
I E E E S i X t h

' ,. , ... '·
r ' ,_ j) ~ ~ J f' ,~ J~

J..:; J..:; J..:; '"' J..:; J..:; J..:; J,
I n7~ e~~njm t1JZoJ a11! ~~ ~ p o s i u m

~ -; '"' '"' '..:; ,..:- 1. . ~ ~ .#'!!'!. I

o n

13-15 December 2004

IEEE~
COMPUTER

SOCIETY

+.IEEE
With support of Florida International Universit~ . Florida. USA
IEEE/CS Technical Committee on ComputationallntelliQence

IEEEICS Technical Committee on Multimedia ComputinQ
IEEEICS Technical tommittee for Services ComputinQ

Proceedings

IEEE Sixth International Symposium on
Multimedia Software Engineering

Miami, Florida

December 13 - 15, 2004

Supported by
IEEE Computer Society Technical Committee on Computational Intelligence

IEEE Computer Society Technical Committee on Multimedia Computing
IEEE Computer Society Technical Community for Services Computing

I EEE~
COMPUTER

SOCIETY
http:/ I computer.org

Los Alamitos, California
Washington • Brussels • Tokyo

System Architecture for 3D TerraFly Online GIS

Naphtali Rishe, Yanli Sun, Maxim Chekmasov, Andriy Selivonenko, Scott Graham
Florida International University

{rishen, maximc, suny, selivona, grahams}@cs.fiu.edu

Abstract

We present the architecture of 3D TerraF/y, a three
dimensional extension of TerraFly, which is a Web
enabled geographic information system designed for
visualization, analysis and composition of remotely-sensed
imagery. 3D TerraFly has a client/server architecture.
The client-side application is a web-embedded component
called the 3D TerraF/y Viewer that performs 3D terrain
rendering and interactive navigation. The server side
applications include Texture Imagery Servers and Mesh
Servers that, respectively, handle texture data requests
and mesh data requests.

1. Introduction

Increasing demands for 3D GIS (three dimensional
geographic information systems) have emerged in many
areas, such as urban planning, environmental monitoring,
telecommunication, real-estate marketing, weather
simulation and military training. Intensive research of 3D
GIS has covered various aspects for representing and
analyzing real world phenomena. Many 3D GIS
applications have been developed and some commercial
3D GIS systems are on the market. Most of them are
capable of integrating complex semantic and geometric
GIS data into 3D visualization, and of providing
comprehensive exploration and analysis functionalities .
We refer to [1] for a detailed review of the history, current
status, and future trends of 3D GIS.

When designing a 3D GIS that is expected to serve
users over the Internet (online), researchers meet certain
challenges. First, a bottleneck is the limited computation
power that client users can access. Internet users are
usually equipped with low-end PCs which are not capable
of performing real-time computation-intensive tasks.
Unlike professional graphics workstations, their
processors and memory capacities are not suitable for real
time handling of data-intensive 3D visualization tasks.

Limited Internet bandwidth is another challenge for
online 3D GIS. The bandwidths of the Internet
connections vary over a large range, from 56 Kbps dial-up
to fast Internet connections of 100 Mbps. In most cases,

0-7695-2217-3/04 $20.00 <0 2004 IEEE 273

the users' network connections cannot transfer the
volumetric data required to support real-time 3D terrain
presentation without compression and other transmission
optimization strategies.

In the current paper, we present the architecture of 3D
TerraFly, a 3D extension ofTerraFly, which is an Internet
enabled GIS designed for 2D remotely-sensed imagery
visualization, analysis and composition [2, 3]. The key
system requirements for 3D TerraFly, which we have
addressed in the present architecture, are: to provide a
realistic "bird's-eye view" 3D terrain visualization to
reflect real world geographic phenomena, as well as
smooth 3D navigation; to support various datasets and to
be able to integrate rich semantic geographic information
into the presentation; to have high performance and
availability; and to be user friendly.

2. Architecture overview

The system is designed as a client/server architecture.
The client side application is a web-embedded component
called 3D TerraFly Viewer that performs 3D terrain
rendering and interactive navigation. The server side
applications include Texture Imagery Servers and Mesh
Servers that handle texture data requests and mesh data
requests correspondingly. Texture and mesh servers are
designed as multiple layered distributed systems with a
web front end and server clusters that support data
replication and dynamic load balancing; see Figure 1.

Figure 1. System architecture

' .

3. 3D TerraFly viewer

I. Control Module

2 . Rend e ring Module

3. Re trieval Module
! . • • • • .••• • . •• .. • .. •.••..•. • •••• • • • •••• . • • ••• .•• • •• .!

Figure 2. 30 TerraFiy viewer architecture

3D TerraFly Viewer is the client side application
responsible for retrieving data, modeling, rendering
terrain, and controlling animation. Functionally, it can be
divided into four modules: the Control Module, the
Rendering Module, the Animation Coordinator, and the
Data Retrieval Module, as shown in Figure 2.

The Control Module provides the navigation interface
to the users and presents related viewing and navigation
properties. Viewing properties are used to define static
viewing behavior for each frame, including viewpoint
coordinate, viewing volume configuration and three
viewing transformation angles (Heading, Pitch and Roll).
The viewpoint coordinate is the geographic reference
point used in terrain navigation. The view frustum's Near
side is defined as close to the viewpoint as possible and
the Far side is virtually infinite. The actual terrain data
covered within the viewing volume is determined by the
view culling process. Navigation properties describe
animation in terms of flight direction, speed and frame
rate. Navigation allows the viewer to move in three
dimensions. The flight direction and speed are
decomposed into horizontal and vertical vectors. The
horizontal direction vector is represented as an angle in the
range 0-360 degrees clockwise. Terrain animation is
performed by the viewpoint coordinate update for each
frame andre-rendering the scene accordingly.

The Rendering Module is responsible for
reconstruction and rendering of the terrain model. Based
on dynamic presentation status, the scene for the frame is
produced via the following steps: (i) Calculate areas inside
the view frustum according to the viewing parameters
(viewpoint coordinate, rotation angles and view frustum
shape) for the current frame; (ii) Build the region based on
multiple resolution models; (iii) Perform region
tessellation to obtain the texture and mesh tiles required
for each sub-region in the terrain model and contact the
Data Retrieval Module to retrieve them if needed; (iv)
Bring all rendering primitives to the rendering engine to
generate terrain display. The entire processing flow in the

274

Rendering Module is presented in Figure 3. OpenGL [4] is
used as the rendering engine in our system. In the
rendering process, a double-buffered rendering scheme is
used to provide smooth animation. Each frame is first
rendered on a background buffer and swapped to the front
when rendering is complete. This scheme helps to reduce
screen flash.

The Data Retrieval Module manages the Internet data
retrieval, local caching and online mesh simplification.
Texture and mesh data is retrieved by incremental tile
streams. This strategy can significantly reduce the inter
frame data redundancy during terrain animation. Mesh
data is stored and retrieved in grid format. Grid meshes
may contain redundant geometry vertices. The
simplification process is used to eliminate redundant
geometry elements and to further smooth small height
variations that are not important for rendering quality. To
reduce the data access and processing overhead,
texture/mesh data and mesh simplification results are kept
locally in a LRU (least recently used) cache.

I
I
I
I
I
I
I
I
I

L------ ,
I
I

-!-

Mesh &Texture Data

Figure 3. Processing stream in rendering module

Texture and mesh tiles are retrieved asynchronously by
multiple threading. In real-time cases, frequent thread
allocation and de-allocation can impose a significant
overhead on system performance. A thread pool technique
is used to tackle this problem. A thread pool contains a
certain number of pre-allocated threads and the size of the
thread pool can grow on demand. The threads in a thread
pool are initially allocated in Sleep (or Suspended) state to
avoid unnecessary CPU time consumption. There are two
thread-pools in our system: one for texture image
retrieving and decoding, and one for mesh tile loading and
decimating. In each thread pool, the threads are designated
for specific uses. This allows a thread to maintain task
related resource allocations permanently to avoid repeated
resource allocation/de-allocation overhead.

On the client side, a certain amount of the most
recently used texture and mesh data is kept in memory
based caches. The cached data includes currently used and

-

. ~

'•

)
ion

>del

)

lata

1le

by
ead
:ant
que
1s a
"the
read
te to
two

n.age
; and
tated
task
~a ted

most
nory
d and

pre-retrieved data, as well as online simplification results .
Texture and mesh data is kept in separate caches.

The Animation coordinator is used to control the terrain
animation, predictive data pre-fetching and pre-rendering
to best utilize the system's idle time and network
bandwidth. If the rendering of the current frame is finished
before a given time, the animation coordinator starts
preparing the next frame in advance. With the current
navigation speed, direction and frame rate, the data model
for the next frame is constructed in the background and the
needed data is retrieved. When data pre-fetching is
finished, the next frame is rendered in the background and
is switched to the foreground when the frame is ready to
be displayed.

4. Mesh server subsystem

Mesh servers store mesh datasets in grid formats . The
stored mesh data include USGS DEM (digital elevation
model) meshes and meshes derived from the original
DEM meshes. The USGS DEM dataset provides coverage
of North America in multiple resolutions (10 meters, 30
meters, 1 arc second, 3 arc seconds and 30 arc seconds).
These are used as base mesh data sources in our system.
The resolutions of DEM meshes are sparse and are
provided in different measurement units . To support
multiple resolution rendering and to fill the gaps of
resolutions in DEM mesh, mesh data of 8x8, 16xl6,
32x32, 64x64, 128x 128 and 256x256 meters are derived
from DEM meshes and stored on the servers. The derived
elevation data is also stored in grid format.

The mesh server subsystem is implemented as a
multiple layered distributed system. Functionally it
includes three major layers, namely the HTTP Front End
Layer, the Mesh Directory Layer and the Mesh Data
Server Layer; see Figure 4.

Mesh Data
Server

Mesh Partition Directory

Mesh Data
Server

Dynamic Mesh Re-Scaling
And Assembling

Mesh Data
Server

Figure 4. Architecture of mesh server subsystem

The HTTP Front End Layer is an HTTP web server that
handles mesh requests. The large volume of mesh data

275

managed on the server side makes centralized storage
impractical. To effectively store the volumetric mesh
datasets and to efficiently handle mesh requests from
multiple users, mesh data is portioned and stored in a
distributed environment. Mesh datasets are split along
UTM zones. Inside each UTM zone, mesh data may be
further split depending on the mesh unit size. A mesh unit
is identified by its attributes, namely resolution, UTM
zone number and covered geographic area identified by
the coordinates of the top-left and bottom-right corners.
The Mesh Directory Layer is used to manage distributed
mesh data storage. Each mesh unit is represented by one
partition entry containing mesh unit attributes (UTM zone
number, resolution and covered area) and the address of
the mesh file server.

The Mesh Data Server Layer allows data to be
retrieved at arbitrary resolution. When a mesh tile request
is received, the covered area of the requested tile is
obtained from the request parameters with the tile number,
resolution, tile size and the UTM zone among them. If the
correct resolution of the requested mesh tile can be found
in the stored mesh datasets, the mesh directory locates the
mesh unit(s) (a mesh tile can either be contained inside
one mesh unit or in two or four mesh units) by range query
and the mesh tile can be directly obtained from the mesh
unit(s) without rescaling. Otherwise, the requested mesh
tile is generated from the mesh units with the closest
resolution to the requested tile by a mesh scaling process.

The mesh datasets are replicated on multiple file
servers and the mesh server subsystem is deployed as a
clustered server infrastructure. This scheme helps to
improve performance of data access, system availability,
and degree offault tolerance.

5. Texture server subsystem

The texture server subsystem provides terrain imagery
for visualization. It is capable of giving unified access to
imagery from various GIS datasets, such as satellite
images, aerial photography, and topographic maps.
Different datasets have different characteristics, so
management and access to them may vary in the following
aspects: (i) In terms of storage, some datasets are stored
locally, while others are provided by third-party sources
and should be accessed remotely; (ii) The datasets may
have to be accessed via different protocols; (iii) The
datasets may support different image resolutions and
image granularity (size); (iv) Images may have various
formats and have to be handled by different image
decoding/encoding algorithms; (v) The datasets may use
various geographic coordinate systems. The texture server
subsystem is designed as a multi-layered architecture,
which hides complex data and processing details and gives
a clear abstraction and unified interface to the various
datasets . Functionally, there are three layers: the HTTP

Front Layer, the Image Processing Layer, and the Data
Source Layer; see Figure 5.

The HTTP Front Layer is the top layer. It serves as the
system interface to handle imagery tile requests carried via
HTTP protocol. There are two types of requests: metadata
query and image data query. Metadata query is used to
obtain available resource information such as available
data sources and their underlying resolutions. Imagery
data can be queried either by individual tiles or by a range

querry~·~========~================~--~
I Web Server Front I

Image Proc: essin& Laye r

~-~-~:.~e--~--~-~:age---,---~-~:.~e---j-1
I Formatting Dispensing Composition I
I I

~--------------1----D~t~(==•~S~u:~:~
1- ------ ---------------1
: (maae D irectory Im age Source Benchm ark / :

I I
I I
I :::::,,:: :::::, ,::. ='I I

L llmagery Datasetsj Llmagery Dataset0 Llmagery Dataset0 j
Figure 5. Texture server subsystem

The Image Processing Layer is the middle layer. It is
designed to perform image processing tasks. Logically it is
comprised of three modules: image formatting, image
dispensing and image composition. The image formatting
module is used for image encoding/decoding and format
conversion according to format specifications contained in
image requests. The user specified image formatting
information includes encoding format (e.g. JPEG), color
channels (black & white or full color) and compression
quality or color table size. The image dispensing module is
used to handle large scale GIS image downloads. The
requested images can cover an area of arbitrary size and
are usually generated from multiple tiles. This feature was
designed in 2D TerraFly to process images for download
and is not used in the 3D system. The image composition
model supports online image compositions-mainly
image overlaying operations. The composition process
visualizes non-imagery GIS information and combines the
visualization result with the regular GIS imagery. The
image composition is managed under a component-based
framework. Under the framework, the information
resources and their underlying visualization procedures are
managed as self-contained components. Image
composition tasks can be of arbitrary complexity and are
described by a script language.

The Image Source Layer is the bottom layer. It
integrates GIS imagery datasets and provides a unified
imagery access interface to the upper layers. A
component-based strategy is used in dataset management
to flexibly and cost-effectively integrate various data
sources. Each dataset is managed as a component defined

276

by the ImageSource data structure, which describes image
properties and the access protocols of the underlying
datasets. The dataset specific access protocols include
dataset address, query methods (HTTP, TCPIIP, file, or
database), query parameters and optional authentication
information (for remote access only). Image dataset
properties include dataset name, underlying imagery
format (JPEG, GIF, and PPM), color channels (full-color
or black-white), tile size and resolutions (measured in
meters/pixel).

6. Conclusion

We have discussed the system architecture of the 3D
TerraFly GIS. The architecture has to support efficient
management and distributed storage of large volumes of
imagery data. The system employs hierarchically clustered
servers to support resource replication and parallel
processing. Image processing tasks such as image
formatting and composition are computationally intensive
in nature. Large capacity proxy cache servers have to be
attached to the servers that are engaged in time-consuming
tasks to cache image composition results and third-party
imagery data to improve data processing performance.

7. Acknowledgements

This material is based on work supported by the National
Science Foundation under Grants No. HRD-0317692,
EIA-0320956, and EIA-0220562

8. References

[I] S. Zlatanova, A.A. Rahman, and M. Pilouk, "3D GIS: current
status and perspectives", in Proceedings. of the Joint Conference
on Geo-spatial theory, Processing and Applications, Ottawa, 8-
12 July 2002,6 p., CDROM.
[2] N. Rishe, S.-C. Chen, N. Prabhakar, M.A. Weiss, W. Sun, A.
Selivonenko, and D. Davis-Chu, "Terrafly: A High-Performance
Web-Based Digital Library System for Spatial Data Access",
ICDE 2001 : International Conference on Data Engineering,
Heidelberg, Germany, April2-6, 2001, pp. 17-19.
(3] Y. Sun, TerraFly: Internet Geographical Information System
Based on Scalable Heterogeneous Framework, Master Thesis,
School of Computer Science, Florida International University,
2001.
(4] M. Woo, J. Neider, T. Davis, and D. Shreiner, "OpenGL(R)
Programming Guide: The Official Guide to Learning OpenGL,
Version 1.2 (3rd Edition)", Addison-Wesley, 1999.

