
Schema Based XML Compression

Naphtali Rishe1, Ouri Wolfson2, Ben Wongsaroj3, Damian Small1, Mauricio Alarcon1, Naidel
Lorenzo1, Ricardo Koller1, Sajib Kundu1, Scott Graham1, Kevin Alexander3, Malek Adjouadi1

Florida International University of Illinois at Florida Memorial

 University 1 Chicago2 University3

Abstract
XML has grown into a widely used and highly

developed technology, due in part to the subcomponents
built around the technology (advanced parsers,
frameworks, libraries, etc). The use of XML reduces
development time and increases the robustness of
distributed applications. Due to these advantages, a large
and growing range of distributed applications, such as
Web-services, use XML as the basic unit of
communication.

 This paper surveys the topic of XML compression
and proposes a new method that uses schema information
for the compression algorithm. The schema provides
valuable information to the compressor by specifying the
data type and format of each element in the XML
document. For example, if the compressor knows that a
portion of data is numeric, it can intelligently save it using
a binary representation instead of trying to compress the
string representation.

1. Introduction
XML [4] is a markup language and is used as a means

of structuring data. It is a standard that defines a set of
rules needed by any text file in order to define itself as a
valid XML document. XML documents are structures
which are organized in a hierarchical “tree-like” manner.
The documents have two basic sections: the structure
(skeleton) or metadata of the document and the data itself.
The metadata is a tree of nodes where each node is a
container for the data. XML is widely used for two
reasons: the simple set of rules specified in the XML
document and the highly evolved parsers and set of
technologies built around the document. These are referred
to as XML technologies and comprised of the following:
XPath, XQuery, XSLT, etc. Software designers are
considerably moving towards XML technologies for data
storage, data communication and data transformation [16].
Applications reading information from a file with an

arbitrary structure would need to know the structure of the
document and then build a parser that understands the
document. With XML this can be easily achieved, if the
file is saved as an XML document where you can use an
XML parser to query the document for the needed data.
Thus, software companies have used them as basic blocks
of communication. A very common example of this is
Web Services [5].

When a file is adhering to the XML standard rules, we
say that the XML is correct. Specific information is needed
in order to read or write an XML file for some specific
application. This information is a set of rules that define
the structure and related data that the XML documents can
implement. These rules are wrapped in another document
called schemas which has two specific forms: DTD or
XML [6, 7]. If an XML follows the rules defined in its
related schema or DTD file, we say that the XML
document is valid. These rules [7] define the structure by
specifying all the nodes required, order and relations in an
XML document. Schemas also specify the data that the
container nodes can have. The data specification is
achieved by the definition and use of the following data
types: integers, floats, dates, enumerations and user
defined data types using regular expressions.

Nevertheless, there is a problem with XML when used
as a communication medium due to the high amounts of
metadata produced which consequently causes too much
overhead to be used directly in communication or storage.
A common solution has been the use of regular
compression to reduce the metadata size before sending it
through the network. The deficiency in regular
compressions is in the time spent deciphering and
translating the structure of the data itself to determine and
apply the appropriate dictionary transformations. No
distinctions are made between files; all that is known is the
data stream of the data itself. The XML compressor will
spend valuable time performing this operation.

Knowing that a file is an XML document can be very
useful for the compressor as it can determine which
sections of the stream are data and which sections are
metadata. Current XML compression algorithms remove
the metadata and treat the metadata like any normal
compression algorithm would.

A naive approach that is widely used is to compress the
XML using a regular compressor. However, there are
faster and more efficient XML compression techniques
and methodologies [1][2][3]

XML also contains redundant information. The first
part of the information is already specified in the schema,
for example the order of the children may not be important
for the XML to be valid. In fact, the compressor may be
able to reconstruct some of the XML by using the schema.
That is if we assume the XML is valid, then the validity of
the XML document is essential in order for data
transmission to occur. This may imply high levels of
compression because the order information of the example
can be repeated throughout the XML document. Also in a
transmission the schemas does not need to be compressed
and transmitted since it already exists in the receiver. XML
schemas and DTD’s already specify the data it has hence
there is no need to infer the data type by adding an extra
algorithm. Prior approaches automatically infer the data
types by obtaining statistics about the data or by querying
the user for that information [1, 2, 3]. These reasons make
XML a very convenient file for compression.

This paper is organized as follows: Sec.2 depicts
previous work performed on compression algorithms.
Sec.3 describes our proposal to the paper and Sec. 4
outlines our conclusion.

2. Previous Work
Compression algorithms can be divided in two basic

groups: lossy and lossless [8]. A lossless compressed
document can be decompressed and reverted back to the
original document. A lossy compressed document cannot
be reverted to the same original state, but it can be reverted
to a very similar document where the similarity is
measured by a concept called distortion. Distortion is
typically defined as the accepted distance that any two
characters in the dictionary can have. It provides a means
to measure the distance that any two blocks of characters
can have. A typical example of lossless compressor is
gzip. An example of lossy compression is jpeg.

Lossless compression algorithms maps blocks of data
into sequences of bits. The compressor’s objective is to
minimize the number of bits used to represent each block.
Unfortunately there is a theoretical limit on this
mechanism: entropy (H) [8]. Some algorithms use a fixed
set of mappings in order to convert blocks into bits. This

mapping can be viewed as a large table that relates all
known blocks into binary representations, or sequence of
bits (Table 1: Mapping Table). This type of compression is
called dictionary based compression. Other compressors
dynamically build the mapping table based on the text
characteristics. These compressors are usually referred to
as adaptive and semi-adaptive. Some of them map blocks
of fixed size into variable number of bits, while others map
blocks of variable size into a fixed number of bits.
Huffman [15] encoding and Lempel Ziv [14] encoding are
examples of semi-adaptive and adaptive encoding
respectively. Arithmetic encoding is another example of
adaptive encoding.

Table 1 : Mapping Table

Block BitsSequence
acb 11
aa 10101011

yhnb 11111
hjkb 1011
asdfb 10101011
oopb 10101011
pb 11011
yb 1111011
eb 1010

fbcc 10101111
gabg 1010101010101011

Huffman compressors use variable length sequence bits
in such a way that most frequent blocks are saved using
shorter bits sequences. But in order to know the
distribution of the blocks it needs to first read the whole
data just to gather the proper statistics. This type of
compression is called semi-adaptive, while compressors
such as dictionary based (which does not need to build this
type of mapping) are referred to as static compressors.
Lempel Ziv compression constructs the mapping table
while compressing the document. It starts by mapping
blocks of size one and for each new match in the map
table it adds a new entry made of the matched entry plus
the next character of the stream. These types of algorithms
that construct the map table dynamically are called
adaptive compressors.

We mentioned that there is a limit on the compression
rate we can get with any compression algorithm. But there
are algorithms that take into account the characteristics of
the data similar to the methods mentioned above. This has
been applied to many specific sources including XML.
XML compressors can be divided into two groups:
queriable and non-queriable. Queriable compression may
be needed in cases where there is too much overhead in
decompressing the XML file, or when the space
requirements are so high that the XML document cannot
be saved into a plain text format; therefore it becomes
necessary to answer queries directly on the compressed

document. Experiments have shown that querying
compressed documents in this manner can take less time
than on uncompressed documents [2]. In order to query
compressed documents we need to physically maintain the
structure of the XML in a compressed manner; this method
is called homomorphism.

2.1. XML Structure Compression
As the name suggests, this paper [9] proposes a method

to compress the structure of an XML document by
proposing a novel algorithm given the DTD of a
document, the algorithm separates the structure of the
document from its data. For simplicity, the authors only
work with DTDs that define elements. For actual encoding
to take place, the parse tree (d, D) is constructed from the
existing document (d) using the schema information in the
DTD (D). The nodes in the parse tree correspond to the
elements of the XML document d and the operators from
the regular expressions used in content models in D.

The compression occurs in two steps. First, all the leaf
nodes containing texts are pruned from the parse tree. This
new tree is called asstruct (d). The encoding algorithm
takes PARSE(d, D) as input and produces a minimum
length encoding ENCODING(d, D) as output. The
compression process applies further pruning to the parse
tree maintaining a tree representation only of the structures
that needs to be encoded in order for the decoding to
reconstruct the document given DTD D. This tree is called
PRUNE(d, D). The tree is then encoded PRUNE(d, D)
using a breadth-first traversal in such a way that each
repetitive node is encoded by a number of bits, say B,
encoding the number of children of the repetitive node and
where each decision node is encoded by a single bit (which
may be 0 or 1) according to its child.

The compression of the algorithm thus contains three
elements :(1) DTD, (2) encoded structure(in terms of bits)
conforming the DTD, and (3) the actual data contained.
The outputs can then be further compressed by piping
them through standard text compression tools. The
decoding algorithm takes ENCODING(d, D) and D as
input and reconstructs STRUCT(d). The data can then be
added to STRUCT(d) in a simple way to obtain the
original document d. This encoding algorithm is in the
spirit of the Minimum Description Length (MDL) of the
information theory, which is based on the idea of choosing
the model that minimizes the lengths of the encoding. It
assumes that document elements are independent of each
other. The overall length of the encoding is O(n) bits,
where n is the number of nodes in the parse tree.

Unlike XMill, which will be discussed in 2.2, the
algorithm takes the advantage of using the DTD to
separate structure from text. Instead of relying upon
existing compressing software to encode the structure, the

technique also states an algorithm to compress the
structure in an efficient way which ensures a good
compression ratio of the XML document. The algorithm
does not provide a way to construct the pruned tree from
the parse tree. Moreover, a lot of computing overhead is
incurred in computing the pruned tree of a large XML file.

2.2. XMILL
XMill [2] implements a clever and simple idea on

compressing an XML document. It applies a 3 step process
to compress the XML document, by applying specific
compressors to specific data types to obtain the best
compression ratio. This idea is very effective; furthermore,
it is even better to transform a non-xml data and then
compress it, than compress without transforming it; since
you will end with a small size compressed data.

The main reason for this is that XML groups data into
logical related elements. After the separation and the
compression stage (via the XMill operation) the result is
transformed into a highly compressed set of data that has a
better compression ratio than its counterpart (same data in
a non-xml format).

The first step that XMill does is separate structure from
data, what essentially happens is the tags are dictionary-
encoded while data is assigned to specific containers
through “container numbers” [2]. Subsequently all the
related data items are grouped by their “container
numbers” and finally, through the use of “semantic
compressors” [2], the data is compressed.

Since data comes in a variety of specialized data types
such as integer, dates, zip codes, etc., this kind of data is
better compressed using specialized semantic compressors.
As a result integers receive a completely different
treatment to strings or dates ending with a better
compression ratio than a mix of compressed data types.

The approach taken by XMill has the following two
limitations: first, the result of the compressed data is not
usable by query engines. Second, this process is useful
only when data is greater than 20KB. Therefore, XMill
seems more oriented to storage and transport than on the
fly processing of the compressed data.

2.3. XGRIND: A Query-friendly XML
Compressor

XGrind [3] capitalizes on a weakness of XMill
regarding the direct querying of compressed data. XMill is
designed to minimize the size of the compressed XML
document, which reduces the network bandwidth required
for transmission, and the disk space required for storage of
the original document. However, this compression
approach is not intended for directly querying or updating
the compressed document which XGrind provides.

The following are advantages of direct queries on
compressed data:

(1) Disk seek times are reduced since the compressed
data fits into smaller physical disk area.

(2) Disk bandwidth is effectively increased due to the
increased information density of the transferred data.

(3) Memory buffer hit ratio increases since a larger
fraction of the document now fits in the buffer pool.

XGrind compresses individual element/attribute values
using a context-free compression scheme.

Using this scheme, the exact-match and prefix-match
user queries can be executed directly on the compressed
document with decompression restricted to only the final
results provided to the user. This means that the
compressed document can be parsed using exactly the
same techniques as those used for parsing the original
XML document.

XGrind uses different techniques for compressing meta-
data, enumerated-type attribute values and
element/attribute values. These techniques are as follows:

Meta-Data Compression

XGrind follows the XMill compression approach of
separating structure from content. The method to encode
metadata is similar to that in XMill. Each start-tag of an
element is encoded by a ‘T’ followed by a uniquely
assigned element-ID. All end-tags are encoded by ‘/’s.
Attribute names are similarly encoded by the character ‘A’
followed by a uniquely assigned attribute-ID.

Enumerated-type Attribute Value Compression

XGrind identifies such enumerated-type attributes by
examining the DTD of the document and encodes the
values using a simple log2K encoding scheme to represent
an enumerated domain of K values.

General Element/Attribute Value Compression

This is where the bulk of the processing is done. For
Element/Attribute compression, two passes have to be
made over the XML document: the first is to collect the
statistics and the second is to perform the actual encoding.
This methodology can be made more efficient by simply
making one “sweep” over the data document to gather the
necessary statistics and to perform the data encoding in
one pass of the document.

In principle we could use a single character-frequency
distribution for the entire document. However, in XGrind
the compressed XML document can be viewed as the
original XML document with its tags and element/attribute
values replaced by their corresponding encodings. The
advantage of doing so is that the variety of efficient

techniques available for parsing/querying XML documents
can also be used to process the compressed document.

XGrind Architecture
<?xml:namespace prefix = v
 ns = "urn:schemas-microsoft-com:vml"
/>
<?xml:namespace prefix = o
 ns = "urn:schemas-microsoft-
 com:office:office" />

Document compression is as follows:

(1) Invocation of the DTD Parser which parses the
DTD of the XML Document and initializes frequency
tables for each element/non-enumerated attributes;
populating a symbol table for attributes having
enumerated-type values.

(2) The Kernel then invokes the XML Parser which
scans the XML document and populates the set of
frequency tables containing statistics (in the form of
frequencies of character occurrences) for each element and
non-enumerated attribute.

(3) The XML Parser is invoked a second time by the
kernel to construct a tokenized form – tag attribute or data
value – of the XML document. These tokens are supplied
to the kernel which calls for each token based on its type to
either the Huffman-Compressor or Enum-Encoder.

Enum-Encoder is used for meta-data and enumerated
type data items. Each start-tag of an element is encoded by
a ‘T’ followed by a unique element-ID. All end-tags are
encoded by ‘/’s. Attribute names are encoded by the
character ‘A’ followed by a unique attribute-ID.

Huffman-Compressor is used for non-enumerated data
items. It encodes each element/attribute value with the
help of its associated Huffman tree which is constructed
from its corresponding frequency table.

(4) The compressed output of the above encoders along
with the various frequency and symbol tables is called the
Compressed Internal Representation (CIR) of the
compressor and is fed to XML-Gen which converts the
CIR into a semi-structured compressed XML document.

2.4. Millau
Millau [10] is defined as an encoding format extension

of the WAP binary XML format, aka WBXML [11]. It
defines a compact binary representation of XML and is
designed to reduce the transmission size of XML
documents (with no loss of functionality or semantic
information).

In addition Millau addresses the main drawbacks found
in the WBXML format. WBXML does not compress data
nor attributes that were not defined in the DTD and it does

not suggest strategies to build the code space in an
efficient way.

Millau also presents an interesting idea that makes use
of proxies in an efficient way to un/compress data for data
exchange. This makes it useful for transmission of small
chunks of data over the network, which makes the model
easily adaptable to any pair of client/server architecture
typical found in web services or any other xml data
interchange model [5][13].

3. Our Proposal
Our fundamental contribution is the idea of using XML

schemas for compression. This is done in two ways: (1)
adding the concept of semi-lossy metadata compression
based on the schema definition and (2) specific data type
compression expanded to the use of regular expression
definitions. Previous data type based compression [1, 2, 3]
were restricted from any knowledge of the DTD or what
the user was allowed to amend to this knowledge. The
concept behind this model is to infer the data
characteristics from the schema data type definition itself
without actually reading the data. This also includes the
ability to infer data characteristics and take advantage of
the data types based on the definition of regular
expressions. For example, we shall assume that there is an
element called choice that only accepts one letter chosen
from x, y and z.
<xs:element name="choice">
<xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:pattern value="[xyz]"/>
 </xs:restriction>
</xs:simpleType>
</xs:element>

This type of data can be easily compressed by acquiring
and utilizing the knowledge that appears in the Schema.
Other examples include:
Table 2: Summary of regular expression definitions.

Type RegExp
html tag </?[a-z][a-z0-9]*[\^<>]*\>
currency [0-9]\{1,3\}(?:,?[0-9]\{3\})*

US postal code [0-9]\{5\}(?:-[0-9]\{4\})?

Although, there are other cases in which the
specification is too broad to take advantage of during the
compression process. We set the limit that it is better to
use regular compressors for the specific data as a set of
values for the 4 complexity indicators developed in [12].

Semi-lossy compression is a new term and new type of
compression that is only applicable to certain files. As
previously discussed; there are two types of compressions:
the ones that cannot revert the compression to the original
state, and the ones that can. However, there are certain

files that are exempt from needing to revert to exactly the
original state as there is simply no need for performing the
conversion. The perfect case of this is XML. To further
elaborate, an XML schema specifies that a specific node
can only have a set of specific children in any order. Order
related information is something we do not need to specify
in our compressed document [7], as there is no need to
compress nodes that are not specified in the Schema of the
XML.

We can also make use of regular expressions by adding
a small set of auto discovery rules based on the use of
regular expressions. Our approach is to have an
expandable repository with a common set of rules that
define typical data.

Thus, while the XML document is parsed, the set of
regular expressions present in the repository is used to
match and group the related data even if the data has
different paths. e.g. Home phone number, Office phone
number, Home postal code, Office postal code. This
approach not only has the advantage of using the schema
information as a faster match for data, but also provides a
means for discovering knowledge that can be easily
expandable depending on the needs of the user and
business logic.

4. Conclusions
Over the years a large amount of work has already been

done in this area. We have observed that the size of the
XML document is the main obstacle towards the wide use
of XML in preserving web documents and sending web
scripts across the network. The basic difference in
compressing a normal document over XML data is that we
can compress a lot of it if we can cleverly use the
structured information associated with XML metadata. We
have studied several existing compression technologies,
e.g. XMill, XGrind, etc. All of these technologies can be
broadly divided into two parts: 1) one which achieves
higher compression ratio, but does not support queries, and
2) one which supports query over compressed data, but
sacrifices compression ratio. We made relative
comparisons of these existing compression techniques and
concluded by suggesting an idea of XML compression by
efficiently using the XML schema information: the use of
regular expressions to define typical data set and to have a
repository of rules based on regular expressions which can
be very efficient in compressing the XML data.

5. Acknowledgements
This research was supported in part by NSF grants

HRD-0317692, CNS-0220562, CNS-0320956, CNS-
0426125, OII-0611017, DGE-0549489, IIS-0513736, and
IIS-0326284, and NATO grant SST.NR.CLG:G980822.

6. References

[1] I. M. Author, “XPRESS: A queriable Compression for XML
Data,” the journal, Vol. 17, pp. 1-100, 1987.

[2] H Liefke, D Suciu, “XMill: an efficient compressor for XML
data,” Proceedings of the 2000 ACM SIGMOD international
conference, Volume 29, Issue 2, pp. 153 164, 2000

[3] I. M. Author, “XGrind,” the journal, Vol. 17, pp. 1-100,
1987.

[4] I. M. Author, “XML specification www.w3.com/xml,” the
journal, Vol. 17, pp. 1-100, 1987.

[5] I. M. Author, “Web Services,” the journal, Vol. 17, pp. 1-
100, 1987.

[6] w3, “XML DTD www.w3.com,” the journal, Vol. 17, pp. 1-
100, 1987.

[7] w3, “XML Schema www.w3.com,” the journal, Vol. 17, pp.
1-100, 1987.

[8] C. E. Shannon, “A Mathematical Theory of Communication,”
the journal, Vol. 17, pp. 1-100, 1947.

[9] Mark Levene and Peter Wood, “XML Structure
Compression,” Birkbeck College, University of London

[10] M Girardot, N Sundaresan, “Millau: an encoding format for
efficient representation and exchange of XML over the Web”
Computer Networks, Vol 33, pp.747-765, 2000

[11] Wap Binary XML Content Format, W3C Note 24 June
1999, http: //www.w3.org/TR/wbxml

[12] A. Ehrenfeucht, P. Zeiger Complexity Measures For Regular
Expressions Department of Computer Science, University of
Colorado, Boulder, Colorado

[13] W3C Web Services Activity home page,
http://www.w3.org/2002/ws/

[14] J.Ziv, A.Lempel, A universal algorithm for sequential data
compression, IEEE Transactions on information theory, 1977

[15] Huffman's original article: D.A. Huffman, "A method for the
construction of minimum-redundancy codes" (PDF), Proceedings
of the I.R.E., sept 1952, pp 1098-1102

[16] Maruyama, H. 2002. New trends in e-Business: from B2B to
web services. New Gen. Comput. 20, 1 (Jan. 2002), 125-139.

