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1. INTRODUCTION
Storing user friend lists, preferences and messages, online

social networks have become a significant source of sensi-
tive personal information. A recent addition to this space,
geosocial networks (GSNs) such as Yelp [1] or Foursquare [2],
collect even user locations, through check-ins performed by
users at visited venues. Overtly, personal information al-
lows GSN providers to offer a variety of applications, in-
cluding personalized recommendations and targeted adver-
tising, and venue owners to promote their businesses through
spatio-temporal incentives (e.g., rewarding frequent customers
through accumulated badges). Providing personal informa-
tion exposes however users to significant risks, as social net-
works have been shown to leak [3] and even sell [4] user data
to third parties. There exists therefore a conflict. Without
privacy people may be reluctant to use geosocial networks;
without user information the provider and venues cannot
support applications and have no incentive to participate.

In this work we take first steps toward breaking this dead-
lock, by introducing the concept of location centric profiles
(LCPs), aggregate statistics built from the profiles of users
that have visited a certain location. As we know, location
privacy has been extensively studied before [5]. This work
significantly extends the state of the art by (i) providing
constructs that preserve the privacy of users when reporting
private profile information (e.g., age, gender, location), and
(ii) ensuring that the solutions enable providers to collect
information needed to develop existing services. We intro-
duce ProfilR , a framework that allows the construction
of LCPs based on the profiles of present users, while ensur-
ing the privacy and correctness of participants. To relieve
the GSN provider from costly involvement in venue specific
activities, ProfilR stores and builds LCPs at venues.

2. SYSTEM MODEL
We model the geosocial network (GSN) after Yelp [1]. It
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consists of a provider, S, hosting the system along with in-
formation about registered venues, and serving a number of
subscribers. To use the provider’s services, a client appli-
cation needs to be downloaded and installed. Users register
and receive initial service credentials, including a unique user
id. We use the term client to denote the software provided
by the service and installed by users on their devices.

Participating venue owners need to install inexpensive equip-
ment, present on most recent smartphones. This equipment
(solely one-time cost for the venue-owner) can be installed
anywhere inside the venue and used for other purposes as
well, including detecting fake user check-ins [6] preventing
fake badges and incorrect rewards, and validating social net-
work (e.g., Yelp [1]) reviews. We note that location verifica-
tion solutions that do not rely on venue deployed equipment
suffer from lack of ground truth problems (see [6] for a com-
plete discussion of this topic).

2.1 Location Centric Profiles
Each user has a profile PU = {u1, u2, .., ud}, consisting of

values on d dimensions (e.g., age, gender, home city, etc).
Each dimension has a range, or a set of possible values.
Given a set of users U at location L, the location centric
profile at L, denoted by LCP (L) is the set {S1, S2, .., Sd},
where Si denotes the aggregate statistics over the i-th di-
mension of profiles of users from U .

In the following, we focus on a single profile dimension,
D. We assume D takes values over a range R that can
be discretized into a finite set of sub-intervals (e.g., set of
continuous disjoint intervals or discrete values). Then, given
an integer b, chosen to be dimension specific, we divide R
into b intervals/sets, R1, .., Rb. For instance, gender maps
naturally to discrete values (b = 2), while age can be divided
into disjoint sub-intervals, with a higher b value. We define
the aggregate statistics S for dimension D of LCP (L) to
consist of b counters c1, .., cb; ci records the number of users
from U whose profile value on dimension D falls within range
Ri, i = 1..b.

3. ProfilR

Let SpotrV denote the device installed at venue V . For
each user profile dimension D, SpotrV stores a set of en-
crypted counters – one for each sub-range of R. Initially,
and following each cycle of k check-ins executed at venue
V , SpotrV initiates Setup, to request the provider S to



Figure 1: Solution architecture (k=2). The red ar-
rows denote anonymous communication channels,
whereas black arrows indicate authenticated (and
secure) communication channels.

generate a new Benaloh key pair [7].
When a user U checks-in at venue V , it first engages in

the Spoter protocol with SpotrV . This allows the venue
to verify U ’s physical presence through a challenge/response
protocol between SpotrV and the user device. Further-
more, a successful run of Spoter provides U with a share of
the secret key employed in the Benaloh cryptosystem of the
current cycle. For each venue and user profile dimension, S
stores a set Sh of shares of the secret key that have been
revealed so far.

Subsequently, U runs CheckIn with SpotrV , to first
send its share of the secret key and to receive the encrypted
counter sets. During CheckIn, for each dimension D, U in-
crements the counter corresponding to her range, re-encrypts
all counters and sends the resulting set to SpotrV . U and
SpotrV engage in a zero knowledge protocol that allows
SpotrV to verify U ’s correct behavior: exactly one counter
has been incremented. SpotrV stores the latest, proved
to be correct encrypted counter set, and inserts the secret
key share into the set Sh. Once k users successfully com-
plete the CheckIn procedure, marking the end of a cycle,
SpotrV runs PubStats to reconstruct the private key, de-
crypt all encrypted counters and publish the tally.

3.1 The Solution
Let Ci denote the set of encrypted counters at V , following

the i-th user run of CheckIn. Ci = {Ci[1], .., Ci[b]}, where
Ci[j] denotes the encrypted counter corresponding to Rj ,
the j-th sub-range of R. We write Ci[j] = E(uj , u

′
j , cj , j)

= [E(uj , cj), E(u′
j , j)], where uj and u′

j are random obfus-
cating factors and E(u,m) denotes the Benaloh encryption
of message m using random factor u. That is, an encrypted
counter is stored for each sub-range of domain R of dimen-
sion D. The encrypted counter consists of two records, en-
coding the number of users whose values on dimension D
fall within a particular sub-range of R.

Let RE(vj , v
′
j , E(uj , u

′
j , cj , j) denote the re-encryption of

the j-th record with two random values vj and v′j :
RE(vj , v

′
j , E(uj , u

′
j , cj , j)) = [RE(vj , E(uj , cj)), RE(v′j , E(u′

j , j))]
= [E(ujvj , cj), E(u′

jv
′
j , j)]. Let Ci[j] + + = E(uj , u

′
j , cj +

1, j) denote the encryption of the incremented j-th counter.
Note that incrementing the counter can be done without

decrypting Ci[j] or knowing the current counter’s value:
Ci[j] + + = [E(uj , cj)y,E(u′

j , j)] = [ycj+1ur
j , E(u′

j , j)] =
[E(uj , cj + 1), E(u′

j , j)].
In the following we use the above definitions to introduce

ProfilR . ProfilR instantiates PP (k), where k is the pri-
vacy parameter. The notation P (A(paramsA), B(paramsB))
denotes the fact that protocol P involves participants A and
B, each with its own parameters.

Setup(V(),S(k)):. The provider S runs the key generation
function K(k) of the Benaloh cryptosystem [7]. Let p and q
be the private key and n and y the public key. S sends the
public key to SpotrV . SpotrV generates a signature key
pair and registers the public key with S. For each user profile
dimension D of range R, SpotrV performs the following
steps:

• Initialize counters c1, .., cb to 0. b is the number of R’s
sub-ranges.

• Generate C0 = {E(x1, x
′
1, c1, 1), .., E(xb, x

′
b, cb, b)}, where

xi, x
′
i, i = 1..b are randomly chosen values. Store C0 indexed

on dimension D.

• Initialize the share set Skey = ∅.

Spoter(U(K),V(),S(k)):. To ensure anonymity, U needs
to generate fresh randomMAC and IP addresses for each run
of Spoter (and CheckIn) with SpotrV . No advantage can
be gained by spoofing MAC and IP addresses. SpotrV uses
one of the location verification procedures proposed in [6] to
verify U ’s presence. Let U be the i-th user checking-in at
V . If the verification succeeds and i ≤ k, S uses the (k, n)
TSS to compute a share of p (Benaloh secret key, factor
of the modulus n). Let pi be the share of p. S sends the
(signed) share pi to U . If i > k, S calls Setup to generate
new parameters for V .

CheckIn(U(pi, n, V), V(n, y, Ci−1, Skey)). : Executes
only if the previous run of Spoter is successful. Let U be
the i-th user checking-in at V . Then, Ci−1 is the current
set of encrypted counters. SpotrV sends Ci−1 to U . Let
v, U ’s value on dimension D, be within R’s j-th sub-range,
i.e., v ∈ Rj . U runs the following steps:

• Generate b pairs of random values {(v1, v′1), .., (vb, v′b)}.
Compute the new encrypted counter set Ci, where the order
of the counters in Ci is identical to Ci−1: Ci =
{RE(vl, v

′
l, Ci−1[l])|l = 1..b, l �= j} ∪ RE(vj , v

′
j , Ci−1[j]++).

• Send Ci along with the signed (by S) share pi of the pri-
vate key p to V .

If SpotrV successfully verifies the signature of S on the
share pi, U and SpotrV engage in a zero knowledge protocol
ZK-CTR (see Section 3.2). ZK-CTR allows U to prove that
Ci is a correct re-encryption of Ci−1: only one counter of
Ci−1 has been incremented. If the proof verifies, SpotrV replaces
Ci−1 with Ci and ads the share pi to the set Skey .

PubStats(V(Ck,Sh,V),S(p,q)). : SpotrV performs the
following actions:

• If |Sh| < k, abort.

• If |Sh| = k, use the k shares to reconstruct p, the private
Benaloh key.

• Use p and q = n/p to decrypt each record in Ck, the final
set of counters at V . Publish results.
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Figure 2: (a) Setup dependence on Benaloh mod size. (b) ZK-CTR Performance: Dependence on number of
proof rounds. (c) Storage and communication overhead (in KB) as a function of range count.

3.2 ZK-CTR: Proof of Correctness
U and SpotrV run the following steps s times:

• U generates random values (t1, t
′
1), .., (tb, t

′
b) and random

permutation π, then sends to SpotrV the proof set Pi−1 =
π{RE(tl, t

′
l, Ci−1[l]), l = 1..b}.

• U generates random values (w1, w
′
1), .., (wb, w

′
b), then sends

to SpotrV the proof set Pi = π{RE(wl, w
′
l, Ci[l]), l = 1..b}

• SpotrV generates a random bit a and sends it to U .

• If a = 0, U reveals random values (t1, t
′
1), .., (tb, t

′
b) and

(w1, w
′
1), .., (wb, w

′
b). SpotrV verifies that for each l = 1..b,

RE(tl, t
′
l, Ci−1[l]) occurs in Pi−1 exactly once, and that for

each l = 1..b, RE(wl, w
′
l, Ci[l]) occurs in Pi exactly once.

• If a = 1, U reveals ol = vlwlt
−1
l and o′l = v′lw

′
lt

′−1
l , for all

l = 1..b along with j, the position in Pi−1 and Pi of the incre-
mented counter. SpotrV verifies that for all l = 1..b, l �= j,
RE(ol, o

′
l, Pi−1[l]) = Pi[l] and RE(oj , o

′
j , Pi−1[j]y) = Pi[j].

• If any verification fails, SpotrV aborts the protocol.

4. EVALUATION
We have implemented ProfilR using Android. For secret

sharing, we used Shamir’s scheme [8] and for digital signa-
tures we used RSA. We have used Android Samsung Admire
smartphones (800MHz CPU) and a Dell laptop (2.4GHz In-
tel Core i3, 4GB of RAM) for the server. For local connec-
tivity the devices used their 802.11b/g Wi-Fi interfaces. We
plot averages taken over 10 independent protocol runs.

We have first measured the overhead of the Setup opera-
tion. We set the number of ranges of the domain D to be
10, Shamir’s TSS group size to 1024 bits and RSA’s modu-
lus size to 1024 bits. Figure 2(a) shows the Setup overhead
on the smartphone and laptop platforms, when the Benaloh
modulus size ranges from 64 to 2048 bits. Note that even
a resource constrained smartphone takes only 2.2s for 1024
bit sizes (0.9s on a laptop). We then measure ZK-CTR’s
client and SpotrV computation and communication over-
head. Figure 2(b) shows the overheads of the three costs as
a function of the number of ZK-CTR rounds, when the Be-
naloh key size is 1024 bit long. For 30 rounds, when a cheat-
ing client’s probability of success is 2−30, the total overhead
is 3.6s. Finally, Figure 2(c) shows the SpotrV storage over-
head, only a fraction of the (single round client-to-SpotrV )
communication overhead. For one dimension, with 20 sub-
ranges, the overhead is 5KB.

5. RELATED WORK
Golle et al. [9] proposed techniques allowing pollsters to

collect user data while ensuring the privacy of the users.
The privacy is proved at “runtime”: if the pollster leaks pri-
vate data, it will be exposed probabilistically. Our work also
allow entities to collect private user data, however, the col-
lectors are never allowed direct access to private user data.

Toubiana et. al [10] proposed Adnostic, a privacy preserv-
ing ad targeting architecture. Users have a profile that al-
lows the private matching of relevant ads. While ProfilR can
be used to privately provide location centric targeted ads, its
main goal is different - to compute location (venue) centric
profiles that preserve the privacy of contributing users.
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