Theory, Design, and Applications Databases_::
Edifed by N. Rishe, S. Navathe, and D. Tal Theory, Design, {:

and Applications

Edited by N. Rishe, S. Navathe, and D. Tal

A postconference publication based on
the proceedings of PARBASE-90, held in i
Miami Beach, Florida, March 6-9, 1990

Sponsored by
| Florida International University
in cooperation with IEEE and Euromicro

A postconference publication based upon the
proceedings of PARBASE-90, held in
Miami Beach, Florida, on March 6-9, 1990 1951199

IEEE Computer Society Press
Los Alamitos, California

Washington e Brussels e Tokyo

@) IEEE Computer Sociely Press @ The Institute of Electrical and Electronics Engineers, Inc.

A PREDICATE-CALCULUS BASED LANGUAGE FOR
SEMANTIC DATABASES

Naphtali Rishe and Wei Sun

School of Computer Science
Florida International University —
The State University of Florida at Miami
University Park, Miami, FL 33199, USA

Abstract

This paper proposes a non-procedural language for semannc databases and in
particular for the Semantic Binary Model. The language is based on a first-
order predicate calculus enriched with second-order constructs for aggrega-
tion, specification of transactions, parametrized query forms and other uses.
The language has a capability of specification of bulk transactions, including
generation of sets of new abstract objects. This problem does not exist in the
relational databases because there the user controls the representation of his
objects by data, namely by key attributes of those objects. (E.g. persons might
be represented in the relational model by their social security numbers, pro-
vided such numbers are unique, always exist for every person, and do not
change with time. In the semantic models the user does not care how the per-
sons are represented.) Another feature of the proposed language is the
automatic intuitively-meaningful handling of null-values, i.e. of application of
non-total functional relations.

About the authors

Naphtali Rishe is Associate Professor of Computer Science at the Florida Intemational Univer-
sity. His Ph.D. is from Tel Aviv University. Rishe's expertise is in databases: design, semantic
modeling, implementation, languages. He is the author of 16 papers in journals, 1 keynote
paper, 24 papers in proceedings. E-mail: rishen@fiu.edu

Wei Sun received his Ph.D degree from the Department of Electrical Enginecring and Computer
Science, University of Illinois at Chicago in 1990. He is currently an Assistant Professor at the
School of Computer Science, Florida Intemational University, Miami. His research interests
include query processing and optimization in distributed and object-oriented database systems,
knowledge bases, semantic query optimization, and the interoperability in heterogencous data-
base systems. E-mail: weisun@fiu.edu.

ThIs rcwamh has been supported in part by a grant from the Florida High Technology and Indus-
try Council

204 0-8186-9165-4/91/0000/0168$01.00 © 1991 |EEE

Rishe and Sun 205

1. Introduction

£ 5w
L 3 ’

The semantic binary model [Rishe-88-DDF] represents the information of an application’s
world as a collection of clementary facts of two types: unary facts categorizing objects of the
real world and binary facts establishing relationships of various kinds between pairs of objects.
The objects are classificd into non-disjoint categories. Inheritance of properties of categories is
determined by a graph of sub-categories and super-categories. The graphical database schema
and the integrity constraints determine what sets of facts are meaningful, i.e. can comprise an
instantaneous database (the database as may be seen at some instance of time.) The database
aggregates information about abstract objects. Abstract objects stand for real entities of the
user’s world. The representation of abstract objects is transparent to the user and is unprintable.
In addition to the abstract objects. the database contains, in a subservient role, concrete, or print-
able, objects. These are character strings, numbers, dates, efc.

This paper proposes a non-procedural language for semantic databases in general, and in partic-
ular for the Semantic Binary Model. The foundation of the language is a database interpretation
of a first-order predicate calenlus [Rishe-88 DDIFL The caleulus is enriched with second order
constructs for aggregation (statistical Tunctions), specification ol transactions, parametrized
query forms and other uses. The language is called SD calculus (Semantic Database Cal
culus.)

Of special interest is the use of this language for specification of bulk transactions, including
generation of scts of new abstract objects. This problem does not exist in the relational duta-
bases because there the user controls the representation of his objects by data, namely by key
attributes of those ohjects. (E.g. persons might be represented in the relational model by their
social security numbers, provided such numbers are unigue, always exist for every person, and
do not change with time. In the semantic models the user does not care how the persons are
represented.)

Another feature of the proposed language is the automatic intuitively-meaningful handling of
null-values, i.e. of application of non-total functional relations.

The language proposed in this paper can also be used with most other semantic models: Abrial’s
Binary Model [Abrial-74]. the IFO model [Abiteboul&Hull-84], SDM [Hammer&McLeod-81],
SEMBASE [King-84], NIAM ([Nijssen-81], [Verheijen& VanBekkum-82], [Leung& Nijssen-
87]), GEM [Tsur&Zaniolo-84]. TAXIS [Nixon&al.-87]. or the Entity-Relationship Model
[Chen-76].

The examples in this paper refer to the schema of Figure 1. That schema describes some activi-
ties of a Dining Club.

The following syntactic notation is used in the definitions of syntactic constructs and in the
examples: language keywords are set in boldface: the names of the relations and categories
from the databasc are sct in UPPER-CASE ITALICS: in s)m.!x dceulpuun femplates, items to
be substituted are sct in lower-case italics.

2. Semantic Model Terminology

An object is any itcm in the real world. It can be either a concrete object or an abstract object
as follows. A value, or a concrete ohject, is a printable object. such as a number, a character
string, or a date. An abstract object is a non-value object in the real world. An abstract object
can be, for example, a tangible item (such as a person, a table, a country), or an event. offering
of a course by an instructor), or an idca.

206

Databases.: Theory, Design and Applications

PERSON

last-name - String
Surst-name: String
birth-date: 1870..1990
address: String

PATRON WAITER
prefers second
prefers mos ity
(m-1) serves
N
the patron ai
(m:1) TABLE :::en“ atter
name: String I'm
MEAL the party
o PARTY
satisfaction-grade: 0..100 (m:1)
e account the shift
(m:1) (m:1)
ACCOUNT SHIFT
name: String 1:1 date: Dare
period: String

Figure 1-1. A binary schema for a dining-club application.

Rishe and Sun

A category is any concept of the application’s real world which-is a unary property of ohjects
An object may belong to several categories at the same time. A binary relation is any concep!
of the application’s real world which is a binary property of objects, that is, the meaning of a
relationship or connection between two objects. Notation: "x R y" means that object v is
related by the relation R to object y. A binary relation R is many-to-one (m:1, functional) if
at no point in time xRy and xRz where y#z. A category C is the domain of R if it satisfics
the following two conditions: (a) whenever xRy then x belongs to C: and (b) no proper sub
category of C satisfies (a). A category C is the range of R if it satisfics the following two con
ditions: (a) whenever xRy then y belongs to C; and (b) no proper subcategory of C satisfies
(a). A relation R whose domain is C is total if at all times for every object x in C there exists an
object y such that 1Ry.

3. Preview of the language

Non-procedural language — a language in which the user specifies what is 1o be done without
specifying how it is to be done.

Example 3-1.
What waiters have served every patron?
get waiter. [AST-NAME where
(for every s in PATRON:
exists meal in MEAL:
((meal THE-PATRON s) and
(meal. THE-PARTY. THE-WAITER = waiter)))

4. First-order predicate calculus expressions

The First-order Predicate Calculus can be applicd to semantic databases, if we regard the instan
tancous database as a finite structure with binary relations, unary relations (categories). and
functions (functional relations).

Expression — a combination of consrants, variables. operators. and parentheses. The syntax
and semantics are given below.

An expression may depend on some variables. When the variables are interpreted as some
fixed objects. the expression can be evaluated with respect to a given instantancous data
base, and will yicld an object, abstract or concrete. The following are syntactic forms of
expressions:

1. constant
a. number
b. character-string (in quotes)

C. Boolean value (TRUE and FALSE)

210 Databases: Theory, Design and Applications

Interpretation:
Leta, a,, ..., a, be all the objects in the caregory in the instantaneous database.

Lete, e, ..., €, be obtained from the expression by substituting eachof @ |, @, ...
a,, for all the occurrences of the variable in the expression.

Then
for every variable in category : expression
is equivalent to

e;ande,and .. and e,

Example 4-6.
(for every x in WAITER : x.BIRTH-DATE = y)

This is TRUE if all the waiters were bom in the date y. The whole expression
depends only on the variable y.

The keyword ‘for every’ is called ‘the universal quantifier’.
Note:
for every variable in category : expression
is equivalent to
not (exists variable in caregory : not expression)
Usage of variables:
The variable after a quantifier in a sub-expression should not be used outside that sub-
expression. Although many versions of Predicate Calculus do not have this requircment,

this requirement does not decrease the power of SD-calculus, but improves readability,
prevents some typical errors in query specification, and simplifies the semantics.

Example 4-7.

WRONG:
(exists x in PERSON: x is a PATRON) and (x BIRTH-DATE 1970)

Here, x appears in the quantifier of the left sub-expression, but also appears in the
right sub-expression. Logically, these are two distinct variables, and they should
not be called by the same name ‘x’.

To use the expressions correctly, we shall need to know what variables are quantified in an
expression, and on what variables an expression depends.

Quantified variable: variable v is quantified in expression e if v has an appearance in e immedi-
ately after a quantifier.

Rishe and Sun

Example 4-8.
The variable v is quantified in:
((z > 0) or (exists v in PATRON: v is a WAITER))

Expression e depends on variable v if v appears in e and is not quantified.

Example 4-9.
The following expression depends on z and x, but not on y.
((z> 0) or (exists y in PATRON: x = y.BIRTH-DATE))

Notation: when an expression e depending on variables X 1, X5, ..., X is referred to (not in
actual syntax of the language), it may be denoted as

(X1, X s Xg)
(In many sources, a variable on which an expression depends is called a free variabl

that expression. An expression which depends on no variables is called a closed exp:
sion.)

Condition on variables X |, X 5, ..., X; — a Boolean expression which depends onx ;, X5,

Assertion — a Boolean expression which does not depend on any variable, that is, every
able is restricted by a quantifier.

Interpretation: for a given instantancous database. the assertion produces rrue or false

Example 4-10.

Assertion that every patron had a dinner at the club on 1-Jan-88:
for every p in PATRON:

exists meal in MEAL:

((meal THE-PATRON p) and

(meal. THE-PARTY. THE-SHIFT. THE-DATE=1-Jan-88))

5. Dot-application of non-total functional relations

If £ is not total then e.f could be ambiguous. In order to provide a meaningful intuitive rc
the dot-application ‘e.f * of a non-total functional relation f to an expression e is interpretc
the DBMS by analyzing the whole condition or assertion containing the dot-application.

Example 5-1.

Consider the following assertion which contains a dot-application of the non-tota!
relation BIRTH-DATE.

212 Databases: Theory, Design and Applications

for every y in PATRON: y.BIRTH-DATE > 1980
This assertion will be interpreted by the DBMS as
for every y in PATRON:
exists x in /nteger: y BIRTH-DATE x and x > 1980

The quantification over the conrete category /nteger is over the finite set of
integers which happen to be present in the instantancous database at the time
of the expression’s evaluation.

This interpretation of the dot-application of non-total functional relations can be defined for-
mally as follows.

An expression e.f , where e is an expression and £ is a database functional relation, is formally
regarded as a syntactic abbreviation. Let X, .. .,X; be the variables on which the expression
e depends. For the above example, the only such variable is y.

Let ¢ be the largest sub-expression (within the whole assertion or condition) containing e.f and
still depending on all the variables x|, . . ., X, that is, none of these variables is quantificd in
the subformula ¢. (¢ may depend also on additional variables.) For the above example,

¢ = (y.BIRTH-DATE > 1980)
Let C be the range of f .

Let \y=¢i:_f. (That is, y is obtained from ¢ by substitution of a new variable x for all the
occurrences of (e.f) iny.) For the above example,

Y = (x> 1980)
Then ¢ stands for:

(exists x in C: ((e f x)and y))
6. Queries

Specification of a query to retrieve a table, that is, a set of rows of values:
get expression, ..., expression

where (calulirion-on-lhe-\'ariables-on-which—lhe»expressiom-depend)

Interpretation of
getey ..., e, where (¢ (x),...,x;))
The variables x|, ..., x; arc assigned all the possible tuples of objects from the instan-
tancous database which make ¢ (xy,...,x,) true; the expressions e, ..., e, are

evaluated for these tuples and the corresponding results are output. (The output is not
printable if any of the expressions produces an abstract object.)

Rishe and Sun

Example 6-1.
Who has been served by Waiter Smith?
get patron.LAST-NAME where
exists meal in MEAL:
(meal. THE-PATRON=patron and
meal. THE-PARTY. THE-WAITER. LAST-NAME="Smith")

Abbreviation:

Queries which output only one value may be specified without the *‘where condition
part, as:

get expression

(provided the expression depends on no variables).

Example 6-2.

The following is a yes-or-no query which displays ‘TRUE" if every patron has
caten at least once at the club.

get (for every p in PATRON: exists meal in MEAL: p=mecal. THE-PATRON)

Headings of output columns:
The columns in a table which is an output of get can be labeled:

get heading \: e, heading . e, . . ., heading,, : e, where condition

Example 6-3.

Print a table with two columns, which associates patrons to their waiters. Only
last names are printed.

get Waiter-who-served: waiter. LAST-NAME, Patron-served: patron.LAST-
NAME where

exists meal in MEAL:
meal. THE-PATRON = patron and
meal. THE-PARTY. THE-WAITER = waiter

When no heading for e; is specified, then, by default, the following heading is assumed

- if ¢; ends in ".relation”, then the heading is the relation;

- otherwise the heading is the number /.

214 Databases: Theory, Design and Applications

Example 6-4.
The query

get X.LAST-NAME, x. BIRTH-DATE where x is a PATRON
produces a two-column printout with headings LAST-NAME, BIRTH-DATE

7. SD-calculus with aggregate operations: sum, count, average

Defined here is a second-order extension to enable set operations, such as summation, counting,

etc. This is done by extending the syntax of expression with the following summation

quantifier. To make it clearer, we first use a common two-dimensional mathematical notation,
- and then translate it into the linear notation of the language.

X expression 1

variables
where

condition
Example 7-1.
The number of pairs (waiter, table) where the waiter serves the table.

z 1
waiter,table
where
waiter SERVES table

5
(In the above formula, "1" is a constant function. Thus, e.g. ¥ 1 equals 5.
i=1
Adding up the constant "1" is thus the same as counting the object pairs satisfying
the condition under the sum.)

The variables under X are quantified by the summation symbol. In addition to these vari-
ables, the condition and/or the expression | may depend on other variables.

Example 7-2.

The sum of the satisfaction grades given by patron s. The sum depends on the
variable 5, meaning s remains free in the sum.
meal SATISFACTION-GRADE

meal
where
meal is a MEAL and
meal SATISFACTION-GRADE>0 and
meal THE-PATRON s

(The sub-condition "SATISFACTION-GRADE20" is used to ensure that only

Rishe and Sun

existing grades are taken into account. Absent grade would fail this condition
according to the algorithm of interpretation of nulls defined in a previous sec-
tion.)

Interpretation:

Let e be an expression, and let ¢(X },....X, Y|, . - -, ¥x) be a condition. Then the follos
ing is also an expression (it depends on the variables ¥y, ... Yx):

3(Xy e o s XYoo < 0 3 Y3)
Xirars -
where
[76 SRS o LRSS Yi)

When all the parameter-variables y, . .., Yy are interpreted as some fixed objects. 1l
sum yiclds a number. This number is the result of summation of the Vvalues of e cor
puted for every tuple of objects x|, . . ., X, satisfying ¢(x, ..., Xoin s = = s Yk
The I acts like a quantifier forx, . .., x,. Therefore, though the sub-expression e du
depend on X ..., X,,, the whole X expression does not. The variables yy, ..., , rem

unquantified.

Alternative (lincar) notation (we would not use the two-dimensional notation of X in a real coi
puter language):

sum e
0L Xiy 10 1 Xp
where ¢(x,, ..., Koy e« 335
Abbreviation. When X, . . ., X, are exactly the variables on which the expression e depen
(that is, all x; and none of y; appear free in the expression e). the for clause may be on

ted:
sume where ¢ (x| ... X, .Y Vi)

Example 7-3.

For every patron who prefers most the Presidential Table, print his last name and
the sum of his satisfaction grades.

get
patron.LAST-NAME,
(sum meal. SATISFACTION-GRADE
where mcal THE-PATRON patron)
where
patron is a PATRON and

216 Databases: Theory, Design and Applications

(patron.PREFERS-MOST TABLE-NAME ‘Presidential’)

Abbreviation for count:
count X ,..., X, where ¢ (X ... X, ¥ jvees Vi)
stands for:

sum 1 forx .., x, where (X ... X,y .. Vi)

Example 74.
How many patrons are there in the dining-club?

get (count p where p is a PATRON)

Abbreviation for average:

averagee ..

stands for:

I (sume ..)/(counte ..)

Example 7-5.
What patrons give average satisfaction grade below 60?
get p.LAST-NAME
where p is a PATRON

and 60 > (average mcal. SATISFACTION-GRADE
where meal THE-PATRON p)

8. Shorthand notation for n-ary relationships

Example 8-1.
Often we need to specify a condition like:
The waiter i worked for account ¢ in shift q.
In SD-calculus this can be stated as:
exists party in PARTY:
party THE-WAITER i and
party THE-ACCOUNT c and
j party THE-SHIFT q

Rishe and Sun 217

The above statement can be written in a shorthand notation as:
PARTY (THE-WAITER: i, THE-ACCOUNT: ¢, THE-SHIFT: q)

Abbreviation:
category (relation | : expression |, relationy : expressiony)
stands for

exists x in category:
(x relation | expression | and... and x relation; expression;)

9. SD-Calculus for transactions

This section shows how SD-calculus can be used to specify transactions — creation of sets of
objects, categorization and decategorization of objects, relating and unrelating objects, and so
on.

A transaction in SD-calculus need not be restricted to the relationships of one object, but can
work on sets of objects. One single operation can create a set of new objects, place them in
categories, and relate them to different existing objects by several relations.

Creation of new abstract objects and relating them to existing or concrete objects:
insert into category (relation \: expression | , . .., relationy: expression;)
where condition

. If no where clause is specified then only one new abstract object is created. This object is
put into the caregory and related by the relations to the values of the expressions.

Example 9-1.
Create a new table named ‘Tulip®
insert into TABLE (NAME: *Tulip")

. Some of the names of the relations may be identical. This allows one object to be related
to several objects by one relation (many-to-many or one-to-many.)

. If where clausc is specificd with a condition on variables x, . . ., Y, . then for every tuple
of values of the variables satislying the condition, one new object is created and related
accordingly.

Example 9-2.

Armrange for the Presidential Table's most preferring patron Jack Johnson to parti-
cipate in the party dining at the IBM’s expense and served by Waiter Smith in the
evening shift of 1-Jan-88.

insert into MEAL (THE-PATRON: s, THE-PARTY: party) where

s.PREFERS-MOST NAME ‘Presidential’ and

218 Databases: Theory, Design and Applications

S.LAST-NAME="Johnson" and s.FIRST-NAME="Jack' and
party.THE-SHIFT.DATE=1-Jan-88 and

party.THE-SHIFT PERIOD="Evening’ and
party.THE-ACCOUNT.NAME="IBM" and

party. THE-WAITER.LAST-NAME="Smith’

. The variables on which the condition depends must be those on which the expressions
depend.

Example 9-3.

Arrange for all Presidential Table’s most preferring patrons to participate in the
party dining at the IBM’s expense and served by Waiter Smith in the evening shift
of 1-Jan-88.

insert into MEAL (THE-PATRON: s, THE-PARTY: party) where

S.PREFERS-MOST NAME ‘Presidential’ and
party.THE-SHIFT.DATE=1-Jan-88 and

party. THE-SHIFT PERIOD="Evening' and
party.THE-ACCOUNT.NAME="IBM" and
party. THE-WAITER.LAST-NAME="Smith’

. when the insert statement calls for an insertion of a new object while there is already an
object having the same relationships as those of the new object, the new object is not
inserted.

Example 9-4.

If the table named *Management” already exists, then the following command pro-
duces no effect:

insert into TABLE (NAME: *Management”)

Connection between existing abstract objects, between existing abstract objects and concrete
objects, between existing abstract objects and categories:

connect fact ..., facty [where condition)
Each fact; is cither
expression; category;
or
expression; relation; expression’;
Interpretation:

. If no where clause is specified, the values of the expressions are related by the rela-
tions and/or categorized by the categories.

Rishe and Sun 211

. If a where clause is specified with a condition ¢ on variables x,, . . ., x,. then for
every tuple of values of the variables satisfying ¢ the values of the expressions arc
related and categorized as above.

. The variables on which the condition ¢ depends must be those on which the expres-
sions depend.

Removal of connections and removal of objects:
disconnect fact ..., facty [where condition]
Interpretation:

. If no where clause is specified, the values of the expressions are unrelated and/or
decategorized. Objects that are removed from all their categorics, arc removed from
the database.

. If a where clause is specificd with a condition ¢ on variables x, . .., x,, then for
every tuple of values of the variables satisfying ¢ the values of the expressions arc
unrelated and decategorized as above.

. The variables on which the condition depends must be those on which the expres-
sions of the facts depend.

Correction of facts:
update fact...., fact, [where condition)

This is a combination of disconnect and connect. Before a connection aRb is made, the
relationships aRx are removed for every x.

Example 9-5.
Increase by 10% all the grades given to Waiter Smith.

update mecal SATISFACTION-GRADE 1.1Xmeal SATISFACTION-
GRADE

where meal. THE-PARTY. THE-WAITER LAST-NAME="Smith’

10. Query forms

Often the users ask similar queries which differ only in the values of some parameters. It is
desirable that such queries be predefined in parametric form, and the the-users would supply
only the values of the paramelers.

Example 10-1.

What are the satisfaction grades of the patron whose name is x, where x is supplicd
by the end-user when the query runs?

Such a predefinition is called a ‘query in parametric form’ or ‘query form’. It saves time on
specification of similar querics, and allows the less-sophisticated end-users to use queries which
can be specified only by more sophisticated users, such as programmers and analysts.

220 Databases: Theory, Design and Applications

In SD-calculus, query forms are specified by the following syntax:

depending on parameters
get expressions
where condition

The condition and the expressions may depend on the parameters.

Example 10-2.

What are the satisfaction grades of the patron whose name is x, where x is supplied
by the end-user when the query runs?

depending on x
get e SATISFACTION-GRADE
where e. THE-PATRON.LAST-NAME = x

11. Implementation

We have implemented this language under the UNIX operating system. We have developed an
experimental translator from this language into C with subroutine calls to our experimental
semantic database management system. We have also implemented another translator for a
large subset of this language under the MS-DOS operating system. The latter translator is
intended for personal computers.

References

[Abiieboul&Hull-84] S. Abiteboul and R. Hull. *‘IFO: A Formal Semantic Database Model"’,
Proceedings of ACM SIGACT-SIGMOD Symposium on Principles of Database Systems,
1984.

[Abrial-74] J.R. Abrial, ‘‘Data Semantics'", in J.W. Klimbie and K.L. Koffeman (eds.), Data
Base Management, North Holland, 1974,

[Chen-76] P. Chen. *‘The Entity-relationship Model: Toward a unified view of data."”” ACM
Trans. Databas Syst. 1, 1, 9-36.

[Hammer&McLeod-81] M. Hammer and D. McLeod. *‘Database Description with SDM: A
Semantic Database Model™', ACM Transactions on Database Systems, Vol. 6, No. 3, pp.
351-386, 1981.

[King-84] R.King. *'SEMBASE: A Semantic DBMS."" Proceedings of the First Workshop on
Expert Database Systems. Univ. of South Carolina, 1984. (pp. 151-171)

[Leung&Nijssen-87] C.M.R. Leung and G.M. Nijssen. From a NIAM Conceptual Schema into
the Optimal SQL Relational Database Schema, Aust. Comput. J., Vol. 19, No. 2.

[Nijssen-81] G.M. Nijssen **An architecture for knowledge base systems', Proc. SPOT-2
conf., Stockholm, 1981.

[Nixon&al.-87] B. Nixon, L. Chung, I. Lauzen, A. Borgida, and M. Stanley. Implementation
of a compiler for a semantic data model: Experience with Taxis."* In Proceedings of ACM
SIGMOD Conf. (San Francisco), ACM, 1987.

Rishe and Sun 221

[Rishe-88-DDF] N. Rishe. Database Design Fundamentals: A Structured Introduction to
Databases and a Structured Database Design Methodology. Prentice-Hall, Englewood
Cliffs, NJ, 1988. 436 pages.

[Tsur&Zaniolo-84] S. Tsur, C. Zaniolo. *‘An implementation of GEM — supporting a seman-
tic data model on a relational backend.”” In Proc. ACM SIGMOD Intl. Conf. on Manage-
ment of Data, May 1984.

[Verheijen& VanBekkum-82] G.M.A. Verheijen and J. Van Bekkum. **NIAM - An Information
Analysis Method™’, in Information Systems Design Methodologies: A Comparative
Review, T.W. Olle, et al. (eds.), IFIP 1982, North-Holland.

