The 2nd International Conference on
Cybernetics and Information Technologies,
Systems and Applications

11th International Conference on
Information Systems Analysis and Synthesis

July 14-17, 2005 Orlando, Florida ~ USA

PROCEEDINGS

Volume Il

Edited by
Jose Aguilar
Hsing-Wei Chu
Elena D. Gugiu
llka Miloucheva
Naphtali Rishe

Information Defense Technology
on the Base of Modular Algebra

Oleg D. JOUKOV
Moscow State University, Vorobyevy Gory
Moscow, 119899, Russia

Naphtali D. RISHE, Andriy B. SELIVONENKO
School of Computer Science, Florida International University
Miami, Florida 33199, USA

Carlos CANAS, Kiesha PIERRE, Asha BRITO
Division of Computer Sciences and Mathematics, Florida Memorial University
15800 NW 42nd Ave Miami Gardens, FL 33054, USA

ABSTRACT

An intensification of information processes in modern society
creates some serious problems - information security, for
example. In many cases it is impossible to say about usefulness
of information without efficient deciding this problem. This
paper discusses a possibility of creating a high performance
computing technology for information defense, processing very
long integers and based on a combination of modular algebra
and methods, used, for example, in cryptography.

Keywords: modular algebra, cryptography, electronic signature
1. INTRODUCTION

Modular computations plays important- role -in information
security systems (IDS), for example, in cryptography and
electronic signature technology [1]. The paper is devoted to this
direction. The research is based on the method presented in [2]
and number theory, in particular, remainder systems (RS).
These systems provide a good means for extremely long integer
algebra. Their carry-free operations make parallel
implementation feasible. Some applications involving very long
integers, such as public key encryption, rely heavily on fast
modulo reductions.

The power of the method [2], is shown on an example of the
_operation x =x’ mod z or (for other denoting) x = |x*|z, where
X.y,Z are integer in the order of several hundreds digits. In the
paper it is discussed a possibility of speeding up algorithm,
presented in [1] and used, for example, in cryptography and
other apphcahons Before describing the presented technology
let us recall main features of RS.

Given a set of relatively pﬁme moduli,
(mlamla"-’mn); ng(mhmj)=l; i;t.]

The base M of RS equals to the product M=[T-m;. All
numbers A in RS have a unique representation given by the
tuple -A=(ar,az:.-,8,) where a=|A|;i=1,...,n. Here a. is
called a remainder of A modulo m;.

According to the Chinese Remainder Theorem (CRT) [3] A can
be computed on the base of the following expression:

76

n
A T aQIQ il)
=1 S e

where Q=M/m=(0,0,...,;,-..,0) and |Q|.,, denotes the

multiplicative inverse of |Qj|mi.

Contrary to the more common, fixed-radix, weighted number
representation, RS does not suffer from carry propagation.
Addition, subtraction, and multiplication can be done in parallel
and constant time for all remainders of operands. All digits are
computable independently, and thus concurrently.

Comparison, sign detection, overflow detection, and scaling can
be achieved through an procedure known as base extension

" (BE). ‘With base extension the base of the system,

(m;,my,...,m;), can be extended to a larger set

(1,3, ..y Mg Mg 41, W50,

with all m; relatively prime. It is then necessary to compute

81,825+00380,80+1580+25++55sH

from the given n tuple (a;,8,...,8q). This procedure can be done
in various ways but we shall use the following method ‘more
suitable for our case. The method approaches the solution
through an approximation which is correct in nearly all cases.
The rare occurrences of uncertainties about the correctness of
the result are detected, and corrected with additional
approximations. Starting with a modification of (1),

n) o
A= ¥ 8QQw—hM @
=1
all g G=n+1,...,]) can be computed as
n
Zl 3QQ ™ il ~TEM i 3)
=

The only variable unknown in (3) is h. For this method

n
H=h+h'= T Q" |m/mi
i=1

where “h' <1.

In real implementations, limited precision of the representation
of the rational factors Q;'/m; < 1 causes problems when the
exact value of H comes close to some integer. This situation is
easily detected by observing a definable amount of ones in the
binary representation of the fractional part h' of H. As it's
seems additional approximations can clearly identify the correct
value of h. Luckily, this situation is of no importance in the
context of the main topic of this paper. No additional
approximations are needed at all. As it will be shown, it does
not matter, whether h is computed correctly, or off by 1.

The underlying implementation of RS arithmetic in this paper
assumes 1 proccssing elements (PE), or sets of PEs, working in
parallel, Each PE is dedicated to some mi and independently
computes .

&=[X;Y i+ Zi]mi-

All PEs are grouped in two sets, RS1=(m,;,m,,...m,), and RS2 =
(mg4y,...;m). Each base extension consumes the time of
broadcasting n numbers from one set to the other, and I n
numbers-vice versa. For the sake of simplicity a bus coupled

system is assumed. Then, base extension consumes n or | n bus
cycles respectively.

The method proposed in [2] is based on the two congruences:

A-|AMS™'IMS = |Als, (4)
i and

A-|AhS™' S = Ol)

The congruence (4) can be computed as it is shown in [3]. The
key issue is to choose M such that |Aly trivially. For fixed-
radix, weighted number systems M is typically some integer
power of the radix. But for RS representation M=[];-)" m;, is
preferable. Then, |Aly = A.

The congruences given in (4) and (5) can be derived by the
following observations.

A—|A=tM = |Ohs

with A,t M integer. Take some S with ged(S,M)=1. Then the’
multiplicative inverse |[S~'|y exists. Combination of the two
Arguments given above leads to:

|A-|AdS " veSh = 0,
Mhere |S~![yS|y =1, and
|A—|AlMIS™ S5 = [Als,

there |Aln|S™ | is integer.

Evidently, |S™| is a pre-computed constant. Thus, a value of
|Als can be computed with two multiplications, one addition,
and division of the result by M. The final result is a smaller
number |AMjs. k iterations of this basic process lead to some
smaller number JAM s

2. REALIZING METHOD BASED ON RS

In the case of using RS it is preferable to take M equal to a base
of RS (M=[T"=;m;). Then |A}y = A. But there is requested for a
larger RS base for representing numbers larger than M-1.
Additional digits (remainders) in RS with a larger base have to
be determined by procedure of extending the source base by
introducing additional moduli. :
Correct computing z=|AB|s in RS1 with moduli (m;,my,...,m,)

y=/M=(x—xha)M™
and in RS2 moduli (mg+,Mp42,...,m;) is possible under a
condition AB,S < M, < M, where M;=[[%-m; and
M2=Hlim+lmi'

Then the product AB < M;M; can be represented in an extended
RS with the base M;M,, and the result x = |AB|s < M; <M, can
be used for next approximations. The integer division in RS
is represented by next steps:
1) x=AB<M;M; is the source dividend;
2) x| corresponds to x in RS1;
3) In order to compute x—|xhy, Which can be larger than
M|, a base extension from RS1 to RS2 is necessary. In
RS1 x—x|vn has all zeroes.
4) (x—|xlwi)M;" is small enough to be represented in
RS2 only. The division by M,; has no remainder and -
can be substituted by multiplying with the inverse
M;™". This inverse does not exist in RS1. This is due
to the fact that gcd(M;,M;) # 1 which is a necessary
condition for the existence of the inverse.
5) With a final base extension back to RS1 results in
" both bases are available again.
The method for base extension is done in two phases. In a first
phase an approximation for h is computed. This approximation
.gives the correct result in most cases. But in rare occurrences
the approximation is off by 1.

In this section it is shown a slightly modified algorithm for
modulus reduction in RS1. It works in any case, no matter
whether the approximated value of h is correct or off by 1.
Thus, base extension is substantially simplified. The algorithm
represented below. produce f=JAB/M,|s, where A and B are
source numbers. Next steps of the algorithm of the method are
performed in RS1 and RS2 rcspectlvely

Step 1

RS1: x=AB; multiplying

Step 2

RS1: x = |x|yy; representation x in RS1

Step 3

RS1: g=xS7}; multiplying

Step 4 .

RS1 and RS2: g- > [g~]; approximate extension from RS1 to
RS2

Step 5

RS2: k=[g~]S; multiplying

Step 6

~-RS2: d=x-k; subtraction

Step 7

RS2: y=dM,'+2S; multiplying and adding

Step 8

RS1 and RS2: [y~] < -y; return approximate extension RS2 to
RS1

Step 9

t=4h’'; determining appropriate value t

Step 10

RS1: f=[y~] - tS; multiplying and subtraction

RS2: f=y—tS; multiplying and subtraction

For the correctness of the algorithm, the following assumptions
have to be made

S+8s <M, < §+8/3 with 85 < S/6;

4S < M, < (4+¢5)S with eg < 1/12, where eg— error in M,/S;

A,B < S+8g < §+S/6.

These assumptions do not put any burden on the applicability of
the algorithm if S is large enough and anyway it is to be larger
or equal to My/(4+5s).

3. ANALYZING STEPS AND CONDITIONS OF THE
ALGORITHM

1) x=AB: The product AB can be represented in the overall RS
(ORS), based on M1 and M2, and meeting to the condition

x=AB < S™25/6+5%/36 < M;M,.

2) g=||x]mS”|M1: According to the method [6] the first step is to
compute [X|vg. In RS1 it is trivial, as |x[y; = x. The equivalent
digits in RS2 are not needed at all. The same argument holds for

g=lxhaS ™" hva <M.

3) Base extension from RS1 Q Bl to RS2: The next step,
multiplication with S, possibly results in a product larger than
M1. Thus, first a base extension from RS1 to RS2 has to take
place. As indicated ealier an approximation for the real value of
h is sufficient

~ n ~
h =[Z X; v i],
i=1 _
where [v~]=v—e; and e; << 1 denoting the error between the real

value v/=Q;"/m; and its representation in a limited precision ..-

format.

Base extension from RS1 to RS2 results in some [g~] on the
basis of (2)

[g~]=g, if [h~}=h (correct approximation),

[g~1=g+M,, if [h~]=h—~1 (approximaiion offby 1).

The range of possible values [g~] varies as

- - [g~]<M,, if [b~]=h, -

[g~]=M,+3s, if [h~]=h-1.
4) k=(||xhS™"lm1)S: According the method [2], k=[g~]S has to
be computed next.

5) y=(x—{|xhvai S~ v S)M; " +2S: as [x—k|y; = 0, it can-be divided”

by M; without a remainder. An ajuistment with 28 is necessary
in order to avoid negative values for y:

y=(x-k)M,'+28.

78

Then S/2 < y < 3S+S/3. Above result can be obtained by
checking the ranges of all subresults of y:

0<x < (S+8)> <M)%

—~(S+S8/3+5/6)S < x- g S <M/}

~

—38/2 < (x— g S)M; ! < M < S+8/3;
S/2 <y < 3S+8/3;

where S+S/3 > M1 and S/6 > &s.

6) Base extension from RS2 to RSI: Dcspxte the fact that y
might not fit into the range of RS1, a base extension is done
here. Necessary adjustments- subtractions of suitable multiples
of S-follow in the next step. Notice

if [y~]=y a result is correct;

if [y~]=y+tS adjustments are necessary.

- For base extension a value [h~] is computed and will be in the

following steps.

7) For RS1: [f~]=[y~] tS; for RS2: f=y tS.

In this step a check must be made whether y is representable in
RS1. It is very likely that y > S+8s. But only a value less than
S+8s, could really be used for further modulo multiplications.
Therefore, a suitable integer multiple, t, of S must be subtracted
from y and [y~]

f=y—tS < S+8¢ in RS2 and

f=[y~]~tS < S+35 in RS1.

8) t=4h': From (2) follows that the ﬁ'actxonal part of H equals to
h'=y/M,< 1.

As to the relation between y and h' notice the following. Scaling
of h' with the factor My/S would result in integer values at
integer multiples of S. The value [h'M,/S] indicates how many
times S has to be subtracted from y in order to get a value f=y tS
< S <M. Thus, f can be represented in RS1.

But all computational errors due to limited precision have to be
taken into account. This becomes crucial as t results from a
truncation of h My/S.

1) The computed value [h~] is very 11kely smaller than the real
value ', as all values v; (vj=|Q;Q;” Im:) are represented with
limited precision

h'> b'—e};,

with ey denoting the maximum possible error.
2) The computed value [r~]s=(M_/S) has also some error eg

relatively to rs: [r~]s—es.
3) The error of t () is

~

e=('Mo/S 0 <g< M;+8s) s—emes < Sewtes.

-ﬁ

The error e, becomes important for values h'rs=h"M,/S slightly
larger than some integer. Then, truncation could result in a

wrong value of t. This can only happen for values of y slightly - - -

larger than some integer multiple of S. If ; < &¢/S < 1/6, then
uncertainties about the value of t can only happen for y in the
intervals

[S,S+35];[28,25+85];[38,35+8s].

A "wrong" t would then result in a f'in the interval [S,S+8g]. But
values in this interval are allowed for subsequent modulo
multiplications, since initially the assumption 0 < A < S+35 was
made.

An equal distribution of the total error, e, among the
components leads to ey < 1/60 and eg < 1/12.

Then, e, < Sextes < 1/6 and rg is chosen to be slightly larger
than 4: 4+es. In this case can be used the value [r~]s=4=22
Notice, this comes in handy, as multiplication by some integer

“power of 2 is simple.

4. CONCLUSION

This paper shows a possibility of the combination remainder -

systems with the efficient modulo reduction method [2]. Typical
sizes of numbers, for example, for information technologies of
obtaining digital signatures and public-key cryptosystems are in
the order of 25%°—2™ and larger. If processing elements (PE)
with 32 bit word size are used, approximately 20 PEs make up a
system which is able to compute numbers of this order.
Although commercially available PEs can be employed,
specialized PEs can be tuned to much higher speeds.

Each PE is dedicated to some mi with all mi relatively prime. In
order to exploit processing capabilities of the PEs, mi is chosen
to be close to, but less than 232. It can be shown that under the
restrictions given above-20 PEs with different mi s, mi < 232
the typical cryptography operation AB+C mi approximately
needs the time of (32+11+12) additions. Taking this time as one

79

computational cycle, the method [2] realized in RS needs 5 such
cycles plus 3 base extensions.

Base extension in essence is a summation process of the same
kind as shown above. First, the sum

n
.Z Xi1QiQi gl

i=1

is computed in every j—th PE by broadcasting all x;. At the same
time, an additional PE computes [H~]=X" x;[v~]; in a similar
way which is broadcast to all other PEs afterwards. Then it is
multiplied with |-M|n;. A final addition in each PE produces x;.
Assuming a bus-coupled net of PEs, base extension can be
performed in approximately n cycles. Each cycle involves
broadcasting of some x;, and/or computing |AB+C|.

In conclusion it is necessary to notice, that the combination of
the method similar to [2] with RS gives a possibility of
processing computer words of the length 32 bits instead of 600-
700 (and more) bits.

5. ACKNOWLEDGEMENTS

This material is based on work supported by NATO under Grant
No. SST.NR.CLG:G980822 and by the National Science
Foundation under Grants No HRD-0317692, EIA-0320956, and
EIA-0220562.

6. REFERENCES

[1] Rivest R., Shamir A., and Adleman L., A method for
obtaining digital signatures and public-key
cryptosystems, Commun. ACM, 1978, pp. 120-126, 1978.

[2] Montgomery P.L., Modular multiplication without trial
division, Mathemat. Comput., Vol. 44, No. 170, 1985, pp.
519-521.

