An Efficient Web-based Semantic SQL Query Generator

Naphtali Rishe*, Khaled Naboulsi*, Ouri Wolfson**, Bryon Ehlmann™***
*High Performance Database Research Center
Florida International University, ECS354, University Park, Miami, FL 33199
**University of Illinois at Chicago
***Florida A&M University
hpdrc@cs.fiu.edu

Abstract

The Internet can provide transparent access to
distributed databases via users' web browsers. The client-
server communication is accomplished using the hypertext
transfer protocol (HTTP). However, the stateless
architecture of the HTTP causes the client-server
communication to be costly. Such communication requires
a new database connection each time the user wishes to
access the database. Applications typically access
databases by submitting an SQL request to the server.
Prior to submitting the actual query, the application
typically submits a series of requests needed to help the
user formulate the query. Reducing the amount of data
between the clients and the server during query
formulation enhances client response time and offloads
SOL application server and database engine from
frequent requests. Herein, we provide a model and an
algorithm to efficiently retrieve database schema objects
and offload the SOL application server by distributing the
application processing between the client and the server.
SQOL queries may be constructed using a tree-like structure
and are submitted to the SQL application server only
when complete and validated syntactically as well as
semantically. The model is unique in terms of simplicity
and ease of SOL statement generation. :

1. Introduction

The Internet provides a number of advantages: low
cost PC’s, standard browsers, elimination of expensive
remote networks and routers. However, the phenomenal
growth of the Web traffic has sparked much research
activity on improving the Web performance and

* This research was supported in part by NASA (under grants NAGW-
4080, NAGS5-5095, NAS5-97222, and NAGS5-6830), NSF (CDA-
9711582, IR1-9409661, and HRD-9707076), ARO (DAAH04-96-1-0049
and DAAHO04-96-1-0278), AFRL (F30602-98-C-0037), BMDO
(F49620-98-1-0130 and DAAH04-0024) Dol (CA-5280-4-9044), NATO
(HTECH.LG 931449), and State of Florida.

scalability. The key performance factors are to reduce the
volume of network traffic produced by Web clients and
servers and to improve the response time for Web users.

Hooking the database to the Web produces another
source of Web traffic where response time plays a key role
in client-server communication. Users can access the
databases through the Internet by posing SQL queries.

We provide a model to integrate the semantic
database to the Web and a means for the Web clients to
generate SQL queries with Web browsers using a tree-like
structure. First, the user submits a request to retrieve the
schema from a database. A SQL statement is then built via
reference to the downloaded database schema, which is
composed of categories, relations, and attributes. Thus
database “hits” are eliminated by locally addressing the
database schema. In addition, to minimize network traffic,
the database schema is downloaded only when clients need
to build a SQL query statement such as INSERT,
DELETE, UPDATE, or SELECT. Schema navigation
becomes efficient by creating a data structure of the
schema at the client during the download of the database
schema. The schema objects are loaded in a hashed heap
data structure thus achieving a constant time access to any
schema object. A user can then generate SQL queries and
validate them syntactically and semantically without
contacting the database engine over the network.

In short, the processing tasks are offloaded from the
database thus eliminating database hits. More importantly,
offloading minimizes the number of requests that must
travel across the network between the client and the
application server. The result is a reduction in traffic
between the client and the application server. For instance,
the SQL application could run entirely on the client’s
desktop without having to go out across the network and
retrieve additional chunks of information to complete the
building of the SQL query. Consequently, with less traffic
between the client and server, the overall performance in
the network is improved. Throughout our study the
automatic generation of the SQL query and performance
enhancements were emphasized.

The remainder of the paper is organized as follows.
Section two provides a brief background on the World
Wide Web. Section three discusses the different methods

3. Database and Web Integration

The main question is whether there is a value in

to integrate the database with the Web. Section four

integrating the database with the Web. A diversity of the

presents the network programming languages to connect
the database to the Web and the pros and cons of each.
Section five gives an overview of the semantic object-
oriented SQL. Sections six and seven discuss the model we
adopted to generate SQL queries and database reports
across the Web. The paper concludes with a brief summary

client platforms such as Windows 3.1, Windows 95,
Windows 98, Windows NT, OS/2, and Macintosh are
installed on computer systems with wide variation in
memory, disk space, and processor speed. Supporting all
these platforms through a traditional application
development requires time and money. Using Web access

of our reporting model and a discussion of security issues

as the client interface of an application shifts that

that should be considered when connecting the database to
the Web.

2. World Wide Web Overview

The World Wide Web or WWW is based on a client-
server interface model. A user can gain access to the
information on the Web by using a Web browser. Client
and server communication is always in the form of request-
response pairs. Web clients and servers communicate
using the HTTP protocol [1-2-3]. HTTP runs on the top of
TCP (Transfer Control Protocol), a protocol on the
transport layer. Communication is transported in the
following manner: user selects a document to retrieve;
resultantly, the browser creates a request that is sent to the
Web server. Next, a TCP connection is established
between the client and the server. This enables exchange
of the client’s request and the server’s response. Once the
request has been sent to the server, the client machine
awaits the response. When the response arrives, the TCP
connection is closed and the browser parses the reply. This
process is repeated each time a client contacts the Web
server with any request. Although the information and/or
documents may be stored virtually anywhere around the
network, the Web provides transparent access to these
documents, so that users have the illusion that the
documents are stored in a central location.

A Web server can respond to requests from many
Web clients. The server usually listens on the designated
port 80 for a request from a client to establish TCP
connection. When the server responds to a client, it closes
its TCP connection with the client and begins listening for
the next requests.

The overall performance of the World Wide Web is
affected by the clients, the servers, and the capacity of the
network links that connect clients and servers. Web
performance can be enhanced by using the client cashing
approach and improving the client-server communication.
The latter will be one focus of this paper.

compatibility burden to Web browser vendors. In addition,
access to the Internet is available to anyone, which
eliminates the need for companies to extend their networks
to accommodate all potential users. Web browsers can be
used by every application that provides a Web gateway
translator between hypertext markup language (HTML)
and the database server’s [4-5-6-7] application
programming interface (API). The look and feel of the
client presentation can be enhanced using Java applets to
build powerful applications. Additionally, viewing partial
information as the page is loaded, is particularly useful
when retrieving a large volume of data from a database, a
feature that is supported by HTML and Java.

Accessing a database from the Web using the HTTP
communication is quite expensive [8]. In order for a
database to communicate with a Web application server, a
TCP connection has to remain open so data can be passed
between the two machines. However, Web connections are
short-lived because links open and close quickly. Each
new request from a Web browser requires that a new
connection be opened; thus the user must await a new
connection to the database. Opening and closing a
connection requires extra CPU cycles on the server
application and the database server or engine. If each
query to a database through the Web browser required a
connection and login to the database, the accumulated
overhead would have a withering effect on the database
server and consequently on the user. By maintaining the
connection to the data sources and keeping track of each
client messaging in from the Web browsers, the whole
interaction is controlled, getting around the stateless
problem of the Web. Since there is no way to poll the
client to determine if it still alive, we propose some sort of
time out process where a connection to a given thread is
dropped after a certain period of inactivity. The
application server listens to a port that is known to its
clients. The server keeps track of the clients that are
currently connected using a connection manager. The
connection manager runs as a separate thread. It keeps
track of the live connections and manages the connections
making sure that the clients are still active by sending a
“keep-alive” flag message. The connection manager keeps
the following client information: IP address, port, user

name, password, transaction cursor, last time response, and

programmer is allowed to customize, add, and specify a

transaction information. In case a client connection to the
server times out, the server sends a “keep-alive” message
to the client. If the client fails to respond to this message,
the server frees the client’s connection and deletes the
client entry from its hash table maintained by the

particular processing for a step. The server will call the
customized service(s) by defined API’s. These services are
shared code, loaded once in memory and remaining
resident, awaiting calls by the application(s). So, when the
server needs to make such a call it's faster than CGI.

connection manager. We will explain in depth the model

Moreover, application developers can perform

of generating SQL query and client-server communication.

4. How to get the database talk to the Web

initialization tasks such as opening connection to the
database and when a request arrives, it can be placed in the
already opened connection.

Java, on the other hand, allows overcoming some of

How to get the database to talk to the Web? Accessing
the database from the Web can be done using any of the
three approaches: CGI, Java, or proprietary APIs.

The CGI (common gateway interface) protocols for
message passing from Web servers are used as middleware
for initiating application processing. The Web browser and
the server represent the application presentation layer and
the CGI server handles application processing. The CGI
scripts are started by the Web server upon client request.
The CGI scripts convert HTML requests into a format that
the database understands and translate the results to the
clients. Thus, a CGI can generate dynamic HTML pages.
The pages are composed of the data retrieved from the
databases and HTML codes.

The CGI [9] scripts receive the parameters supplied
by the client in the form of
NAME =VALUE ,&NAME,=VALUE,&... &NAME\=
VALUEy. The advantage of CGI is that it can be written in
any development language supported by the Web server’s
operating system. The beauty of it is that the best
development language can be chosen for any given
situation. However, the CGI protocol has many inherent
faults such as stateless session management and multiple
process instantiation. In addition, CGI is limited by the
fact that almost all CGI programs processing takes place at
the server. In other works, in order to provide the user with
any feedback, a trip has to be made between the server and
the client. This results in poor performance in terms of
network bandwidth and server CPU cycles.

Proprietary APIs tend to perform better because they
are precompiled whereas CGI is converted to an
executable form at run time. There are three main
proprietary APIs: Netscape API (NSAPI), Internet server
API (ISAPI) from Microsoft Corp., and Web Request
Broker from Oracle. These APIs are not as portable as
CGI since they support a specific API, but they are more
efficient because programmers can code directly to the
API itself.

The CGI and APIs are considered to be server site
approaches because they are executed on the server site.
Briefly, when the server receives an incoming call from a
client, it processes the call with default defined steps
(authorization, send back the result, log, etc). Here the

the limitations encountered in CGI such as the stateless
HTTP protocol and Proprietary APIs such as the server-
concentric communication overhead. Java [10] is an
object-oriented programming language designed to be
used on networks of heterogeneous computers. Thus, Java
allows programmers to write applications that are platform
independent. Java applets are downloaded over the
network to the client’s Web browser. The applets are
transferred as byte codes from the Web server to a browser
using the HTTP protocol. The Java applets are then
executed by a virtual machine that runs on the browser.
The beauty of Java language applications is that
processing is distributed between the client and server. The
key is to be able to run a broad range of programming
interfaces and languages (such as Java) regardless of the
vendor to communicate with the database.

The basic limitation of Java is that the byte codes are
downloaded each time the client wants to access the
server. This introduces a delay before the client can
perform any kind of transaction against the server. Our
approach is to save the byte codes on the client side and
each time the client decides to access the server, the local
copy of the bytes codes is compared with the server’s
version. At that time, a decision is made of whether to
download the server’s version of the “.class” byte codes to
the client or to use the client’s saved version. This is
accomplished in the following sequence of actions:

1. First, the user goes to the HTML page that points

to the server where the Java applets “.class” exist.

2. Java applets are downloaded over the network to
the client’s Web browser. The user is then
prompted to save the Java classes to his/her local
machine.

3. The next time the user wants to run the Java
applets, s’he executes the Java applet saved on
the local machine. Upon execution of the Java
applet by a virtual machine that runs on the
browser, a message is sent to the server
requesting the server version of the applet.

4. The returned version is then compared with the
client version. If the server version does not
match the client version, Step 2 is repeated;
however, the downloaded byte codes replace the

previously saved version. Otherwise, if the

categories. For example, the category INSTRUCTOR has

versions match, the user proceeds interacting with
the report or the application server.

the inverse relation the-instructor with category COURSE-
OFFERING and the direct relation works-in with category
DEPARTMENT. In addition, a category can have super-

5. Semantic Object-Oriented SQL
Interpretation

SQL queries have become the standard de facto
language to access and manipulate data in relational

category or sub-category. Based on this information, we
create the SQL tree structure as shown in section 6.

5.2. The virtual table T(C) for a category C,
recursive definition:

databases. The SQL was also adapted by the semantic
object-oriented database (Sem-ODB) [11]. The purpose of
this adaptation was to be able to communicate with

1. The first attribute of T:
= C - attribute of 7, range: C (m:l or many-to-
one relationship)

relational database tools. Thus, in order to access the
semantic database, a SQL query is submitted to the

2. For every attribute A of T, for every relation r whose
domain intersects with the range of A:

database server. The Semantic Object-Oriented SQL
syntax is compliant with the standard ODBC SQL (with
null values). However, our SQL queries refer to a virtual
schema. This virtual schema consists of an inferred table
(T) defined for each category (C) as a spanning tree of all
the relations reachable from (C).

5.1. Data Model
We define a formal representation of the data model with
the following sets:

= A virtual table T.

* A finite set of attribute names A.

» A finite set of category names C.

» A finite set of relation names R.

In general, a Relation R is a descriptive of a set of
pairs of objects that are related. For instance, works-in is a
relation relating instructors to departments. More
specifically, works-in is a direct relation from the category
INSTRUCTOR to the category DEPARTMENT as shown
in Fig. 1. Therefore, we need to keep information about the
categories that could be reached by traversing a relation
inversely and directly. For instance, the relation works-in

will be hashed with the direct category name
DEPARTMENT and the inverse category name
INSTRUCTOR.
INSTRUCTOR DEPARTMENT
first-name . name
last-name works-in

Fig. 1. An example of a database sub-schema

A Category C, on the other hand, is a unary property
of objects. Objects could be concrete (i.e. number) or
abstract (i.e. STUDENT). A category contains a set of
attributes. For instance, the category INSTRUCTOR has
the attributes first-name and last-name. In addition, a
category has a direct and/or inverse relationship with other

= A r - attribute of T, range: range(r) (m:1)
provided the depth of recursion does not
exceed the system variable SMAXDEPTH. If
the original relation r is many-to-many or one-
to-many, the new attribute would be many-to-
one, but many virtual rows would exist in the
table T, one for each instance of the tree. If r
has no value for an object, a null value will
appear in the virtual relational table. The
relation r may be inferred as defined below.
The range of a virtual attribute may be of multi-
media type: numbers with unlimited varying
precision and magnitude, texts of unlimited
size, images, etc. The name of T is the same as
of C.

5.3. Inferred relations.

» Inverted relations: for every relation R, its inverse
is called, by default, R .

» For every category C, the identity relation, also
called C: x.C=if x in C then x else null.

= For every category C, the attribute Isa C:
x.Isa_C=if x in C then "y" else null.

* For every category, a combined attribute C_
which is the concatenation of all attributes of C
that are represented by printable strings (this
includes numbers, enumerated, Boolean). The
concatenated values are separated by slashes.
Empty strings replace null values.

» Infinite virtual relations representing functions
over space time, which in the actual database are
represented by a finite data structure.

5.4. Definition of the Extension of a Table

The virtual table T for a category C T(C) is logically
generated as follows:
1. Initially, T[C]=C, i.e. T contains one column called C
whose values are the objects of the category.

2. For every attribute A of T, for every schema relation or

SQL query. The query is then sent to the application

attribute r whose domain may intersect range(A), let R be
the relation r with its domain renamed A and range
renamed A r. Let T be the natural right-outer-join of T

server, where query execution is targeted to the database
server or engine.

with R. (Unlike a regular join, the outer join creates A
_r=null when there is no match.)

5.5. User-specified Tables

It is used only by generic graphical user interfaces; not
needed by users posing direct ODBC SQL queries.

Let C be a category. Let S={Aj,...., Ay} be some
unabbreviated attributes of the table C of type Abstract-
object (i.e. no attribute A; ends with an actual concrete
attribute of an original semantic category). (Recall that the
name of C is a prefix of each A;).

We define a virtual table T(S) as the projection of the table
C on one of attributes SPP comprised of the attributes S,
their prefixes, and done-step extensions of the prefixes.
(An attribute A is a prefix of an attribute in S iff A is in S
or A wis in S for some string w. An attribute B is a one-
step extension of an attribute A iff B=A or B=A_w
where w contains no underscores.)

The name of T is generated as follows: for each A; let B; be
the shortest synonym of A. The name of T is:
B, B, .. B

6. SQL Query Generation Algorithm

Writing a semantically and syntactically valid SQL
query is not an easy task. Because many users are not
exposed to the SQL world and the difficulty of writing
SQL statements, we provide a model to construct and
generate SQL statements such as INSERT, DELETE,
UPDATE, and SELECT. This model is not only capable
of generating SQL queries efficiently, it also reduces the
client/server communication. In order to reduce the traffic
between the client and the server, query construction and
generation is handled at the client site such that schema
navigation and attribute format validation are supported
locally without having clients to consolidate the results
with the server. The model works as follow: The client
requests the database schema the first time s/he contacts
the application server. Upon receiving the database
schema from the server, further queries or references to the
database schema are handled locally. The server keeps
track of connected clients and sends “read invalidate”
message to the connected clients whenever the schema is
altered. This will cause the client to request a new copy of
the database schema. Therefore, the response time is
improved because of the reduction of messages that are
exchanged between client and server. Users can create
queries by interacting with the database schema objects
presented to them. After the user is done with the creation
of the query, the query is assembled to produce a valid

6.1. SQL Tree Construction

Given a Database D, a Selection Predicate is a
predicate of the form X 0 Y, where X is an attribute name,
Y is an attribute name or a constant value, and 0 is any of
the following SQL operators {>, <, >, <, #, LIKE, IN,
BETWEEN}. Let S={A,, ..., A} be the set of attributes
of table T(C). A; could have a long prefix or path
expression E that indicates the path to attribute A;.
The“ ” operator in the path expression E invokes a path
traversal of an attribute. Path expressions are used to
navigate through the object graph. A path expression E is a
variable name that represents a category name followed by
a sequence of zero or more relation names separated by a
sequence of two or three “ ” operators. The path
expression E comes in two forms:

¢ For every attribute A directly derived from a category
C (A is an attribute of C), then E=<category-name>
_<attribute-name> or C__A.

For simplification, we can eliminate C and have A
only.

For every attribute A that is derived from a category C
along a sequence of one or more relations R, then
E=<category-name> <relation-names>
<attribute-name> or C R A .For 51mphclty, we
can remove C to obtain R__A. For every relation R,
its inverse is denoted by R . Therefore, if R is an
inverse relation to attribute A, it is denoted by R~
A.

Every category C contains zero or more attribute and
relation names. During user interaction with the schema

obiects. a tree is built to construct the SQL that is
UUJ\/L/LD, a vv 1 vuli w vuUlLIou uv uiv Vl_l uiav 1

composed of the category name, attributes list with path
expression, and condition on the query. The tree is rooted
with the category name. Relations are the intermediate
nodes (siblings of the root nodes), and the leaves are the
attributes as shown in Fig. 2. The attributes or the leaves of
the tree represent two SQL predicates:

» The attribute predicates S (A, ..., Ay) of the table

T(C).

» The condition predicates of the form X 6 Y.
where X, Y € S.

» A link to a sub-table or a sub-query (for recursive
queries).

An interpreter translates the SQL tree to a syntactically
correct SQL query that is used as input to the application
server, which submits it to the database server.

C
R; R;
& |
I/ o
1 S e
1 N o
1 ~
\\ Y
~AY
v o]

Fig.2. An illustration of the query execution
tree
The tree is constructed in the following way:
Initially, a category C is selected. The attributes and
relations of the selected category C are expanded. Upon
user selection of any of the expanded attributes and/or
relations, the selected objects are then added to the tree.
Thereafter, if a relation R is selected, the range of the
relation is expanded in turn to show the attributes and
relations of the category C’ (assuming category C has a
relationship R with category C’). The database objects are
built in the following way:
1. For a given abstract object x, find what category the
object belongs to (suppose category C).
2. For a given category C, finds its objects.
3. For a given abstract object x and relation R, retrieve
all abstract object y such that xRy.
4. For a given abstract object x, retrieve all of its inverse
and direct relationships.
5. For a given relation R and a given concrete object y,
find all abstract objects such that xRy.

The goal of this data model or query language is to be
able to navigate, query, manipulate, and restructure the
graphs of trees. This model is known as “Query by Tree”.
Example: Suppose we want to generate the following
query (schema is shown in Fig. 3):

select first-name, last-name, major__name,
the-student the-offer the-course name FROM

STUDENT where last-name = ‘Rishe’. The constructed
tree is shown in Fig. 4.

Using the CGI protocol, a server-based protocol, the
database schema should be referenced each time the client
wants to navigate the schema objects. For instance, to
obtain the attributes and the relations of a category, a
request should be sent to the database server. The more the
user wants to know about any particular object in the
schema, the more the database server is contacted. Thus,
the network bandwidth is used poorly. In order to reduce
the messages between the client and the server, we adopted

the Java programming language. Using the Java applets,
the user can build SQL queries without having to go along
the network to request any further information about the
schema objects. This is accomplished by shipping the
database schema to the client, where further references to
any schema object are done locally. This allows us to
reduce computational load for the servers and to
implement a very fine granularity, thus improving the
overall server performance.

PERSON
last-name: String
Sfirst-name: String
/v birth-year: ‘
v 1870..1990 AN
7 address: String N
Ve N
Ve N
STUDENT INSTRUCTOR |
N minor (m:1)
major works-in
u¢ DEPARTMENT
(m:1) o
name: String 1:m the-
the-student instructor
(m:1) (m:1)
COURSE COURSE COURSE
ENROLLMEN OFFERING name: String
T 1:1
final-grade: the-offer the-.course
0..100 (im:1) (m:1)
the-quarter
(m:1)
QUARTER
year: 1980..1999
season: String

Fig. 3. Semantic schema for the university
database.

STUDENT

the-student_

last-name first-name last-name major
= ‘Rishe’

Il v

the-offer

the-course

name

Fig. 4. An example of semantic SQL

7. Client/Server Design

The client SQL query designer guides the user through
the process of developing a query. As query building is
finished, queries are assembled on the client and then
scheduled for execution on the server. The application
server then sends the query to the appropriate database
server. Thereafter, the application server retrieves the
results from the database server, formats the results as a
Web page. The application server then delivers
dynamically generated reports and pre-assembled reports,
served as Web pages in HTML, to the Web client as
shown in Fig. 5. If the data being extracted were not just a
few rows of data, but several hundred pages, formatting in
HTML would be ineffective for displaying the results.
Therefore, the application server retrieves the results in
chunks, keeping track of the client’s transaction and the
Session State. This way the client can retrieve and view the
SQL query results in chunks. The application server
maintains its own knowledge about the state of every client
session by keeping track of all actions in the client
browser.

The Web was not intended to preserve the browser’s
state from request to request, other than being able to
return to a previously displayed screen or page that has
been cached by the browser. The system sometimes
depends on information from previous screens, especially
when receiving query results in chunks. Generating and
preserving the session recent state is one of the main issues
when connecting databases to the Web. If the client goes
back or forward from a screen, the Session State will be
inconsistent with the server associated state. In addition,
accessing the databases from the Internet where screens
are generated on the fly by the application server presents
an issue since the pages are generated dynamically and the
status of query execution is not known until its execution is
terminated with success. This issue will be addressed
thoroughly in a different article.

In summary, Web clients and servers communicate
using the HTTP. The basic procedure when the clients
communicate with the server is that the client submits a
query request to the server. The server sends a response
back to the client, supplying the status code as well as the
resource requested. The client then disconnects because
the HTTP is stateless and connectionless. The Web server
cannot originally maintain information about the resource
being requested, the client requesting the resource, and the
status of the server’s response. However, by storing the
session state on both the client browser and the server, we
can determine if the server can service the request or not
by comparing the session states. If the session states do not
correspond, an error message is generated and the query’s
recent status result is forwarded to the client browser.

Data manipulation and data caching are done on the
application server, while the client applets provide
interactive formatting, visualization, schema navigation,
and query generation. Fast response time are achieved
because formatted report pages are sent over the network
only as needed, which reduces network traffic and the
server load.

We use a connection manager to cache and reuse
database connections. The connection manager keeps track
of clients that are currently connected. The clients’
information is placed in a hashed heap table. The
connection manager determines when to send a keep-alive

mescaoe to a2 client and when to free a2 connection snace
meossage 0 a Gt anG wilchh 10 I a Connecudn space.

The connection manager spawns a unique thread of
execution for each client and thus we achieve maximum
concurrency on the server side.

The application or report server and the database
server can co-exist together on the same machine or run on
separate machines. Coexistence of the report/application
server and the database server maximizes the speed of data
transfer between the report and the database servers, but it
could degrade report and DBMS performance because
both servers would compete for resources such as memory
and CPU. Use of separate machines gives a server its own
dedicated resources, but it requires additional hardware
and operating system software. Using separate servers also
lengthens the data transfer time between the two servers.
Therefore, it would be a good idea to keep the two servers
adjacent to each other.

Database

Report/Application
Server 4>

Web
Server

Database

P Client

Applet || Viewer -
Plugin =

Fig. 5. Client-server architecture of the Web SQL
generator

8. Conclusion

This paper presents a model that allows the automatic
generation of SQL queries through the Web. The model,
known as “Query-by-Tree”, shares in concept the “Query
by Example” and is intended for novice application

9. References

. T.J. Berners-Lee, and D.W. Connoly. “Hypertext Markup
Language —2.0.”, HTML Working Group of the Internet
Engineering Task Force, 1992.

[2]. D.W. Connoly. “HyperText Markup Language.” URL,

http://www.w3.org/hypertext/ WW W/Markup/Markup.html.

—
—
—_—

developers with limited experience in SQL, and with only

[3]. Gettys, and H.F. Nielson. “HTTP-Hypertext Transfer

a basic understanding of the conceptual database schema.
The focus of this application is on query building and
information retrieval that are accessible through the Web
interfaces. Query generation is the most important aspect
and the main emphasis of this paper. The emergence of the
Internet provides a tremendous new opportunity for the
distribution of corporate data and reports. The Internet can
connect disparate data sources with geographically
dispersed wusers [12-13]; a claim that client-server
promised but was never able to deliver. The Internet also
facilitates the efficient publishing of corporate data to a
large number of users, as opposed to the direct access of it
by a multitude of individuals. We provide a client-server
model to construct SQL queries and to improve the
communication between the server and the client.

The client program converts requests into SQL
queries, sends them to the application server.
Report/application server runs on a second tier, and
database server is the third tier. This architecture is
intended to allow reports to execute efficiently against
large databases and also to return large amounts of data.
This reporting model of Internet access to databases can
reduce the database impact of large-scale access by
making the application and the database servers two
separate tiers. We used a message-based architecture
between the client and the server with a thin client model
that takes advantage of intelligence on the client side.

The application server can be used to dynamically
generate HTML reports. Using Java, the processing is
distributed between the server and the client using a
downloaded applet. Query execution and data
manipulation are done on the server while the client applet
provides query building features and query validation.

However, with this opportunity comes the risks of
security. Database and report access and security must be
an integral component of the reporting system. Internet
access to reporting environments and databases—and the
sensitive data that they often contain— requires security
and selected control over database access as well as report
production and viewing. Database and network security is
not sufficient. This is an ongoing research problem that
needs to be fully explored.

Protocol.” URL, http://www.w3.org/pub/WWW/Protocols/.

[4]. John K. Whetzel, “Integrating the World Wide Web and
database technology”, AT&T Technical Journal, v. 75, pp.
38-46, Mar./Apr. ‘96.

[5]. S.E. Dossick, and G.E. Kaiser. “WWW Access to Legacy
Client/Server Applications.” In Proceedings of the Fifth
International World Wide Web Conference, Paris, France,
1996.

[6]. S.P. Hadjiefthymiades, and D.I. Nartakos. “A generic
framework for the deployment of structured databases on
the World Wide Web.” In Proceedings of the Fifth
International World Wide Web Conference, Paris, France,
1996.

[7]. C. Varela, D. Nekhayev, P. Chandraskharan, C. Krishnan,
V. Govindan, D. Modgil, S. Siddiqui, O. Nickolayev, D.
Lebendenko, and M. Winslett. “DB: Browsing Object-
Oriented Databases over the Web.” In Proceedings of the
Fourth International World Wide Web Conference: “The
Web Revolution”, Boston, Massachusetts, 1995.

[8]. D. Flerescu, A.Y. Levy, and A. Mendelzon. “Database
techniques for the World-Wide Web: A Survey”. ACM the
SIGMOD Record, 1998.

[9]. M. Grobe. “An Instantaneous Introduction to CGI Scripts
and HTML Forms.”, URL,
http://kuhttp.cs.ukans.edu/info/forms/forms-intro.htmi.

[10]. Sun MicroSystems, “The Java Language.” Technical
Report, Sun Microsystems, 1995.

[11]. Naphtali D. Rishe, “Database Design: The Semantic
Modeling Approach”

[12]. D. Lee, D. Srivastava, and D. Vista. “Generating Advanced
Query Interfaces.” In Proceedings of the 7™ International
Conference of the World-Wide Web, Australia, April, 1998.

[13]. H. Garcia-Molina, J. Hammer, K. Ireland, Y.
Papakonstantinou, J.D. Ullman, and J. Widom, “Integrating
and Accessing Heterogeneous Information Sources in
TSIMMIS”. In AAAI Spring Symp. On Information
Gathering, 1995.

