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ABSTRACT

An intensification of ffirmation processes in modern society

creates some serious problems - infomration security, for
example. In many cases it is impossible to say about usefulness

of inforrnation without efficient deciding this problem. This
paper discusses a possibility of creating a high performance

computing technologr for information defense, processing very
lolg integers and based on a combinatioa ofmodular algebra

and nethods, used, for example, in cryptography.
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l.INTRODLICTION

Modular computations plays importad role in information
security systems (DS), for example, in cryptography and

electonic signature tecbnolory [l]. The paper is devoted to this
direction. The research is based on the method presented in [2]
and number theory, in particular, remainder systems (RS).

These systcms provide a good means for extreoely long integer
algebra Their carry-free operations make parallel

implementation feasible. Some applications involving very long
integers, such as public key encryptioq rely heavily on fast
modulo reductions.

The power of the method [2], is shown on an example of the

. operation x =<v mod z or (for other denoting) v = lxvlz, where

>ry,z sre integer in ttre order of several hundreds digits. In the
paper it is discussed a possibility of speeding up algorithm,
presented in [] and used, for example, in cryptography and

other applications. Before describing the presented techaologt
let us recall main features of RS'

Given a set of relatively prime moduli,

(m1,m2,...,mj; gcd(m;m;Fl ; t*j.

The baie M of RS equals to the product M=ffprq. All
numbers A in RS have a unique representation given by the

tuple .A=(a1,a2,...,a.) where q=lAl6;i:1,...,n. Here 4 is

called a remainder of A modulo mi.

According !o the Chinese Remainder Theorem (CRT) [3] A can

be computed on the base ofthe following expression:

cQilQitl",ih,$ (l)

where Qi=I,f/mi{0,0,...,qi,...,0) and pith denotes the

multiplicative inverse of lQil6;.

Contrary to the more common' fxed'radix' weighted number
representation, RS does not suffer from carry propagation.

Addition, subtraction, and multiplication can be done in parallel

and constant time for all remainders of operands. All digits are

computable independently, and thus concurrently'

Comparigoao sign detectioq overflow detection, aad scaliag can

be achieved through an procedure kno'wn as base extension

(BE). Witb base extension fte base of the system,
(m1rm2,...,mj, can be extended to a larger set

(ml,m2,...,rhJ&a1,mp2, -.m)

with all q relatively prime. It is then necessary to compute

8tr82r...r8p8*68n+Z'..,r81

from the given n tuple (as,a2,'..ao; This procedure can be done

in various ways but we shall us6 the following method'foore
suitable for our case. The method appr.oaches the solution
througb an approximation which is correct in nearly all cases.

The rare occurlences of uncertainties about the correchess of
the result are detects4 and conected with additional
approximations. Starting with a modification of (t)'

n
A= E qQrlQi,l^_hM Q)

i=1

all a5'fi-n+1,...,1) can be computed as

n

E qQilQirl",rl*i-lbMl-.il*i' (3)

l=l

The only variable unloown in (3) is h. Forthis method

n

A:l I
i=1
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H=h+h'= qlQi-tl,,,i/mi,

where 'h' < I.

In real implementationq limited precision of the representation

of the rational factors Qi-r/m1 < I causes problems when the
exact value of H comes close to some integer. This situation is
ef(ily detected by observing a definable amount of ones in the

binary representation of the fractional part h' of H. As ifs
seerns additional approximations can clearly identif the conect
value of h. Luckily, this situation is of no importance in the
context of the main topic of this paper. No additional
approximations are needed at all. As it will bc showrL it does

not matter, whether h is computed contctly, or offby l.
The underlying implementation of RS arithmetic in this paper

assumes I processing elements @E), or sets of PEs, working in
parallel. Each PE is dedicated to some mi and independently
computes

C:lxyi+zik.

All PEs are grouped in two sets, RSI{m1,m2,...m), and RS2 :
(moa1,...,q). Each base extension consurDes the time of
broadcasting n numbers from one set to the othcr, and I n
numbers-vice versa For the sake of simplicity a bus couplcd
system is assumed. Thcr, base extension consumcs n or I n bus
cycles respectively.

The method proposed in [2] is based on the two congrubnces:

A-lAlMls-rks = lAls, (4)

land

A-lAklr'hs = lolM. (5)

Evidently, lsrlM is a pre-computed constant. Thus, a value of
lAl5 can be computed with two multiplications, one addition,
and division of the result by M. The final result is a smaller
numbcr IAM-th. k iterations of this basic process lead to some
smaller number [Vt+[.

2. REALIZING METHOD BASED ON RS

In the case ofusing RS it is preferable to take M equal to a base
of RS (M=ffi-1m). Then lA[a = A. But there is requested for a
larger RS base for representing numbers larger than M-1.
Additional digits (rcmaiDders) in RS with a larger basc have to
be detcrmined by proccdure of extending the source base by
intoducing additional moduli.
Correct computing rlABls in RSI with moduli (m1,rn2,...,m)

1-xltvI1{x-lxlp)t'trI
and in RS2 moduli (mrs1,1ro*2.,,q) is possible under a
condition AB,S < Mr < Mz, where Mr:ffi-rmi and
Mz=flli-*rmi.

Theo the product AB < MlM2 can be represented in an extended
RS with the base M1M2, and the result x = lABls < M1 < M2 can
be used for ncxt approximations. The integer division in RS
is represented by next steps:

1) x=AB < M1N,l2 is tbe source dividend;
2) lx[a1 corrcsponds to x in RSI;
3) In ordcr to compute x-lx[,.tr, which can bc larger than

M1, a base extensioo from RSI to RS2 is neccssary. In
RSI x-lxlp has all zeroes.

4) (x-lxly1)M1-l is smell enough to be representcd in
RS2 only. The division by M1 has no rcmainder aod
can bc substituted by multiplying with the inverse
M,-t. This iovene does not exist in RSl. This is due
to the fact *ret gcd(Mr,lvl) r I which is a nccessary
condition for the existence ofthe inverse.

5). With a fnal basc extension back to RSI results in
both bases are available again.

The mcthod for base cxteasion is done in two phases. In a first
phasc an approximation for h is computed. This approximation

.gives the conect result in most cases. But in rare occurrences
the approximation is offby 1.

In this section it is shown a slightly modified algorithm for
modulus reduction in RSl. It worla in any case, no Eatter
whether the approximated value of h is correct or off by l.
Thus, base extension is substantially simplified- The ilgorithm
representcd below producc tshB/lvlrls, whcre A and B are
source numbers. Next steps of the algorithm of the method are
perforrred in RSI and RS2 respectively.
Step I
RSI: x=AB; multiplying
Step 2
RSl: x s lxlyl; representation x in RSI
Step 3
RSl : gL5-t' multiplying
Step 4
RSI and RS2: g- > [g-]; approximate extension from RSI to
RS2
Step 5

RS2: k=[g-]S; multiplying
Step 5

--RS2: d:x-k; subtraction

n
E

i=1

i

lThe congruence (4) can bc computed as it is shown in [3]. The

ikcy issue is to choose M such that lAly hivially. For fxed-
lradix, weighted numbcr systems M is typically some integer

fower of thc radix. But for RS representation M:f[-sn m;, is
preferable. The4 lAly = A.
I

fah. .oo*"o.es given in (4) and (5) can be derived by the
pttowine observations

I

i alAly:tM=l0ly
I

[ritrr e,r,vf integer. Take some S with gcd(SJvfpl. Then the

fuultiplicative inverse lS-lly cxists. Combination of the two
[rgurncnts given above leads to:

I
I

i |A-|A|MF-'MSIM = o,

I

[i,trere ;S-t1*S;n1 = l, and

t

I tA-lAlMls-'MSls = lAls,
I
I

ihere $rlS-tlg is integer.

t

l

I
t
t
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Step 7

RS2: 5-dM1-r+2S; multiplying and adding
Step 8

RSI aad RS2: 9-l < -y; retum approximate extension RS2 to
RSr
Step 9

F4h'; determining appropriate value t
Step l0
RSI: FD-l -tS; multiplying and subtraction
RS2: fZ-tS; multiplying and subtraction
For the correctoess of the algoritlu4 the following assumptions
bave !o be made

$+65 < M1 < S+S/3 with 6s < 5/6;
45 < M2 3 (4+ejS with e5 < Tll2,where €s- €not in MilS;
3sB<S+6s<5+5/6.
These assumptions do not put any burden on the applicability of
the algorithm if S is large enough and anyway it is to be larger

or equal to M2(4+6s).

3. ANALYZING STEPS AND CONDITIONS OF THE
ALGORITHM

1) rAB; The product AB can be represented in the overall R^S

(ORS), based on Ml and M2, and meeting to the condition

r-AB < S2+2S/6+52/36 < MrM:.

2) 5llxlps-r1141: According to the method [6] the first step is to
compute 1x11,11. In RSI it is trivia[ as lxlur = x. The equivalent
digits in RS2 are not needed at all. The same argument holds for

g=llxlss-tls1 < M1.

3) Base exteDsion tom RSI Q Bl to RS2: The next step,
multiplication with S, possibly results in a product larger tban
Ml. Thus, first a base extension from RSI to RS2 has to take
place. As indicated ealier an approxination for the real value of
h is sufficient

i=r *,li I,

where [v-]:v+1 and e1 << I denoting the eror betweeu the real
value v;:Qil/m1 aod its representation in a limited precision
formet.

Then S2 < y < 3S+S/3. Above result can be obtained by
checking the ranges ofall subresults ofy:

0<x<(S+6s)2<M12;

{5+5/3+5/6)5 < x- g S < M12;

-3s,2 < (*- I s)r"r,-t < M1 < s+S/3;

S/2<y < 3S+S/3;

where S+S/3 > Ml and S/6 > 6s.

6) Base extension from RS2 to RSI: Despite fte f6p1 that y
might uot fit into the range of RSl, a base extension is done
here. Ne&ssary-adjustnents- subtractions of suitable multiples
of S-follow in tbe next step. Notice
if [y-]f a result is correct;
if [y-]a+tS adjusbnena are necessary.

- For base extension a value [h-] is computed and will be in the
following steps.
7) ForRSl: If-l=ty-l6; forRS2: fa 6.
In this step a check must be made whether y is representable in
RSl. It is very likely that y ) S+6s. But only a value less than
S+6s, could really be used for furtber modulo multiplications.
Tbereforc, I suitable integer multiple, t, of S must be subtracted
fron y and [y-]
f=:y-6 < S+6s in RS2 and
FIy-l-6 < S+6s inRSl.
8) r-4h': From (2) follows that tbc fractional pad ofH equals to
h'7/1v12 < 1.

As to the relatioD between y and h' noticc the following. Scaling

of h' with the factor M2/S would result in integer values at

integer multiples of S. The value [b'M2/S] indicates how many
times S has to be subtracted from y in order to get a value fa tS
< S < Mr. Thus, f cao be represeuted in RSl.
But all computatisnnl s6915 due to limited precision have to be
taken into accoutrt. This becomes crucial as t results fiom a
truncafion of h MulS.
1) The computed value [h-]' is very litely smaUsl rhan the real

value h', as all values vi (vi=lQrQitlri) are represented with
limited precision

h, > h,_q6

with eH denoting the maximum possible error.
2) The computed value [r-]s=(M2ls) has also some elror es

relatively to rs: [r-]5'€s.
3) The error oft (q) is

e.t{h'M2/S 0 3 g< O{r+*) s-eses < 5e6le5.

n

:
i=l

Base extension from RSl to RS2 results
basis of(2)
[g-]=, if [b-Fh (conect approximation),

in some [g-] oa the

ls-J=+Mr; if'lb-]:n-t (approximation off by l).
The range ofposible values [g-] varie3 as

[B-] <Mr, if F-l:tr
[g-]=M1+6s, if [h-]-h 1.

4) k<llxlMrs-tly1)S: A@ording the method [2], lelg-lS has to
be computed next

5) y{xllxlvlS-rlu,S)Mr-r+2s: as lx-klv1 = 0, it can'bc divided
by M1 without a remninder. An ajuistuent with 25 is necessary
ia order to avoid negative values for y:

y<x-k)Mr-t+2S.
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The enor q becomes important for values h'rs=tr'yrrt slightly
larger than some integer. The& tnrncation could result in a

wrong value oft. This can only happen for values ofy slightly
larger than some integer multiple of S. If er < 6s/S < 1/6, then
uncertaintics about the value oft can only happen for y in the

intervals

[S,S+6s];[2S,2S+$5];P$,lS+651.

A "wrongn t would then result in a f in the interval [5,5+65]. But
values in this interval are allowed for subsequent modulo

multiplications, since initially the assumption 0 < A < S+6s was

made,
An equal distribution of the total error, er, among the
componcnts leads to eg < l/60 and es < l/12.
Then, q < 5e6rgs < l/6 and rs is chosen to be slightly large-r

than 4: 4+es. In this case oan bc used the value [r--]s-4-2'.
Notice, this comes in handy, as multiplication by some integer
power of 2 is simple.

4. CONCLUSION

This paper shows a possibility of the combination rcmainder
systems with the elficient modulo reduction m€thod [2]. Typical
sizes of numbers, for example, for information technologies of
obtaining digital signanres and public-key cryptosystems are in
the ordcr of 2ffi-2@ and larger. If proccsshg elements @E)
with 32 bit word sizn are used, approximately 20 PEs make up a
system which is able to compute numben of this order.
Althougb commercially availablc PEs can be employd
spccialized PEs can be tuned to much higher specds.

Each PE is dedicated to some mi with all mi relatively prime. In
order to exploit processing capabilities ofthe PEs, mi is chosen
to be close to, but less than 232. It can bc shown that under the
rcstrictions giveu abovc-20 PEs with different mi s, mi < 232
the typicd cryptography operation AB+g 6i approximately
needs the time of (32+l t+12) additions. Taking this time as one

computational cycle, the method [2] realized in RS needs 5 such
cycles plus 3 base extensions.
Base extension in essence is a summation process of the same
kind as shown above. First, the sum

xllQiQi-'l",il*:,

is computed in every j-th PE by broadcasting all x;. At the same

time, an additional PE computes FI-l=D-r" x;[v-] in a similar
way whicb is broadcast to all other PEs aflcrwards. Then it is
rnultiplicd with FMlri.A froal addition in each PE produces 1.
Assuming a bus-coupled net of PEs, base cxtension can be
performed in approximately n cycles. Each cycle involves
broadcasting of somc x; and/or computing bBrcL{.
In conclusion it is necessary to notice, that the combination of
the method similar to [2] with RS gives a possibility of
processing computer words ofthe length 32 bits instead of600-
700 (and more) bia.
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