex information has increased, so has the size and complexity
of databases used to store this information. To even further complicate the
situation, needed data often resides in various independent, distributed databases
as well as in unstructured forms such as social media and web sites. This has
resulted in a greater need for more flexible, scalable and efficient database
technology that can be used to store, query and combine massive amounts of
various types of data that are distributed over multiple structured and unstructured
data sources [1; 2; 3].

1.1. Relational Database Systems and Structured Query Language (SQL)

The majority of commercial data systems in use to today are relational databases.
These database systems have been developed based on the Relational Data Model
proposed by Codd in 1970 and subsequently updated in 1990 [4][5]. A relational
database is composed of one or more two-dimensional tables, each of which
contains data fields, or attributes, in the form of columns, and data records, or
tuples, in the form of rows. Relationships between tables are implicit, by cross-
referencing data values in fields found on different tables. The Relational Data
Model has a number of advantages that have contributed to the prevalence of these
systems including: (1) it has rigorous design methodologies (e.g., normalization),
alleviating redundancy and inconsistency, (2) the database schema is easily
modifiable by the addition of tables and fields, and (3) the database has flexible
and powerful well-defined operations, such as join, that is based on the algebraic
set theory [6].

One of the biggest advantages of relational databases is the use of Structured
Query Language (SQL) as the standard query syntax in most relational database
products. In its basic form, the syntax is simple and relatively easy to understand
and use: Select fields From tables Where conditions. SQL can be used directly on a
database, or as embedded SQL within general-purpose languages, or as an
intermediary language via a standard communication protocol such as Open
Database Connectivity (ODBC) protocol, Java Database Connectivity (JDBC)
protocol or Object Linking and Embedding (OLE).

Relational database systems have become a staple in modern technology.
However, the data needs of today’s world are increasingly changing at a very
rapid pace. As a result, today’s technology is becoming overtaxed and obsolete at
an increasingly faster rate as more sophisticated solutions are required. As this
pressure on technology has increased, the limitations of relational databases have
come more to the forefront. For example, relational databases are designed for
organizing information that is easily categorized by common characteristics, and
described by simple string or number data. Complex data, such as images, spatial
and remotely sensed data, and multimedia products, are not easily described or
categorized in this manner. Increased storage and utilization of massive amounts
of complex data tends to lead to the implementation of more complex database
schemas. Due to the difficulty in effectively handling these complex structures,
this can lead, in turn, to isolation of complex relational database systems where
information cannot be easily shared between those systems [1].

There are also challenges involved in the use of SQL. Although in its basic form,
SQL is a relatively simple and easy to understand syntax, rarely will a simple
query be sufficient to provide users with the data results that they require. This is
particularly true for the more common, complex systems in use today. The
effective use of SQL in most real-world relational databases requires technology

specialists who have extensive training in the principles of relational databases,
and complex and efficient SQL query design. They must also have a thorough
understanding of the structure of the database of interest. This is because the
relationship between tables in a relational database is implicit rather than explicit,
and data of interest of is often found across various tables in the database. When
creating a query, users must explicitly identify each table and provide a formula
relating the various tables in order to effectively achieve the desired data results.
The more abstract and complex the relationships are between tables in the
database, the more difficult it becomes to create accurate and efficient queries.

These highly skilled database technology specialists are also needed when
designing and implementing a new relational database or making changes to the
structure of an existing system. Because relational databases are so easy to
modify, some untrained users mistakenly believe that one can simply add new
tables and fields without much thought. However, this flexibility makes it easy to
create poor, inefficient database designs that do not meet the needs of end users.
These complex solutions require thorough analysis and planning, and are quite
expensive and time consuming to implement or change.

1.2. Overcoming the Limitations of Relational Databases

In recent years, there have been a number of efforts to overcome the limitations of
relational database systems. Semantic and object-oriented databases have been
introduced that provide improvement on the structure of the database itself, such
as allowing explicit relationships between classes of objects, and the inclusion of
super-categories, sub-categories and inheritance. However, to be effective, these
improvements to the structure of the database have historically required the
addition of enhanced query language [7]. Although this can provide more
powerful capabilities, it has also precluded the ability to use standard SQL for
effective querying of these databases, as well as the use of standard relational
database interface tools.

Approaches that allow semantic and object oriented query interfaces over
relational databases have also been proposed, including SQL3, Object query
Language (OQL), and various graphical query languages [7][8]. While these
provide the advantages of the object approach, changes to the data models and
syntax of SQL are required to enable syntax expressiveness. This requires users to
study new syntax and does not allow the utilization of the very extensive existing
middleware and end-user GUIs that interface in standard SQL. Also, while the
new languages work well with new database implementations based on object
models, it does not provide improvement to existing relational databases. Further,
these approaches require additional training and a change in how users must
approach their programming. Standard SQL is a purely declarative language,
whereas SQL3 and OQL, in particular, are semi-procedural.

Graphical query languages attempt to make query interfaces more user friendly.
Through the use of approaches such as hypertext language, menu-driven queries
and Query-By-Example (QBE), users theoretically need not learn SQL syntax. In
real world applications, however, these approaches only work well for very simple
databases and very simple queries. Attempting to use these types of approaches
for complex queries often leads to frustration when trying to follow the required
procedures, and produces irrelevant results once the user completes the process. In
order to be successful when creating complex queries, users must still have full
knowledge of the logical structures of the database of interest, and understand how
to express the needed joins correctly.

It is clear that there is a need for a more dynamic solution that overcomes the
increasing pressures and limitations of relational databases, while, at the same
time, avoids some of the obstacles encountered by other object oriented
approaches. To address and overcome these many challenges, Semantic Wrapper
technology has been created. The Semantic Wrapper is a middleware system that
provides semantic views over legacy relational databases. As middleware, this
system provides straight-forward, easy access to legacy relational databases
without requiring users to switch from their existing GUI to a new, unfamiliar
GUI. It further greatly improves usability by allowing the use of standard SQL
syntax to access the semantic layer via more simplified and concise SQL queries
than what would be required for direct querying of a standard relational database.
This approach is also applicable in a heterogeneous multi-database environment
that can include both structured (relational and semantic databases) and
unstructured data (social media and related Internet sites).

The remainder of this article presents an overview of the Semantic Wrapper and
its major components. Section 2 discusses the Semantic Wrapper’s primary
features and compares it to other systems. This is followed by discussions of the
capabilities and integration of its three major components in Section 3.

2. Semantic Wrapper Overview

The Semantic Wrapper is a set of middleware tools developed to quickly and
easily access and query relational databases, semantic databases and unstructured
data such as Internet data sources. To accomplish this, the Semantic Wrapper
creates a semantic schema view over relational and legacy databases. This schema
is then used by the system to provide users with the ability to query the data
quickly and easily. This technology allows the use of standard SQL queries to
access the semantic schema via simple and concise syntax. It enables the use of
3rd-party interfaces to formulate queries, allowing users continued use of familiar
interfaces while still providing them with the Semantic Wrapper’s powerful
capabilities.

The system is based on the semantic modeling approach [9], and employs the
Semantic Binary Object Data Model (Sem-ODM) and Semantic SQL query
language (Sem-SQL) for improved data querying and usability[10]. Various
aspects and application of this and related technology are discussed in [11; 12; 13;
14; 15]. This platform provides the system with powerful and adaptive
capabilities. When the semantic features of these technologies are employed, they
have been found to provide a high level of efficiency when compared to relational
databases [16].

2.1. Capabilities of the Semantic Wrapper

There are a number of object oriented approaches that are focused on overcoming
the problems inherent in the Relational Model’s inability to effectively deal with
modern data needs. To address these issues, other approaches have implemented
improvements to database structures, enhancements to standard query languages,
and the use of graphical user interfaces to improve ease of use. However, each of
these attempts has created their own challenges and limitations. These challenges
include:

 Inability to be implemented with existing relational databases and legacy
systems

 Increased complexity and decreased user friendliness due to changes to
query languages

 Attempts to improve ease of use that also result in significantly decreased
functionality

The Semantic Wrapper has been designed to provide a powerful, yet easy to use,
system that improves our ability to work with various types of heterogeneous data
without encountering the above challenges.

The Semantic wrapper can be implemented either independently, or, as can be
seen in Figure 1, over an existing relational database. A number of the object
oriented approaches discussed in Section 1.2 incorporate improvement on the
structure of the database itself to provide a greater capability to handle various
types of data. While this was a major step towards more efficiently and effectively
dealing with the shortcomings of a relational schema, it does not allow for the
ability to implement the system with existing relational and legacy database
systems whose structures are not be amenable to structural change. The Semantic
Wrapper has overcome this obstacle by avoiding any changes to existing database
structures. Instead, a separate semantic schema is constructed that allows a
compact and logical semantic view while still providing an accurate reflection of
the original database. This, in essence, provides the system with the improved
database structure sought by other systems, without the same limitations. Thus, the
Semantic Wrapper can be used to construct new applications, or as an additional
interface to existing relational databases.

Figure 1. High-level architectural view of the Semantic Wrapper

The Semantic Wrapper uses Semantic SQL, which is syntactically identical to the
standard relational SQL, but exploits the semantics of relationships. This, in turn,
makes Semantic SQL queries much more concise and clear. Specifically,
Semantic SQL queries refer to a virtual relational schema that consists of inferred
tables defined as spanning trees containing all reachable relations from a given
category. Complications of multiple table references and keys are eliminated. As a
result, users have no need to explicitly express joins. Instead, when a user queries
the database, it is as if there is a universal table for each category. This
significantly reduces the complexity of queries, and significantly increases the
user friendliness of the system’s querying capabilities [17].

Attempts by other approaches, such as graphical query languages, to improve user
friendliness of database systems have succeeded in terms of simplifying the
process needed for very basic queries. However, these have also lead to significant
reductions in the ability to create even moderately complex queries that are more
commonly used in the real world. Even though the Semantic Wrapper’s increased
user friendliness is partially through the use of more simplified query syntax,
because of the use of Semantic SQL in combination with the Semantic Wrapper’s
structure and the various tools that are part of the Semantic Wrapper, there is no
decrease in functionality. Specifically, the mapping and query translation
processes that are used to create the semantic schema (see Section 3.1) and
subsequently query the database (see Section 3.3) merely hide the complexity

from the user without actually limiting functionality. In other words, the system
does much of the work for the user, without loss of functionality or an increase in
errors.

In sum, the Semantic Wrapper is a solution that provides users with the ability to
view multiple data sources as one, centralized virtual database through a semantic
database schema, and access needed data via a standard, easy-to-use and flexible
interface. This standard interface allows users to interact and query data in a more
intelligent and friendlier manner that is based on the stored meaning of the data.
Further, 3rd party tools that the user is already familiar with can be deployed with
the system. The system can be implemented independently for new applications,
or over an existing legacy relational database. Other advantages of using the
Semantic Wrapper include comprehensive enforcement of integrity constraints,
greater flexibility, and substantially shorter application programs [10].

3. Technical Background

3.1. Semantic Schemas

A key component of Semantic Wrapper technology is the use of a semantic
schema that is functionally equivalent to a corresponding relational database. Use
of an equivalent semantic schema has numerous advantages over a relational
schema, including:

 Knowledge is described at a conceptual level rather than at a table layout
level

 Meaning of information in a semantic schema is retained and stored
within the schema itself

 Relationships between categories are explicitly represented
 It is significantly easier to formulate queries as any relationship can be

queried and joins are not required to be explicitly defined

For example, a subschema of a Hydrology database that was developed for the
Everglades National Park can be seen in Figure 2 and its normalized relational
counterpart can be seen in Figure 3. As the semantic subschema is a conceptual
representation, its structure is more analogous to how the real world is
conceptualized by humans. This makes it easier for users to understand the types
of information contained in the database, as well as how data within the database
is conceptually related.

Figure 2. Semantic sub-schema for Physical Observations

As can be seen in Figure 4, Semantic SQL queries are an order of magnitude
shorter than the corresponding relational SQL query. This query is representative
of the types of real world information that might be needed by a user. In this case,
the user would be a scientist or environmentalist needing data about
environmental conditions over time (see Figure 2 and Figure 3 for the semantic
and relational subschemas). The question of interest, “Give me all of the
observations with all of their attributes since January 1, 1993 and the location of
the observing stations”, requires a very short and easy to compose query to the
semantic schema. As can be seen, if the same query were written for a relational
schema, the query would be substantially longer and more complex.

PHYSICAL-OBSERVATION-STATION
physical-observation-station-id-key:Integer 1:1; comments:String;
housing:String; structure:String;
is-part-of--physical-observation-station-id:Integer;

LOCATION
north-UTM-in-key:Number; east-UTM-in-key:Number; elevation-ft:Number;
description:String;

ORGANIZATION
name-key:String 1:1; description:String;

PROJECT
name-key:String 1:1; description:String; comments:String; starting-date:Date;
ending-date:Date;

MEASUREMENT-TYPE
name-key:String 1:1; measurement-unit:String; upper-limit:Number; lower-
limit:Number;

FIXED-STATION
physical-observation-station-id-key:Integer 1:1; platform-height-ft:0..50.000;
located-at--north-UTM:Number;
located-at--east-UTM:Number;

MEASUREMENT
observation-id-key:Integer 1:1; comment:String; time:Date-time;
value:Number; of--name:String;
by--physical-observation-station-id:Integer;

IMAGE
observation-id-key:Integer 1:1; comment:String; time:Date-time;
image:Raw; subject:String;
direction-of-view:0..360; comments:String; type:Char(3); by--physical-
observation-station-id:Integer;

PHYSICAL-OBSERVATION-STATION--BELONGS-TO--
ORGANIZATION
physical-observation-station-id-in-key:Integer; organization--name-in-
key:String;

ORGANIZATION--RUNS--PROJECT
organization--name-in-key:String; project--name-in-key:String;

PHYSICAL-OBSERVATION-STATION--SERVES--PROJECT
physical-observation-station-id-in-key:Integer; project--name-in-key:String;

ORGANIZATION--IS-PART-OF--ORGANIZATION
organization--name-in-key:String; organization-2--name-in-key:String;

Figure 3. Relational sub-schema for Physical Observations

3.2. The Semantic Binary Model

The semantic schemas used by the Semantic Wrapper are based on the Semantic
Binary Model (SBM) [9]. The SBM is a flexible, new generation data model that
is natural, simple, non-redundant, and implementation-independent. Its strength
lies in its ability more accurately capture the meaning of information, while, at the
same time, providing a succinct, high-level description of that information. Its use
of objects, categories and their relationships is very easy for users to conceptualize
as they are reflective of the manner in which users already think about the real
world. A sample semantic schema can be seen in Figure 5.

Objects - The central notion of semantic models is the concept of an object.
Objects are defined as any real world object or entity that we wish to store
information about in the database. Examples of objects include a student,
department, course and course name. Objects can be further classified as concrete
objects, which are printable objects such as course name, or abstract objects,
which are non-value objects in the real world such as a course itself.

Categories - Objects that have common properties are considered in the same
category in the database. As with objects, categories can be concrete (consisting of

Figure 4. Comparison of a Semantic SQL Query to a corresponding

Relational SQL Query

only concrete objects) or abstract (consisting of only abstract objects). Objects
may also belong to more than one category at a time. For example, an object can
be both a student and instructor at the same time (see Figure 5). A schema may
also contain subcategories. A category is a subcategory of another category if
every object in that category is always an object in the latter category. For
example, a student is always also person. Therefore, STUDENT is a subcategory
of PERSON. On the opposite end of the spectrum, categories can be disjoint. Two
categories are disjoint if no object can ever be a member of both categories at the
same time. For example, a student can never also be a course; therefore,
STUDENT and COURSE are disjoint categories.

Relationships - A binary relationship is a connection between two objects
indicating that they are related by a certain property. Such a property is called a
binary relation. At every moment in time, a binary relation R is descriptive of a
set of pairs of objects (x,y) which are related at that time. This is denoted as xRy.
For example, an instructor WORKS-IN a department (see Figure 5). The relation is
WORKS-IN, and is denoted as i WORKS-IN d.

Binary relations may be m:1 (many-to-one), 1:m (one-to-many), m:m (many-to-
many) or 1:1 (one-to-one).. A binary relation R is m:1 if there is never a time
when xRy and xRz where y≠z. For example, every person has only one birth year,
therefore, BIRTH-YEAR is m:1. A binary relation R is 1:m if there is never a time
when xRy and zRy where x≠z. For example, every student can have at most one
major. If we had a relation MAJOR-STUDENT (instead of MAJOR-DEPARTMENT,
which is m:1), then that relation would be 1:m.). A binary relation R is m:m if it is
neither m:1 or 1:m. For example, every instructor can work in more than one
department, and every department can employ more than one instructor. Thus,
WORKS-IN is a m:m relation. A binary relation R is 1:1 if it is always both m:1 and
1:m. For example, if every course is uniquely identified by its name (there is no
character string that can be the name of two or more courses), then COURSE-NAME
is 1:1.

The domain of a relation is the smallest category such that for every xRy, x always
belongs to the category. The range of a relation is the smallest category such that
for every xRy, y always belongs to the category. For example, the domain of
WORKS-IN is INSTRUCTOR and the range is DEPARTMENT.. A binary relation
is total if for every object x in its domain, there always exists an object y such that
xRy. For example, the domain of the relation BIRTH-DATE is PERSON. Although
every person has a date of birth, that date of birth is not always known. Therefore,
BIRTH-DATE is not total.

PERSON

last_name:String
first_name:String
birth_year:String

address:String

STUDENT

INSTRUCTOR

DEPARTMENT

name:String 1:m

COURSE_
ENROLLMENT

final_grade:Integer

COURSE

name:String 1:1

QUARTER

year: Integer
season:String

the_student
(m:1)

major
(m:1)

minor
(m:1)

works-in
(m:m)

the_instruct
or (m:1)

the_course
(m:1)

the_offer
(m:1)

the_quarter
(m:1)

COURSE_
OFFERING

Figure 5. Semantic Schema of a University Application

A binary relation whose range is a concrete category is called an attribute. Thus,
the phrase “a is an attribute of C” means that a is an attribute and its domain is
category C. For example, LAST-NAME, FIRST-NAME and BIRTH-YEAR are attributes
of PERSON.

3.3. Semantic SQL

The Semantic SQL language paradigm is the core interface of the Semantic
Wrapper both to the end user and as a middleware. Semantic SQL was originally
designed to query semantic and object oriented databases, and, as part of the
Semantic Wrapper, it is used to query a semantic schema that is reflective of the
underlying relational schema. Semantic SQL is syntactically identical to Standard
SQL but assumes a virtual schema comprised of infinitely-wide tables, one table
per semantic category with all the fields reachable from it. In the middleware
mode, the fact that the user refers to this virtual schema is technically transparent
to third-party tools, thus allowing for standard protocols, such as ODBC and
JDBC. Thus, for example, the user can utilize a third-party GUI to create a query.
The input is user clicks, the GUI output is SQL. The complexity of the input is
proportional to the complexity of the output. Because the formulation of a query in
Semantic SQL is very concise in the output, so is the user’s input as measured by
the number of clicks and the intellectual complexity of the task.

Because Semantic SQL syntax is identical to the relational SQL syntax, it supports
standard database access interfaces such as ODBC and JDBC. Thus, Semantic
SQL, like standard SQL, is a purely declarative query language. This is
particularly advantageous for users as there no need to learn new query syntax or a
new programming approach. Where Semantic SQL and relational SQL differ is in
the simplicity of Semantic SQL queries as compared to relational queries. Because
semantic databases use real world concepts such as objects and categories,
Semantic SQL is able to query schemas at the conceptual level instead of the table
layout level.

Semantic SQL queries refer to a virtual relational schema that consists of inferred
tables defined as spanning trees containing all reachable relations from a given
category. A virtual table is implicitly defined for each category in the semantic
schema, where all related data is grouped together. Appendix 1 provides a formal
definition of this grouping. Referring back to our semantic schema in Figure 5, the
following is an example of some of the fields in the virtual table for the category
STUDENT.

Full Attribute Name Abbreviation Type Sample
STUDENT ­ surrogate 123235
last_name ­ string Smith
birth­year ­ integer 1990
the_student___the_offer__the_
quarter__year

year integer 2011

the_student___the_offer__the_
quarter__season

season string Spring

the_student___final_grade final_grade integer 75
Major ­ surrogate CS
Minor ­ surrogate ECE
major__name ­ string CompSci
minor__name ­ string Electrical

In the virtual table for STUDENT, the attribute STUDENT__major__name
(where STUDENT is the category, MAJOR is the relationship, and NAME is the
attribute) refers to “the name of the department in which a student majors.”

For ease of use, every attribute in a virtual table has a short semantic name and a
long semantic name. A short semantic name is created by removing prefixes in the
long attribute name, and can be used for queries so long as there is no ambiguity
within that virtual table. For example, in the virtual table STUDENT, the long
semantic name for one attribute is the_student___the_offer__the_quarter__year
and its short semantic name is year. As there is no other attribute of the same
depth with the name year in this virtual table, no ambiguity arises from use of this
short semantic name. Conversely, using the abbreviated attribute name would lead
to ambiguity as there would be two possible attributes of the same depth that this
could represent: the_student__major__name and the_student__minor__name. In
this case, it can be disambiguated by using either major__name or minor__name.

With relational SQL, users usually need to define a join operation to link two
tables together. While inner joins are hard enough to define, most realistic queries
require an outer join (left outer join), which is very hard to define in relational
SQL. As can be seen in the above example, Semantic SQL relieves users of the
need to explicitly express joins. Instead, joins are expressed in the names of the
attributes found in the virtual table. Because of the semantic information inherent
in the schema, there is no ambiguity in the query. This results in simpler query
construction for the user. For example, if a user wants to retrieve the first name
and last name of a student whose major department is ‘computer science’, the
Semantic SQL query is a follows:

 select first_name, last_name from STUDENT
 where major__name = ‘computer science’

In the relational SQL, however, the same query might be composed as follows
(depending on the relational schema):

 select first_name, last_name from STUDENT, DEPARTMENT
 where STUDENT.deptID = DEPARTMENT.deptID and
 DEPARTMENT.name = ‘computer science’

Semantic SQL queries requesting the retrieval of more complex combinations of
information are still simple. For example, a query to retrieve the student’s
last_name, first_name, address, major, name of each course, final_grade for the
course, year and semester the course was taken, for every student would be:

select last_name, first_name, address, major__name,
the_course__name, final_grade, season, year

from STUDENT

Should a user prefer to explicitly express join conditions, they can still do so. As
Semantic SQL is completely compatible with relational SQL, the syntax is exactly
the same for both query languages.

Queries to update against a virtual relational database are inherently ambiguous.
Semantic SQL provides disambiguating semantics on the underlying semantic
schema (see Appendix 2 for formal definitions). As with queries for retrieving
data, standard SQL syntax, such as insert, delete and update, is used. An example
of a simple update is:

Delete students whose final grade is less than 50:
Structure: delete from C where condition
Example: delete from STUDENT where FINAL_GRADE<50

4. Components of the Semantic Wrapper

The Semantic Wrapper is primarily comprised of three engineering components
that can be used as either a standalone application or as middleware This section
provides a high-level description of each of these components, a description of
how these components interact with each other to produce the desired results, and
an example that illustrates the Semantic Wrapper’s capability to be implemented
as middleware.

4.1. The Knowledge Base Tool: Reverse Engineering of a Semantic Schema

In order to interpret Semantic SQL queries to a relational database, a semantic
view of the database must be created. This is the primary function of the
Knowledge Base Tool (KDB Tool). By using this tool, the user is able to create
semantic information for a relational database of interest via the construction of a

semantic schema that accurately reflects the information in and structure of data in
the relational database. This can include the specification of inheritance of
categories and many-to-many relations.

The KDB Tool’s capabilities are designed to ensure the integrity of the mapping
between the original relational database and the corresponding semantic schema.
This is accomplished by enforcing a rule at every step of the creation process that
keeps specific mapping information between the relational database tables and
semantic schema categories and relations intact. The system will not allow
changes to be made to the semantic schema that would damage the integrity of the
mapping information.

Use of the KDB Tool on a standard relational database involves a possible total of
eight steps, four of which are automated and four of which involve the skills and
knowledge of the relational database’s administrator [18]. To automatically
generate the initial semantic schema, it is assumed that metadata regarding tables,
attributes, primary keys and other constraints are available via the relational
database management system in use. The first four steps needed to create the
semantic schema are as follows:

1. A category in the semantic schema is created for each table in the
relational database

2. Within each semantic category, an attribute is created for every field (i.e.,
column) in the corresponding relational table

3. A semantic relation is created for each functional dependency in the
relational database

4. Within each semantic category, attributes that correspond to foreign keys
in the relational database are removed (these are reflected in the relations
that are created in step 3, rendering these attributes redundant)

A sample relational database structure can be seen in Figure 6, along with its
transformation through step 4 to the semantic schema seen in Figure 7. Perusing
both figures, it is easy to discern the correspondence between the relational and
semantic schemas. For example, the relational table CURRENCY_FOR_COUNTRY
corresponds to the semantic category CURRENCY-FOR-COUNTRY. The functional
dependency between CURRENCY_FOR_COUNTRY and CURRENCY relational tables
transformed into a semantic relationship, ‘the-currency’, and the foreign key,
THE_CURRENCY__CODE_KEY, was removed as it is reflected in the semantic
relationship between CURRENCY-FOR-COUNTRY and CURRENCY semantic
categories.

Figure 6. Relational Schema of a Geography Database

Once steps One through Four are completed, a valid semantic view of the database
has been created. This view, however, can be further refined to create a more
accurate reflection of the application’s semantics by completing steps Five
through Eight, which require human intervention, i.e. the skills and knowledge of
the relational database’s administrator (DBA). The reasons for this include the
ease at which a database domain expert can understand semantic databases, the
DBA’s in-depth knowledge of the structure of the relational database, the DBA’s
intimate understanding of needed userviews and end-user needs, and the DBA’s
responsibility for the correct functioning of the database tools.

Steps Five through Eight of the semantic schema creation process are as follows:

5. Any semantic categories that correspond to a relational table whose sole
purpose is to represent many-to-many relations should be replaced with
actual many-to-many relationships in the semantic schema

In our sample schema, this type of transformation can be seen in Figure 8. In
short, the relational table CURRENCY_FOR_COUNTRY, contains only foreign keys
and has two many-to-one relationships. This is reflected in the semantic schema as
a category, CURRENCY-FOR-COUNTRY, that has no attributes and two many-to-one
relationships. Thus, it is clear that the sole purpose of this category is to represent
a many-to-many relationship in the relational schema, which can be directly
replaced in the semantic schema as a many-to-relationship.

COUNTRY-
OTHER-NAME

the-other-name

CURRENCY

code_key
name

COUNTRY

code
name

CURRENCY-
FOR-COUNTRY

the-currency

 for

the-country

CITY-NEAR-
CITY

AIRPORT

name

CITY

name

from-city

of

in

to-city

Figure 7. Geography Semantic Schema after Transformation through Step 4

6. Any semantic categories that correspond to relational tables whose sole

purpose is to represent a recursive reference should be replaced with an
is-part-of relationship in the corresponding semantic category. This
relationship may have a cardinality of many-to-one or many-to-many.

In our sample schema, this type of transformation can be seen in Figure 9. In
short, the relational table CITY_NEAR_CITY, contains only foreign keys and has two
many-to-one relationships with the CITY relational table. This is reflected in the
semantic schema as a category, CITY-NEAR-CITY, that has no attributes and two
many-to-one relationships with the semantic category CITY. Thus, it is clear that
the sole purpose of the CITY-NEAR-CITY category is to represent a recursive
reference in the relational schema.

7. Any semantic categories that correspond to relational tables whose sole
purpose is to represent a one-to-many relationship should be replaced
with a one-to-many attribute in the corresponding semantic category.

CURRENCY

code_key
name

COUNTRY

code
name

CURRENCY-

FOR-COUNTRY

the-currency

 for

for

(m:m)

COUNTRY

code
name

CURRENCY

code
name

is replaced by:

Figure 8. Step 5 of the KDB Tool on the Geography database

In our sample schema, this type of transformation can be seen in Figure 10. In
short, the relational tables COUNTRY_OTHER_NAME and COUNTRY have attributes
that contain the same information (the name of a country). Further, the table
COUNTRY_OTHER_NAME has no other attributes and only a one-to-many
relationship with the COUNTRY relational table. This is similarly reflected in the
semantic schema. Thus, it is clear that the sole purpose of the COUNTRY-OTHER-
NAME category is to represent a one-to-many relationship in the relational schema
and should be replaced with a one-to-many attribute, other-name, in the COUNTRY
semantic category.

8. Include the relevant category inheritance hierarchy into the semantic
schema.

Step Eight introduces an additional level of abstraction to the semantic schema. In
our sample schema, this type of transformation can be seen in Figure 11. In short,
the relational tables COUNTRY, CITY and AIRPORT all have an attribute in common;
that is, they all have a name. Because of this commonality, a supercategory,
GEOGRAPHICAL-ENTITY, with the attribute name can be introduced into the
schema, and the name attribute can be removed from the aforementioned
categories.

In addition, prior to defining a virtual table, the name of every category and
relation is “cleaned” as follows:

1. replace all non-alphanumeric characters with "_"
2. if the name begins with a digit or "_", prepend "A"
3. if the name ends with "_" append "Z"
4. collapse multiple "_" into a single "_"

CITY-NEAR-

CITY

CITY
name to-city

from-city

CITY

->near (m:m)->
name

is replaced by:

Figure 9. Step 6 of the KDB Tool on the Geography Database

Once this is completed, the systems checks to ensure that no ambiguity has been
introduced. If this process does introduce any ambiguity, the schema is rejected.

4.2. Knowledge Base (KB)

The Semantic Wrapper’s Knowledge Base (KB) is the interface between the KDB
Tool and the Query Translator. All of the mapping information that is generated
by the KDB Tool during semantic schema creation is saved in the KB. The KB is
an Extensible Markup Language (XML) [19] file that will subsequently be used to
translate Semantic SQL queries into standard SQL queries by the Query
Translator (see Section 3.3). Specifically, the KB stores all the needed information
for both the relational and semantic database schemas, as well all derivation rules
for query translation. Its XML format, in particular, provides a flexible, robust and
easy to use avenue for capturing complex semantic information in conjunction
with the relational and semantic schemas.

Along with the KDB Tool, the KB includes sets of inference rules that can be used
to generate new knowledge that is needed during query translation. This is
particularly useful when there is not enough information to complete the
transformation of the semantic query, such as when the Semantic Wrapper is
being used to integrate data from heterogeneous multi-database environments.

COUNTRY-

OTHER-NAME
the-other-name

COUNTRY

code
name

the-country

COUNTRY

code
name

other-name (1:m)

is replaced by:

Figure 10. Step 7 of the KDB Tool on the Geography Database

COUNTRY

code
name

AIRPORT

name

CITY
name

of

in

GEOGRAPHICAL

ENTITY
name

AIRPORT

CITY

of

in

COUNTRY

code

is replaced by:

Figure 11. Step 8 of the KDB Tool on the Geography database

4.3. Query Translator: Automatic Query Conversion

The Query Translator is the central processor of the Semantic Wrapper. This
component is responsible for transforming the easy to use Semantic SQL queries
that are based on the semantic schema into the more complex corresponding
relational SQL queries on the relational database. While this component translates
Semantic SQL queries into relational SQL queries that are significantly more
complex, they are still semantically equivalent to the original query posed by the
user.

To accomplish this, the Query Translator interfaces with the KB to retrieve and
use the semantic and relational schema information recorded during the semantic
schema creation (see Section 4.1), as well as any needed derivation rules. Once the
Query Translator retrieves needed information from the KB, it generates the
appropriate projections on virtual tables via the use of temporary views. Query
results are generated through the application of outer joins or sub-queries
explicitly in the Where clause between these temporary views. The constructed
relational SQL queries are subsequently transmitted to the relational database
management system via a standard interface.

Semantic SQL queries are often an order of magnitude shorter than the
corresponding relational SQL queries. The complexity involved in transforming a
Semantic SQL query into a relational SQL query is best seen by a direct
comparison of SQL statements on a real world semantic schema and its relational
counterpart. Referring back to Figure 2 and Figure 3, some examples of real world
Semantic SQL queries and their functionally equivalent relational SQL queries on
these subschemas include:

Example 1: List of the time and housing of temperature measurements
over 50 degrees

Semantic SQL Statement Relational SQL Statement
select housing,time from
MEASUREMENT where
of__name=’Temperature’ and
value>50

select housing, time
from
PHYSICAL_OBSERVATION_STATION,
MEASUREMENT
where exists
(select * from MEASUREMENT-TYPE
where name_key = of__name and
name_key = ’Temperature’ and
by_physical_observation_station_id =
physical_observation_station_id_key
and
value > 50)

Example 2: The descriptions of organizations and locations of their fixed
stations
Semantic SQL Statement Relational SQL Statement
select description, LOCATION
from ORGANIZATION

select description,
LOCATION.north_UTM_in_key,
LOCATION.east_UTM_in_key from
ORGANIZATION, LOCATION where
exists (select * from FIXED_STATION
where exists (select * from
PHYSICAL_OBSERVATION_STATION__B
ELONGS_TO__ORGANIZATION where
name_key =
organization__name_in_key and
PHYSICAL_OBSERVATION_STATION__B
ELONGS_TO__ORGANIZATION.
physical_observation_station_id_in_yy =
FIXED_STATION.
physical_observation_station_id_key
and located_at__north_UTM =
north_UTM_in_key and
located_at__east_UTM =
east_UTM_in_key))

Example 3: The observations since January 1, 1993 (including images,
measurements and their types) with location of the stations

Semantic SQL Statement Relational SQL Statement
select OBSERVATION__,
of__, LOCATION from
OBSERVATION where
time>’1993/01’

(select MEASUREMENT_TYPE.*,
LOCATION.north_UTM_in_key,
LOCATION.east_UTM_in_key,
MEASUREMENT.*, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL from
MEASUREMENT_TYPE, LOCATION,
MEASUREMENT where time > ’1993/01’ and
exists (select * from FIXED_STATION where
by__physical_observation_station_id =
physical_observation_station_id_key and
located_at__north_UTM = north_UTM_in_key
and located_at__east_UTM =east_UTM_in_key
and of__name = name_key)) union (select
MEASUREMENT_TYPE.*, NULL, NULL,
MEASUREMENT.*, NULL,NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULLfrom
MEASUREMENT_TYPE, MEASUREMENT where

time > ’1993/01’ and not exists (select * from
FIXED_STATION
whereby__physical_observation_station_id =
physical_observation_station_id_key and
of__name = name_key)) union (select NULL,
NULL, NULL, NULL,
LOCATION.north_UTM_in_key,
LOCATION.east_UTM_in_key, NULL, NULL,
NULL, NULL, NULL, NULL, IMAGE.* from
LOCATION, IMAGE where time > ’1993/01’
and exists (select * from FIXED_STATION
where by__physical_observation_station_id =
physical_observation_station_id_key and
located_at__north_UTM = north_UTM_in_key
and located_at__east_UTM =
east_UTM_in_key)) union (select NULL, NULL,
NULL, NULL, NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, IMAGE.* from IMAGE
where time > ’1993/01’ and not exists (select
* from FIXED-STATION where
by__physical_observation_station_id =
physical_observation_station_id_key))

As can be seen in theses three examples, the relational SQL queries that are
constructed by the Query Translator are often substantially larger and more
complex than the semantic SQL queries created by users.

4.4. Semantic Wrapper as Middleware

The Semantic Wrapper is a middleware system that provides semantic views over
legacy relational databases. As middleware, this system provides straight-forward,
easy access to legacy relational databases without requiring users to switch from
their existing interfaces to a new, unfamiliar interface. As is illustrated in Figure
12, the Semantic Wrapper can be employed in many environments and for
numerous applications, including as middleware for web applications.

The Semantic Wrapper greatly improves usability by allowing the use of standard
SQL syntax to access the semantic layer via more simplified and concise SQL
queries than what would be required for direct querying of a standard relational
database. This approach is also applicable in a heterogeneous multi-database
environment that can include both structured (relational and semantic databases)
and unstructured data (social media and related Internet sites).

5. Conclusion

The Semantic Wrapper is a middleware system that can be used to greatly
improve the ability to meet the intense and ever-changing data management needs
of today’s world. The Semantic Wrapper provides an easy to use method for
accessing legacy and relational databases, while still maintaining the ability to be
implemented as a standalone solution. It allows users to continue to use familiar

Figure 12. Overall Architecture of the Semantic Wrapper as Middleware for a
Web Application

GUIs and greatly decreases the complexity of SQL syntax needed from users to
fulfill their data requests. Finally, the system can be used over both structured and
unstructured, heterogeneous data sources, providing a set of tools that can easily
incorporate new and diverse sources of data.

Acknowledgement

This work was supported in part by NSF grants CNS-0821345, HRD-0833093,
IIP-0829576, IIP-0931517, CNS-1057661, IIS-1052625, CNS-0959985, CNS-
0837556, CNS-0426125, DGE-0549489, IIS-0957394, and IIS-0847680.

References

1. M. Egenhofer. “Why not SQL!” International Journal on Geographical
Information Systems, vol. 6, no.2, 1992, p. 71-85.

2. H.V. Jagadish, A. Chapman, A. Elkiss, M. Jayapandian, Y. Li, A. Nandi, and
C. Yu. “Making Database Systems Usable”. ACM's Special Interest Group
on Management of Data (SIGMOD), Beijing, China, June 11–14, 2007.

3. A. E. Wade. “Hitting the Relational Wall”. Objectivity Inc. White Paper.
[Online] 2005. http://www.objectivity.com/pages/object-oriented-database-
vs-relational-database/default.html.

4. E.F. Codd. “A Relational Model of Data for Large Shared Data Banks”.
Communications of the ACM, vol. 13, no. 6, 1970, pp. 377–387.

5. E.F. Codd. “The Relational Model for Database Management”. Reading,
MA, Addison-Wesley, 1990.

6. G. Russell. “Database eLearning”. [Online] http://db.grussell.org/index.html.
7. M. Berler, J. Eastmen, D. Jordan, C. Russell, O. Schadow, T. Stanienda, F.

Velez. “The Object Data Standard: ODGM 3.0”. [ed.] K.D. Barry, R.G.G.
Cattell. San Francisco, CA, Morgan Kaufmann, 2000.

8. A. Eisenberg, J. Melton. “SQL: 1999, formerly known as SQL3”. ACM
SIGMOD Record, vol.28, no.1, 1999.

9. N. Rishe. “Database Design: The Semantic Modeling Approach”. New
York, NY, McGraw-Hill, 1992.

10. N. Rishe, J. Yuan, R. Athauda, S.C. Chen, X. Lu, X. Ma, A. Vaschillo, A.
Shaposhnikov, D. Vasilevsky. “SemanticAccess: Semantic Interface for
Querying Databases”. Proceedings of the 26th International Conference On
Very Large Data. Cairo, Egypt, September 10-14, 2000. pp. 591-594.

11. A. Cary, Y. Yesha, M. Adjouadi, N. Rishe. “Leveraging Cloud Computing
in Geodatabase Management”. Proceedings of the 2010 IEEE Conference on
Granular Computing GrC-2010. Silicon Valley, CA, August 14-16, 2010.
pp. 73-78.

12. L. Yang, N. Rishe. “Formal Representation and Transformation of DTDs to
Sem-ODM”. The 2006 International Conference on Foundations of
Computer Science, FCS06. Las Vegas, NV, June 26-29, 2006, pp.182~188.

13. L. Yang, N. Rishe. “Transforming Sem-ODM Semantic Schemas to DTDs”.
Proceedings of the 43rd ACM Southeast Conference, ACMSE 2005.
Kennesaw, GA, vol. 1, March 18-20, 2005, pp. 237-242.

14. N. Rishe, A. Barreto, M. Chekmasov, D. Vasilevsky, S. Graham, S. Sood.
“Semantic Database Engine Design”. Proceedings of the 7th International
Conference on Enterprise Information Systems, ICEIS 2005. Miami, FL,
May 24-28, 2005, pp. 433-436.

15. N. Rishe, A. Barreto, M. Chekmasov, D. Vasilevsky, S. Graham, S. Sood.
“Object ID Distribution and Encoding in the Semantic Binary Engine”.
Proceedings of the 7th International Conference on Enterprise Information
Systems, ICEIS 2005. Miami, FL, May 24-28, 2005, pp. 279-284.

16. G. Aslan, D. McLeod. “Semantic Heterogeneity Resolution in Federated
Databases by Metadata Implantation and Stepwise Evolution”. The VLDB
Journal, vol. 8, no. 2, 1999, pp.120-132.

17. N. Rishe. “Semantic SQL”. Internal Document, High Performance Database
Research Center, School of Computer Science, Florida International
University, 1998.

18. N. Rishe, T. Huang, M. Chekmasov, S. Graham, L. Yang, S. Himelsback.
“Semantic Wrapping Tool for Internet”. Proceedings of the 6th World
Multiconference on Systemics, Cybernetics and Informatics SCI-2002,
Orlando, FL, July 14-18, 2002, pp. 441-445.

19. Extensible Markup Language (XML) 1.0 (Fifth Edition). W3C
Recommendation. [Online] November 26, 2008.
http://www.w3.org/TR/REC-xml/.

Appendix 1: Semantic SQL Virtual Tables Formal Definition

The virtual table T(C) for a category C, recursive definition:

1. The first attribute of T:

C — attribute of T, range: C (m:1)

2. For every attribute A of T, for every relation r applicable to the range of A:

A__r — attribute of T, range: range(r) (m:1)

Note: this virtual table is infinite. When interpreting a specific query, a finite
projection of this table is assumed as further explained in Technical Notes.

The name of T is the same as of C.

Note: to-many original relations are reduced to to-one attributes of the virtual
table.

If the semantic relation r is many-to-many or one-to-many, the new
attribute would be many-to-one, but many virtual rows would exist in the table T,
one for each instance of the tree. If r has no value for an object, a null value will
appear in the virtual relational table.

The relation r may be inferred. The range of a virtual attribute may be of multi-
media types: numbers with unlimited varying precision and magnitude, texts of
unlimited size, images, etc.

Abbreviation of prefixes

• Every component relation r in the virtual attribute name may be
named by its full semantic name or, if no ambiguity arises, by its short
semantic name.

• The attribute names of T contain long prefixes. These prefixes can be
omitted when no ambiguity arises, i.e.: attribute y is an abbreviated
synonym of the unabbreviated attribute x__y of T if T has no other
unabbreviated attribute z__y where depth (z) ≤ depth (x).

depth (x) is the number of relations present in x.

Surrogates

All attributes of T(C) of type Abstract are replaced by their surrogates of type
String.

Definition of the extension of a table

The virtual table T for a category C is logically generated as follows:

1. Initially, T[C]=C, i.e. T contains one column called C, whose values
are the objects of the category.

2. For every attribute A of T, for every schema relation or attribute r whose
domain may intersect range(A), let R be the relation r with its domain
renamed A and range renamed A__r, let T be the natural right-outer-join of T
with R. (Unlike a regular join, the outer join creates A__r=null when there is
no match.)

3. For a given query q the virtual table against which q is interpreted, T [C ,q],
is a projection of T [C] on the following virtual attributes:

• the virtual attributes that appear in the query,
• the unabbreviated prefixes of said attributes (including the surrogate

attribute C),
• and the attributes p__r where p is any of said prefixes and r is an original

printable-type to-one attribute of the semantic schema.

Note: the projection operation here is a set operation with duplicated tuples
eliminated.

User-control of table depth

(Used only by sophisticated users trying to outsmart $MAXDEPTH defined
by a graphical user interface; not needed by users posing direct SQL queries
without a GUI.)

• For each category C, in addition to the default table named C, of
depth limited by $MAXDEPTH, there are also tables called C_i for any
positive integer i, with the depth limited by i rather than $MAXDEPTH.
Also, there is a table C_0 which includes only the original to-one
attributes and relations whose domain is C or a supercategory of C
and the surrogate attribute of C .

ODBC schema queries

• The ODBC request for the names of all tables is interpreted as: for every
category get the primary virtual table C and the tables C__0 and C__1.

• The ODBC request for the names of all attributes of a given virtual table
T returns all attributes maximally abbreviated. If the request is for the
virtual table corresponding to a category C, only attributes of C__2 are
returned

• The ODBC request to browse the virtual table is denied. (Browsing
of C__0 is permitted. Browsability of C__1 is not guaranteed)

Appendix 2: Disambiguation of Arbitrary Semantic SQL
Updates

Let C be a category against which an update operation is performed.

Notation:

T = T(C) — the virtual table of C .

A — the list of full names of attributes of T that are assigned values in the
operation.

R1,...,Rn— the set of relations of C such that for some suffix s , Ri__s is in A.
(That is, Ri__s is a two-step or deeper attribute.)

C1,...,Cn— the ranges of R1,...,Rn.

Si— list (s | Ri__s in A) in the order of appearance in A.

V (a) — For every attribute a in A let V(a) be the value being assigned to the
attribute a . For every s in Si let V(s) be the value assigned to Ri__s. Let V(Si) be
the list of V(s) where s in Si.

Ei— the list of assignments s = V(s) for s in Si.

1) delete from C where condition
a) perform: select C from C where condition
b) for every resultant object o in C: remove o from C .

Example:

delete from STUDENT where FINAL_GRADE<50

2) insert into C (attributes) values (assignments)
a) Create a new object in C . Let this object be denoted o. Its one-step

relationships are assigned values from the assignments. If a one-step
relationship is m:m or 1:m then only one value may be assigned.

b) For every category Ci in C1...Cn do:

(1) if Ri__Ci is in A and V(Ri_Ci)="new"

then recursively perform:

insert into Ci (Si) values (V(Si));

let v be the object inserted above

 else do:

(2.1) perform: select Ci from Ci where Ei

(2.2) if the above select results in exactly one object,

then denote that object v

else abort with an error message

(2) relate: o Ri v

Example: create a new student James in the department in which Johnson works
and enroll Jim in the only existing offering of "Magnetism":

insert into STUDENT

(FirstName, Major__WorksIn___LastName, Enrollment,
The_Course)

values (’James’, ’Johnson’, ’new’, ’Magnetism’)

3) insert into C (attributes) query
a) Evaluate the query, resulting in a set of rows.
b) For each row r perform: insert into C (A) values (r)

Example: For every instructor create a department named after him and make him
work there:

insert into DEPARTMENT
(Name, WorksIn_)

select LastName, Instructor
from Instructor

4) update C set assignments where condition
a) perform:

select C from C where condition

b) for every object o in the result of the above query perform:

(1) The object’s one-step relationships are assigned values from the
assignments, i.e.: for every one-step attribute Ai in A perform: o.Ai:= V(Ai)

(2) For every category Ci in C1...Cn do:

(2a) if Ri__Ci is in A and V(Ri_Ci)="new"

then recursively perform:

(2a1) insert into Ci (Si) values (V(Si));

(2a2) let v be the object inserted above

(2b) else do:

(2b1) perform: select Ci from Ci where Ei

(2b2) if the above select results in exactly one object,

then denote that object v

else abort with an error message

(2c) o.Ri := v

5) insert into C__R ...

Allows creation of multiple relationships R. This cannot be accomplished with
previous commands when R is many-to-many and many values need to be
assigned. Note: C__R has been defined as a virtual table.

Example: let Johnson work in Physics

insert into INSTRUCTOR__WorksIn (INSTRUCTOR,
DEPARTMENT)
select distinct INSTRUCTOR, DEPARTMENT
from INSTRUCTOR, DEPARTMENT
where INSTRUCTOR.LastName=’Johnson’ and
DEPARTMENT.Name=’Physics’

Example: let Johnson work in every department

insert into INSTRUCTOR__WorksIn (INSTRUCTOR,
DEPARTMENT)
select distinct INSTRUCTOR, DEPARTMENT
from INSTRUCTOR, DEPARTMENT
where INSTRUCTOR.LastName=’Johnson’

6) delete from C__R where condition

Allows deletion of multiple relationships R.

Example: do not let Johnson work in any department Smith works in.

delete from INSTRUCTOR__WorksIn
where LastName=’Johnson’ and WorksIn (
select WorksIn from INSTRUCTOR where LastName=’Smith’)

 7. Object surrogate assignment: if in an insert statement there is an assignment
of a user-supplied value to an object being created, that value becomes the object’s
surrogate, overriding surrogates generated by other algorithms. In the
database it is entered into the attribute UserSuppliedSurrogate, which
is enforced to be 1:1. Further, if this value begins with the character "#" the
database will derive the internal object id from this value — it may have effect
only on efficiency. If this value begins with a "$" it will be automatically erased
at the end of the session.

Example:

insert into INSTRUCTOR (Instructor, FirstName)
values (’John’, ’John’)

Note: any expression producing an abstract object is automatically converted
into that object’s surrogate.

Index terms (alphabetically):

attribute, 13, 14, 16, 19, 20, 30, 31, 32, 33,

34
attributes, 2, 16, 18, 19, 20
binary relations. See relationship
categories, 3, 7, 10, 13, 16, 17, 19, 20
category, 6, 16, 18, 19, 20
complex data, 1, 2
complex queries, 4, 6
data querying, 5
DBA, 17
distributed databases, 1
graphical query languages, 3, 6
JDBC, 2
joins, 4, 6, 23
KB, 21, 23
KDB Tool, 15, 16, 21
legacy database, 5
object oriented, databases, 3
Objects, 10
ODBC, 2, 23
OLE, 2
OQL, 3
query language, 3, 5

Query Translator, 15, 21, 23, 25
Query-By-Example, 4
range, 11, 13, 30, 31
relational databases, 2, 3, 4, 5, 26
relational schema, 5, 6, 18, 19, 20, 23
relationship, 3, 7, 11, 14, 16, 18, 19, 20, 32
SBM. See Semantic Binary Model
Semantic Binary Model, 10
semantic schema, 4, 5, 6, 16, 17, 18, 19,

20, 21, 23
Semantic SQL, 6, 8, 13, 14, 15, 23, 24, 30
Semantic Wrapper, 1, 4, 5, 6, 7, 10, 13, 15,

21, 23, 26
Sem-ODM, 5
Sem-SQL, 5
SQL, 2, 3, 4, 5, 6, 15, 21, 23, 25, 27
SQL3, 3
Standard SQL, 3
Structured Query Language. See SQL
tables, 2, 3, 6, 16, 19, 20, 23
travel, 4
usability, 4, 5, 25

