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Abstract 

We present the architecture of 3D TerraF/y, a three
dimensional extension of TerraFly, which is a Web
enabled geographic information system designed for 
visualization, analysis and composition of remotely-sensed 
imagery. 3D TerraFly has a client/server architecture. 
The client-side application is a web-embedded component 
called the 3D TerraF/y Viewer that performs 3D terrain 
rendering and interactive navigation. The server side 
applications include Texture Imagery Servers and Mesh 
Servers that, respectively, handle texture data requests 
and mesh data requests. 

1. Introduction 

Increasing demands for 3D GIS (three dimensional 
geographic information systems) have emerged in many 
areas, such as urban planning, environmental monitoring, 
telecommunication, real-estate marketing, weather 
simulation and military training. Intensive research of 3D 
GIS has covered various aspects for representing and 
analyzing real world phenomena. Many 3D GIS 
applications have been developed and some commercial 
3D GIS systems are on the market. Most of them are 
capable of integrating complex semantic and geometric 
GIS data into 3D visualization, and of providing 
comprehensive exploration and analysis functionalities . 
We refer to [1] for a detailed review of the history, current 
status, and future trends of 3D GIS. 

When designing a 3D GIS that is expected to serve 
users over the Internet (online), researchers meet certain 
challenges. First, a bottleneck is the limited computation 
power that client users can access. Internet users are 
usually equipped with low-end PCs which are not capable 
of performing real-time computation-intensive tasks. 
Unlike professional graphics workstations, their 
processors and memory capacities are not suitable for real
time handling of data-intensive 3D visualization tasks. 

Limited Internet bandwidth is another challenge for 
online 3D GIS. The bandwidths of the Internet 
connections vary over a large range, from 56 Kbps dial-up 
to fast Internet connections of 100 Mbps. In most cases, 
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the users' network connections cannot transfer the 
volumetric data required to support real-time 3D terrain 
presentation without compression and other transmission 
optimization strategies. 

In the current paper, we present the architecture of 3D 
TerraFly, a 3D extension ofTerraFly, which is an Internet
enabled GIS designed for 2D remotely-sensed imagery 
visualization, analysis and composition [2, 3]. The key 
system requirements for 3D TerraFly, which we have 
addressed in the present architecture, are: to provide a 
realistic "bird's-eye view" 3D terrain visualization to 
reflect real world geographic phenomena, as well as 
smooth 3D navigation; to support various datasets and to 
be able to integrate rich semantic geographic information 
into the presentation; to have high performance and 
availability; and to be user friendly. 

2. Architecture overview 

The system is designed as a client/server architecture. 
The client side application is a web-embedded component 
called 3D TerraFly Viewer that performs 3D terrain 
rendering and interactive navigation. The server side 
applications include Texture Imagery Servers and Mesh 
Servers that handle texture data requests and mesh data 
requests correspondingly. Texture and mesh servers are 
designed as multiple layered distributed systems with a 
web front end and server clusters that support data 
replication and dynamic load balancing; see Figure 1. 

Figure 1. System architecture 
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Figure 2. 30 TerraFiy viewer architecture 

3D TerraFly Viewer is the client side application 
responsible for retrieving data, modeling, rendering 
terrain, and controlling animation. Functionally, it can be 
divided into four modules: the Control Module, the 
Rendering Module, the Animation Coordinator, and the 
Data Retrieval Module, as shown in Figure 2. 

The Control Module provides the navigation interface 
to the users and presents related viewing and navigation 
properties. Viewing properties are used to define static 
viewing behavior for each frame, including viewpoint 
coordinate, viewing volume configuration and three 
viewing transformation angles (Heading, Pitch and Roll). 
The viewpoint coordinate is the geographic reference 
point used in terrain navigation. The view frustum's Near 
side is defined as close to the viewpoint as possible and 
the Far side is virtually infinite. The actual terrain data 
covered within the viewing volume is determined by the 
view culling process. Navigation properties describe 
animation in terms of flight direction, speed and frame
rate. Navigation allows the viewer to move in three 
dimensions. The flight direction and speed are 
decomposed into horizontal and vertical vectors. The 
horizontal direction vector is represented as an angle in the 
range 0-360 degrees clockwise. Terrain animation is 
performed by the viewpoint coordinate update for each 
frame andre-rendering the scene accordingly. 

The Rendering Module is responsible for 
reconstruction and rendering of the terrain model. Based 
on dynamic presentation status, the scene for the frame is 
produced via the following steps: (i) Calculate areas inside 
the view frustum according to the viewing parameters 
(viewpoint coordinate, rotation angles and view frustum 
shape) for the current frame; (ii) Build the region based on 
multiple resolution models; (iii) Perform region 
tessellation to obtain the texture and mesh tiles required 
for each sub-region in the terrain model and contact the 
Data Retrieval Module to retrieve them if needed; (iv) 
Bring all rendering primitives to the rendering engine to 
generate terrain display. The entire processing flow in the 
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Rendering Module is presented in Figure 3. OpenGL [4] is 
used as the rendering engine in our system. In the 
rendering process, a double-buffered rendering scheme is 
used to provide smooth animation. Each frame is first 
rendered on a background buffer and swapped to the front 
when rendering is complete. This scheme helps to reduce 
screen flash. 

The Data Retrieval Module manages the Internet data 
retrieval, local caching and online mesh simplification. 
Texture and mesh data is retrieved by incremental tile 
streams. This strategy can significantly reduce the inter
frame data redundancy during terrain animation. Mesh 
data is stored and retrieved in grid format. Grid meshes 
may contain redundant geometry vertices. The 
simplification process is used to eliminate redundant 
geometry elements and to further smooth small height 
variations that are not important for rendering quality. To 
reduce the data access and processing overhead, 
texture/mesh data and mesh simplification results are kept 
locally in a LRU (least recently used) cache. 
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Figure 3. Processing stream in rendering module 

Texture and mesh tiles are retrieved asynchronously by 
multiple threading. In real-time cases, frequent thread 
allocation and de-allocation can impose a significant 
overhead on system performance. A thread pool technique 
is used to tackle this problem. A thread pool contains a 
certain number of pre-allocated threads and the size of the 
thread pool can grow on demand. The threads in a thread 
pool are initially allocated in Sleep (or Suspended) state to 
avoid unnecessary CPU time consumption. There are two 
thread-pools in our system: one for texture image 
retrieving and decoding, and one for mesh tile loading and 
decimating. In each thread pool, the threads are designated 
for specific uses. This allows a thread to maintain task 
related resource allocations permanently to avoid repeated 
resource allocation/de-allocation overhead. 

On the client side, a certain amount of the most 
recently used texture and mesh data is kept in memory
based caches. The cached data includes currently used and 
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pre-retrieved data, as well as online simplification results . 
Texture and mesh data is kept in separate caches. 

The Animation coordinator is used to control the terrain 
animation, predictive data pre-fetching and pre-rendering 
to best utilize the system's idle time and network 
bandwidth. If the rendering of the current frame is finished 
before a given time, the animation coordinator starts 
preparing the next frame in advance. With the current 
navigation speed, direction and frame rate, the data model 
for the next frame is constructed in the background and the 
needed data is retrieved. When data pre-fetching is 
finished, the next frame is rendered in the background and 
is switched to the foreground when the frame is ready to 
be displayed. 

4. Mesh server subsystem 

Mesh servers store mesh datasets in grid formats . The 
stored mesh data include USGS DEM (digital elevation 
model) meshes and meshes derived from the original 
DEM meshes. The USGS DEM dataset provides coverage 
of North America in multiple resolutions (10 meters, 30 
meters, 1 arc second, 3 arc seconds and 30 arc seconds). 
These are used as base mesh data sources in our system. 
The resolutions of DEM meshes are sparse and are 
provided in different measurement units . To support 
multiple resolution rendering and to fill the gaps of 
resolutions in DEM mesh, mesh data of 8x8, 16xl6, 
32x32, 64x64, 128x 128 and 256x256 meters are derived 
from DEM meshes and stored on the servers. The derived 
elevation data is also stored in grid format. 

The mesh server subsystem is implemented as a 
multiple layered distributed system. Functionally it 
includes three major layers, namely the HTTP Front End 
Layer, the Mesh Directory Layer and the Mesh Data 
Server Layer; see Figure 4. 

Mesh Data 
Server 

Mesh Partition Directory 

Mesh Data 
Server 

Dynamic Mesh Re-Scaling 
And Assembling 

Mesh Data 
Server 

Figure 4. Architecture of mesh server subsystem 

The HTTP Front End Layer is an HTTP web server that 
handles mesh requests. The large volume of mesh data 
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managed on the server side makes centralized storage 
impractical. To effectively store the volumetric mesh 
datasets and to efficiently handle mesh requests from 
multiple users, mesh data is portioned and stored in a 
distributed environment. Mesh datasets are split along 
UTM zones. Inside each UTM zone, mesh data may be 
further split depending on the mesh unit size. A mesh unit 
is identified by its attributes, namely resolution, UTM 
zone number and covered geographic area identified by 
the coordinates of the top-left and bottom-right corners. 
The Mesh Directory Layer is used to manage distributed 
mesh data storage. Each mesh unit is represented by one 
partition entry containing mesh unit attributes (UTM zone 
number, resolution and covered area) and the address of 
the mesh file server. 

The Mesh Data Server Layer allows data to be 
retrieved at arbitrary resolution. When a mesh tile request 
is received, the covered area of the requested tile is 
obtained from the request parameters with the tile number, 
resolution, tile size and the UTM zone among them. If the 
correct resolution of the requested mesh tile can be found 
in the stored mesh datasets, the mesh directory locates the 
mesh unit(s) (a mesh tile can either be contained inside 
one mesh unit or in two or four mesh units) by range query 
and the mesh tile can be directly obtained from the mesh 
unit(s) without rescaling. Otherwise, the requested mesh 
tile is generated from the mesh units with the closest 
resolution to the requested tile by a mesh scaling process. 

The mesh datasets are replicated on multiple file 
servers and the mesh server subsystem is deployed as a 
clustered server infrastructure. This scheme helps to 
improve performance of data access, system availability, 
and degree offault tolerance. 

5. Texture server subsystem 

The texture server subsystem provides terrain imagery 
for visualization. It is capable of giving unified access to 
imagery from various GIS datasets, such as satellite 
images, aerial photography, and topographic maps. 
Different datasets have different characteristics, so 
management and access to them may vary in the following 
aspects: (i) In terms of storage, some datasets are stored 
locally, while others are provided by third-party sources 
and should be accessed remotely; (ii) The datasets may 
have to be accessed via different protocols; (iii) The 
datasets may support different image resolutions and 
image granularity (size); (iv) Images may have various 
formats and have to be handled by different image 
decoding/encoding algorithms; (v) The datasets may use 
various geographic coordinate systems. The texture server 
subsystem is designed as a multi-layered architecture, 
which hides complex data and processing details and gives 
a clear abstraction and unified interface to the various 
datasets . Functionally, there are three layers: the HTTP 



Front Layer, the Image Processing Layer, and the Data 
Source Layer; see Figure 5. 

The HTTP Front Layer is the top layer. It serves as the 
system interface to handle imagery tile requests carried via 
HTTP protocol. There are two types of requests: metadata 
query and image data query. Metadata query is used to 
obtain available resource information such as available 
data sources and their underlying resolutions. Imagery 
data can be queried either by individual tiles or by a range 
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Figure 5. Texture server subsystem 

The Image Processing Layer is the middle layer. It is 
designed to perform image processing tasks. Logically it is 
comprised of three modules: image formatting, image 
dispensing and image composition. The image formatting 
module is used for image encoding/decoding and format 
conversion according to format specifications contained in 
image requests. The user specified image formatting 
information includes encoding format (e.g. JPEG), color 
channels (black & white or full color) and compression 
quality or color table size. The image dispensing module is 
used to handle large scale GIS image downloads. The 
requested images can cover an area of arbitrary size and 
are usually generated from multiple tiles. This feature was 
designed in 2D TerraFly to process images for download 
and is not used in the 3D system. The image composition 
model supports online image compositions-mainly 
image overlaying operations. The composition process 
visualizes non-imagery GIS information and combines the 
visualization result with the regular GIS imagery. The 
image composition is managed under a component-based 
framework. Under the framework, the information 
resources and their underlying visualization procedures are 
managed as self-contained components. Image 
composition tasks can be of arbitrary complexity and are 
described by a script language. 

The Image Source Layer is the bottom layer. It 
integrates GIS imagery datasets and provides a unified 
imagery access interface to the upper layers. A 
component-based strategy is used in dataset management 
to flexibly and cost-effectively integrate various data 
sources. Each dataset is managed as a component defined 
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by the ImageSource data structure, which describes image 
properties and the access protocols of the underlying 
datasets. The dataset specific access protocols include 
dataset address, query methods (HTTP, TCPIIP, file, or 
database), query parameters and optional authentication 
information (for remote access only). Image dataset 
properties include dataset name, underlying imagery 
format (JPEG, GIF, and PPM), color channels (full-color 
or black-white), tile size and resolutions (measured in 
meters/pixel). 

6. Conclusion 

We have discussed the system architecture of the 3D 
TerraFly GIS. The architecture has to support efficient 
management and distributed storage of large volumes of 
imagery data. The system employs hierarchically clustered 
servers to support resource replication and parallel 
processing. Image processing tasks such as image 
formatting and composition are computationally intensive 
in nature. Large capacity proxy cache servers have to be 
attached to the servers that are engaged in time-consuming 
tasks to cache image composition results and third-party 
imagery data to improve data processing performance. 
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