
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

11-7-2014

3D Navigation with Six Degrees-of-Freedom using
a Multi-Touch Display
Francisco Raul Ortega
Florida International University, forte007@fiu.edu

DOI: 10.25148/etd.FI14110721
Follow this and additional works at: http://digitalcommons.fiu.edu/etd

Part of the Graphics and Human Computer Interfaces Commons

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Ortega, Francisco Raul, "3D Navigation with Six Degrees-of-Freedom using a Multi-Touch Display" (2014). FIU Electronic Theses and
Dissertations. 1594.
http://digitalcommons.fiu.edu/etd/1594

http://digitalcommons.fiu.edu?utm_source=digitalcommons.fiu.edu%2Fetd%2F1594&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F1594&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F1594&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F1594&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=digitalcommons.fiu.edu%2Fetd%2F1594&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.fiu.edu/etd/1594?utm_source=digitalcommons.fiu.edu%2Fetd%2F1594&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

3D NAVIGATION WITH SIX DEGREES-OF-FREEDOM USING A MULTI-TOUCH

DISPLAY

A dissertation submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Francisco R. Ortega

2014

To: Dean Amir Mirmiran
College of Engineering and Computing

This dissertation, written by Francisco R. Ortega, and entitled 3D Navigation with Six
Degrees-of-Freedom using a Multi-Touch Display, having been approved in respect to style
and intellectual content, is referred to you for judgment.

We have read this dissertation and recommend that it be approved.

Peter Clarke

Raju Rangaswami

Wei Zeng

Naphtali Rishe, Co-Major Professor

Armando Barreto, Co-Major Professor

Date of Defense: November 7, 2014

The dissertation of Francisco R. Ortega is approved.

Dean Amir Mirmiran
College of Engineering and Computing

Dean Lakshmi N. Reddi
University Graduate School

Florida International University, 2014

ii

© Copyright 2014 by Francisco R. Ortega

All rights reserved.

iii

DEDICATION

This is dedicated to my parents, sisters, nephews, nieces, brothers-in-law, and my entire

Family. This is dedicated to my beloved wife, the one and only. I dedicate this to the

Dreamers, those who came to the US as kids, who feels american, but yet, they are not

recognized as one. This is also dedicated to those who believed in me and helped me along

the way, to my Atari 65XE Computer for the love of coding, to my Atari 1050 disk drive,

for making the wait much shorter. This is dedicated to Marcelo Bielsa — Esto se lo dedico

a toda mi familia, Luz Adriana, Francisco M., Patricia E., Aida Guerrero, Pedro Melo, Tata

Custodio, Tia Marta, Tia Kena, Tia Teresita, Marcela, Cecilia, Jimena, Roberto, Kenneth,

Eduardo, Fernanda, Francisca, Maria Sofia, Roberto Ignacio, Felipe, Sebastian, Nicolas,

Felipito, y todo los que vendran. This is dedicated to my future kids, the one coming and

the ones to come. — PARA TI MAMA AIDA y PARA TI MAMA PATTY.

iv

ACKNOWLEDGMENTS

The dissertation would not have been possible without the support and guidance from my

two Advisors: Dr. Armando Barreto and Dr. Naphtali Rishe. It is with my most sincere

gratitude that I will never forget all the help provided by both. I have to emphasize how Dr.

Barreto took a chance on a student coming from a different major. The guidance, the time,

and the knowledge given to me by Dr. Barreto has been more than what a student could

have ever asked for. It has been invaluable. Dr. Rishe always provided amazing support

and help during my studies. Most important, Dr. Rishe, has believe on my potential as a

researcher. My learning experience without the support of both advisors would not have

been possible.

My committee has also been very supportive. Dr. Peter Clarke, Dr. Raju Rangaswami,

and Dr. Wei Zeng, provided guidance and help along the way. I have to thank Dr. Adjouadi,

the unofficial committee member. With his inspiring classes and research, he always gave

me the motivation to push the envelope further. Other faculty and staff know that your

support helped me to get this far. I need to thank Martha Gutierrez, Pat Brammer, Ana

Saenz, Olga Carbonell, Professor Jill Weiss, Dr. Weiss, and Dr. Pelin. I need to thank the

School of Computer Science and the Department of Electrical and Computer Engineering.

I will also like to thanks Levent Erbora for his help during the GRE studies. Finally, I

have to thank the FIU writing center and in particular, the best editor one can find, Corey

Ginsberg.

I also need to thanks the people who made it possible to research with their funding.

First, Dr. Milani, providing an amazing fellowship (GAANN), granted by the Department

of Education of the United States, which provided more than 3 years of funding. I also

have to thank the Florida Education Fund, in particular, Dr. Lawrence and Mr. Jackson,

for their McKnight Dissertation Year Fellowship, which provided 4 semesters and a lot of

help. The graduate school of FIU also have been very helpful for the entire Ph.D. program.

v

I have to thanks Mr. Dudley and Dr. Montas-Hunter for their amazing help. The HPDRC

lab at FIU, led by Dr. Rishe, provided incredible help and funding to continue the research.

Finally, the National Science Foundation (NSF) helped the research with the following

grants: CNS-0821345, CNS-1126619, HRD-0833093, IIP-0829576, CNS-1057661, IIS-

1052625, CNS-0959985, OISE-1157372, IIP-1237818, IIP-1330943, IIP-1230661, IIP-

1026265, IIP-1058606, IIS-1213026.

There are many friends who come to mind. There are too many to mention. However,

I need to mention the ones that made the most difference in my graduate studies and life

in general: Dan (Daisy) Lu, Frank Hernandez, Tessa Verhoef, Jose Ignacio (Nacho) Mora,

Xabriel Colloso-Mojica, Jaime Ballestero, Miguel Erazo, Aaron Lebos, Alex Montorro,

Eddie Garcia, Fidelia Rubio, and those old friends, who started the dream, with the band

ROOTS. I also have to thank my DSP Lab mates, Jian (Raymond) Huang, Fatemeh Sara

Abyarjoo, Peng Ren, Cindy Gao, Jonathan Cofino, Nonnarit (Ong) O-Larnnithipong.

I’m grateful for people who from the distance helped me. With their encouragement

and help of Dr. MacKenzie and Dr. Eberly, I was able to pursue my dream of writing an

upcoming book with CRC Press. I also need to thank the community of Ogre 3D, for all

their help during development.

Without my family none of this would matter. Their support and understanding has

been priceless. Their love has proven to be the best motivation to continue the research

when there were difficult times. My dad Francisco, mom Patricia, my grandparents: Aida

and Pedro, my sisters: Marcela, Cecilia, Jimena, for their continue love and care for my

entire life. For my brother-in-laws: Roberto, Kenneth, Eddie, for the love to my sisters and

my nephews. For all my nieces and nephews: Fernanda, Francisca, Felipe A., Sebastian,

Roberto, Felipe, Nicholas. I would like to thank my wife’s family as well. For all the

family that has yet to come and the family that has past, I thank you.

vi

I will always be in debt to my father and mother, for their love and support. For the Atari

65XE and disk drive 1050, that was given to me, and gave me the gift of coding. Because

they let me dream, they let me be, they supported me in good and bad times. Because they

believed in me, when I couldn’t do it myself. I’m here because of them and they are here

because of me. I love you.

However, there is one person, whom I must thanks for her patience, support and love.

My wife Luz Adriana. She understood best when it was late at night or early in the morning,

and I had incredible amount of work. For her time helping me to enter enter all the subject

data from paper to Excel, I’m forever grateful. For you, the family that starts, and the one

that is coming. It is for you and our new family, that I continue to move along this path. I

love you, always and forever — Francisco Raul Ortega, 2014.

vii

ABSTRACT OF THE DISSERTATION

3D NAVIGATION WITH SIX DEGREES-OF-FREEDOM USING A MULTI-TOUCH

DISPLAY

by

Francisco R. Ortega

Florida International University, 2014

Miami, Florida

Professor Naphtali Rishe, Co-Major Professor

Professor Armando Barreto, Co-Major Professor

With the introduction of new input devices, such as multi-touch surface displays, the Nin-

tendo WiiMote, the Microsoft Kinect, and the Leap Motion sensor, among others, the field

of Human-Computer Interaction (HCI) finds itself at an important crossroads that requires

solving new challenges. Given the amount of three-dimensional (3D) data available to-

day, 3D navigation plays an important role in 3D User Interfaces (3DUI). This dissertation

deals with multi-touch, 3D navigation, and how users can explore 3D virtual worlds using

a multi-touch, non-stereo, desktop display.

The contributions of this dissertation include a feature-extraction algorithm for multi-

touch displays (FETOUCH), a multi-touch and gyroscope interaction technique (Gyro-

Touch), a theoretical model for multi-touch interaction using high-level Petri Nets (PeNTa),

an algorithm to resolve ambiguities in the multi-touch gesture classification process (Yield),

a proposed technique for navigational experiments (FaNS), a proposed gesture (Hold-and-

Roll), and an experiment prototype for 3D navigation (3DNav). The verification experi-

ment for 3DNav was conducted with 30 human-subjects of both genders. The experiment

used the 3DNav prototype to present a pseudo-universe, where each user was required to

find five objects using the multi-touch display and five objects using a game controller

(GamePad). For the multi-touch display, 3DNav used a commercial library called Ges-

viii

tureWorks in conjunction with Yield to resolve the ambiguity posed by the multiplicity of

gestures reported by the initial classification. The experiment compared both devices. The

task completion time with multi-touch was slightly shorter, but the difference was not statis-

tically significant. The design of experiment also included an equation that determined the

level of video game console expertise of the subjects, which was used to break down users

into two groups: casual users and experienced users. The study found that experienced

gamers performed significantly faster with the GamePad than casual users. When looking

at the groups separately, casual gamers performed significantly better using the multi-touch

display, compared to the GamePad. Additional results are found in this dissertation.

ix

TABLE OF CONTENTS

CHAPTER PAGE

1. INTRODUCTION . 1
1.1 Problem Statement . 1
1.2 Objective of Study . 2
1.3 Motivation . 2
1.4 Research Questions . 3
1.5 Significance of Study . 3
1.6 Literature Review . 3
1.6.1 Input Considerations . 5
1.6.2 Toward 3D Navigation . 6
1.6.3 3D Navigation . 9
1.6.4 Gesture Modeling and Petri Nets . 15
1.7 Dissertation Structure . 18

2. BACKGROUND . 20
2.1 Computer Graphics . 20
2.1.1 Camera Space . 20
2.1.2 3D Translation And Rotations . 23
2.1.3 Geometric Modeling . 26
2.1.4 Scene Managers . 27
2.1.5 Collision Detection . 29
2.2 Human-Computer Interaction . 29
2.2.1 Usability . 30
2.2.2 The Light Pen and the Computer Mouse . 31
2.2.3 Graphical User Interfaces and WIMP . 32
2.2.4 Input Technologies . 34
2.2.5 Input Device States . 37
2.2.6 Bi-Manual Interaction . 38
2.3 Multi-Touch Displays . 42
2.3.1 Projective Capacitive Technology . 44
2.3.2 Optical Touch Surfaces . 46
2.4 3D User Interfaces . 49
2.5 3D Output Interfaces . 50
2.5.1 Visual Displays Characteristics . 50
2.5.2 Understanding Depth . 51
2.5.3 Displays . 54
2.6 3D Input Interfaces . 55
2.7 3D Navigation . 56
2.7.1 3D Travel . 57
2.7.2 3D Travel Tasks . 57
2.8 Petri Nets . 60

x

2.8.1 Graphical Representation . 62
2.8.2 Formal Definition . 62

3. TOWARD 3D NAVIGATION WITH MULTI-TOUCH INTERACTIONS 65
3.1 Multi-Touch Feature Extraction . 65
3.1.1 FETOUCH . 65
3.1.2 FETOUCH+ . 71
3.1.3 Implementation: FETOUCH++ . 74
3.2 GyroTouch . 78
3.2.1 Implementation . 81
3.3 PeNTa: Petri Nets . 83
3.3.1 Motivation and Differences . 84
3.3.2 HLPN: High-Level Petri Nets and IRML 86
3.3.3 PeNTa and Multi-Touch . 88
3.3.4 Arc Expressions . 89
3.3.5 A Tour of PeNTa . 93
3.3.6 Simulation and Execution . 95
3.3.7 Overview . 96
3.4 Yield: Removing ambiguity . 96
3.4.1 Yield: How it Works . 97
3.4.2 Yield: The Algorithm . 102
3.4.3 Yield: The Implementation . 109
3.5 FaNS: Navigational System - A Fair Approach 112
3.5.1 FaNS: The Implementation . 112
3.6 Hold-and-Roll: Finding a Gesture for the Z Axis 116

4. 3DNAV: MULTI-TOUCH SYSTEM PROTOTYPE 119
4.1 Preliminary Device Testing . 119
4.1.1 Device Listeners and Common Interfaces 119
4.1.2 3D Mouse . 122
4.1.3 Inertial Navigation System . 128
4.1.4 Microsoft Kinect . 130
4.1.5 Keyboard and Mouse . 136
4.1.6 GamePad . 137
4.1.7 Multi-Touch . 142
4.2 OGRE . 152
4.3 ECHoSS: Experiment Module . 161
4.4 Overview . 166

5. DESIGN OF EXPERIMENT: 3D NAVIGATION 167
5.1 Experiment Objective . 167
5.2 Pre-Trials . 168
5.3 Device Selection . 168

xi

5.4 Experimental Subjects . 169
5.5 Experiment Apparatus . 170
5.5.1 Hardware Setup . 170
5.5.2 Software Setup . 172
5.6 Multi-Touch Gesture Design . 175
5.6.1 Gesture Definition . 175
5.6.2 Gesture Selection . 176
5.6.3 Gesture Mapping . 178
5.7 GamePad Design . 179
5.8 Additional Controller Design . 180
5.9 Techniques . 181
5.9.1 Primed Search . 181
5.9.2 Visual Cues . 182
5.9.3 Device Switching . 184
5.10 Questionnaires . 185
5.11 Gamers’ Experience . 186
5.12 Objective Measurements . 189
5.13 Experiment Procedure . 191
5.14 3D Navigation Experiment Tour . 191

6. EXPERIMENT ANALYSIS . 199
6.1 Data Outliers . 199
6.2 The Dataset . 200
6.3 Quantitative Data . 200
6.3.1 Time: GamePad and Multi-Touch . 201
6.3.2 Homing: Switching Devices . 210
6.4 Qualitative Data . 212
6.4.1 Paired Questions . 212
6.4.2 Additional Pairs of Questions . 214
6.4.3 GamePad or Multi-Touch . 216
6.4.4 Rotation and Translations Questions . 218
6.4.5 Other Questions . 219
6.4.6 Hold-And-Roll Questions . 219

7. EXPERIMENT DISCUSSION . 221
7.1 Assimilating Experimental Results . 221
7.2 3D Navigation . 222
7.2.1 Open Questions . 224
7.2.2 Hold-and-Roll . 225
7.3 Lessons learned . 225
7.4 Limitations of the Study . 226
7.4.1 Internal Validity . 227
7.4.2 External Validity . 228

xii

8. CONCLUSIONS & FUTURE WORK . 232
8.1 Concluding Remarks . 232
8.2 Future Work . 234

BIBLIOGRAPHY . 236

APPENDICES . 257

VITA . 288

xiii

LIST OF TABLES

TABLE PAGE

1.1 Questions and Hypotheses . 4

2.1 Partial History of Multi-Touch Until 1984 . 41

2.2 Partial History of Multi-Touch from 1985 to 1995 43

2.3 Partial History of Multi-Touch from 1997 to 2014. 44

3.1 Multi-Touch Data Structure . 89

3.2 Transitions . 93

5.1 Pre-Trial Users. 168

5.2 Gesture Definitions. 177

5.3 Gesture Mappings. 178

5.4 Controller Mappings. 179

5.5 Multiple Choice Legend. 186

5.6 Entry Questionnaire. 187

5.7 Additional Entry Questionnaire. 188

5.8 Additional Exit Questionnaire. 188

5.9 Game Classification. 190

5.10 Game Classification Description . 190

5.11 Sentences. 194

5.12 Exit Questionnaire. 196

6.1 Descriptive Statistics for Td . 202

6.2 Normality Test for Td . 203

6.3 Normality Test for Tdx . 203

6.4 Descriptive Statistics for Tdx = Log(Td) . 204

6.5 Co-Factor Means Tdx . 208

6.6 Co-Factor Analysis Tdx . 209

6.7 Normality Test for Tdx by Group . 210

xiv

6.8 Wilcoxon-signed-rank test: GP_Keyboard - MT_Keyboard 212

6.9 Wilcoxon-signed-rank statistics: GP_Keyboard - MT_Keyboard 212

6.10 Wilcoxon-signed-rank test: Q2−Q1 . 214

6.11 Wilcoxon-signed-rank statistics: Q2−Q1 . 214

6.12 Normality Test for Q4 to Q11 . 216

6.13 Descriptive Statistics for Q4 to Q11 . 217

6.14 Wilcoxon-signed-rank tests: Experienced gamer 217

6.15 Wilcoxon-signed-rank statistics: Experienced gamer 218

6.16 Question 14: Video GamePad Controller (GamePad) or multi-touch 219

6.17 Questions 16 and 17 . 220

6.18 Question 21 . 220

7.1 Hypothesis Results . 221

7.2 Open Question Results¶ . 230

7.3 Hold-and-Roll Comments¶ . 231

xv

LIST OF FIGURES

FIGURE PAGE

2.1 Camera Space [77] . 21

2.2 View Frustum [77] . 23

2.3 Principal Axes. Drawn by Auawise1 . 25

2.4 Mouse Study: Time [46] . 33

2.5 Mouse Study: Error Rate [46] . 33

2.6 Images . 38

2.7 Bi-Manual Interaction [133] . 42

2.8 Multi-touch Capacitance Technology . 45

2.9 Multi-touch Capacitance Technology . 46

2.10 Multi-touch Capacitance Technology . 47

2.11 Vending Machine (Adapted from [174]). 61

3.1 State Machine . 66

3.2 Queue . 67

3.3 Rotation Gesture . 72

3.4 WiiMote with Motion Plus . 78

3.5 GyroTouch . 80

3.6 Parallel PN: State 1 . 91

3.7 Parallel PN: State 2 . 91

3.8 Cold transitions (Entry and Exit) . 91

3.9 Multiple Gestures in PeNTa . 94

3.10 Partial Petri Net for Scale . 96

4.1 3D Mouse Space Sensor† . 122

4.2 3D Mouse Functions† . 123

4.3 C# Skeleton Viewer (Possible Gestures) . 133

xvi

4.4 Ancient 3D ruins . 135

4.5 Screen Closeup . 135

4.6 From the user’s point of view . 136

4.7 Images . 138

4.8 Images . 139

4.9 OpenGL Cube of Spheres . 153

4.10 3DS Max Scene . 154

5.1 3M M2256PW multi-touch display . 170

5.2 XBox 360 GamePad . 171

5.3 Multi-Touch Reset Button . 180

5.4 Additional Keyboard Input . 181

5.5 Hyper Cube for Training . 182

5.6 Search Object Marker (Flag) . 183

5.7 Three-Ring Sphere . 184

5.8 Hyper sphere (Target Object) . 193

5.9 3D Navigation Experiment Display . 193

5.10 Space Ship (Target Object) . 193

5.11 Target Objects . 194

5.12 Non-Target Objects . 194

5.13 Keyboard Pop Up . 195

5.14 Subject . 195

5.15 Hold-and-Roll . 195

6.1 Outliers . 200

6.2 BB Plot . 204

6.3 BB Plot (Transform Data) . 205

6.4 QQ Plot . 205

xvii

6.5 QQ Plot (Transform Data) . 206

6.6 Histograms . 206

6.7 Histograms (Transformed Data) . 207

6.8 Experiment Table . 219

B.1 Handout with Search Objects . 269

D.1 Xbox 360 Legend . 274

D.2 Xbox 360 Legend . 275

xviii

ABBREVIATIONS

2D Two-Dimensional.

3D Three-Dimensional.

3DNav 3D Navigation System.

3DUI Three-Dimensional User Interface.

AI Artificial Intelligence.

ANOVA Analysis of variance.

API Application Programming Interface.

BSP Binary Space Partitioning.

CG Computer Graphics.

CPN Coloured Petri Nets.

CPU Central Processing Unit.

CRT cathode ray tube.

DI Diffuse Illumination.

DLL Dynamic Link Library.

DOF Degrees of Freedom.

DPI Dots per Inch.

DSL Domain-Specific Language.

DSP Digital Signal Processing.

ECHoSS Experiment Controller Human Subject System.

FaNS Fair Navigation System.

FETOUCH Feature Extraction Multi-Touch System.

FIU Florida International University.

FOR Field of Regard.

FOV Field of View.

FPS First-Person Shooter.

xix

FSM Finite-State Machine.

FTIR Frustrated Total Internal Reflection.

GamePad Video GamePad Controller.

GB Gigabyte.

GHz Giga Hertz.

GML Gesture Markup Language.

GOMS Goals, Operators, Methods, and Selection.

GPU Graphics Processing Unit.

GUI Graphical User Interface.

GWC GestureWorks Core.

GyroTouch Gyroscope Multi-Touch System.

HCI Human-Computer Interaction.

HLPN High-Level Petri Net.

HMD Head-mounted Display.

HMM Hidden Markov Models.

Hz Hertz.

INI Initialization.

INS Inertial Navigation System.

IR Infrared.

IRB institutional review board.

IRML Input Recognition Modeling Language.

KLM Keystroke-Level Model.

LCD Liquid-crystal Display.

LLP Laser Light Plane.

Max Maximum.

MB Megabyte.

xx

MEMS Micro-electro-mechanical systems.

MHz Mega Hertz.

Min Minimum.

MO Mode.

MRI magnetic resonance imaging.

MSDN Microsoft Software Developer Network.

N Population Size.

NES Nintendo Entertainment System.

OGRE Object-Oriented Graphics Rendering Engine.

OIS Object-Oriented Input System.

p Significance Value.

PARC Palo Alto Research Center.

PC Personal Computer.

PCT Projective Capacitive Technology.

PeNTa Petri Net Touch.

PN Petri Net.

Prt Net Predicate Transition Net.

RAM Random-Access Memory.

RBI Reality Based Interactions.

RegEx Regular Expression.

SD Standard Deviation.

SDK Software Development Kit.

SEM Standard Error of Mean.

TUI Tangible User Interface.

TUIO Tangible User Interface Object.

UI User Interface.

xxi

USB Universal Serial Bus.

Var Variance.

VR Virtual Reality.

WiiMote Nintendo Wii Controller.

WIM World-in-Miniature.

WIMP Windows-Icon-Menu-Pointer.

WINAPI Windows API.

WinRT Windows run-time.

x̄ Mean.

x̃ Median.

XML Extensible Markup Language.

Yield Yanked Ambiguous Gestures.

xxii

CHAPTER 1

INTRODUCTION

The seminal work known as SketchPad [202], by Ivan Sutherland has inspired many re-

searchers in the field of Human-Computer Interaction (HCI) and Three-Dimensional User

Interface (3DUI). Sutherland created an elegant and sophisticated system, which is consid-

ered by some as the birth of computer user interface studies. The invention of the mouse by

Douglas Engelbart in 1963 [46] and the invention of the Graphical User Interface (GUI) in

the Palo Alto Research Center (PARC) gave way to one of the most successful paradigms

in HCI: Windows-Icon-Menu-Pointer (WIMP), which has allowed users to interact easily

with computers.

Today, with the introduction of new input devices, such as multi-touch surface displays,

the Nintendo Wii Controller (WiiMote), the Microsoft Kinect, the Leap Motion sensor,

SixSense Stem System, and Inertial Navigation Systems (INS), the field of HCI finds itself

at an important crossroads that requires solving new challenges.

Humans interact with computers, relying on different input-output channels. This may

include vision (and visual perception), auditory, tactile (touch), movement, speech, and

others [37]. In addition, humans use their (long and short-term) memory, cognition, and

problem-solving skills to interact with computer systems [37]. This computer interaction

has a set of challenges that needs to be addressed. This dissertation addressed the problem

of three-dimensional (3D) navigation using a multi-touch, non-stereo, desktop display. This

includes the modeling of multi-touch interaction, and the understanding of how users can

benefit by using multi-touch desktop displays.

1.1 Problem Statement

With the amount of 3D data available today, 3D navigation plays an important role in 3DUI.

This dissertation deals with multi-touch and 3D navigation. In specific, it deals with how

1

users can explore 3D virtual worlds with multi-touch, non-stereo, desktop displays. What

type of techniques can be applied for a better multi-touch interaction with 3D worlds?

Can users benefit from such interaction? This dissertation answers the questions using

novel techniques and human-subject testing. In particular, the questions addressed by the

dissertation are listed in 1.4.

1.2 Objective of Study

The objective of this research is the development of models, algorithms, techniques, and

an experimental environment for 3D navigation. This is with the purpose to advanced the

state of the art of 3D navigation using multi-touch desktop displays. This study seeks to

improve 3D navigation with 6-degrees of freedom (DOF) using multi-touch, and study the

performance of this device in this type of environment.

1.3 Motivation

The motivation for this research is to find novel ways for 3D navigation using multi-touch

in generic virtual worlds. The keyword is generic, which can be expanded to fit different

domains, such as medical, architectural, and scientific data, among others (see 1.6.3). This

is where the motivation for utilizing 6-DOF comes about. Some domains may required six

or more DOF. In general, this author is motivated to move the body of knowledge in the

field of 3DUI. This, in the author’s opinion, helps to create building blocks towards the

vision of Mark Weiser [219]:

The most profound technologies are those that disappear. They weave

themselves into the fabric of everyday life until they are indistinguishable from

it.

2

1.4 Research Questions

The research aims to address questions about 3D navigation using multi-touch. In specific,

how does multi-touch compare to a game controller (gamepad) and what are the implica-

tions for users employing 6-DOF for navigation? Table 1.1 shows the questions (Q) and

hypotheses (H) for this dissertation. At the end of this dissertation, all of the questions

postulated in Table 1.1 are answered.

1.5 Significance of Study

3D data allows for the exploration of real-world environments (e.g., New York City) and

scientific data visualization (e.g., Complex 3D Magnetic resonance imaging (MRI) data).

How this data is navigated is crucial to understanding data and finding objects in the virtual

world. Finding ways to navigate with 6-DOF using a standard multi-touch display will

allow users to interact more intuitively with the data. Given the pervasive nature of multi-

touch surfaces today, the study will help to understand how to improve users’ 3D navigation

when using multi-touch displays.

1.6 Literature Review

The objective of this section, as the name indicates, is to review the state of the art that

directly impacts the contributions of this dissertation. This section is divided into four sub-

parts. The first part covers input and design guidelines literature, which helped the design

of experiment. The second part covers generic topics that deal with 3D techniques. The

third part deals with different approaches to 3D navigation. The final part deals with multi-

touch recognition and modeling. While the attempt in this chapter is to be as detailed as

3

Qs Is it possible to use a set of 2D Gestures in a multi-touch display to perform
3D navigation with 6-DOF?

Hs The proposed set will allow 3D navigation with 6-DOF.
Qt Will the real-time 3D navigation for a primed search be improved with multi-

touch desktop display or with the GamePad, using time elapsed as an objective
measure?

Ht The proposed real-time multi-touch interaction for 3D navigation will take
less time to find the objects in a primed search in comparison to the GamePad.

Qu Given the multi-touch input, would there be a significant difference between
casual and experienced video gamers?

Hu Given the multi-touch input, there will be a significant difference between
both groups.

Qv Given the GamePad input, would there be a significant difference between the
casual and experienced video gamers?

Hv Given the GamePad input, there will be a significance difference between both
groups.

Qw Would it take less time to complete the primed search for expert video gamers
when using the GamePad controller?

Hw Expert video gamers will take less time to complete the primed search when
using the GamePad controller.

Qx Would it take less time to complete the primed search for casual gamers when
using the multi-touch device?

Hx Casual gamers will take less time to complete the primed search when using
the multi-touch device.

Qy Would there be a difference in time for sentence completion when using the
multi-touch compare to the GamePad?

Hy It will take less time to complete the sentences when switching from the multi-
touch than when switching from the GamePad .

Qz Would there be higher rate of error for sentence completion when using the
multi-touch compare to the GamePad?

Hz There will be a higher error rate when switching from the GamePad than when
switching from the multi-touch.

Table 1.1: Questions and Hypotheses

4

possible, it cannot be totally exhaustive. The reader is suggested to look into the actual

cited work for more information, as well as 3D User Interfaces: Theory and Practice

(Bowman et al. [17]), Human-Computer Interaction: An Empirical Research Perspective

(MacKenzie [133]), and Human-Computer Interaction (Dix et al. [37]).

1.6.1 Input Considerations

Six-DOF for input devices have been studied in full detail by Zhai, in his doctoral disserta-

tion [234], in 1995. The dissertation goes in-depth into how subjects deal with 6-DOF. The

study [234] provided great insight for 3D navigation: The muscle groups involved in a 6-

DOF vary depending on the device used. This in itself helps to design better interfaces. The

study also talks about the transfer function (see Chapter 2), which must be compatible with

the characteristics of the actual device. This was also stated by Bowman et al. [17, Chap-

ter 5], in their guidelines: “match the interaction technique to the device” [17, p. 179].

Hinckley also advanced the knowledge about input technologies in [88]. General aspects

of input devices are covered in Chapter 2. The recommendations by Zhai [234] help to

emphasize the 3D interaction design guidelines offered by Bowman et al. [17]:

1. Use existing manipulation techniques unless an application will benefit greatly from

creating new ones.

2. Match the interaction to the device.

3. Reduce wasted motion (clutching).

4. Use non-isomorphic techniques whenever possible.

5. Reduce the number of degrees of freedom (DOF) whenever possible.

From the previous list, item 4 reminds the designer that it is difficult to model iso-

morphic rotation techniques, as shown in [172]. As it will become apparent in Chapter

5

5, some of these design guidelines were considered for the experiment developed for this

dissertation.

Additional guidelines have been proposed. For example, in [96], Jacob et al. proposed

interfaces within a post-WIMP framework. In this framework, they tried to find a balance

from Reality Based Interactions (RBI) and artificial features. RBI includes naïve physics,

body awareness and skills, environment awareness and skills, and social awareness and

skills. Also, Hancock et al, in [78], proposed some specific guidelines when dealing with

multi-touch rotations and translation. These included the ability1 to provide more DOF

than WIMP. Also, Hancock et al. [78] suggested that a constant connection between the

visual feedback and the interaction would prevent cognitive disconnect by avoiding actions

that the user may not be expecting. In other words, The system needed to provide a realistic

3D visual feedback to match the interaction. For additional discussion, see [14, 15, 17, 88].

1.6.2 Toward 3D Navigation

3D navigation has benefited from previous work in related areas. The most closely related

areas are 3D interaction and virtual devices. The pioneer and seminal work by Ivan Suther-

land [202] with Sketch Pad provided a way forward for User Interfaces (UIs). Also, early

studies by Nielson and Olsen [155], which provided direct “Manipulation Techniques for

3D Objects,” and Chen et al. [29], who studied 3D rotations, provided the groundwork for

more recent developments. Touch interactions, virtual devices, and multi-touch techniques

are described next. For a brief look at 3D interactions (up to 1996), see [79].

1The ability to do rotation and scale independently or together.

6

Understanding Touch Interactions

To achieve a more natural interaction between the screen and the user, studies like [9,

24, 215, 216, 223] provided a different take on how touch information can be used. One

example is, [215] studied finger orientation for oblique touches. In another example, Benko

and Wilson [9] studied dual-finger interactions (e.g, dual-finger selection, dual-finger slider,

etc.). Additional work dealing with contact shape and physics can be found in [24, 223].

In a very comprehensive review of finger input properties for multi-touch displays, [216]

provides suggestions that have been used already in [215].

Other studies looked to see when rotations, translations, and scaling actions are best if

kept separate or combined [78, 148]. If combined actions are chosen, the user’s ability to

perform the operations separately may be limited [148]. Additional studies have looked

at when to use the uni-manual or bi-manual type of interactions [111, 142]. Some studies

have concluded that one-hand techniques are better suited for integral tasks (e.g., rotations),

while two-hand techniques are better suited for separable tasks [111, 142].

Virtual Devices

Nielsen and Olsen used a triad mouse to emulate a 3D mouse [155]. In this study, they

performed 3D rotations, translations and scaling (independently of each other). For 3D

rotations, they used point P1 as the axis reference, and points P2 and P3 to define the line

forming the rotation angle to be applied to the object. In more recent work [78], one can

find subtle similarities with [155], in the proposition of defining a point of reference to

allow seamless rotation and translation.

The Virtual Sphere [29] was an important development for 3D rotation methods previ-

ously proposed. This study tested the Virtual Sphere against other virtual devices. It was

found that the Virtual Sphere and the continuous XY+Z device behaved best for complex

rotations (both devices behaved similar with the exception that the XY+Z device does not

7

allow for continuous rotations about all X, Y, Z axes). The Virtual Sphere simulated a real

3D trackball with the user moving left-right (X axis), top-down (Y axis) and in a circular

fashion (Z axis) to control the rotation of the device. Related work included the Rolling

Ball [61], The Virtual Trackball [6], and the ARCBALL [83]. The ARCBALL “is based

on the observation that there is a close connection between 3D rotations and spherical ge-

ometry” [17].

Multi-Touch Techniques

Hancock et al. provided algorithms for one, two and three-touches [78]. This allowed the

user to have direct simultaneous rotation and translation. The values that are obtained from

initial touches T1, T2 and T3 and final touches T ′1, T ′2 and T ′3 are ∆yaw, ∆roll and ∆pitch,

which are enough to perform the rotation on all three axes, and ∆x, ∆y, ∆z to perform the

translation. A key part of their study showed that users preferred gestures that involve more

simultaneous touches (except for translations). Using gestures involving three touches was

always better for planar and spatial rotations [78].

A different approach is presented in RNT (Rotate 'N Translate) [119], which allows

planar objects to be rotated and translated, using the concept of friction. This meant that

the touch was performed opposing the objects’ movement or direction, causing a pseudo-

physics friction. This concept was also referred to as “current”. This particular algorithm

is useful for planar objects and it has been used in other studies (e.g., [175]).

The spatial separability problem when dealing with 3D interactions (for multi-touch

displays) was studied in [148]. The authors proposed different techniques that helped

the user perform the correct combination of transformations [148]. The combination of

transformation included scaling, translation + rotation, and scaling + rotation + transla-

tion, among others. From the proposed techniques in [148], two methods yielded the best

results. They were Magnitude Filtering and First Touch Gesture Matching [148]. Mag-

8

nitude Filtering works similarly to snap-and-go [148], but it does not snap to pre-selected

values or objects. It also introduced the concept of catch-up. This concept allowed “con-

tinuous transition between the snap zone and the unconstrained zone.” [148]. The other

technique, First Touch Gesture Matching, worked by minimizing “the mean root square

difference between the actual motion and a motion generated with a manipulation subset

of each model” [148]. The algorithm selects the correct technique using best-fit error and

the magnitude of the transformation.

1.6.3 3D Navigation

Since the days of the animated film, “A Computer Animated Hand,” the development of the

Sensomora Simulator by Hellig [19, 84], and the contributions by Ivan Sutherland [202,

203], the field of Computer Graphics (CG)2 led practitioners and researchers to look for

ways to push the envelope further. One of these challenges has been to push the state-of-

the-art for 3D navigation. This is the primary objective of this dissertation, and the relevant

literature on the topic is described next.

3D navigation3 has been used in a variety of domains, including medicine [55, 72,

114, 132, 138], large-scale virtual environments [181], geographical and geological envi-

ronments [8, 23, 30, 38, 196, 201], other scientific visualizations [31, 54, 227, 230, 231],

astronomy [53], dynamic 3D worlds [183], city models [179], energy management sys-

tems [5, 149], video games4 [222], Tangible User Interfaces (TUI) [228] , and others

[2, 33, 177, 208]. Note that not all the 3D navigation studies include 6-DOF. In some

2See http://design.osu.edu/carlson/history/lessons.html.

3Some work has overlap with 3D interactions.

4See games such as Doom, Quake, and Microsoft Flight Simulator.

9

http://design.osu.edu/carlson/history/lessons.html

domains, having 4-DOF may be enough. For example, Sultanum et al. studied 3D naviga-

tion for geological outcrops with only 4-DOF [201].

One of the common tasks in 3D navigation is to search for objects in the virtual world.

As is described in Chapter 2, there are two types of search: naïve and primed. This was

first studied for large virtual worlds by Darken and Sibert [34]. The study looked at way-

finding (see [17, Chapter 7]) for search and exploration. They found that if no visual cues or

directional guides are given, users will tend to become disoriented [34]. Another important

finding was that users tend to follow natural paths (e.g., coast line). This worked was

followed up by Bowman et al. [15].

Bowman et al. described a testbed evaluation for virtual environments [15]. This in-

cluded selection, manipulation, and travel experiments. In the travel experiment, which is

of interest to this dissertation, they performed naïve search and primed search (see Chapter

2), as described in [17, 34]. In this study [15], users were provided with flags, with numbers

1-4. In addition, the target was marked with a painted circle consisting of a 10-meter radius

(large) or a 5-meter radius (small). For the naïve search, the targets were in numerical order,

with a low accuracy (large circle) required. The targets were not all visible during the naïve

search. In the primed search, all the objects were visible and they were not sorted in nu-

merical order. The required accuracy was changed to a 5-meter radius (small circle). Seven

different travel techniques were used in this between-subjects experiment. For the naïve

search, the gaze-directed technique [16] was the faster out of the seven techniques tested.

Right after the gaze-directed technique, pointing [16] and Go-Go [171] techniques came

second. For the primed search, gaze-directed and pointing techniques were significantly

faster than the HOMER [17] approach. In both cases, the map technique was found to be

the slowest one [15]. At the end of the experiment, the authors concluded that pointing

gave the best results for navigation [15].

10

When working in large-scale environments, with multiple displays, Ruddle et al. [181]

looked at the effect between head-mounted and desktop displays. Each participant, a total

of 12 subjects, traveled long distances (1.5 km) [181]. Two findings from the study are rel-

evant to this dissertation. First, participants “developed a significantly more accurate sense

of relative straight-line distance” when using the head-mounted display (HMD) [181]. Sec-

ond, when subjects used the desktop display, they tended to develop a “tunnel vision,”

which led to missing targets [181].

Santos et al. studied the difference between 3D navigation with a non-stereo, desk-

top display versus a HMD5 [195]. In this comparison study (42 subjects), the subjects

were divided, into non-experienced and experienced gamers, as well as three levels for

their stereoscopic usage (none, moderate, experienced). The experienced gamers group

performed differently, with respect to how many objects were caught in the game when

using the desktop display [195]. This indicated that their previous skills helped this group

of subjects to perform the task. This is due to their familiarity with similar environments.

No statistical difference for the groups where found when they used the HMD. Santos et

al. found that users preferred the desktop display [195].

A usability study conducted by Fu et al. [53] looked at large-scale 3D astrophysical

simulations. Their navigation approach used different gestures and touch widgets to allow

different actions in a multi-dimensional world, to study astrophysics. Users found tasks

using multi-touch very intuitive and useful for the specific-domain tested. This study did

not include a quantitative analysis, but did show that users (16 participants) found the use

of multi-touch intuitive. The rotations where performed with one finger, with a movement

that was horizontal for the rotation about the Y axis, vertical for the rotation about the X

axis, and diagonal pan to rotate about an arbitrary axis on the XY-plane. Rotations were

5HMD are stereo.

11

also performed with different gestures, with five (or four) fingers in the same direction.

Translations and scale gestures where also provided.

The WiiMote has been a popular device for 3D navigation. A study using Google

Earth compared two different configurations for the WiiMote [196]. To move front/back,

left/right, the first configuration used the accelerometer and the second configuration used

the Infrared (IR) sensor. The rest of the movements in Google Earth were shared by both

configurations. The study found that the accelerometer configuration showed a statistically

significant improvement, with respect to the other configuration [196]. A similar study

used the WiiMote to compare three different techniques for video game navigation [222].

The objective was to navigate while avoiding some objects. The first technique used the

accelerometer sensor, the second technique used the WiiMote for head-tracking using the

IR sensor, and the third technique combined the prior techniques, adding a Kalman filter

[232]. Techniques two and three were also modified to provide alternate versions, which

used the Nintendo WiiMote MotionPlus (gyroscope sensor). The third method (hybrid)

was preferred when performing the maneuver and aversion tasks. When comparing the

techniques with or without the MotionPlus, users preferred the MotionPlus for the evasion

task but not for the maneuver tasks [222].

In a comparative study, Lapointe et al. [123] looked at the interactions of 3D navigation

with 4-DOF. The devices compared for this study were a keyboard, a mouse, a joystick, and

a GamePad. Their quantitative study showed that the mouse significantly outperformed the

other devices [123]. In another comparison study, Beheshti et al. [8] studied the difference

between a mouse using a desktop display and a multi-touch tabletop6. In their study, the

tabletop (multi-touch) outperformed the desktop (mouse); however, this difference was not

statistically significant [8]. Furthermore, there was no spatial difference between genders

6Microsoft Surface, first generation.

12

[8]. This result is in contrast with other studies that have showed a significant difference

between genders in similar environments [7, 27, 32, 124].

In a game study by Kulshereshth and LaViola Jr. [120], they evaluated performance

benefits when using a head-tracking device. From a total of 40 subjects, half of them

used the head-tracking device to assist them in playing four games given by the exper-

imenters. The other half did not use the head-tracking device. The games tested were

Arma II, Dirt2, Microsoft Flight, and Wings of Prey [120] using a Personal Computer (PC)

and an Xbox 360 controller. The subjects where divided into two groups: Casual and ex-

perienced gamers. For the casual gamers, they reported a significant preference for the

head-tracking device when playing Dirt2, providing a more engaging user experience. For

the experienced gamers, they reported a significant preference for the head-tracking device

when playing Microsoft Flight, providing a more engaging user experience. The study also

showed that experienced gamers showed a significant improvement when using the head-

tracking device for Arma II and Wings of Prey compared to a traditional game controller.

Their analysis found that experienced gamers may benefit by using a head-tracking device

in certain scenarios, such as First-Person Shooter (FPS) and air combat games [120].

In the experiment conducted by Yu et al., titled “FI3D: Direct-Touch Interaction For

the Exploration of 3D scientific Visualization Spaces” [231], they studied 3D navigation

using touch. The technique used in [231] allowed users to navigate in 3D. The virtual

world was a representation of scientific data. Users navigated using single-touch gestures

or the mouse. The objective was to test a 7-DOF that included X, Y, Z translations; yaw,

pitch, and roll rotations; and scaling (the 7th degree) to zoom in or out of the screen. Their

approach [231] limited the touch to one finger interaction in most instances and provided

the use for an additional touch to create specific constraints to aid the movement. Their

study showed that the mouse had a faster time for translation and rotation, but only the

improvement in rotations was statistically significant for the mouse. The case of the scale

13

(zoom in/out), showed a significant difference between both input devices, with the mouse

having a faster action time [231]. Their method concentrated on visualization of data,

consisting of visualization spaces were (most) data had pre-determined spatial meaning

[231]. This required the user to support the mental model of a dataset [114].

Some contributions provided interesting techniques for 3D navigation, which are worth

mentioning in this literature survey. For example, in 1997, Hanson and Wernert devel-

oped methods for constrained 3D navigation using two-dimensional (2D) controllers [80].

Another technique was to use TUIs, as shown by Wu et al. [228]7. The NaviRadar, a

pedestrian feedback system for navigation, provided tactile feedback to the users [182]. A

very interesting approach for World-in-Miniature (WIM)8 is the work by Coffey et al. [31].

Their approach used WIM slices to interact with sections of the world [31]. Real-world

methaphores have been also used. For example, the Segway PT, two-wheel ride9, was used

as inspiration in [210] for 3D traveling. There have also been techniques to explore cities

[179]. A different approach was to use sketching for 3D navigation. The study by Hage-

dorn and Döller used a sketch-based approach to accomplish navigation tasks [71]. A novel

approach by McCrae et al. for multi-scale 3D navigation was studied in [136]. Different

camera techniques have been used for 3D navigation, such as the two-handed Through-The-

Lens technique [200], HoverCam [110], controlled camera animation [185], and Navidget

[70]. Navigation for time-scientific data was studied by Wolter et al. [227]. Visual memory

for 3D navigation was also explored [176]. Many other studies have proposed techniques

for 3D navigation tasks [16, 18, 29, 44, 49, 69, 95, 155, 183, 186, 193, 204, 211, 230].

7See also [66].

8See [17, Chapter 5]. For additional references about related work about this topic, see [31].

9See http://www.segway.com.

14

http://www.segway.com

1.6.4 Gesture Modeling and Petri Nets

Recognition

There have been various methods proposed to achieve touch gesture recognition, including

the use of finite state machines [90, 91], Hidden Markov Models (HMM) [189], neural net-

works [169], dynamic programming [134], featured-based classifiers [180], and template

matching [4, 107, 127, 225]. Thorough reviews can be found in [99, 170, 205].

Some of the methods used in handwriting recognition [205] serve as a foundation for

gesture recognition techniques [12]. While handwriting recognition efforts date as far back

as the 1950s [205], it has been the work of Rubine [180] that has been used as a foundation

by some in the gesture recognition area [191, 225]. The Rubine algorithm used a simple

training technique with specific features [180].

The “$ algorithms”10 is a partial list of techniques derived or inspired by work from

the $1 algorithm [225], such as [4, 115, 116, 127, 213]. The $1 algorithm [225] provided

a simple way to develop a basic gesture-detection method. In contrast, algorithms based

on Hidden Markov Models or neural networks [169] involved a high level of complexity

for the developer and the system as well. The $1 algorithm provided a very fast solution

to interactive gesture recognition with less than 100 lines of code [225] and required a

simple training set. However, it is not meant for the recognition of multi-touch gestures.

This does not diminish in any way the importance of the $1 algorithm, because there are

several features that make it important. Some examples are the obvious resampling of the

gesture, the indicative angle (“the angle formed between the centroid of the gesture and

[the] gesture’s first point” [225]), and the re-scaling and translation to a reference point to

keep the centroid at (0,0). The $1 algorithm was in part inspired by the publications titled

“SHARK2: A Large Vocabulary Shorthand Writing System for Pen-based Computers”

10Referred to as the dollar family by their authors.

15

[117] and “Cursive script recognition by elastic matching” [188]. The goals of the $ family

of algorithms are described below:

• Present an easy-to-implement stroke recognizer algorithm.

• Compare $1 with other sophisticated algorithms to show that it can compare certain

types of symbols.

• Understand gesture recognition performance for users, recognizer performance, and

human subjective preferences.

The $N algorithm [4], with double the amount of code (240 lines), improved the $1

algorithm [225] to allow single strokes and rotation invariance discrimination. For example,

to make a distinction between A and ∀, rotation must be bounded by less than ±90° [4].

The $N algorithm [4] was extended primarily to allow single strokes to be recognized.

This algorithm provided support for automatic recognition between 1D and 2D gestures by

using “the ratio of the sides of a gesture’s oriented bounding box (MIN-SIDE vs MAX-

SIDE)” [4]. In addition, the algorithm provided recognition for a sub-set of templates,

to optimize the code. This reduction of templates was done by determining if the start

directions are similar and by computing the angle formed from the start point through the

eighth point. A common feature of the $1 and $N algorithms [4, 225] is the utilization of

the Golden Section Search [173].

Other methods similar to the $1 [225] and $N [4] algorithms have been implemented.

For example, the Protractor Gesture Recognizer algorithm [127] works by applying a near-

est neighbor approach. This algorithm is very close to the $1 algorithm [225] but attempts

to remove different drawing speeds, different gesture locations on the screen and noise in

gesture orientation. The study by Vatavu et al. (referred to as $P), used the concept of

cloud of points to recognize strokes [213]. Additional algorithms provide great resources

for future work. Dean Rubine provided an excellent set of features to be tested with multi-

16

touch data. In addition to the Rubine algorithm [180], the work of Wang et al. [215] can

be used to find whether or not the gesture was created with fingers in an oblique position.

Finally, $P [213] provided a great direction for multi-touch recognition.

Modeling

The importance in Human-Computer Interaction (HCI) of descriptive models (e.g., “Three-

state model for graphical input” [21]) and predictive models (e.g., Fitts’ law) can be seen

in the seminal works by English et al. [46] and Gray et al. [62]. A descriptive model is

a “loose verbal analogy and methaphore” [167], which describes a phenomenon [133].

A predictive model is expressed by “closed-form mathematical equations” [167], which

predict a phenomenon [133].

Input systems formalism is not recent. The pioneer work by Newman (1968) used a

state diagram to represent a graphical system [153]. The seminal work by Bill Buxton

in “A Three-State Model of Graphical Input” [21] demonstrated that input devices, such

as mouse, pen, single-touch, and similar ones, needed only three states to be described.

Around the same time as Buxton’s work, a well-rounded model for input interactions was

published by Myers [147].

Multi-touch gesture detection, or detection of touch events, has been explored. In 2013,

Proton and Proton++ showed the use of Regular Expressions (RegEx) to accomplish ges-

ture detection [112]. Lao et al. [122] used state-diagrams for the detection of multi-touch

events. Context-free grammar was used by Kammer et al. to describe multi-touch ges-

tures without taking implementation into consideration [106]. Gesture Coder [130] cre-

ated Finite-State Machines (FSMs) by demonstration11 to later use them to detect gestures.

Gesture Works and Open Exhibits by Ideum used a high-level language description, using

11Training methods.

17

XML, called Gesture Markup Language (GML) A rule-based language (e.g., CLIPS) was

used to define the Midas framework [187].

Petri Nets have also been used to detect gestures. Nam et al. showed how to use

Coloured Petri Nets (CPN) to achieve hand (data glove) gesture modeling and recognition

[151], using HMM to recognize gesture features that are then fed to a Petri Net (PN). PNs

have been shown to be applicable in event-driven systems [75], which is another reason they

are interesting to use for modeling modern input devices. Spano et al. [198, 199] showed

how to use Non-Autonomous PNs [35] (low-level PNs), for multi-touch interaction. Also,

Hamon et al. [75] expanded on Spano’s work, providing more detail to the implementation

of PNs for multi-touch interactions.

1.7 Dissertation Structure

The structure of the dissertation is organized in a series of chapters, including background,

methodologies (two chapters), experiment design, experiment analysis, experiment discus-

sion, and conclusion.

Chapter 2 describes the background research, concepts, and terminology pertinent to

this dissertation. Chapters 3 and 4 describe the contributions from this dissertation. Note

that this is divided into two chapters. Chapter 3 describes all the contributions and Chapter

4 expands on 3D Navigation System (3DNav), which is the multi-touch system imple-

mented and evaluated with human subjects. Then, the design of the experiment used to

evaluate 3DNav is explained in Chapter 5, with its data analysis in Chapter 6. A discussion

about the experiment data is found in Chapter 7. Finally, the conclusion from this research

is presented in Chapter 8.

The appendices contain additional information that is complementary to this disserta-

tion. For example, Appendix B provides the actual questionnaires given to the subjects,

18

Appendix C contains the approval memos from the institutional review board (IRB) office,

and Appendix D describes the Xbox 360 controller in detail.

19

CHAPTER 2

BACKGROUND

This chapter provides the background information for this dissertation. It covers basic

understanding of the concepts of CG, HCI, 3DUI, and PN. For additional details about

these topics, see [37, 92, 133, 174].

2.1 Computer Graphics

CG is the primary reason that has allowed PCs and mobile devices to become pervasive in

today’s society. Furthermore, interactive computer graphics allows for non-static 2D and

3D images to be displayed on the computer with a redraw rate higher than humans can

perceive. Interactive graphics provides one of the most “natural means of communicating

with a computer” [51] and a user. The primary reason is the ability to recognize 2D and 3D

patterns, making graphical representation a rapid form to understand knowledge [51].

The following section covers the essential parts of CG that relate to this dissertation. In

specific, how CG relates to 3D navigation. There are additional details, such as global il-

lumination, programmable shaders, and other advanced features, that are beyond the scope

of this dissertation; the reader is suggested to see [92, 131, 190]. For an introduction to

various topics about real-time rendering, see [3].

2.1.1 Camera Space

There are various types of cameras. Two popular types of cameras are first-person and

third-person. A first-person camera1 is like viewing the outer space of the universe from

1Popularized by the game Doom and later Quake.

20

Figure 2.1: Camera Space [77]

the inside of a spaceship. This has been used in FPS games. A third-person camera2 is like

viewing a spaceship as it interacts with the universe. For the purpose of this dissertation,

the camera plays a central role in 3D navigation. A first-person camera was used for the

study.

In CG, a pipeline refers to a “sequence of data processing elements, where the output

of one element is used as the input of the next one” [77]. In other words, is a sequential

process that adds, modifies, and removes from the previous input until it creates the desired

graphical output. The main steps in a pipeline include vertex processing, rasterization,

fragment processing, and output merging. The pipeline has kept evolving over time. To

read more about the current pipeline, see [131, 190].

The pipeline starts with the vertex process, which operates on “every input vertex stored

in the vertex buffer” [77]. During this process, transformations such as rotations and scal-

ing are applied. Later, the rasterization “assembles polygons from the vertices and converts

each polygon to a set of fragments” [77]. Then, the fragment process works on each frag-

ment and finds the color needed to be applied, as well as applying texture operations. A

2The famous Nintendo game, Mario Bros. used a third-person camera.

21

fragment is a pixel with its updated color. Finally, the output merging completes the pro-

cess and outputs the graphical representation to the user. In general, the vertex and fragment

processes are programmable3 and the rasterization and output merging is fixed (hard-wired)

into the software or hardware.

Before covering the space camera, it is important to have the local space and the world

space in context. The local space is the coordinate system used to create a model, for ex-

ample, a single mesh in 3DS Max4. The local space is also called object space or model

space. The world space is the coordinate system used for the entire virtual scene. For the

particular case of the study performed, the world remained static while the camera moved.

However, there are many instances where local objects may need to have transformations

applied that are not applied to the entire world. For additional information about transfor-

mations, see [77]. The local, world, and camera spaces are right-hand systems, as shown

in Figure 2.1. The following list describes the camera components (adapted from [77]):

• EYE is the current position of the camera, denoted by a 3D point, in reference to the

world space.

• AT is a 3D point, where the camera is looking towards.

• UP is a vector that describes where the top of the camera is pointing towards. A

common usage is to have this vector set to [0,1,0]. This indicates that the top of the

camera is pointing to the positive Y axis.

The camera has a view frustum that defines the viewable space. This also helps the ren-

dering system to clip anything found outside the frustum (see Figure 2.2). The parameters

found in this view volume are (adapted from [77]):

3In older OpenGL, the entire pipeline was fixed.

4Other popular 3D Modeling tools are Maya and Blender.

22

Figure 2.2: View Frustum [77]

• fovy defines the vertical field of view (FOV), which is the visual angle of the camera.

• aspect is the ratio between the height and width of the view volume.

• n is the near plane for the view volume.

• f is the far plane for the view volume.

2.1.2 3D Translation And Rotations

In an interactive computer graphics system, the movements of a camera are accomplished

using transformations (e.g., affine transformation). There are additional transformations

such as scale and reflection, among others (see [39]). For the study conducted in this

dissertation, only translation and rotations are critical to understand.

Translations are the simplest to work with. Translation is the linear movement on X, Y,

and Z axes. To perform a translation, simple addition and multiplication done to each indi-

vidual axis is enough. For example, to move the object 30 units to the left, the translation

vector will simply be T.x = T.x+30. The origin is set to be at [0,0,0].

Orientation is closely related to direction, angular displacement, and rotations. Direc-

tion usually denoted by a vector and indicates where the vector is pointing; however, the

direction vector has no orientation. If you twist a vector along the arrow, there is no real

23

change. Orientation “cannot be described in absolute terms” [39]. An orientation de-

scribes a given rotation based on a reference frame. Angular displacement is the “amount

of rotation” [39]. Orientation may be described as “standing upright and facing east” [39]

or by adding angular displacement as “standing upright, facing north” [39] and then rotat-

ing “90° about the z-axis” [39]. There are several ways to describe orientation and angular

displacement such as matrix form, Euler angles, and quaternions. For the purpose of this

dissertation, only Euler angles and quaternions are covered.

Euler Angles

Euler angles are defined as the angular displacements of a “sequence of three rotations

about three perpendicular axes” [39]. The order of application of the rotations makes a

difference in the final result. This means that if a rotation about the X axis is applied before

the rotation about the Y axis, the result can be different than the one obtained if the rotation

about the Y axis is applied first. The fact that this method to describe orientation uses three

individual operations for each type makes it very easy to use by humans.

With Euler angles, the definition of pitch, roll, and yaw are quite intuitive. The easiest

way to think about these types of rotation is to think about an airplane, as shown in Figure

2.3. Yaw is defined as the rotation about the Y axis (also called heading). Pitch is defined

as the measurement of rotation about the X axis (also called elevation). Roll is defined as

the rotation about the Z axis (also called bank). These are called the principle axes.

There are a few important consideration that must be taken into account when using

Euler angles. First, rotations applied in a given sequence will yield a result that may be

different if the rotations are applied in a different order. For example, a pitch of 45 degrees

followed by a yaw of 135 degrees may yield a different result if the yaw is applied before

the pitch. Second, the three rotations in Euler angles are not independent of each other.

For example, the transformation applied for a pitch of 135° is equivalent to a yaw of 180°,

24

Figure 2.3: Principal Axes. Drawn by Auawise5

followed by pitch of 45°, and concluded by a roll of 180°. A common technique is to limit

the roll to ±180° and the pitch to a ±90° [39].

An additional problem with Euler angles is known as Gimbal lock. This phenomenon

happens when the second rotation angle is ±90°, which causes the first and third rotations

to be performed about the same axis. To correct this problem, one can set the roll to 0° if

the pitch is ±90° [39].

Quaternions

Quaternion is a number system used to represent orientation, which is very popular in

CG. A quaternion is represented by a scalar value (w) and a vector (v) with x, y, and z

components, as shown in Equation 2.1. Its popularity is due to some of its advantages.

First, quaternions using the slerp function (see [39]) provide smooth interpolation. Second,

quaternions use only four numbers. This makes it fairly easy to convert them from and to

matrix form. It is very easy to find the inverse of a given angular displacement. Finally,

it provides fast concatenation using the quaternion cross product. Nevertheless, they have

some disadvantages as well. While four numbers is less than nine numbers in a matrix,

quaternions are larger than Euler angle representation. Also, if the values provided to

5http://commons.wikimedia.org/wiki/File:Yaw_Axis_Corrected.svg.

25

http://commons.wikimedia.org/wiki/File:Yaw_Axis_Corrected.svg

the quaternion are invalid, the quaternion may become invalid. This can be overcome

by normalizing the quaternion. Finally, quaternions are not as easy to visualize as Euler

angles. Regardless of the disadvantages mentioned, quaternions are the preferred method

in graphics and game engines (e.g., OGRE [100]).

[w (x y z)] = [cos(θ/2) (sin(θ/2)nx sin(θ/2)ny sin(θ/2)nz)] (2.1)

2.1.3 Geometric Modeling

This dissertation makes use of various polygon meshes6, which represent a 3D model to

be used in a rendering application [218]. The polygon representation is not the only way

to model objects. Alternative methods include bi-cubic parametric patches, constructive

solid geometry, and implicit surface representation, among others. For this dissertation,

the polygon representation is the only one used. In particular, Object-Oriented Graphics

Rendering Engine (OGRE) uses its own mesh binary format (and an available Extensible

Markup Language (XML) version) to load 3D models. It is important to note that graphics

processing units (GPUs) have been highly optimized to use polygon representations [77].

In addition, polygon models can use hierarchical and spatial representation to define a

group of objects working as a unit (e.g., person with legs and arms).

Polygon models are represented using vertices, faces, and edges. A very common ap-

proach is to use the half-edge data structure [13]. For more information about data struc-

tures for polygon meshes, see [13, Chapter 2]. A mesh also contains vertex normal and

texture coordinates, among other properties. Sometimes, the mesh may also contain data

related to the animation for the object. A very typical technique is called skeletal animation,

6Commonly referred to as mesh.

26

where specific parts of the mesh are defined for movement. The animation topic is beyond

the scope of this dissertation. For more information about animation, see [162, 168].

The topic of geometric modeling is quite large. The reader is suggested to look at

[13, 141, 217].

2.1.4 Scene Managers

Scene managers are useful to handle large virtual worlds. While there are different ways to

approach the design of a scene manager, the “common practice is to build scene as ontolog-

ical hierarchies with spatial-coherency priority” [207]. Different types of scene managers

are available to graphics engines, such as binary space partitioning (BSP), quad-tree, and

octree, among others. These types of hierarchies are called scene graphs. For example,

Theoharis et al. defines a scene graph as the set of nodes that “represents aggregations of

geometric elements (2D or 3D), transformations, conditional selections, other renderable

entities, (e.g., sound),” operations and additional scene graphs [207]. A more compact defi-

nition is that a scene graph is a spatial representation of rendering objects in a virtual world

where operations can be applied to parents or children of this graph. Mukundan defines a

scene graph as a data structure that “represents hierarchical relationships between transfor-

mations applied to a set of objects in three-dimensional scene” [144]. The general type of

graph used in a scene manager is directed, non-cyclic graphs or trees of nodes [207]. The

definition of a scene graph may vary depending on the actual type. The list below details

some of the items that a scene graph includes in a node [45]:

• Rendering elements:

– Static meshes.

– Moving meshes.

– Skeletal meshes.

27

– Materials.

• Collision elements:

– Bounding volumes.

– Trigger actions.

– Bullets.

• Other elements:

– Artificial Intelligence (AI) path.

– Game data.

– Sounds.

Three very useful functionalities of a scene manager are instancing, operations, and

culling. Instancing allows the use of existing objects (e.g., meshes) to create nodes. This

means that instead of duplicating all the geometric information, a node can be created that

points to the primary object. For example, this could mean that a car with certain material

and geometric representation could be referenced 100 times, without having to duplicate

this information. Later, using different transformation operations or changing basic details,

some of those cars may look different and be placed in different locations. This is the

importance of being able to perform different types of operations in the node. The most

common operation is to perform geometric transformations to the object. The usefulness of

the scene node is that the operation can be local to the node, without affecting the parents.

Finally, culling allows the scene manager to make a decision about which objects to render.

While this is done by the GPU as well, the scene manager can be highly optimized to

minimize work. An extended study about culling is found in [51, Chapter 15].

This dissertation uses OGRE [100] and its scene manager. The generic scene graph

was used for this dissertation. This scene graph (ST_GENERIC) is a basic representation

28

of a hierarchical tree with parent/child relationships. The most common scene graph used

for large virtual worlds is the spatial (using partitions) hierarchical representation, called

octree. For a detailed study on spatial representations, see [184]. For additional informa-

tion, the reader is suggested to consult [41, 42, 51]. For a specific formal study about BSP,

quadtrees, and octrees, see [10, 121].

2.1.5 Collision Detection

Collision detection deals with the problem of how to find two objects occupying the same

space at a given time [212]. For 3D real-time environments (e.g., games, simulators), this

topic defines how to detect the intersection (collision), and what to do when it happens

[47]. The latter part, which deals with the action following the intersection, is up to the

designer. A common approach is to use physics engines (e.g., Bullet) to perform some type

of reaction to the collision (e.g., bounce). That is outside the scope of this dissertation, but

the reader is suggested to see [43].

In this dissertation, the type of collision detection performed was a simple collision us-

ing the built-in functions provided by OGRE. This collision type is referred to as a bound-

ing volume, where you can set spheres, boxes, and other 3D shapes that can help with the

collision algorithms [47].

2.2 Human-Computer Interaction

HCI is the field that studies the exchange of information between computers and their users.

The field emerged in the decade of the 1980s, with influences from many other fields, such

as Psychology, Computer Science, Human Factors, and others. An alternate definition

of HCI is the communication between computer systems and computer users. How the

communication enables the use of the technology is a central part of the study of HCI.

29

A field closely related to HCI is Human Factors, which is concerned with the capabili-

ties, limitations, and performance by people when using any type of systems7. Also, from

the perspective of the system design, Human Factors studies the efficiency, safety, comfort-

ability, and enjoyability when people use a given system. This seems quite close to HCI

if you think of systems as computer systems [133]. The HCI field also draws knowledge

from Psychology. Some examples are Cognitive Psychology, Experimental Psychology,

and others. This is very useful, as it helps us to understand users, and tests how they in-

teract with different types of computer systems. HCI is a very broad field. In HCI, you

can find Virtual Reality (VR), 3DUI, Affective Computing (which draws as much as from

Psychology as it does from AI), and others.

Major events in the HCI community [133] started with the vision of Vannevar Bush

with “As We May Think,” the development of the Sketchpad by Ivan Sutherland, the de-

velopment of the computer mouse by Douglas Engelbart, and the launch of the Xerox Star

system. Then, the first interest group formed (SIGCHI8) in 1982, followed by the release

of the seminal book, The Psychology of Human-Computer Interaction, and the release of

the Apple Macintosh, starting a new era for computer systems.

2.2.1 Usability

Usability is defined as the user acceptability of a system, where the system satisfies the

user’s needs [154]. Furthermore, usability is an engineering process that is used to under-

stand the effects of a given system with the user, in other words, how the system commu-

nicates with the user and vice-versa. Usefulness “is the issue of whether the system can

be used to achieve some desired goal” [154]. This breaks down into utility and usability.

7It doesn’t have to be a computer system.

8See http://www.sigchi.org.

30

http://www.sigchi.org

Utility addresses the question of the functionality of the system, which means if the system

can accomplish what it was intended for [154]. Usability in this case refers to “how well

users can use that functionality” [154]. Finally, it is important to understand that usability

applies to all aspects of a given system that a user might interact with [154]. The following

list briefly describes the five traditional usability attributes (adapted from [154]):

• Learnability: The system must have a very small learning curve, where the user can

quickly become adapted to the system to perform the work required.

• Efficiency: Once the user has learned the system, the productivity level achieved

must be high in order to demonstrate a high efficiency.

• Memorability: The system is considered to have a high memorability if when the

user returns after some time of usage, the interaction is the same or better than it was

the first time.

• Errors: The system is considered to have a low error rate if the user makes few errors

during the interaction. Furthermore, if users make an error, they can recover quickly

and maintain productivity.

• Satisfaction: The interaction with the user must be pleasant.

2.2.2 The Light Pen and the Computer Mouse

There are two major events that are critical moments in HCI for people who study input user

interfaces: the Sketchpad by Ivan Sutherland9 and the invention of the mouse by Douglas

Engelbart. This all happened before the explosion of the field in the 1980s.

Having more than one device prompted English, Engelbart, and Berman [46] to ask:

Which device is better to control a cursor on a screen? This was the first user study dealing

9He also introduced the VR HMD.

31

with input devices for computing systems that may have marked a “before and after” in

glshci [46].

In this study (“Display-Selection Techniques for Text Manipulation”), the subjects were

presented with a computer mouse, a light pen, a joystick with two modes (absolute and

rate), Grafacon10, and a user’s knee lever (also referred to as the knee controller). The

study used repeated-measures, meaning that all devices were tested for each subject. The

dependent variables that were measured were: time to acquire target and the error rate

when trying to acquire the target. The combination of both measurements led researchers

to the conclusion that the computer mouse was a better device based on the study. This

was great news, because a knee lever doesn’t seem quite exciting to use. Figure 2.4 shows

how the knee controller was faster than the rest of the devices. However, looking at Figure

2.5, it is clear that the mouse has the lowest error rate compared to the other devices tested.

Another interesting part of the study is that while the light pen was faster than the computer

mouse, it was known to cause discomfort11 after prolonged use12.

2.2.3 Graphical User Interfaces and WIMP

GUI is a type of interface that allows the user to interact with windows or icons, as opposed

to a text interface. The GUI was first seen in the Xerox Star system, developed at PARC

[87]. The GUI has allowed systems like Microsoft Windows and Apple Macintosh to

become pervasive for day-to-day use in desktop computers and mobile devices.

10Graphical Input device for curve tracing, manufactured by Data Equipment Company.

11Which was probably known from the times of the sketchpad [202].

12Using a pen while resting a hand on the surface may be more comfortable [93].

32

Figure 2.4: Mouse Study: Time [46]

Figure 2.5: Mouse Study: Error Rate [46]

33

The WIMP paradigm13 emerged with the availability of Apple and IBM desktop com-

puters. This paradigm refers to the interaction of users with the GUI, which includes

WIMP [178]. The Windows, which can be scrolled, overlapped, moved, stretched, opened,

closed, minimized, and maximized, among other operations, were designed to be the core

of the visual feedback and interaction with the user. The Menus allow the user to select

different options that augmented the use of the Window. The menu can be activated by

clicking on it. Once selected, the menu expands down (or in a different direction), which

allows the user to select an option. The Icons allow a representation of applications, ob-

jects, commands, or tools that, if clicked, become active. Icons are commonly found in a

desktop area of the display or in a menu. Finally, the central part of WIMP is the Pointing.

This allows the user to interact with any of the interface elements already mentioned, using

a mouse with a click button [178]. The paradigm along, with the GUI interface, has evolved

to allow many new types of interactions. However, the basic principle remains the same.

2.2.4 Input Technologies

Input devices are the primary tool for providing information to a computer system, which is

essential for the communication between a user and a computer. In general, input devices

can sense different physical properties, such as “people, places, or things” [88]. When

working with input devices, feedback is necessary. For example, using a brush to paint in

mid-air without proper feedback will be as useless as using the pen without paper, or using

a car alarm system without some feedback from the device or the car. This is why input

devices are tied to output feedback from a computer system.

13Referred to as interface by Dix et al. [37].

34

While each device has unique features and it is important to know the limitations and

advantages from a given device, there are some common properties that may apply to most

devices. The following is a list of input device properties (adapted from [88]):

• Property Sensed: Devices can sense linear position and motion. Some devices will

measure force and others change in angle. The property that is used will determine

the transfer function that maps the input to the output. Position-sensing devices are

absolute input devices, such as multi-touch. Motion-sensing devices can be relative

input devices, with the example of the mouse as one of them. There is room for

ambiguity depending on the actual design of the transfer function. For example, a

multi-touch device can be used as a relative input device if desired, even though it is

a direct-input system.

• Number of Dimensions: The number of dimensions sensed by the device can de-

termine some of its use. For example, the mouse senses two dimensions of motion

for X and Y coordinates, while a vision-input system may sense three dimensions of

motion for X, Y, and Z axes. While the mouse does sense two dimensions, the trans-

fer function may be mapped to a higher degree of dimensions with some additional

input, to provide a richer set of interaction (e.g., 3D navigation). Some other devices

have different types of 3D sensors (e.g., gyroscope, accelerometer, etc.). Understand-

ing the dimensions of the device can provide a designer with the correct mapping for

the transfer function.

• Indirect versus Direct Devices: Indirect devices provide a relative measurement to

be used with the computer system. For example, the motion of the mouse is relative

to the position of the cursor and the movement of the user. In other words, while

the cursor may traverse the complete screen from left to right, the movements by

the user with the mouse may be confined to a smaller space than the screen. A

mouse may even be picked up and moved to a different location without causing any

35

movement on the display, using the transfer function to map the movements. Direct

devices provide a different interaction for users. In general, they lack buttons for state

transitions and allow the user to work directly on the display. One example is the use

of a digital pen with a tablet. The user can paint directly on the screen, having a 1:1

relationship with the surface display. There are typical problems with direct devices,

such as occlusion, i.e., the user may occlude a part of the display with their hand.

• Device Acquisition Time: “The average time to move one’s hand to a device is

known as acquisition time” [88]. Homing time is defined as the time that a user takes

to go from one device to another. One example is the time that it takes to return from

a multi-touch desktop to a keyboard.

• Gain: The control-to-display (C:D) gain or ratio is defined as the distance an input

device moved (C) divided by the actual distance moved on the display (D). This is

useful to map indirect devices, such as the computer mouse.

• Sampling Rate: Sampling rate is given by how many samples are processed each

second. For example, if the WiiMote Motion Plus has a sampling rate of 100 hertz

(Hz), this means that for every one second, there are 100 digital samples from the

device. In some devices, the sampling rate will be fixed, and in others, it may vary.

The difference may be due to an actual delay on the computer system and not to the

input device. Understanding the sampling rate by a designer can provide additional

features for the user’s interactions. For additional information about sampling rate

and Digital Signal Processing (DSP), see [94, 235].

• Performance Metrics: Performance metrics are useful to study in order to under-

stand the interaction of a input device, its user and the computer system. One ex-

ample is seen in the classic study of the mouse versus other devices [46], where

the error-rate was a significant factor of why the mouse was the device found to be

36

most effective. Other metrics include pointing speed and accuracy, learning time,

and selection time, among others.

• Additional Metrics: There are several other metrics, including some that may be

unique to an input device. One example is the pressure size in multi-touch displays14.

Understanding all the possible metrics are important. The recommendation by Bow-

man et al. is to know the capabilities and limitations of each device [17].

Isometric and Isotonic Devices

It is important to make a difference between isometric and isotonic devices because this

study used a GamePad in the experiment, which contains two thumb-sticks (miniature joy-

stick). Isometric devices are pressure (force) sensing. This means that the user must apply

force to move the device (e.g., joystick). Given this force, the movement could be precise

(e.g., isometric joystick). Isotonic devices are those with “varying resistance” [234]. In

other words, as the “device’s resistive force increases with displacement” [234], the device

becomes sticky, “elastic, or spring loaded” [234]. For example isotonic joysticks “sense

the angle of deflection” [88], with most isotonic joysticks moving from their center posi-

tion [88]. There are also designs of joysticks that are hybrid [88].

2.2.5 Input Device States

Defining the states for modern input devices has proven not to be an easy task. In the

seminal work by Bill Buxton [21], he defined that almost any input device to be used with

a WIMP could be expressed in three states. His model was able to model devices, such as

PC mouses, digital pens, or single-touch displays. However, even his model could fail in

14If this is available to the device.

37

(a) Isometric Joystick (b) Isotonic Joystick

Figure 2.6: Images

some instances. One example is in the work by Hinckley et al., which demonstrated that a

digital pen required a five-state model [89].

With the explosion of many new input devices, such as multi-touch, Microsoft Kinect,

and Leap-Motion, among others, the three-state model is no longer valid. Multiple attempts

to define a new model made have been made, as was described in 1.6. Some of the attempts

for modeling multi-touch have included Regular Expressions (RegEx), FSMs, and high-

level Petri Nets (HLPNs).

2.2.6 Bi-Manual Interaction

Humans have used both hands when needed to perform some specific task [133]. While

typing is possible with one hand, both hands seems to be the most effective way to type for

most users, when using a PC keyboard. For example, when using a hammer, a user may

need to hold the nail with the non-dominant hand, while hitting the nail with a hammer, in

the dominant hand.

Psychology researchers studied the bi-manual behavior years before HCI researchers.

For example, in 1979, Kelso et al. studied the coordination of two-handed movements

[108]. In their work, they found that while the kinematic movements of the hands are dif-

38

ferent, the movements of both hands are synchronized for certain tasks. In their own words:

“The brain produces simultaneity of action as the optimal solution for the two-handed task

by organizing functional groupings of muscles,” which act as a single-unit [108]. Another

example of psychology that deals with two hands is the work by Wing [224]. He studied the

timing and coordination of repetitive tasks using both hands. While he used only four sub-

jects, the study led to the conclusion that there may be a difference between synchronous

movements versus asynchronous movements [224]. The users did report that synchronous

movements in bi-manual tasks were easier [224]. In general, studies have shown that most

tasks are asymmetric [133]. Studies have also shown that while hands work together, they

have different roles to “perform different type of tasks” [133].

Later, in 1987, Guiard proposed a model for bi-manual action [67]. His model makes

two assumptions: First, the hand represents a motor (people having two motors), which

serve to create a motion. Second, the motors cooperate with each other, forming a kine-

matic chain; one hand articulates the movement of the other hand. Guiard’s model de-

scribes the “inter-manual division of labor” [67].

In 1986, Buxton and Myers published a study for bi-manual input [22]. They found that

users benefited by using both-hands, because of the efficiency of hand motion in bi-manual

actions [22]. Later, in 1993, Kabbash, MacKenzie, and Buxton [102] studied the use for

preferred and non-preferred hands. They found that the non-preferred hand performs better

in tasks that do not require action (e.g., scrolling). The preferred hand was found to be better

for fine movements. This meant that each hand has “its own strength and weakness” [102].

Figure 2.7 shows an example of a bi-manual task and the difference between both hands.

The following describes the roles and actions for each hand [67, 102, 133] (adapted from

table in [133, Chapter 7]):

• Non-preferred hand:

– Leads the preferred hand.

39

– Provides a spatial frame of reference for the preferred hand.

– Achieves non-fine movements.

• Preferred hand:

– Follows the other hand.

– Utilizes a frame of reference set by the non-preferred hand.

– Achieves fine movements.

Later, in 1994, Kabbash, Buxton, and Selen published “Two-Handed Input in a Com-

pound Task” [101]. This is a significant contribution, as it is the first publication to adapt

the bi-manual model by Guiard [67]. The experiment had four modes when using the com-

puter: one uni-manual, one bi-manual, with each hand having independent tasks, and two

bi-manual, requiring asymmetric dependency. The study found that one of two bi-manual

asymmetric modes performed better (as expected by them) than the other methods. This

method is called the Toolglass technique, previously published by Bier et al. [11], which

provided the use of additional widgets for the user’s interactions. The reader is suggested

to look at [126] to read more about the benefits of two-handed input.

The bi-manual model has been used for multi-touch devices, such as [9, 143, 229].

Benko et al. showed that the Dual Finger Stretch technique was found to provide a simple

and powerful interaction [9]. Moscovich and Hughes found that indirect mapping of multi-

touch input was compatible (one hand versus two hands) in most cases [143]. They also

found that “two hands perform better than one at tasks that require separate control of two

points” [143]. Bi-manual modeling plays an important role in multi-touch interaction and

HCI.

40

Year Name Description
1960 Single Touch Single Touch (not pressure-sensitive), developed at

IBM, the University of Illinois, and Ottawa, Canada.
The development occurred in the second part of the
1960s.

1972 PLATO IV Touch
Screen Terminal

The invention of flat-panel plasma display, which in-
cluded a 16x16 single touch (not pressure-sensitive)
touch screen. This machine included real-time
random-access audio playback and many other fea-
tures. The touch panel worked by using beams of
infrared light in horizontal and vertical directions.
When the infrared light was interrupted at a point, it
triggered the touch [40].

1978 Vector Touch One-Point Touch Input of Vector Information for
Computer Displays [86]. It included the ability to de-
tect 2D position of touch, 3D force and torque.

1981 Tactile Array Sensor
for Robots

Multi-touch sensor for the use of robotics to enable
different attributes, such as shape and orientation.
This consisted of an array of 8x8 sensors in a 4-inch
squared pad [226].

1982 Flexible Machine Inter-
face

The first multi-touch system developed by Nimish
Mehta at the University of Toronto. The system con-
sisted of a frosted-glass panel, producing black spots
in the back of the panel. This allowed simple im-
age processing, marking white spots as non-touch and
black spots as touch.

1983 Soft Machines Soft Machines: A Philosophy of User-Computer In-
terface Design by Nakatani et al. provides a full dis-
cussion about the properties of touch screen. The at-
tributes discussed outline certain contexts and appli-
cations where they can be used [150].

1983 Video Place - Video
Desk

A multi-touch vision-based system [118], allowing
the tracking of hands and multiple fingers. The use of
many hand gestures currently ubiquitous today, was
introduced by Video Place. These included pinch,
scale and translation.

1984 Multi-Touch Screen Multi-touch screen using capacitive array of touch
sensors overlaid on a CRT. It had excellent response.
This machine was developed by Bob Boie and pre-
sented at SIGCHI in 1985.

Table 2.1: Partial History of Multi-Touch Until 1984

41

Figure 2.7: Bi-Manual Interaction [133]

2.3 Multi-Touch Displays

Multi-touch displays come in many flavors. The most representative type of multi-touch

has been the smart phone, with the introduction of the Apple iPhone. Other types seen in

daily use are tablets, such as the Apple iPad. The introduction of Microsoft Windows 7 and

8 opened a possibility to use multi-touch displays with a desktop PC. For public spaces,

vertical displays can be a solution for multi-user interaction. Finally, another modality is

to have tabletop displays (horizontal) that will act just as a desk (e.g., Microsoft Surface).

Multi-touch has even been extended to work with stereo vision [68].

To take into perspective the history of multi-touch, Tables 2.1, 2.2, 2.3 provide a look at

(in a big part from the Perspective of Bill Buxton15) the milestones in multi-touch technolo-

gies. In particular, the PLATO IV Touch System and the philosophy of “Soft Machines”

are shown in Table 2.1.

15See http://www.billbuxton.com/multitouchOverview.html.

42

http://www.billbuxton.com/multitouchOverview.html

Year Name Description
1985 Multi-Touch Tablet Lee, Buxton and Smith developed a multi-touch tablet

with the capability of sensing not only location but
degree of touch for each finger. The technology used
was capacitive [125]. It is important to note that the
development of this tablet started in 1984, when the
Apple Macintosh was released.

1985 Sensor Frame Paul McAvinney at Carnegie-Mellon University. This
multi-touch tablet, which read three fingers with good
accuracy (errors could occur if there were shadows),
had optical sensors in the corners of the frame. The
sensors allowed the system to detect the fingers when
pressed. In a later version, the system could detect
the angle of the finger when coming in contact with
the display.

1986 Bi-Manual Input Buxton and Meyers studied the effect of bi-manual
multi-touch. One task allowed positioning and scal-
ing, while the hand performed the selection and nav-
igation task. The results reflected that continuous bi-
manual control provided a significant improvement in
performance and learning [22]. The control was very
easy to use.

1991 Digital Desk Calculator Wellner developed a front projection tablet top system
that sensed hands and fingers, as well as a set of ob-
jects. He demonstrated the use of two-finger scaling
and translation [220].

1992 Simon IBM and Bell South introduced the first smart phone
that operated with single-touch.

1992 Wacom Tablet Wacom released digitizing tablets, which included
multi-device and multi-point sensing. The stylus pro-
vided position and tip pressure, as well as the posi-
tion of the mouse-like device, enabling commercial
bi-manual support [126].

1995 Graspable Computing The foundation of what has become graspable or tan-
gible user interfaces to use with multi-touch devices.
[50]. The work by Fitzmaurice included Active Desk
as well.

Table 2.2: Partial History of Multi-Touch from 1985 to 1995

43

Year Name Description
1997 The metaDESK metaDesk was developed by Ullmer et al. [209],

which demonstrated the use of Tangible User Inter-
faces(TUI).This addressed the problem that “dynamic
assignment of interaction bricks to virtual objects did
not allow sufficient interaction capabilities” [145].

2001 Diamond Touch Diamond Touch addressed the multi-user problem
with its multi-touch system [36].

2005 FTIR Han introduced FTIR [76].
2007 Apple iPhone Apple introduced the iPhone, a smart phone with

multi-touch capabilities.
2007 Microsoft Surface

Computing
Microsoft released an interactive tabletop surface for
multiple fingers, hands, and tangible objects. This led
to the later introduction in 2011 of Surface 2.0.

2011 Surface Computing 2.0 Second generation of the Microsoft Surface.
2013 Tangible for Capacitive Voelker et al. developed PUCs. A tangible device for

capacitive multi-touch displays [214].
2014 Houdini Hüllsmann and Maicher demonstrated the use of LLP

[93].

Table 2.3: Partial History of Multi-Touch from 1997 to 2014.

2.3.1 Projective Capacitive Technology

Projective Capacitive Technology (PCT) has become pervasive in the day-to-day use of

consumers with the introduction of the Apple iPhone in 2007, and all the smart phones and

tablets thereafter. PCT detects the touch “by measuring the capacitance at each addressable

electrode” [1]. In other words, if a finger or a conductive stylus gets closer the electrode, it

disturbs the electromagnetic field. When this occurs, the change in capacitance allows the

touch to be detected with a specific location, with coordinates X and Y. PCT has two main

forms of sensing the touch: Self-capacitance and mutual-capacitance, shown in Figures

2.8a and 2.8b, respectively.

44

(a) Self-capacitance (b) Mutual-capacitance

Figure 2.8: Multi-touch Capacitance Technology
†: ©2014 3M.All rights reserved.

3M, the 3M logo, and
other 3M marks are owned by 3M.

Self-Capacitance

In the case of self-capacitance, the measurement of the electrode is with the ground. One

option is to use a multi-pad with addressable electrodes, with a connection for each of them,

as shown in Figure 2.9b. While this allows a multi-touch approach, screens greater than

3.5 inches become challenging because of the individual connection between the electrode

and the controller. A second option is to use the row and column approach, as shown

in Figure 2.10a. However, this approach has “ghost” points, as shown in Figure 2.10b,

because the electronics are not able to measure each individual intersection (the electronics

can only measure each electrode). This limits the approach to a single or dual touch screen

because it can provide false positive points, known as “ghost” points. When using the row

and column approach, the system can determine which is the closest location. Then, using

interpolation, the system can determine the location of a touch.

45

(a) Self-capacitance (b) Mutual-capacitance

Figure 2.9: Multi-touch Capacitance Technology
†: ©2014 3M.All rights reserved.

3M, the 3M logo, and
other 3M marks are owned by 3M.

Mutual Capacitance

Mutual capacitance exists when two objects hold charges. Projected capacitance displays

create mutual capacitance between columns and rows, where each intersects the other ob-

ject, as shown in Figure 2.9b. The system is able to measure multiple touches simulta-

neously during each screen scan. When the finger touches down near an intersection, the

mutual capacitance is reduced, causing the threshold to indicate that a touch has occurred.

2.3.2 Optical Touch Surfaces

Optical multi-touch systems provide additional features not available in regular multi-touch

systems. One example is the ability to use tangible objects of any type. It is important to

note that there have been advances in tangible technology, for capacitive displays [214].

Optical approaches use image processing to determine the location and type of interaction

with the surfaces.

46

(a) Self-capacitance Rows and Columns (b) Ghost Points

Figure 2.10: Multi-touch Capacitance Technology
†: ©2014 3M.All rights reserved.

3M, the 3M logo, and
other 3M marks are owned by 3M.

Frustrated Total Internal Reflection

The Frustrated Total Internal Reflection (FTIR) approach [76] is based on the optical total

internal reflection within an interactive surface. The electromagnetic waves are transmitted

into the transparent surface given the following two conditions:

1. If the refractive index of the inner material is higher than the outer material.

2. If “the angle of incidence at the boundary of the surface is sufficiently small.” [145].

A common FTIR configuration uses a transparent acrylic pane. This pane injects in-

frared light using strips of LEDs around its edges. When the user touches down, the light

escapes and therefore, it reflects the surface display, to be captured by a camera set per-

pendicular to the panel. In other words, the infrared light is “brought into the surface from

the side where it is trapped” [93] until a user presses down into the surface. Also, since

the acrylic is transparent, the projector can be in the back of the panel. A computer vision

algorithm is applied to obtain location and other features of the touch [145].

47

Diffused Illumination

The Diffuse Illumination (DI) approach produces infrared light below its surface. DI uses a

projector and an infrared-sensitive camera on the back of the surface. The infrared lighting

is also placed behind the projection surface (opposite in this case to FTIR) “to be brightly

lit in the infrared” [145]. Given this configuration, DI technology allows for robust tracking

of fingers and physical objects (tangibles). The advantage of physical objects, which use

fiducial markers or size of their shape, gives a clear edge to DI technology. This approach

also has the potential for hovering interaction.

Laser Light Plane

The Laser Light Plane (LLP) is another approach of an optical multi-touch system (see a

variation to this approach, called LLP+ [163]). The LLP dates back to 1972 by Johnson

[52]. One of the major advantages that it has over DI and FTIR is that it is the most

inexpensive system to build, as seen in [93], while remaining very effective.

The LLP system directs the infrared light above the surface. This gets “scattered at

every touch point” [93]. The major advantage to infrared light is that it gets scattered above

the display during the user’s interaction. This enables fast and reliable tracking of fingers

and tangibles, regardless of how fast the movements are from the user. This is because the

image is rich in contrast.

The LLP can use acrylic surfaces as well, as stable glass panes, which are less expensive

that acrylic panes. Also, by using lasers, the “illumination becomes independent from the

the tabletop size” [93].

The approach described in this section makes reference to the system used in Houdini

[93]. There are alternative approaches to LLP, which can be found in Exploring Multi-

Touch Interaction [103].

48

2.4 3D User Interfaces

A UI is the medium of communication between a user and a computer system. The UI

receives the input (actions) from the users, it delegates the computation to a designated

process, and then it represents the computer’s output into a representation that the user can

understand [17]. A 3DUI is the medium of communication between a user performing 3D

interaction with a computer. These are tasks “performed directly in a 3D spatial context”

[17]. The fact that someone is working in a 3D environment does not mean that they are

doing 3D interaction. For example, if the user is navigating a 3D landscape of Miami by

using commands or menu-driven actions, they do not constitute 3D interaction. Conversely,

3D interaction does not have to involve 3D input devices. For example, by using a 2D non-

stereo display with multi-touch capability, the user performs a 2D gesture to move along the

Z axis. This means that the 2D action has been mapped (or translated) to a 3D action. This

example is the case of the study conducted in this dissertation. There are several reasons

why 3DUIs are important to study. Bowman et al. provided five reasons in their seminal

book [17]:

1. Real-world tasks are performed in 3D.

2. 3DUI are becoming mature.

3. 3D interaction is difficult to solve, hence, it provides a challenge to many researchers.

This also means that there are many problems that need to be solved.

4. 3DUIs require better usability.

5. 3DUIs still have many open questions, leaving space to study and to innovate as

much in academia as in industry.

49

2.5 3D Output Interfaces

Required components of a 3DUI are the hardware and software that allows the graphical

representation of the output. The hardware devices, which are often referred to as display

devices, surface displays, or just plain displays, are the focus of this section. In addition to

displays, it is also important to describe the perception of the output from the point of view

of the user.

2.5.1 Visual Displays Characteristics

There are a few characteristics that visual displays have in common. Some of the charac-

teristics are field of regard (FOR), FOV, refresh rate (in Hertz), and spatial resolution.

Field of regard is the measurement of the physical space surrounding the user, mea-

sured in visual angle (in degrees). In other words, it contains all the available points from

the user’s perspective. Field of view is the measurement of the maximum visual angle

observed by the user. The FOV must be less than 200 degrees, which is approximately the

maximum for the human visual system [17]. Refresh rate is the speed of the next render-

ing cycle. Simply, it is how fast the screen is redrawn. In other words, each rendering cycle

produces new output. Spatial resolution is a measurement of quality given by the pixel

size. The unit for this measurement is dots per inch (DPI). Spatial Resolution is also af-

fected by the distance between the display and the user. There is a proportional connection

between pixels and resolution. As pixels increase, the resolution also increases, and vice

versa. Two different sizes of monitors with the same number of pixels do not have the same

resolution. In other words, the number of pixels is not equivalent to the resolution [17].

Some other important aspects are the different type of screen geometries (e.g., spheres)

and how they are drawn. Light transfer is a characteristic that it is important for the

design of user interfaces. How the transfer of light happens is determined by the type of

50

projection (e.g., front, rear). Finally, how comfortable the display device is in respect to the

user (ergonomics) is very important to consider when designing 3DUIs.

2.5.2 Understanding Depth

When using a 3DUI, depth plays an important role for human perception [17, 73]. In a

regular display, the drawing canvas is still 2D. It is easy to tell that the moon is far away

when looking at it. It appears small and far. However, when looking at two far away

objects in space, it is harder to tell the difference in distance from one’s point of view. At

near distances, multiple cues allow users to easily process depth [17, 73]. There are four

visual depth cue categories:

• Monocular, static cues.

• Oculomotor cues.

• Binocular disparity and stereopsis.

• Motion parallax.

Monocular Cues

Monocular cues are present in static images viewed with only one eye. This type of cues

is also called pictorial cues. These techniques have been employed by artists for a long

time (they were well known before computers) [92]. The following techniques are used to

convey depth (list adapted from [17, 74]):

1. Relative Size: The user can be influenced by apparent sizes. One example is if you

have a set of objects in decreasing size order, this will give an apparent distance

effect.

51

2. Interposition or Occlusion: Conveys a sense of depth by opaquing and occluding

pars that are farther away.

3. Height Relative to the Horizon: For objects above the horizon, the higher the object

is located, the closer it appears. For objects below the horizon, the lower the object

is drawn, the closer it seems.

4. Texture Gradients: It is a technique that includes density, perspective and distortion.

As the density of the surfaces increase, so it does the depth understanding for the user,

making the denser objects appear farther away.

5. Linear Perspective: As parallel (or equally spaced) lines are seen farther away, it

appears that the two lines are converging. It is important to note that lines do not

have to be straight but equally spaced. For example, a long train track.

6. Shadows and Shading: The user can determine depth information based on lighting.

Light will hit the nearest parts of an object, allowing someone to deduce this infor-

mation. Any object that has illumination will also produce shadows on the closer

surface.

7. Aerial Perspective: This effect (also called atmospheric attenuation) gives closer

objects the appearance of being brighter, sharper and more saturated in color than

objects far away.

Binocular Cues

The world is experienced by humans using both eyes but vision is a single unified per-

spective. By viewing a scene first with one eye only, and then with the other eye only, a

significant difference can be perceived. This difference between those two images is called

binocular disparity. A clear way to understand this phenomenon is to hold a pen close to

the face and alternate each eye to view this object.

52

The fusion of these two images with accommodation and convergence can provide a

single stereoscopic image. This phenomenon (stereopsis) provides a strong depth cue. If

the two images cannot be fused, then binocular rivalry will cause the user to experience

just one image or part of both images.

Oculomotor Cues

When dealing with binocular viewing, both eyes diverge with far-away objects and con-

verge with near objects. This superficial muscle tension is thought to have an additional

depth cue [74] called oculomotor cues. This muscle tension, in the visual system, is called

accommodation and convergence. The focus of the eye to a given image cause the eye

muscle to stretch and relax while obtaining the target image. This physical stage is called

accommodation. The rotations of the eyes are needed to fuse the image. This muscular

feedback is called convergence.

Motion Parallax

Motion Parallax is the change of perspective of the view. This can happen if the viewer is

moving in respect to the target object. The target object moves in respect to the user, or

both [73]. This phenomenon will make far-away objects appear to be moving slowly, and

near objects will appear to be moving faster [17]. For example, take a race where two cars

are traveling at 200 kilometers per hour. The fist car is passing in front of the viewer and

the second car is far away on the opposite side of the track. The second car will appear to

move slower, while the first car will seem to be moving faster. Another example is a car

traveling on the highway, with lights and trees that seem to be moving faster, and far-away

buildings appear to be moving slower.

53

More About Depth Cues

There are more depth cues than the ones described above. For example, color is also used

as a depth cue. The color blue appears far away because the atmosphere has a higher

absorption for warm colors, giving the horizon a more accentuated blue color [73]. Adding

blur to blue objects can give the illusion than an object is farther away. For additional

references, see [17, 73].

2.5.3 Displays

There are multiple types of displays, such as conventional monitors, HMD, and optical

HMD, among many others. The following is a partial list of output interfaces:

• Conventional Monitor is the most pervasive display found today in desktop com-

puters, notebooks, tablets and phones. Before the liquid-crystal display (LCD), the

common form was the cathode ray tube (CRT). With the right equipment, a conven-

tional monitor can achieve stereopsis with a pair of glasses and refresh rate of at least

100 Hertz. A few years ago, most monitors did not fit the specifications mentioned,

except for a few high-end displays. However, today, there are some affordable op-

tions available in the market, with 100 hertz or greater [17].

• Head-Mounted Display or Helmet-Mounted Display is a user-attached visual dis-

play commonly used in VR environments. The most recent and well-known example

to consumers is the Oculus Rift, recently acquired by Facebook. There are a vari-

ety of HMDs with distinct designs; some of them may include 3D audio and other

functionalities.

• Optical Head-Mounted Display allows the user to see through the device while still

looking at the computer’s graphical-generated images. The most recent example is

Google glasses.

54

• Surround-Screen Display is an output device with at least three large projection

displays screens, which surround the user. The screens are typically between 8 to 12

feet. The projectors are installed near the screens to avoid shadows. Front projectors

can be used as long as their position avoids the user’s shadows [17].

Additional output display devices exist. Some of these are Workbenches and Hemi-

spherical Displays, among others. For a presentation in detail about the devices and further

references, consult [17, 73].

2.6 3D Input Interfaces

3D input interfaces are devices that provide data, direction, or commands to a 3DUI, using

different types of input devices. An input device does not require the user to have 6-DOF to

be considered a 3D input device. This means that an input device, to be a 3D input device,

has to operate in such a manner that the input is mapped to a 3D action. The distinction

here between the interaction technique and input device is critical when designing a system.

The input device makes reference to a physical system (e.g., computer mouse) that allows

some measurement from the user (or by the user), which is then forwarded to the computer

system. The interaction technique is defined as how this input device is mapped into the

3DUI system [17].

Section 2.2.4 described characteristics for input technologies, which can be applied to

3D input devices. In addition, there are specific characteristics for 3D input interfaces. The

following attributes are important to consider when working with 3D input devices:

• Degrees of Freedom: The degrees of freedom (DOF) is the most critical character-

istics for a 3DUI interaction. For example, a 6-DOF device can give you a direct

mapping between translations for X, Y, Z axes and rotations about X, Y, Z axes. A

55

degree of freedom is “simply a particular, independent way that a body moves in

space” [17].

• Frequency of Data: The frequency16 of the data determines how the data is sent to

the computer system. The frequency of data may be continuous components, discrete

components, or both [17]. For example, the button in a GamePad will only return

pressed or not pressed. The thumb-stick found in the GamePad produces continuous

values for a given range.

• Active Devices: Devices are said to be active (or purely active) if they require the user

to perform a physical action with the device. One example is the multi-touch display,

which requires the user to touch the screen before any action can be taken [17].

• Purely Passive: Devices are said to be passive (or purely passive) if they do not

require any physical action from the user to generate data. This could be a vision-

based input system that is reading information from the environment, without the user

input. Nevertheless, the user may work with this device as an active input system. For

example, the device becomes an active system when the user performs hand-gestures

in the vision-based system to issue a command [17].

2.7 3D Navigation

The following section covers the background for 3D navigation, which is the central topic

of this thesis. This section outlines what 3D navigation is (travel), what types of tasks exist

for 3D navigation, and what the characteristics in 3D navigation are.

16Not to be confused with sampling frequency.

56

2.7.1 3D Travel

3D navigation is defined as traveling in a virtual 3D space. This is why it is also referred

to as travel17. Bowman et al. define travel as “the motor component of navigation — the

task of performing actions that move us from our current location to a new target location

or in the desired direction.” [17].

3D travel is critical for 3DUI, given that it is a common interaction task [17]. Travel

is also important because it usually supports a primary task. An example is when a user is

searching for objects in a game. The travel allows the user to search for the object (primary

task). For this reason, 3D navigation must be designed correctly. If the user needs to think

how to navigate for too long, then he or she will be distracted from the primary task, which

may be to find objects in a virtual world. There are different types of travel tasks. For the

study in this dissertation, it is important to understand exploration, search, maneuvering

tasks, and travel characteristics.

2.7.2 3D Travel Tasks

The most common travel task is exploration. In this type of task, the user has no specified

or required goal to complete. The user will only travel through the environment while

building knowledge of the objects around and the locations of those objects. The most

common example is navigating around a new city that the user has not known yet, to build

knowledge of places and monuments, for a future visit. It is important in the exploration

task that users are allowed to travel without constraint (other than outer limits or object

collisions) around the virtual world [17].

Another type of task is called search. This type of task has a goal or target location

within the virtual world. The user knows the final location of the required task. The user

173D navigation and travel have some differences [17].

57

may or may not know how to get to the location, but he or she knows the objective. The

search task can be divided into sub-categories. The first one is called naïve search, where

the “user does not know the position of the target or path to it in advance” [17]. This type of

search starts out as a basic exploration. The number of clues given to the user to complete

the goal are limited and focused to the exploration. The second sub-category of a search

task is called primed search. In the primed search task, the user “has visited the target

before or has some other knowledge of its position” [17]. In this type of task, the user

may know the final location; however, the user may still need to explore the virtual world,

or the user may know the path to the target. In other words, the primed search provides

more information to the user about the environment, in order to complete the assigned

task. While there are clear differences between naïve search and primed search, the line

dividing these two categories of search tasks can become blurred, depending on the design

of the 3DUI and the user.

One task, often overlooked in the discussion of travel, is called maneuvering. This

task is meant to take place “in a local area and involves small, precise movements” [17].

One example of this type of task is a user who may need to read a sign. In this scenario,

the user moves slightly down and rotates 10° on the Y axis. The small-scale movements

are critical for certain applications. A possible approach to facilitate maneuvering is to

use vision-based systems that provide fine reading of the face (as it turns) or devices that

provide physical motion with little or no error in the readings.

Another task to travel, quite useful in maps or large sets of data, is travel-by-scaling

[17]. This technique allows intuitive zoom-in or zoom-out of a given portion of the virtual

world. However, it is important to note that there are several challenges with this technique.

For example, does the user understand their current position when they scaled the world?

The view may be closer but the user is probably at the same location (before the zoom).

Does the user understand the visual feedback when the virtual world has scaled in or scaled

58

out? There are different solutions to these challenges, such as using a virtual body to

understand the dimensions of the scale. Another major issue is that users may have trouble

performing finer movements because when scaling the virtual world, the movements are

larger.

Finally, there are different travel techniques [17]. The most important techniques that

must be taken into consideration when designing a system are: active versus passive, and

physical versus virtual. The active technique is where the user has complete control of

the movement of the scene. Passive is where the system has control of the movements.

A middle ground is a semi-automated system, where the user has some level of control

while the system automates the rest. The physical technique refers to the actual body of

the user involved in performing the movements in the virtual scene (e.g., walking). The

virtual technique allows the user to utilize a virtual device to control the movements.

3D Travel Task Characteristics

3D travel tasks have characteristics that may be used to classify them. It is also a good idea

to have these characteristics in mind when designing a system. The following list contains

a few important characteristics (adapted from [17]):

• Distance to be traveled: This is the distance that it takes to go from location A to

location B. This may require velocity control in some instances.

• Turns: A travel task can also look into the number of turns taken (or the number of

turns required) in a given task.

• Required DOF: The number of DOF required for the travel task.

• Accuracy of movements: Travel task may need a very accurate movement (e.g.,

maneuvering) or realistic physics.

59

• Easy to use: Given that 3D navigation in most cases is a secondary task, the user’s

interaction must be intuitive.

2.8 Petri Nets

In the early years of the 1960s, Dr. Carl Adam Petri defined a general-purposed mathe-

matical model18. PN is a model-oriented language. The model describes the relationship

between conditions and events [35]. This provides a solution to a central challenge of com-

puter science (as well as other fields, such as engineering), which is the construction of

systems that can be specified, verified and executed, while providing a solid mathematical

framework.

PN is defined as a five tuple N = (P,T,F,W,M0), which is the net structure. Places

P and Transitions T are finite sets of places and transitions. The set of arcs is defined

as F ⊆ (P×T)∪ (T ×P). The weight function W is defined as F → {1,2,3, . . .}. The

dynamics definition (the dynamic state of the net) has the following rules [28]:

• A transition t is enabled if for each input place p, it has a minimum of tokens w(p, t),

the weight of the arc from p to t.

• If the transition t is enabled, then the transition may be fired.

• When an enabled transition t fires, then t removes w(p, t), from each input place p of

the given t. Once removed, the token w(p, t) is added to each output place p for the

given p.

18Dr. Petri created the net to visualize the chemical process in 1939 [174].

60

D
o
w
n

T1

T2

M
o
v
e32 5

S
w
ip
e

13

14

M
ov
e’

7

8

U
P

6

UP

4

B

18

17

T
e
rm
in
a
te19

21

E F

C

1

A
9

10

ZOOM

START

Figure 2.11: Vending Machine (Adapted from [174]).

The definition presented represents the spirit of the the PN created by Dr. Petri19,

and it is what the literature may refer to as low-level PNs. HLPNs20 were created out

of the necessity to have a more expressive model, while keeping the formal mathematical

idea of Dr. Petri. The difference between the low-level PN and HLPN could be seen

as the difference between Assembly Language and high-level languages, such as Java or

Python21.

As stated, HLPNs have many variations [35]. This dissertation has adopted a HLPN

called Predicate Transition Net (PrT Net), which was formulated by Genrich [59]. For a

basic introduction to PNs, please see [174]. For a detailed view of other HLPNs, see [35].

For a general quick overview, the reader is suggested to read [82, 146].

19Other definitions can be found. See Reisig [174].

20There are many HLPN types.

21This analogy is not meant to be an exact comparison.

61

2.8.1 Graphical Representation

PNs have the advantage of having a graphical representation of their mathematical model.

In the case of a HLPN, the net consist, of places represented by circles or ellipses, tran-

sitions represented by rectangles or squares, and arcs represented by arrows. Places are

discrete states, which can store, accumulate or provide information about their state. A

transition can produce, consume, transport or change data. The arcs provide the connec-

tions between places and transitions, or transitions and places. It is important to note that

an arc cannot connect a transition to a transition or a place to a place. A complete PN model

of a vending machine is shown in Figure 2.11. Note that the red labels are not part of the

graphical representation. They are placed there to identify the places with a label (e.g., A,

B, . . .), for clarity.

2.8.2 Formal Definition

Note that following definition is similar to the one used Chapter 3. However, the one here

is generic and the one in Chapter 3 applies to the model described in that chapter. The

HLPN used for the entire dissertation is Prt Net [59]. The Prt Net is defined as a tuple

(N,Σ,λ). This contains the Net N, the specifications Σ and the inscription λ. The Net N is

formed with places P, transitions T, and connecting arc expressions (as functions F). The

following is a detailed definition:

• N represents the PN, which is defined by a three-tuple N = (P,T,F).

– F ⊂ (P×T)∪ (T ×P).

– P ∩ T = /0.

• The specification Σ represents the underlying representation of type of tokens22.

22Tokens may be referred to as “sorts”.

62

– Σ = (S,Ω,Ψ).

– Ω contains the set of token operands.

– Set Ψ defines the meaning and operations in Ω. In other words, the set Ψ

defines how a given operation (e.g., plus) is implemented.

• λ defines the arc operation.

– λ = (φ ,L,ρ,M0).

– φ is the association of each place p ∈ P with tokens.

– L is the labeling inscription for the arc expressions, such as L(x,y) ⇐⇒ (x,y)∈

F .

– The operation of a given arc (function) is given by ρ= (Pre,Post).

– These are well-defined constraint mappings associated with each arc expres-

sion, such as f ∈ F .

– The Pre condition allows the HLPN to enable the function, if the Boolean con-

straint evaluates to true.

– Then, the Post condition will execute the code if the function is enabled (ready

to fire).

– Finally, the initial marking is given by M0, which states the initial state of the

HLPN.

The dynamic semantics of a Prt Net is defined [28] as follows:

• Markings of Prt Net is the mapping M : P→ Tokens. In other words, places map to

tokens, which is defined in the specification Σ.

• The variable e denotes the instantiation of expression e with α , where e can be ei-

ther a label expression or a constraint. Therefore, the occurrence mode of N is a

substitution α = {x1← c1, . . . ,xn← cn}.

63

• For a given marking M, a transition t in T, and an occurrence mode α_enabled, t is

enabled if and only if:

– ∀p ∈ P(L̄(p, t):α ⊆M(p))∧R(t) : α where: L̄(x,y) =


L(x,y), if (x,y) ∈ F

∅, otherwise

• If t is α_enabled at M, t may fire in occurrence mode α .

• An execution sequence M0[t0 > M1[t1 > ... is either finite when the last marking is

terminal (no more transitions are enabled), or infinite.

• The behavior of the net model is the set of all execution sequences, starting from M0.

64

CHAPTER 3

TOWARD 3D NAVIGATION WITH MULTI-TOUCH INTERACTIONS

With the explosion of modern input devices (e.g., multi-touch, WiiMote, Kinect), a set of

new challenges has surfaced. With the challenges, a great opportunity has been presented to

the current HCI researchers to close the gap between technology and users. The following

sections describe the contributions from this research towards 3D navigation dealing with

multi-touch systems.

3.1 Multi-Touch Feature Extraction

As stated in the literature review, there are different approaches to gesture recognition. The

approached described here uses feature extraction to determine the type of gesture. These

sections describe the evolution of the Feature Extraction Multi-Touch System (FETOUCH),

from an offline algorithm to a real-time solution.

3.1.1 FETOUCH

FETOUCH was tested using offline data in Windows 7 with multi-touch technology [113],

Microsoft Visual Studio (using C# language) and a 3M M2256PW multi-touch display.

Windows 7 provides either detection of pre-defined gestures or unclassified raw-touch data

when using its Application Programming Interface (API). FETOUCH uses the raw-touch

data because it provides flexibility to create custom gestures, as well as to test different

methods for detection.

When using raw touch data, most systems where multi-touch is available (e.g., iOS,

Windows) provide a trace, which contains a set of points with coordinates x and y. In addi-

tion, the system will generate a timestamp for each point and a unique ID, which indicates

the trace that it belongs to. The system generate events when the trace is activated (finger

65

���������� �	���

��
�
��
��	�

�����������

��

�	��� �����	���

���

����

Figure 3.1: State Machine

down), moved (finger moving), and deactivated (finger up). Each touch includes the ID

that is given at the moment of TOUCHDOWN, to be used during the TOUCHMOVE, and

to end when TOUCHUP has been deactivated. The ID gives us a way to group points from

each finger. For specific information on how Windows 7 handles multi-touch technology,

please see1 [113].

FETOUCH combines feature extraction with a finite state machine (FSM) [192], as

shown in Figure 3.1. The idea is to allow a state machine to keep control of the process

while the detection takes place. The input device’s state starts as idle. Here we have a state

transition to the touch state with either down or move events. Once the finger has been

lifted, we have a state transition back to idle with the UP event. Once the touch state, has

been reached, the decision must be made to identify it as either a tap (e.g., double tap, two-

finger tap) or a trace. After testing the system, it was noticed that differentiating taps from

gestures was unnecessary because the tap can be part of the set of gestures to recognize.

Nevertheless, maintaining a control of the states with a FSM is still useful.

When a point is detected, then the data is added to a to a thread-safe queue2 [221].

The queue is used to continue storing the traces while a specific window (buffer) of data is

processed. Once the queue is full, a transition will take place to the “process” state, where

Algorithm 3.1 takes over.

1Windows 8 has additional features. Refer to msdn.microsoft.com.

2The reader can find ready to use thread-safe data structures.

66

msdn.microsoft.com

Figure 3.2: Queue

Figure 3.2 gives more details about the queue and how we are using it. On the left side

of the figure, a three-finger gesture is performed by a user. The data points are stored in the

buffer as those points are coming in. The window must be of a large enough size to detect a

gesture (e.g., N = 64). By having this buffer, the user can perform multiple gestures while

keeping his or her hands on the display (if desired). Figure 3.2 shows this thread-safe queue

with a window size, for a given gesture.

Algorithm 3.1 detects swipe (translation), rotate ,and pinch in/out (zoom in/out). If

a system does not provide traces, one of the many clustering techniques available can be

used to create them [57]. Given the critical nature of a real-time application, any necessary

pre-computations must be performed while the traces are added to the queue. This is why,

when running the algorithm, it is expected that the grip will have been pre-computed.

The primary motivation is to lower the running time of the gesture detection in order

to use it with demanding 3D applications. Therefore, the running time of the algorithm is

as important as the complete utilization of all the resources available in the system. In this

context, it is important to note that the gesture detection runs in its own thread. For more

details about this multi-threaded approach, a C++ implementation can be found in [221]

67

or a more detailed explanation with Java code can be found in The Art of Multiprocessor

Programming [85].

Algorithm 3.1 starts by popping the buffer window in line 1. Since the data is collected

offline, the buffer is divided into a top half and bottom half buffer (initial and final states).

Before explaining the algorithm in more detail, the following variables are defined next:

traces, trace, grip, trace vector, spread, and angle rotation.

Traces is a set that contains information for the path taken by each finger. In other

words, for each finger, a set of properties is pre-computed, which is called trace in the

algorithm. For example, the x and y coordinates are the average of a given trace, as shown

in Equations 3.2 and 3.3 (for the y coordinate, replace the “x” for the “y”). Note that the

variable n in the formulas refers to the total x and y points for a given trace. Because the

buffer is divided into two snapshots, each snapshot has its own average. A grip is defined

by the average of all points in each snapshot, as shown in Equation 3.4. A trace vector

is defined as trace minus the grip, as shown in Algorithm 3.1, lines 12 through 15. The

spread is given by lines 18-19 in Algorithm 3.1, which calculate the spread as the average

difference between the grip point and the touch vector. Finally, the angle rotation is the

average of the angle obtained by the formula atan2 (see Equation 3.1) [39]. This is the

angle between the final touch vector and the initial touch vector.

atan2(y,x) =



0, x = 0,y = 0,

+90°, x = 0,y > 0,

−90°, x = 0,y < 0,

arctan(y/x), x > 0,

arctan(y/x)+180°, x < 0,y≥ 0

arctan(y/x)−180°, x < 0,y < 0.

(3.1)

68

Finally, the chosen gesture is given by any of the three distance variables (swipeDis-

tance, rotDistance, or zoomDistance) with the highest value found, as shown in Algorithm

3.1. The swipe distance is given by the spread of the first trace and the grip. The rotate

distance is given by the arc length. This is the calculated using average angle obtained in

line 20 and the radius of the swipe distance. Remember that atan2 [39] values range be-

tween±π . In order to obtain the distance, the proper factor 2 must be multiplied, as shown

in Equation 3.5. The zoom distance is given by the average final spread distance and the

average initial spread distance.

Once everything is computed in the for loop, all we have left to do is to determine the

correct gesture. The gesture detected is assigned according to the highest distance value

of the swipe distance, rotation distance or zoom distance. Additional information can be

obtained for specific detected gestures. For example, if the gesture detected is a zoom

gesture, the direction of the zoom can be obtained. While the primary goal of the algorithm

is to find the correct gesture, additional information is important to be precise about the

gesture. Algorithm 3.1 concentrates on finding the gesture type.

FETOUCH allows gesture detection while using off-line data for multi-touch displays.

It is important to note that FETOUCH is aligned to a problem statement written by Greg

Hamerly3, which provided some validation into the work of FETOUCH and ideas about

the feature extraction problem already described. For an expanded discussion, see [161].

iTrace[id].x =
1

n/2

n
2−1

∑
i=0

trace[id][i].x (3.2)

f Trace[id].x =
1

n/2

n−1

∑
i= n

2

trace[id][i].x (3.3)

iGrip.x =
1

n/2 ∑
t∈iTrace

iTrace[t].x (3.4)

3http://cs.baylor.edu/~hamerly/icpc/qualifier_2012/

69

http://cs.baylor.edu/~hamerly/icpc/qualifier_2012/

Algorithm 3.1 GestureDetection
Require: TouchCount > 0

1: traces← traceQueue.getWindow()
2: iTrace← traces.getHal f ()
3: f Trace← traces.getHal f ()
4: iGrip.x← iTrace.getGrip.x
5: iGrip.y← iTrace.getGrip.y
6: f Grip.x← f Trace.getGrip.x
7: f Grip.y← f Trace.getGrip.y
8: ivFirst.x← iTrace[1].x− iGrip.x
9: ivFirst.y← iTrace[1].y− iGrip.y

10: swipeDistance← sqrt(ivFirst.x2 + ivFirst.y2)
11: for t = 1 to traces.Count do
12: iv.x← iTrace[t].x− iGrip.x
13: iv.y← iTrace[t].y− iGrip.y
14: f v.x← f Trace[t].x− f Grip.x
15: f v.y← f Trace[t].y− f Grip.y
16: di← sqrt(iv.x2 + iv.y2)
17: d f ← sqrt(f v.x2 + f v.y2)
18: iSpread← iSpread +di
19: f Spread← f Spread +d f
20: angle← atan2(f v.y− iv.y, f v.x− iv.x)
21: rotAngle← rotAngle+angle
22: iSpread← iSpread/traces.Count
23: f Spread← f Spread/traces.Count
24: rotAngle← rotAngle/traces.Count
25: zoomDistance← f Spread− iSpread
26: rotDistance← rotAngle/360.0∗2∗π ∗ swipeDistance
27: return Gesture With Highest Distance

70

rotDistance =
Θ

360
2πr (3.5)

3.1.2 FETOUCH+

FETOUCH allowed the understanding of working with specific features when using touch.

However, the need for a real-time algorithm that would allow gesture detection was imper-

ative. This is why FETOUCH+ was developed. This new approach took the ideas from the

off-line algorithm and tested them in real-time. FETOUCH+ was developed with Windows

7 using the multi-touch available in the Windows API (WINAPI) [113], Microsoft Visual

Studio (using C# 4.0 language), and a 3M M2256PW multi-touch monitor. This time, the

use of C# Tasks 4 gave the process a multi-thread approach while keeping the implementa-

tion simpler. The testing and implementation was performed in C#, and the description of

the algorithm is specific and provides details about how to implement it in other languages.

There are some definitions similar to FETOUCH. Nevertheless, it is important to state

them again, as they encapsulate the new algorithm with small differences. First, raw touch

data [113] (e.g., Windows, iOS) was used to capture data points stored in a set called trace.

A trace starts when a user presses with one finger and continues until the user removes the

finger from the device. Figure 3.3 shows a rotation gesture with two fingers. This consti-

tutes two traces. Each trace has a a unique identifier (id) and contains a set of points with

2D coordinates (x,y) and a timestamp t, for each point. The general events provided are the

initial touch of a trace (TOUCHDOWN), the movement of the trace (TOUCHMOVE) and

the end of the touch (TOUCHUP). A trace point structure contains coordinates x and y,

timestamp t0, count c (indicating how many continuous points are found in the same loca-

tion), Boolean p (indicating if the touchpoint was already processed) and the last timestamp

4Task is a higher level of implementation for using threads.

71

Figure 3.3: Rotation Gesture

t1. The trace point is also referred to as TOUCHPOINT. An additional data structure with

the name of TRACE is also stored. This contains id for the unique identifier, the initial

timestamp ti, the final timestamp tf, and the Boolean d to see if the trace is ready for

deletion. For additional information on how Windows 7 handles the touch API, see [113].

It is important to keep the touch events and gesture detection in different thread pro-

cesses [221]. Therefore, all the active traces are stored in a concurrent hash map and a

concurrent arraylist (vector) to keep the set of touch points of a given trace. Once data

points are processed, they can be safely removed. The advantage to having them in differ-

ent threads (other than speed) is to have a real-time approach to gesture detection. A buffer

with a maximum size of windowSize is defined. This means that when the buffer is full, it

needs to perform the gesture detection while still allowing touch events to execute. During

test trials, it was found that the windowSize works best for N = 32 or N = 64.

TOUCHDOWN is the initial event that fires when a trace begins. This means that a user

has pressed a finger on the multi-touch device. The event fires for each new trace. There

is room to further improve the performance of the gesture detection system by creating

additional threads for each trace. The first trace is stored in the vector vtrace, during this

event. The vector is kept in a hash map mtrace, which contains a collection of all traces.

For the first trace, The timestamp t0 is equal to the timestamp t1.

As the user moves across the screen (without lifting his or her fingers), the event that

fires is TOUCHMOVE (Listing 3.2). In line 3 of Listing 3.2, a method called removeNoise

72

is invoked by passing the previous and current traces. It is important to note that the al-

gorithm may benefit from removing the noise or undesired points from the data while it is

running. For example, one may consider that noise occurs if a new touch point is within±d

of a previous point, where d is a pre-calculated value depending on the size of the screen

(e.g., 2). If the noise variable is true, the counter c and the timestamp t1 need to be updated

for this trace, as shown in lines 5-6. Otherwise, the touch point is added to the vector. At

the end of the procedure, in line 13, the map is updated (depending on the implementation

and language, this may be skipped). The noise removal depends on the actual requirement

of the system.

Algorithm 3.2 TOUCHMOVE

1: trace← T RACE(id)
2: vtraces← mtraces. f ind(id)
3: noise← removeNoise(trace,vtrace)
4: if noise then
5: trace.c+= 1
6: trace.t1 = trace.requestTimeStamp()
7: else
8: trace.t1← trace.requestTimeStamp()
9: trace.t0← vtraces[length−1].t0

10: vtrace← mtraces.getValue()
11: vtrace.push_back(traces)
12: mtraces.insert(id,vtrace)

The final event is when the user removes his or her finger. Since the gesture detection

algorithm may still be running, the data is marked for deletion only. Once Algorithm 3.3

finishes, the process can safely delete all the data touch points that have been used.

Algorithm 3.3 detects translation(swipe), rotation, and zooming (pinch). Once the

buffer is full, the window of touch data is split into two lists named top and bottom. This

creates an initial and a final snapshot to work with.

Algorithm 3.3 requires pre-computed values, grip points, and average touch points (de-

scribed below) before it can execute. The choices to pre-compute the values can be done in

73

the TOUCHMOVE event or by firing a separate process before Algorithm 3.3 starts. The

values for Algorithm 3.3 are stored in the top and bottom structures, respectively.

The features identified in each gesture are grip, trace vector, spread and angle rota-

tion. A grip is the average of all points in each top and bottom list. A trace vector is

a trace minus the grip, as shown in Algorithm 3.3, lines 11 through 14. The spread is

calculated in lines 15-18 of Algorithm 3.3 as the average distance between the grip point

and the touch vector. The angle rotation is given by the average of the angles obtained by

atan2 [39], which is the angle between the final touch vector and the initial touch vector.

This is exactly the same as in FETOUCH.

To select the correct gesture, the algorithm finds the highest value from the three dis-

tance variables: swipeDistance, rotDistance, or zoomDistance. The definition of the swipe

distance is the spread of the first trace and the grip. The rotate distance is calculated to be

the arc length, which is given by the the radius of the swipe distance and the average angle,

shown in lines 19-20 of Algorithm 3.3. It is important to note that atan2 [39] values range

between ±π . This is why there is a factor of 2 in line 26 (just like in FETOUCH). Finally,

the zoom distance is defined as the difference between the average final spread distance and

the average initial spread distance. FETOUCH+ demonstrates the ability to find features

that can be used to detected a gesture. This is an alternative to using template matching.

For an expanded discussion, see [156].

3.1.3 Implementation: FETOUCH++

After testing FETOUCH and FETOUCH+, a few modifications were required to have a

more optimized system. This is an enhanced version of FETOUCH+, meant to find addi-

tional features. This implementation is referred to as FETOUCH++. All the concepts of

FETOUCH+ apply in FETOUCH++.

74

Algorithm 3.3 GestureDetection

1: top← traces.getTop(windowSize)
2: bottom← traces.getBottom(windowSize)
3: tGrip.x← top.getGrip.x
4: tGrip.y← top.getGrip.y
5: bGrip.x← bottom.getGrip.x
6: bGrip.y← bottom.getGrip.y
7: spread.x← iTrace[1].x− iGrip.x
8: spread.y← iTrace[1].y− iGrip.y
9: swipeDistance← sqrt(spread.x2 + spread.y2)

10: for t = 1 to traces.Count do
11: i.x← tTrace[t].x− tGrip.x
12: i.y← tTrace[t].y− tGrip.y
13: f .x← bTrace[t].x−bGrip.x
14: f .y← bTrace[t].y−bGrip.y
15: di← sqrt(i.x2 + i.y2)
16: d f ← sqrt(f .x2 + f .y2)
17: iSpread← iSpread +di
18: f Spread← f Spread +d f
19: angle← atan2(f .y− i.y, f .x− i.x)
20: rotAngle← rotAngle+angle
21: iSpread← iSpread/traces.Count
22: f Spread← f Spread/traces.Count
23: rotAngle← rotAngle/traces.Count
24: zoomDistance← f Spread− iSpread
25: rotDistance← rotAngle/360.0∗2∗π ∗ swipeDistance
26: return Gesture With Highest Distance

The first objective was to find the lowest number of points required to be able to output

a gesture while the gesture was active. The number found was 32, as shown in Listings 3.2

and 3.3. It is important to note that if the number of gestures to be recognized increases

from the set tested on, this parameter may need to be incremented to 64.

A small difference from FETOUCH+, during the onDown event, is the finger count

(fingers++), as shown in Listing 3.1. The idea is that while the traces can determine how

many fingers are currently being used, there is a need to keep a separate value of the num-

ber of fingers touching the screen, to run the clean-up process, in the onUp (Listing 3.2)

event. Of course, this depends on the definition of a multi-touch gesture. In the case of

75

FETOUCH++, the gesture recognition is defined as active, while fingers are on the surface

display. The partial recognition will be fired every N samples (e.g., 32) to see if a gesture

can be detected, as shown in Listing 3.3. The onUp event also fires the recognition method.

The recognition of FETOUCH++ is very similar to FETOUCH+. First, the split func-

tion (Listing 3.4) divides the points for each trace into two halves (top and bottom). This is

performed in parallel using the Task class from C#. An example of extracting the top half

is shown in Listing 3.5. Once this is completed, the split function calculates the features to

be used with the recognition process by calling the method getFeatures, as shown in Listing

3.6. In conclusion, FETOUCH++ has allowed the possibility to investigate further features

that can be helpful for multi-touch devices.

Listing 3.1: CloudFeatureMatch (onDown)
1 private void OnDown(WMTouchEventArgs e)
2 {
3 fingers++;
4 incPoints();
5 M.Point p = new M.Point(e.LocationX, e.LocationY, e.Id);
6 map.Add(e.Id, p);
7 }

Listing 3.2: CloudFeatureMatch (onUp)
1 private void onUp(WMTouchEventArgs e)
2 {
3 incPoints();
4 M.Point p = new M.Point(e.LocationX, e.LocationY, e.Id);
5 map.Add(e.Id,p);
6 fingers--;
7 if (localPoints >= 32 || fingers == 0)
8 recognize();
9 if (fingers == 0)

10 cleanUp();
11 }

Listing 3.3: CloudFeatureMatch (onMove)
1 private void onMove(WMTouchEventArgs e)
2 {
3 incPoints();
4 M.Point p = new M.Point(e.LocationX, e.LocationY, e.Id);
5 map.Add(e.Id,p);

76

6 if (localPoints >= 32)
7 recognize();
8 }

Listing 3.4: CloudFeatureMatch (Slit)
1 private void split(int half,int tCount)
2 {
3 int avgHalf = half;
4 Task<Point>[] taskSplitArray = new Task<Point>[tCount * 2];
5 int[] keys = mapTraces.getKeys();
6 int i = 0;
7 foreach (int k in keys)
8 {
9 taskSplitArray[i] = Task<Point>.Run(

10 () => { return BreakTop(k, avgHalf); });
11 taskSplitArray[i+1] = Task<Point>.Run(
12 () => { return BreakBottom(k, avgHalf); });
13 i += 2;
14 }
15 Task<Point>[] t = {
16 Task<Point>.Run(() => { return getFeatures(taskSplitArray);})

};
17 Task<Point>.WaitAll(t);
18 }

Listing 3.5: CloudFeatureMatch (BreakTop)
1 private Point BreakTop(int trace,int avgHalf)
2 {
3 int half = getHalf(trace, avgHalf);
4 Points pts = new Points(avgHalf);
5 float avgX = 0;
6 float avgY = 0;
7 for (int i = 0; i < half -1; i++)
8 {
9 Point p = mapTraces[trace][i];

10 pts.addPoint(p);
11 avgX += p.X;
12 avgY += p.Y;
13 }
14 mapTop = new MapPoints();
15 mapTop.AddPoints(trace, pts);
16 Point avgPoint = new Point(avgX / half, avgY / half); ;
17 avgPoint.CountFromAverage = half;
18 return avgPoint;
19 }

77

Listing 3.6: CloudFeatureMatch (Features)
1 private GestureDetected getFeatures(Task<Point>[] taskSplitArray)
2 {
3 traceFeatureList = new TraceFeatureList();
4 for (int i = 0; i < taskSplitArray.Length; i += 2)
5 {
6 Point p = taskSplitArray[i].Result;
7 Point p2 = taskSplitArray[i + 1].Result;
8 Point p3 = new Point((p.X + p2.X) / 2, (p.Y + p2.Y) / 2);
9 TraceFeatures tf = new TraceFeatures();

10 tf.addFeature(TraceFeatures.FeatureType.topAvg, p);
11 tf.addFeature(TraceFeatures.FeatureType.bottomAvg, p2);
12 tf.addFeature(TraceFeatures.FeatureType.Avg, p3);
13 traceFeatureList.traceFeatures.Add(tf);
14 }
15 return traceFeatureList.getGestureDetected();
16 }

3.2 GyroTouch

Figure 3.4: WiiMote with Motion Plus

In the search for a more intuitive interaction, the Gyroscope Multi-Touch System (Gy-

roTouch) was developed to combine touch and a gyroscope. The first test was conducted

with a Nintento WiiMote with MotionPlus (see Figure 3.4) using its gyroscope. However,

the switch between the WiiMote and the multi-touch was not user friendly. This is why

GyroTouch was implemented using a gyroscope mounted on a wrist band, as shown in

Figure 3.5c.

GyroTouch was developed with Visual Studio 2012 (using C++ language) running

on a Windows 7 platform with a 3M 22-inch multi-touch display, and a Micro-electro-

78

mechanical systems (MEMS) module by YEI Technology (3 Space Sensor, shown in Figure

3.5c). The 3 Space Sensor (which is wireless) is used in the non-dominant hand of the user,

as shown in Figure 3.5a. For the 3D rendering, the engine used was OGRE3D (shown in

Figures 3.5a and 3.5b). By complementing touch with a gyroscope, the user can perform

additional movements while keeping both hands free to use other devices if needed (e.g.,

keyboard). This allows the user to perform some of the rotations with the gyroscope and

the rest using the touch, which allows them to keep the tactual feedback intact for some

gestures.

GyroTouch allows the combination of multi-touch and inertial measurement unit IMU5

devices. The motivation of GyroTouch is to support additional gestures while keeping the

hands free. This also allows users to use devices like the Leap Motion because their hands

are free. By keeping the hands free, multiple input devices can be used, as shown in Figure

3.5b. GyroTouch is designed with usability in mind and with the vision that smart watches

will become more pervasive over time.

The approach used is to keep the touch algorithm to detect swipe, zoom and rotate

gestures for the touch. The touch is used for translating in X and Y (using two-finger

swipe). For Z translation, the one-finger swipe (same direction as the y-axis) is mapped to

the z translation. A two-finger rotation is mapped to the z-axis (yaw), for the rotation, as is

commonly done with touch tablets. In order to keep the interaction as natural as possible,

the touch is complemented with the gyroscope for rotations about the x-axis (roll) and the

y-axis (pitch) using the gyroscope.

The touch algorithm is described in Section 3.1. It consists of finding certain charac-

teristics for each gesture using a very fast and simple algorithm. The gyroscope found in

the MEMS, shown in Figures 3.5a and 3.5c, is used only to indicate the roll and pitch rota-

tions, whereas the third rotation is indicated via the touch interaction. Algorithm 3.4 shows

5The IMU device uses MEMS technology.

79

(a) 3 Space Sensor (b) WiiMote (c) 3 Space Sensor & Strap

Figure 3.5: GyroTouch

the integration over time of the gyroscope signal, using the current and previous samples,

required to obtain the angle of rotation about the x-axis. The same applies for each of the

other two axes. The sensor already provides data processed by a Kalman Filter. In addi-

tion, the data can be filtered by the designer if needed, to remove noise within a threshold.

In addition, the designer may provide a threshold for the idle state if needed. A possible

additional filter is to ignore the gyroscope when the touch is in progress. Those are design

choices. The sampling rate varies depending on the sensor. The 3 Space Sensor uses a

sampling rate of 160 Hz (with a possible maximum for this device of 800Hz). This makes

the period T = 1/FS or 1/160. Since the data is already normalized, there is no need to use

the midLevel and the unitDegree variable in Algorithm 3.4. Hence, for GyroTouch, those

values are set to 0 and 1, respectively. It is important to point out that this is not always the

case for all devices. For example, for the WiiMote with MotionPlus, it is necessary to set

the midLevel at 213 and the unit degree at 8192/592. The GyroTouch provides a way to

complement and augment multi-touch interaction. It uses a watch form factor that allows

for convenience and is non-intrusive. This is explained in more detail in [157, 158].

80

Algorithm 3.4 Rotation Algorithm for a Gyroscope
Require: midLevel=0 & unitDegree = 1 for 3Space Sensor

1: roll← rawdata.roll−midLevel
2: rot.x[0]← rot.x[1]
3: rot.x[1]← roll
4: omega.x[0]← omega.X [1]
5: omega.x[1]← roll.x[1]/unitDegree
6: x← angle.x[1]
7: angle.x[1]← x+T ∗ ((omega.x[1]+omega.x[0])/2)
8: return angle.x[1] as roll

3.2.1 Implementation

The implementation presented here shows an example of Algorithm 3.4 using the WiiMote.

The concepts can be extended to any gyroscope device. For this dissertation, the library

used is called WiiYourSelf6, which was extended from an original C# version by Brian

Peek7. This library supports the WiiMote with many extensions, such as the Nintendo

Wii MotionPlus. The actual concrete implementation is shown in Listing 3.8. This imple-

mentation deals with the gyroscope using the wiiMote Motion Plus. This is analogous to

Algorithm 3.4. It is important to remember to initialize the WiiMote, as shown in Listing

3.7.

Listing 3.7: WiiMote (Initialize)
1 ...
2 m_wiiMote.ChangedCallback = on_wiimote_state_change;
3 m_wiiMote.CallbackTriggerFlags = (state_change_flags)(CONNECTED |

EXTENSION_CHANGED | MOTIONPLUS_CHANGED);
4 ...

Listing 3.8: Gyroscope (wiiMote)
1 const double FS = 90;
2 const double T = 1.0/FS;
3 const double maxmp = 16383;
4 const double middle = 8192;

6See http://wiiyourself.gl.tter.org.

7http://blogs.msdn.com/b/coding4fun/archive/2007/03/14/1879033.aspx.

81

http://wiiyourself.gl.tter.org
http://blogs.msdn.com/b/coding4fun/archive/2007/03/14/1879033.aspx

5 const double rangeMax = middle - 1;
6 const double u_mid = middle / maxmp;
7 const double unitDegree = 8192.0/595.0;
8 const double fastSpeedFactor = 2000.0/440.0;
9 static Rotation lambda = {250.00,500.0,250.0} ;

10 static Rotation offset = {0,0,0};
11 static bool calibrated = false;
12 static Rotation mid = {0.0,0.0,0.0};
13 static unsigned long tCount;
14 Rotation current = {0,0,0};
15 Rotation raw = {0,0,0};
16 Rotation currentPrime = {0,0,0};
17 OgreFramework::t_RotationSpeed rspeed = {false,false,false};
18 static Rotation Omega[] = { {0.0,0.0,0.0} , {0.0,0.0,0.0} };
19 static Rotation RawG[] = { {0.0,0.0,0.0} , {0.0,0.0,0.0} };
20 static Rotation Angle[] = { {0.0,0.0,0.0} , {0.0,0.0,0.0} };
21 Rotation Delta = {0.0,0.0,0.0};
22 raw.yaw = (double)remote.MotionPlus.Raw.Yaw;
23 raw.pitch = (double)remote.MotionPlus.Raw.Pitch;
24 raw.roll = (double)remote.MotionPlus.Raw.Roll;
25 current.yaw = raw.yaw - middle - offset.yaw ;
26 current.pitch = raw.pitch - (middle);
27 current.roll = raw.roll - (middle);
28 if (!calibrated)
29 {
30 if (abs(current.yaw) > lambda.yaw
31 || abs(current.pitch) > lambda.pitch
32 || abs(current.roll) > lambda.roll)
33 {
34 return;
35 }
36 else
37 {
38 calibrated = true;
39 offset.yaw = current.yaw;
40 offset.pitch = current.pitch;
41 offset.roll = current.roll;
42 }
43 }
44 RawG[0].yaw = RawG[1].yaw;
45 RawG[0].pitch = RawG[1].pitch;
46 RawG[0].roll = RawG[1].roll;
47 RawG[1].yaw = current.yaw;
48 RawG[1].pitch = current.pitch;
49 RawG[1].roll = current.roll;
50 Omega[0].yaw = Omega[1].yaw;
51 Omega[0].pitch = Omega[1].pitch;

82

52 Omega[0].roll = Omega[1].roll;
53 rspeed.yaw = remote.MotionPlus.SlowBit.Yaw;
54 rspeed.pitch = remote.MotionPlus.SlowBit.Pitch;
55 rspeed.roll = remote.MotionPlus.SlowBit.Roll;
56 Omega[1].yaw = RawG[1].yaw / unitDegree ;
57 Omega[1].pitch =RawG[1].pitch / unitDegree ;
58 Omega[1].roll = RawG[1].roll / unitDegree ;
59 Angle[0].yaw = Angle[1].yaw;
60 Angle[0].pitch = Angle[1].pitch;
61 Angle[0].roll = Angle[1].roll;
62 Angle[1].yaw = Angle[0].yaw + T * ((Omega[1].yaw + Omega[0].yaw) /

1.0);
63 Angle[1].pitch = Angle[0].pitch + T * ((Omega[1].pitch + Omega[0].pitch

) / 2.0);
64 Angle[1].roll = Angle[0].roll + T * ((Omega[1].roll + Omega[0].roll) /

2.0);
65 m_RotationValues.yaw = Angle[1].yaw ;
66 m_RotationValues.pitch = Angle[1].pitch ;
67 m_RotationValues.roll= Angle[1].roll ;
68 Delta.yaw = Angle[1].yaw - Angle[0].yaw;
69 Delta.roll = Angle[1].roll - Angle[0].roll;
70 Delta.pitch = Angle[1].pitch - Angle[0].pitch;
71 if (current.yaw != 0 || current.roll != 0 || current.pitch != 0)
72 {
73 if (remote.Button.Two() && m_RotationValues.yaw != 0)
74 m_pCamera->yaw(Degree(Delta.yaw)) ;
75 if (remote.Button.B() && m_RotationValues.pitch != 0)
76 m_pCamera->pitch(Degree(Delta.pitch)) ;
77 if (remote.Button.A() && m_RotationValues.roll != 0)
78 m_pCamera->roll(Degree(Delta.roll)) ;
79 }

3.3 PeNTa: Petri Nets

The explosion of new input devices has added many challenges to the implementation

of input user interfaces. Petri Net Touch (PeNTa) addressed this problem by offering a

mathematical approach to modeling input, using HLPN. The actual HLPN used is called

Prt Net, described in the background section, Chapter 2.

83

3.3.1 Motivation and Differences

It is important to note that this approach is not targeted toward the end-user. The target

audiences for PeNTa are four: (1)Software developers who would like to graphically model

multi-touch interactions. (2) Framework developers8 who wish to incorporate modern input

devices to their libraries. (3) Domain-Specific Language (DSL) developers who create

solutions for domain-experts. (4) Researchers in the HCI field.

There are several reasons why the preferred modeling tool to tackle the problem was

HLPN. There are several approaches which are described in the literature review section,

Section 1.6. The first difference to consider is between low-level PN vs HLPN. The major

difference is that HLPN have “complex data structures as data tokens, and [use] algebraic

expressions to annotate net elements” [152]. This is similar to the difference between

assembly language versus a high-level language (e.g., Python). For the complete standard

defining HLPN, see [152]. HLPN is still mathematically defined as the low-level petri-net

but it can provide “unambiguous specifications and descriptions of applications” [152].

There are further reasons that were considered when picking the use of HLPN to model

multi-touch interactions. These reasons might be better understood when PeNTa is placed

in the context of other existing approaches for input modeling: Proton and Proton++ [112],

Gesture Coder [130], and GestIT [75, 197, 199]. While PeNTa offers more expressiveness

and distributed capabilities, simultaneously providing a solid mathematical framework, the

work offered by Proton++, Gesture Coder, and GestIT offers great insight in modeling

multi-touch interaction, with different benefits that must be evaluated by the developer.

Finally, it is important to note that the work of PeNTa is inspired in part by Proton and

Proton++.

8Library and/or language developers also fit in this category.

84

The question still may remain for some readers: Why use HLPN to define multi-touch

interactions? PNs provide graphical and mathematical representations that allow verifica-

tion and analysis; furthermore, they provide a formal specification that can be executed.

This is important. They can be used to specify, to verify, and to execute. Petri Nets also

allow distributed systems to be represented. Finally, a finite state machine can be repre-

sented as a PN, but a PN may not be represented as a FSM. In other words, PNs have more

expressive representational power.

Proton and Proton++ offer a novel approach to multi-touch interaction using RegEx.

Such an approach offers an advantage to those who are proficient with regular expressions.

However, there may be some disadvantages in using RegEx for our goals. Expressions

of some gestures can be lengthy, such as the scale gesture [112]: Ds
1Ms

1 ∗Da
2(M

s
1|Ma

2) ∗

(U s
1Ma

2 ∗Ua
2 |Ua

2 Ms
1 ∗U s

1)
9. Spano et al. [199] presented additional differences between PNs

and the use of RegExs in Proton++. Another potential disadvantage of using RegExs is that

some custom gestures may become harder to represent.

The Gesture Coder method offers a great approach to creating gestures by demonstra-

tion. PeNTa could also create a HLPN using machine learning. The representation of the

training for the Gesture Coder results in a FSM. FSMs can become large and does not

provide the expressive power and distributed representation of HLPNs.

GestIT is the closest approach to PeNTa. GestIT uses low-level PNs. The approach

of GestIT is similar to Proton++, but it uses a PN. The trace is broken down into points

and the gesture becomes a pattern of those points. The expressiveness of HLPNs allow the

Proton++ technique to be used. However, this author chose to define the tokens as indi-

vidual traces. GestIT represents a valuable contribution, but it lacks the expressiveness of

HLPN using data structures in tokens, which are essential in PeNTa. Nonetheless, GestIT

can provide some great ideas to further improve PeNTa.

9D=Down, M=Move, U=Up; s=shape, b=background, a=any (a|b).

85

PeNTa includes a novel approach by using HLPN (in specific, Prt Net) for multi-touch

recognition, including the definition required for HLPN to work with multi-touch. PN al-

lows formal specifications to be applied to multi-touch, and perhaps other modern input de-

vices (e.g., Leap Motion), and enables a distributed framework while keeping the approach

simpler (in comparison to low-level PNs). This means that by encapsulating complex data

structures in tokens and allowing algebraic notation and function calling in the transitions

of a PN, the modeling is not restricted to one individual approach. Furthermore, the data

structure kept in each token maintains history information that may be useful for additional

features.

3.3.2 HLPN: High-Level Petri Nets and IRML

PeNTa is defined using HLPN [59, 60, 128], consisting of the Prt Net definition [59]. The

definition is based on the Input Recognition Modeling Language (IRML) specification by

this author (see Appendix E). The model is defined as HLPN = (N,Σ,λ). This contains

the Net N, the specifications Σ and the inscription λ.

The Net N is formed with places P, transitions T, and connecting arc expressions (as

functions F). In other words, a PN is defined as a three-tuple N = (P,T,F), where F ⊂

(P×T)∪(T ×P). Petri Nets’ arcs can only go from P to T, or T to P. This can be formally

expressed, stating that the sets of places and transitions are disjointed, P ∩ T = /0. Another

important characteristics of Petri Nets is that they use multi-sets10 (elements that can be

repeated) for the input functions, (I : T → P∞) and output functions, (O : P→ T ∞) [164].

The specification Σ defines the underlying representation of tokens. This is defined as

Σ = (S,Ω,Ψ). The set S contains all the possible token11 data types allowed in the system.

10Also known as Bag Theory.

11Some Petri Nets’ publications may refer to tokens as “sorts”.

86

For the particular case of multi-touch in PeNTa, the data type is always the same12, which

is a multi-touch token K, as shown in Table 3.1. The set Ω contains the token operands

(e.g., plus, minus). The set Ψ defines the meaning and operations in Ω. In other words,

the set Ψ defines how a given operation (e.g., plus) is implemented. In the case of PeNTa,

which uses Prt Net, the operations use regular math and Boolean Algebra rules. This is the

default for PeNTa tokens, which is of signature (S,Ω).

The inscription λ defines the arc operation. This is defined as λ = (φ ,L,ρ,M0). The

data definition represented by φ is the association of each place p ∈ P with tokens. This

means that places should accept only variables of a matching data type. PeNTa has token

K, which represents the multi-touch structure. The inscription also has labeling L for

the arc expressions, such as L(x,y) ⇐⇒ (x,y) ∈ F . For example, a transition that goes

from place B to transition 4 will be represented as L(B, 4). The operation of a given

arc (function) is defined as ρ = (Pre,Post). These are well-defined constraint mappings

associated with each arc expression, such as f ∈ F . The Pre condition allows the HLPN

model to enable the function, if the Boolean constraint evaluates to true. The Post condition

will execute the code if the function is enabled (ready to fire). Finally, the initial marking

is given by M0, which states the initial state of PeNTa.

Dynamic Semantics

In order to finalize the formal definition of the HLPN used in PeNTa, there are some basic

details about the dynamic aspects of these Prt Nets. First, markings of HLPN are mappings

M : P→ Tokens. In other words, places map to tokens. Second, given a marking M,

a transition t ∈ T is enabled at marking M iff Pre(t) ≤ M. Third, given a marking M,

αt is an assignment for variables of t that satisfy its transition condition, and At denotes

the set of all assignments. The model defines the set of all transition modes to be T M =

12This is up to the designer. If the designer wants to create additional tokens, it is also possible.

87

{(t,αt) |t ∈ T,αt ∈ At} ⇐⇒ Pre(T M) ≤M. An example of this definition is a transition

spanning multiple places, as shown in Figures 3.6 and 3.7 (concurrent enabling). Fourth,

given a marking M, if t ∈ T is enabled in mode αt , firing t by a step may occur in a new

marking M′ = M−Pre(tαt)+Post (tαt); a step is denoted by M[t > M′. In other words,

this is the transition rule. Finally, an execution sequence M0[t0 > M1[t1 > ... is either finite

when the last marking is terminal (no more transitions are enabled) or infinite. The behavior

of a HLPN model is the set of all execution sequences, starting from M0.

3.3.3 PeNTa and Multi-Touch

A multi-touch display (capacitive or vision-based) can detect multiple finger strokes at the

same time. This can be seen as a finger trace. A trace is generated when a finger touches

down onto the surface, moves (or stays static), and is eventually lifted from it. Therefore, a

trace is a set of touches of a continuous stroke. While it is possible to create an anomalous

trace with the palm, PeNTa takes into consideration only normal multi-finger interaction.

However, the data structure (explained in detail later) could be modified to fit different

needs, including multiple users and other sensors that may enhance the touch interaction.

Given a set of traces, one can define a gesture. For example, a simple gesture may be two

fingers moving on the same path, creating a swipe. If they are moving in opposite ways (at

least one of the fingers), this can be called a zoom out gesture. If the fingers are moving

towards each other, then this is a zoom in gesture. A final assumption that PeNTa makes

for multi-touch systems is the following: if a touch interaction is not moving, it will not

create additional samples but increment the holding time of the finger. Note that this is

not inherently true in all multi-touch systems. For example, in native WINAPI (Windows

7) development, samples are generated, even if the finger is not moving, but holding. To

adjust this characteristics of the WINAPI to PeNTa assumption, the samples are just filtered

88

Table 3.1: Multi-Touch Data Structure

Name Description
id Unique Multi-Touch Identification
tid Touch Entry Number
x X display coordinate
y Y display coordinate

state Touch states (DOWN, MOVE, UP)
prev Previous sample

get(Time t) Get previous sample at time t
tSize Size of sample buffer

holdTime How many milliseconds have spawn since last rest
msg String variable for messages

by creating a small threshold that defines the following: If the finger is not moving or if it

is moving slightly, a counter is incremented.

3.3.4 Arc Expressions

Each arc is defined as a function F, which is divided into two subsets of inputs I and outputs

O, such that F = I ∪ O. In the inscription ρ of this HLPN, the arc expression is defined

as Pre and Post conditions. Simply put, the Pre condition either enables or disables the

function, and the Post condition updates and executes call-back events, in the HLPN model.

Each function F is defined as F = Pre ∪ Post, forming a four-tuple F = (B,U,C,R),

where B and U are part of the Pre conditions, and C and R are part of the Post conditions.

B is the Boolean condition that evaluates to true or false, R is the priority function, C is the

call-back event, and U is the update function.

The Boolean condition B allows the function to be evaluated using standard Boolean

operators with the tokens, in C++ style (e.g., T1.state == STATE.UP). If no condition is

assigned, the default is true. The priority function R instantiates a code block, with the pur-

pose of assigning a priority value to the arc expression. The call-back event C allows the

89

Petri Net to have a function callback with conditional if statements, local variable assign-

ments, and external function calling. This can help to determine which function should be

called. If no callback event is provided, then a default genericCallBack(Place p, Token t) is

called. The update function U is designed to obtain the next touch sample using update(T1),

or setting a value to the current sample of a given token using set(T1, TYPE.STATE, STATE.UP).

Places and transitions in PeNTa have special properties. This is true for P, which has

three types: initial, regular, and final. This allows the system to know where tokens will be

placed when they are created (initial) and where the tokens will be located when they will

be removed (final).

Picking the next transition or place for the case when there is one input and one output is

trivial (the next T or P is the only available one). However, when there are multiple inputs

or outputs, picking the next one to check becomes important in a PN implementation [140].

The “picking” algorithm used in PeNTa is a modified version of the one by Mortensen

[140]. The algorithm combines the random nature found in other CPN [98] selection and

the use of priority functions. The algorithm sorts the neighboring P or T by ascending

value, given by the priority function R, and groups them by equivalent values, (e.g., G1 =

10,10,10, G2 = 1,1). The last P or T fired may be given a higher value if found within the

highest group. Within each group, the next P or T is selected randomly. Also note that the

algorithm presented here is just one of many possible ones. Given the flexibility of Petri

Nets and the amount of work available in this field, the developer may wish to modify or

change the algorithm in its entirety. The important part of the algorithm is how to pick the

next transition, doing so in a way that does not violate PNs or Prt Nets.

Tokens and the Structure

A powerful feature of HLPNs is their discrete markings, called Tokens. This feature al-

lows the marking of different states and the execution of the PN. When tokens go through

90

K1

Figure 3.6: Parallel PN: State 1

K1

K1

Figure 3.7: Parallel PN: State 2

ɛ ɛ

Figure 3.8: Cold transitions (Entry and Exit)

91

an input function I or output functions O, they are consumed. For PeNTa’s particular mod-

eling requirements, the token is a representation of a data structure that defines a trace, as

shown in Table 3.1. This data structure contains the current sample and a buffer of previous

samples (touches).

When tokens are consumed into a transition, the Post condition creates a new token. If

the desired effect is of a parallel system, as shown in Figure 3.6, then a transition can create

N number of tokens based on the original one. In Figure 3.7, token K1 is cloned into two

identical tokens. To represent the new tokens, different colors were chosen in Figures 3.6

and 3.7.

The only token data type for PeNTa is a multi-touch structure, type K, as shown in

Table 3.1. The identification given by the system is denoted as id. Depending on the

system, this may be a unique number while the process is running (long integer type), or

as a consecutive integer, starting from 1 . . .m, lasting through the duration of the gesture

performed by the user. The latter definition is also contained in the variable tid. Display

coordinates are given by x and y. The state variable represents the current mode given by

DOWN, MOVE, and UP. The holdTime helps to determine how many milliseconds have

lapsed, if the user has not moved from his or her current position on the display. This

data structure assumes that a new sample only happens when the user has moved beyond a

threshold. Finally, this data structure acts as a pointer to previous history touches in a buffer

of size η. Therefore, the buffer (if it exists) can be accessed with the function get (Time ι)

or the previous sample with the variable prev.

In HLPNs, at least one initial Marking M0 needs to be known, which is the initial state

of PeNTa. In the case of simulations (which is discussed later), this is not a problem. For

the case of real-time execution, the initial marking must have empty tokens. This is solved

by the concept of hot and cold transitions [174], represented by ε. A hot transition does not

92

Table 3.2: Transitions

Arc From To Condition Token Count
1 A Down K.state == DOWN 1
2 Down B update(T) 1
3 B Move K.state == MOVE 1
4 B UP K.state == UP 1
5 Move C update(T) 1
6 C UP K.state == UP 1
7 C Move K.state == MOVE 1
8 C Move update(T) 1
9 C Zoom K.state == MOVE && 2

IsZoom(K1,K2)
10 Zoom C Update(K1,K2) 2
14 Swipe C K.state == MOVE && 2

IsSwipe(K1,K2)
15 Swipe D Update(K1,K2) 2
17 UP E K.state == UP 1
18 UP E K.state == UP 1
19 E Terminate true 1

require user input. A cold transition requires user (or external system) input. Therefore, in

PeNTa, the model defines entry and exit cold transitions, as shown in Figure 3.8.

3.3.5 A Tour of PeNTa

A tour of PeNTa is needed to better explain how it works. Take for example, an interaction

that has two possible gestures using two fingers: swipe and zoom. A swipe implies that

the user moves two fingers in any direction. Therefore, the callback required is always the

same, which is a function that reports the direction of the swipe. In the case of the zoom,

zoom-in and zoom-out could be modeled separately or together. In the case of the example

shown in Figure 3.9, zoom is configured as one entity.

The example shown in Figure 3.9 is created for two-finger gestures. The figure has

places, arcs, transitions, and two tokens (K1,K2), representing two active traces in place C.

93

D
O
W
N

K1

K2

M
O
V
E32 5

S
W
IP
E

11

12

M
O
V
E
’

7

8

U
P
’

6

UP

4

B

14

13

T
E
R
M
IN
A
T
E15 16

E
F

C

1

A
9

10

ZO
OM

START

Figure 3.9: Multiple Gestures in PeNTa

For this particular example, Figure 3.9 has additional graphical representations, which are

letter labels in places, numbers in arcs, and transitions with names. This is done to make

the example easier to follow. However, those additional items in the graph are not part of

the actual Prt Net. In addition, Table 3.2 shows each arc expression with their Boolean

condition and the tokens that are required to fire (e.g, two tokens). The system starts with a

empty initial marking (no tokens), while it waits for the user input. Once the user touches

down onto the surface, tokens are created (using cold transitions) and placed in START.

Given that the tokens will start with a DOWN state, they will move from place A into

place C, using transitions 1 and 2. The first arc just consumes the token, and arc 2 updates

the token with the next touch data sample into place B. Once in place B, since the token

was updated with the touch sample, PeNTa infers the next transition using the constrained

provided. It has two options, either arc 3 or arc 4. Assuming that the state is MOVE, now

each token is moved into place C with an updated touch data sample. Now, we are at the

point shown in Figure 3.9. PeNTa infers the next step. This is where the picking algorithm

explained earlier comes into play. For this example, MOVE′, ZOOM, SWIPE, and UP

have priority function values 1, 10, 10, and 2, respectively. This means the group with

94

ZOOM and SWIPE are the first to be checked for constraints, since they have the highest

values. PeNTa will randomly pick either one and check if it can be enabled (fired) based

on the Boolean condition. Assume, for example, that it picks SWIPE and the Boolean

condition is true. It is true if two tokens are in place C, both tokens are in state MOVE,

and the function isSwipe is true, which is an external C++ method. If the value is true, then

it will call back a swipe function, passing a copy of the token data, and then update it to the

next sample via arc 12. This finally brings back both tokens into place C. At some point,

the tokens will have the UP state, and they will move to place E and place F.

While the example presented in Figure 3.9 shows the interaction model in a single PN

for various gestures, it is possible to create individual PNs, as shown in Figure 3.10, and

combine them in a set of PNs. For example, individual PNs (PNi) can form a model P =

(PN1,PN2,PN3, ...PNn), which, once constructed, can be executed. Each PNi can run in

parallel and disabled itself when the corresponding condition is not met.

3.3.6 Simulation and Execution

PNs could be used for analysis (e.g., Linear Temporal Logic), simulations and execution.

However, the initial motivation for PeNTa was simulation and execution. Nevertheless,

analysis could be performed if needed, but it is beyond the scope of this dissertation.

There are different ways to simulate PeNTa. Non-user-generated data could be used for

the simulation, providing an initial marking with a history of the possible samples. Another

option it is to record the user interaction, creating tokens and a buffer to feed those tokens.

There are multiple ways to go about this, but two ways are very common: store the data

in a transactional database or in plain text files. The former can be very useful if the set is

large and different conditions may need to be applied.

95

K1

K2

M
O
V
E

S
C
A
L
E

.

Figure 3.10: Partial Petri Net for Scale

Execution is the primary purpose of PeNTa. Given a well-defined model, this can run

in real-time, using PeNTa, which has already been defined. As stated before, PeNTa needs

additional entry and exit cold transitions, if there are additional inputs involved.

3.3.7 Overview

In summary, PeNTa provides a novel way to model multi-touch interactions (and possibly

other modern input devices) with the use of a well-established mathematical and graphical

model called Petri Nets. In specific, this approach uses HLPN called PrT Nets. PeNTa

works under the model of IRML, which is the language definition created by this author.

The IRML specification used in PeNTa can be found in Appendix E. For an expanded

discussion, see [159, 160].

3.4 Yield: Removing ambiguity

When performing gesture detection, the number of gestures needed to be recognized in-

creases the difficulty of selecting the correct gesture. Also, if the movements are faster

than average and the gestures are constantly changing, which can be the case for a 3D nav-

igation task, the process of gesture recognition becomes more challenging. An example

of conflicting gestures being detected may be found in some of the sets of results gener-

ated by the well-known commercial software GestureWorks Core (GWC) API that allows

96

users to detect different types of gestures. GWC, developed by ideum13, claims to have 300

pre-built gestures, which include stroke gestures.

GWC has an XML file, where users can define gestures using the GML definition. It

is possible to control filters and properties for a gesture. However, in most cases, it is not

possible to have only one gesture fire when using GWC. Note that this is not a unique

problem to GWC. FETOUCH++, given a set of additional gestures, may also produce

ambiguity when recognizing. This is actually normal in many types of recognition systems.

The approach taken to remove ambiguity and select the right gesture from the initial

set of results has been tested using Microsoft Visual Studio 2012 (using C++14 language)

running on a Windows 7 platform with a 3M M2256PW multi-touch display. In addition,

GWC15 API was used for the multi-touch gesture recognition. OGRE3D was used for the

3D rendering.

3.4.1 Yield: How it Works

Yield is divided into sub-modules (inner classes) that work in conjunction to detect the

correct gesture with one main module (outer class) that contains additional help to wrap

the approach of removing ambiguity in gesture detection.

Touch Gesture

The main class, called TouchGesturePad, contains all the inner classes, which are described

next, as well as important variables, data structures, and functions, that are required for the

functioning of Yanked Ambiguous Gestures (Yield).

13In part with grants from National Science Foundation, grant #1010028.

14C++11.

15Version: early 2014.

97

First is gesture_classification (gc) that contains all the possible gestures available in

GWC. Ideally, this should be loaded from a settings file, as opposed to hard-coding it in

the class. The classification shown in Listing 3.9 is a reflection of the gesture list that

was available from gesture works, which included specific trace count in some, such as

finger_drag_1, and others with variable trace count, such as scale_n. This classification

includes states of no recognition. Finally, gc contains for each gesture state a string coun-

terpart. This is because the names in GML are stored as strings. The gc data structure is

the primary link for all the inner classes.

Listing 3.9: Yield (gc)
1 typedef enum gesture_classification {
2 drag_n, rotate_n,rotate_n_4, scale_n,
3 drag_inertia_n,rotate_inertia_n,
4 scale_inertia_n,what_drag_n,
5 drag_x_n,finger_drag_1,finger_drag_2,
6 finger_drag_3,finger_drag_4,
7 rotate_noise_filter_n,finger_rotate_2,
8 finger_rotate_3,finger_rotate_4,
9 finger_scale_2,finger_scale_3,

10 finger_scale_4,finger_scale_5,
11 point_power_drag_2,rotate_to_scale_n,
12 manipulate_n,manipulate_inertia_n,
13 manipulate_interia_boudary,
14 flick_n,swipe_n,scroll_n,
15 finger_tilt_2,finger_tilt_3,
16 finger_tilt_4,finger_tilt_n,
17 finger_pivot_1,
18 finger_pivot_inertia_1,
19 finger_orient_5,hold_n,tap_n,
20 double_tap_n,triple_tap_n,
21 finger_hold_3,finger_tap_3,
22 finger_double_tap_1,
23 finger_triple_tap_1,
24 unknown_gesture,gesture_not_detected,
25 gesture_not_found,gesture_not_set,
26 Unknown
27 };

98

Gesture Criteria

The GestureCriteria class helps with the definition of certain features that allows the Yield

algorithm to select the correct gesture. The two primary features used were criteria and

strength, required for each gesture. The other features, adjacency, strength total, and

frequency, were tested but they were not found useful when using GWC. It is important to

note that all the features were configured using C++11 lambdas16, which allows the defini-

tion of functions. The fact that the features that help with the selection of the correct gesture

are functions gives the designer more flexibility. as opposed to defining actual values. In

other words, all the features were functions that could be defined by the developer. Nev-

ertheless, default functions are provided in the implementation. This is mentioned for two

reasons: First, features were not obtained with just a threshold but as a function of some

value(s). Second, it was mentioned to remind the interested readers that when looking at

the listings, the lambdas take functions and not values. Of course, a function could be set

to be constant, as F(X) = 5. The description of each of the features for the GestureCriteria

class is defined next.

The strength function takes a map (<string,double17>). The actual input can vary de-

pending on the framework, but in the case of GWC, the data given by each gesture varies

and it is provided inside of a map data structure. For example, the rotate gesture only has

one key value for the rotation angle, while the drag gesture contains two key values for the

X and Y coordinates. The default strength function that is provided is the sum of all the

values. However, there are cases in which the developer may need to adjust it. The criteria

is the function of the strength value, with the default function as F(x) = 1.0 ∗ x. In other

words, it is the weight factor for the strength.

16A functional language by default have first-class functions.

17It may also use float type.

99

The additional features were not used in GWC, but they are important to mention, as

they can be helpful in other instances. First, adjacency is a ranking function that deter-

mines, based on a the previous recognition, how apart each gesture is from the previous

list. For example, if a rotate gesture was the highest ranking gesture for the previous time

frame, and rotate now is the second highest ranking, the adjacency is -1. If the case is re-

versed, the adjacency would be +1. Nevertheless, given that this is a function, the developer

can modify its meaning and usage. This particular gesture was not helpful when tested be-

cause it did not prove to make a significant difference with GWC. Second, strength total is

a function that takes the new strength and the total strength up to that point, to calculate the

strength total. While this value is easy to calcualte over time, it did not prove to be highly

beneficial for the API used to test Yield. Finally, frequency is the function of previous

gestures triggered, which counts the frequency over time that the gesture was fired (or in a

top quartile of possible ones). The frequency over time did not prove to be needed when

recognizing gestures in GWC.

Gesture Type

The GestureType class encapsulates the GestureCriteria class and includes additional fea-

tures that help with the gesture detection. This class defines the type of gesture. First, by

storing the criteria class, the gesture type now has access to it. The reason to keep the

classes separated is because GestureCriteria can be shared across multiple GestureType

objects. For example, all types of drag gestures may share one common criteria class. Sec-

ond, the inception values are a structure that holds different types of factors used during

the time the gesture is active. This is different from the values stored in the criteria class,

since it generated (via functions) values to determine the gesture to select. The inception

values contain rate of decay, noise factors, and threshold, which will be explained more in

detail later. Third, the GestureType class contains a structure called gain, which is used to

100

modify the weights (if needed) from the criteria class. This is very useful when the designer

needs to share a GestureCriteria between different GestureType but may need to change the

weight factor to a specific parameter. This includes the criteria gain and strength gain.

Finally, the GestureType class contains factor values for the navigation operation, called

controller values.

The inception values contain important factors that are used during the time the gesture

is active and alive. First, the threshold determines what is the minimum strength value for

a gesture to be considered a candidate. Second, the decay value18 indicates when an active

gesture is considered to be in the process of decay. This information can be used to make

decisions about the other candidates. Finally, a group of three noise factor values are used

to minimize noise or user error, which is the minimum amount of strength that a current

gesture may have. The noise factor x and noise factor y indicate the minimum requirement

for the gesture to be sent to the navigation controller, and the noise dual factor indicates

the minimum requirement for both axes to be sent to the navigation controller. All of the

inception values can be use in different ways by the developer. Later in this section, a more

concrete algorithm and an example will be given.

Gesture

The Gesture class encapsulates the GestureType to help with the active gesture when se-

lected and to use a main container for the criteria, since GestureType encapsulates Gesture-

Criteria. In addition, the class contains the GWC event data, including gesture and touch

points. Also, the class contains some important methods required for the Yield to work.

The most important functions are listed below:

• processGesture: This method calculates the values for the candidate gesture using

the GestureType. It also uses the gain values to determine the weight required.

18Refer to as MaxRateOfDecrease in the C++ code.

101

• refreshCriteria: This method modifies the current criteria value and calls the com-

pute method.

• compute: This computes the criteria value multiply by the gain value.

• getTraces: This gets the trace counts.

• setTraces: This sets the trace count.

In addition to concept of gesture, this class contains a definition for an inner gesture.

An inner gesture is defined as a subset of the main gesture. In other words, an inner

gesture may be a drag going up and down, and the complete gesture is the drag going in

any direction. This is very useful for navigation. Yield used the inner gesture classes for

some drag gestures.

3.4.2 Yield: The Algorithm

Algorithm 3.5 Yield: Fetch Points
Require: multi-touch device is connected and data queue exists.
Ensure: Return ∅ if no touch points.

1: pointEvents← consumePointEvents() // In the case of GWC: Assign points to Dis-
play Object.

2: return pointEvents

Yield is better explained by illustrating the core concepts using pseudo-code. Note

that some of the variable names have been shortened in this algorithm compared to their

counterparts in the concrete implementation. The primary objective is to select the correct

gesture candidate. Once the gesture is selected, the action for a possible 3D navigation task

is secondary.

While Yield was tested with GWC, the algorithm is agnostic to the actual gesture de-

tection method or algorithm used. Nevertheless, it makes some assumptions that could be

easily modified to meet other needs. The main assumption is that the points and gestures

102

fired by the primary detection algorithm are stored in a queue until a consumption method

is called to retrieve the current data events. Of course, this process is designed for detec-

tion algorithms that output multiple detection candidates. Another assumption made in the

algorithms presented in here is that external methods accomplish their expected goals cor-

rectly. An example of this is that the trace count (how many fingers are interacting with the

display) are set in the Gesture class. This is omitted in the algorithm part of Yield. Nev-

ertheless, the implementation is not omitted. Finally, it is assumed that a main event loop

will trigger the process every n milliseconds. In the actual implementation, the process has

knowledge of the time elapsed between one call and the next one (time elapsed between

two event loops), and the cycle count, which indicated (using 64 bits unsigned long) the

current cycle.

The first part of Yield is to retrieve the points, in the function called Fetch Points,

shown in Algorithm 3.5. The points are retrieved by calling ConsumePointEvents. If no

touch points are found, which is possible, the algorithm will return the empty set19 (∅).

The second part of Yield is to Fetch Gestures using Algorithm 3.6. First, in line 1 of

the algorithm, Fetch Points is called, passing the active multi-touch device. If there are

no points, as stated before, there is nothing else to do, therefore, it returns the empty set

(∅). Then, in line 4, the ConsumeGestureEvents method is called to retrieve all event data

stored in its corresponding queue. In lines 5-8, the force conditions are checked and reseted

if needed. The force conditions are this.noGestureCount and this.traceChanged. The first

one, NoGestureCount, is a counter that keeps a record of how many times a gesture was

not retrieved when the method ConsumeGestureEvents was called and returned the empty

set (∅). The traceChanged keeps count of how many times the number of fingers placed

on the display are changed during an active gesture (the current gesture selected by Yield).

Therefore, the forceConditions method checks if either of the two force variable counters

19In C++: NULL or nullptr.

103

Algorithm 3.6 Yield: Fetch Gestures
Require: Gesture recognition algorithm with data queue.

this.gestureState starts as idle.
Ensure: Return ∅ if no gestures or no points. Otherwise, gestures data set.

1: points← FetchPoints(mtDevice)
2: if points =∅ then
3: return ∅
4: gesture← consumeGestureEvents()
5: f orce← false
6: if gestures 6=∅ and forceConditions() then
7: f orce← true
8: resetForceConditions()
9: if gestures.size() = 0 or f orce = true then

10: WidgetActions(points) // Perform additional actions (e.g., Buttons)
11: this.gestureState← nogesture
12: increment(this.noGestureCount)
13: resetGesture()
14: return ∅
15: return gestures

are true. The resetForceConditions method is used to reset each counter independently

of each other. Each counter has a maximum threshold assigned. If the current count is

greater, then the force condition is set to zero. At the end, if the if statements in line 11

is not executed, then this algorithm will return the gesture data. On the other hand, if the

if statement where either force is true or the gesture.size() is equal to zero, then a few

steps are taken before returning the empty set (∅). In this case, the algorithm changes the

current state of recognition, it increments the count of this.noGestureCount, and it resets

the gesture. This last step is important to expand. The Reset Gesture method, shown in

Algorithm 3.7, changes the recognition state of the gesture and sets the empty set (∅) to

this.detectedGesture. The selected gesture by Yield is stored in detectedGesture. Note

that the reference to this makes reference to the outer class of Yield already explained.

Once the points and gesture fetchers are executed, then the gesture is processed, in

Algorithm 3.8, called Process Gesture. This process calls Fetch Gesture, which in turn,

calls Fetch Points. At this point, if no gestures are found, the process returns and no further

104

Algorithm 3.7 Yield: Reset Active Gesture
1: this.classi f icationType← gesture_not_set
2: this.detectedGesture←∅
3: this.isNewGesture← true

action is taken, as shown in lines 2-3. Since the gesture data structure may contain more

than one gesture (which was always the case with GWC), a for loop to process them and

find the correct gesture is executed between lines 6-32. While it is possible that the loop

will run for each input, in many instances, the loop will exit before it is complete, as will be

described next. Algorithms 3.8 and 3.9 require two additional data structures: a hash map

data structure and a priority queue data structure. The map, named gestureMap, stores

each gesture processed, which can be accessed by using the key. In other words, the key

for this map is the gesture classification (gc), described in Listing 3.9. Simply put, the gc

is what identifies the gesture. The value of the map is the Gesture class. The other data

structure used is a priority queue, also described in Chapter 2. The priority queue holds

GestureType objects in descending order by criteria value. Later in this section, some of

the details of the actual implementation will be discussed.

The bulk of the process happens during the only loop found in Algorithm 3.8. The

running time of the loop is O(N lgN). The size of N is very small. It depends in the amount

of gestures. the common amount will be between 5 to 20 gestures. As stated previously, the

loop does not always run for each input, except when there is no active gesture. In testing

this algorithm, there was no indication of excessive delay, therefore, the performance of

Yield was acceptable by all users. The lg(N) is added to the running time because of the

priority queue in line 32.

The loop is the core of detection and update after detection for Yield. When the loop

starts, the identification of the gesture given by the detection algorithm is converted to a

gesture classification. In line 8, the algorithm checks to see if there is an active gesture

(this.detectedGesture), and if the current gesture g is not the same type as the detect-

105

edGesture, then the process goes back to the top of the loop, as shown in line 9. Then,

in line 10, the tuple containing a Boolean value and a GestureType class is formed using

the classification gt and the trace count (the designer can configure either one GestureType

class for all drag gestures or can define different types for the corresponding trace count). If

gType. f ound is false, then there is no point to continue. This is one of the cases for which

the designer may not have designed a default GestureType class. It is up to the developer

or designer how to handle this. In the implementation tested, we reported the problem if

found. A possible solution is to create a default GestureType for any gesture that does not

have a definition. It was not the decision that this author made, but it is a perfectly fine

design choice if needed. Finally, using the tuple, the algorithm creates an object called

cGesture, which contains the current gesture to be evaluated. This gesture is processed by

calling processGesture. This method will be explained later, but for now, suffice it to say

that it updates the criteria values using the function features described earlier.

Up to this point, most of the work was housekeeping20; however, the algorithm has three

possible cases: First, in line 15, the algorithm decides if there is an active gesture, and if the

type of current active gesture (this.detectedGesture) is the same GestureType as the gesture

being evaluated (cGesture), lines 16-27 are executed. The second case simply states that

if this is not case 1, and cGesture.criteria is less than cGesture.type. getThereshold(),

then it must go back to the top of the for loop. The reason is that the criteria value for

this gesture is below the minimum requirement assigned by the designer. Finally, case 3

(shown in lines 31-32) indicates that gesture must be saved to be processed later, by the

preProcessAction method.

The first case must be expanded to understand the few sub cases found. In all three

sub-cases (if statements), if the condition is true, this algorithm will exit. The first sub case

identifies that trace count has changed and it increments one of the force conditions, called

20Making small decisions and changing states.

106

this.traceChanged. The second sub-case checks if the gesture has died using a minimum

threshold (minTh), usually set to 0.01. The third sub-case checks if the current gesture has

an inner gesture. If it has an inner gesture, and the inner gesture is the same as the current

one, then it exits. Finally, if none of the sub-cases are true, then lines 25-27 are executed. In

this part of the code, the gesture state is changed, the processGestureAction is fired, and

then the function exit. The reason is that processGestureAction is directly linked to the

action required to be taken by the controller (e.g., 3D navigation system). Therefore, there

is no need to keep checking. It is important to note that if case 2 or case 3 are triggered, it is

possible that the for loop may end (it is not always the case), causing the preProcessAction

method to be fired.

Algorithm 3.8 may fire preProcessAction (see Algorithm 3.9). This algorithm is fired

only when there is a new gesture to be detected because of ambiguity. First, if there is no

new gesture (gestureMap.size() = 0) and there is an active gesture (this.detectedGesture),

then processGestureAction is fired. There are two important facts to be considered here.

One is that the probability of this occurring is very low because gestures will decay and

force the process to have a new gesture check, as Algorithm 3.8 describes. The second fact

is that this can cause a non-desired effect to some developers (but it was intended for the

Hold-and-Roll gesture). This is because a known gesture, may behave differently if lines

2-6 are present in the algorithm. This is because the code is telling the system to process

the previous detected gesture when there is no gesture available. This is only true for a

small amount of time because the gesture will decay. This worked well for the Hold-and-

Roll gesture, which is described in Section 3.6. If this causes any undesired behavior, an

alternate algorithm is provided, as Algorithm 3.10. The second part of the algorithm does

the actual selection of the correct gesture. Lines 8-15 show the last part of Yield, as far as

selecting the correct gesture is concerned. The gesture with the highest criteria is popped

107

Algorithm 3.8 Yield: Process Candidate

Require: gestureMap.size() = pqGestures.size() = 0
1: gestures← FetchGestures(mtDevice)
2: if gestures =∅ then
3: return
4: if this.isNewGesture = true then
5: this.isNewGesture← false
6: for g in gestures do
7: gt← getClassification(g.id)
8: if this.detectedGesture 6=∅ and this.detectedGesture.type 6= gt then
9: continue

10: gType← getGestureType(gt,g.traceCount)
11: if gType. f ound = false then
12: continue
13: cGesture←Gesture(g.id,g,gType.type) // Traces must be set.
14: cGesture.processGesture()
15: if this.detectedGesture 6=∅ and this.detectedGesture.type = cGesture.type then
16: if cGesture.traceCount 6= this.detectedGesture.traceCount then
17: increment(this.traceChanged)
18: return
19: if cGesture.criteria < minT h then
20: resetGesture()
21: this.gestureState← gesture_detected_changed
22: return
23: if checkInnerGesture(this.detectedGesture,cGesture) = false then
24: return
25: this.gestureState← gesture_detected_changed
26: processGestureAction(cGesture)
27: return
28: else if cGesture.criteria < cGesture.type.getThreshold() then
29: continue
30: else
31: getureMap[gt]← cGesture
32: pqGestures.push(cGesture)
33: preProcessAction(gestureMap, pqGestures)
34: return

108

into newGt. If there is no detected gesture, newGt is used to update this.detectedGesture.

Finally, processGestureAction is fired using newGt.

Algorithm 3.9 Yield: Pre-Process Action

Require: gestureMap.size() 6= pqGestures.size() 6=∅
1: if gestureMap.size() = 0 then
2: if this.detectedGesture 6=∅ then
3: nGest←Gesture(this.detectedGesture)
4: this.gestureState← gesture_detected_same
5: processGestureAction(nGest)
6: this.newGesture← false
7: return
8: newGt← pqGesture.top()
9: pqGesture.pop()

10: if this.detectedGesture =∅ then
11: this.detectedGesture←Gesture(newGt)
12: this.gestureState← gesture_detected_new
13: processGestureAction(newGt)
14: this.isNewGesture← false
15: return

Algorithm 3.10 Yield: Pre-Process Action (alt)

Require: gestureMap.size() 6= pqGestures.size() 6=∅
1: if gestureMap.size() = 0 then
2: return
3: newGt← pqGesture.top()
4: pqGesture.pop()
5: if this.detectedGesture =∅ then
6: this.detectedGesture←Gesture(newGt)
7: this.gestureState← gesture_detected_new
8: processGestureAction(newGt)
9: this.isNewGesture← false

10: return

3.4.3 Yield: The Implementation

The system was tested with GWC. There was no need to thread the process, therefore,

it wasn’t tested using a multi-threaded approach. The actual algorithms provided are not

109

ready to be run in parallel without some additional changes to the code. In the next chapters,

there will be further discussion about the actual impact of Yield, as it was used in the

experiment performed for 3D navigation.

In the algorithms section, the processGestureAction was not presented. This is be-

cause while Yield classes have knowledge of the navigation, the primary contribution of

Yield is to remove ambiguity. However, in Listing 3.10,there is a basic demonstration of

how the code works. This method allows for navigational tasks in the system to take place

(or any other task). It is meant to be more developer-oriented. Another part that is impor-

tant is the type of data structure used for the gesture map and the priority queue of gestures,

which are shown in Listing 3.11. Notice that the priority queue is defined with std::less,

which happens to be the default for a priority queue. This means that the highest value

will be on top. This is not true for a regular sorted data structure (e.g., sorted set), but is

the design of the priority queue. Finally, the Gesture.processGesture function is shown in

Listing 3.12. The code uses some features of C++1121.

Listing 3.10: Yield (processActionGesture)
1 ...
2 case gt::drag_n:
3 {
4 candidateGesture = "drag_n";
5 auto fx = gesture.mGestureEvent.values["drag_dx"];
6 auto fy = gesture.mGestureEvent.values["drag_dy"];
7 ...
8 auto afx = std::abs(fx);
9 auto afy = std::abs(fy);

10 int sgnx = NMath<float>::sgn(fx);
11 int sgny = NMath<float>::sgn(fy);
12 if (gesture.getTraces() == 1)
13 {
14 ...
15 removeDualNoise(afx,afy,_move_drag1.noiseFactorX,_move_drag1.

noiseFactorY,_move_drag1.noiseDual);
16 float sfx = sgnx * afx * s1;
17 float sfy = sgny * afy * s2;

21At least the ones available in Visual Studio 2012.

110

18 mpNavigation->applyTranslationForce(Navigation::AXIS_X_NEG,sfx,t,"
drag2_axisX");

19 mpNavigation->applyTranslationForce(Navigation::AXIS_Y,sfy,t,"
drag2_axisY");

20 }
21 if (gesture.getTraces() == 2)
22 {
23 if (gesture.getInnerGesture() == "Drag_Horizontal" && afy > afx)
24 break;
25 ...
26 if (afx > afy)
27 {
28 afy = 0.0f;
29 gesture.setInnerGesture("Drag_Horizontal");
30 gesture.mHasInnerGesture = true;
31 }
32 ...
33 }
34 ...
35 }
36 ...

Listing 3.11: Yield (Data Structures)
1 std::map<gesture_classification,Gesture> activeGestureMap;
2 std::priority_queue<Gesture,std::deque<Gesture>,std::less<Gesture>>

pqGestures;
3 //operators
4 inline bool operator< (const Gesture &lhs,const Gesture &rhs)
5 {
6 return lhs.mCriteria < rhs.mCriteria;
7 }
8 inline bool operator<=(const Gesture &lhs,const Gesture &rhs)
9 {

10 return lhs.mCriteria <= rhs.mCriteria;
11 }
12 inline bool operator> (const Gesture &lhs,const Gesture &rhs)
13 {
14 return lhs.mCriteria > rhs.mCriteria;
15 }
16 inline bool operator>=(const Gesture &lhs,const Gesture &rhs)
17 {
18 return lhs.mCriteria >= rhs.mCriteria;
19 }

Listing 3.12: Yield (Gesture.ProcessGesture)
1 void Gesture::processGesture(const GestureType & gestureType)

111

2 {
3 this->mGestureType.computeStrength(this->mGestureEvent.values);
4 this->mGestureType.computeCriteria(this->mGestureType.mCriteriaValues.

strength);
5 //compute globals
6 this->mCriteria = this->mGestureType.getCriteria();
7 }

3.5 FaNS: Navigational System - A Fair Approach

The central theme of this dissertation is 3D navigation with multi-touch displays. With this

in mind, it was imperative that the navigation system that controlled different interfaces

could handle the input in a way that would not be biased toward any of the input devices

being experimented upon. There are some factors that even a navigational system could not

take into consideration, which are independent considerations for each input. Nevertheless,

the Fair Navigation System (FaNS) provides an experimental framework, such as 3DNav,

to centralize the translation and rotation of a navigational system.

3.5.1 FaNS: The Implementation

The implementation of FaNS consist of a few parts: the update method, the translation

and rotation, the structure to hold data, and some additional helper methods, which will be

described below. All the listing includes partial or complete C++11 implementation.

The update function is triggered by an event loop (e.g., game loop) for every cycle.

This function, as shown in Listing 3.13, updates the queue of navigation steps sent by

input devices (e.g., multi-touch). In specific, the implementation uses a list22 to be able

to process them in the right order. The first step is to see if the buffer needs to be reset,

as shown in line 1. This is needed when the navigation is set to pause and the developer

22A vector in C++.

112

requires the buffer to be clear before resuming. Then, if the mEnabledNavigation guard

is not true, the update function will not run at this given cycle. The reason that this is after

the mResetBuffer is to allow the removal of all buffer data before stopping the navigation,

if the developer chooses this path. During the update, the two major parts required for

navigation are performed next: the translations (the linear movement over the X, Y, Z axes)

and the rotations (the orientation changes about the X, Y, Z axes). The actual methods to

translate or rotate are up to the designer. For example, for translation, this author used

pseudo-physics linear movements, and for rotations just a basic incremental angular step

to change the orientation, as shown in lines 13-27, and lines 28-36. What is important is

to keep a centralized system, such as FaNS, such that the system provides a fair navigation

platform for experiment design. Once the translation and rotations have been completed,

a delete criterion should be applied. The most trivial alternative is to delete all the data

queued. A more interesting approach is to deleted after the movement has decayed or after

a given time, if using some physics or pseudo-physics approach.

In order for FaNS to work, the input system needs to apply (or push) the translations

and rotations. This is done by directly calling applyTranslationForce and applyRota-

tionForce, as shown in Listings 3.14 and 3.15, respectively. The input devices can also use

some of the helper methods, such as moveLeft, moveDown, rotateZ, rotateReverseZ,

and so forth. An example for rotateZ is shown in Listing 3.16. All of the helper methods

that help the navigation system to move will end up calling either applyRotationForce or

applyTranslationForce methods. FaNS also includes a few additional methods to help

with navigation, such as setCamera and resetYaw. More than the actual method, the im-

portant goal is to centralize the navigation, to be able to provide a unbiased experimental

environment.

Listing 3.13: Navigation (Update)
1 if (mResetBuffer)
2 {

113

3 mResetBuffer = false;
4 mTranslationForceList.clear();
5 mRotationForceList.clear();
6 }
7 if (!mEnabledNavigation)
8 return;
9 bool hasChanged=false;

10 if (mTranslationForceList.size() != 0
11 || mRotationForceList.size() != 0)
12 hasChanged = true;
13 for (auto &ft : mTranslationForceList)
14 {
15 ft.pos = ((ft.vel_initial + ft.vel) / 2) * ft.t;
16 ft.vel_initial = ft.acel * ft.t;
17 ft.pos_initial = ft.pos;
18 ft.step = ft.dir.normalisedCopy() * ft.pos;
19 auto check_step = mCamera->getPosition() + ft.step;
20 const auto bound =650.0f;
21 if (bound > std::abs(check_step.x) &&
22 bound > std::abs(check_step.y) &&
23 bound > std::abs(check_step.z))
24 {
25 mCamera->moveRelative(ft.step);
26 }
27 }
28 for (auto &fr : mRotationForceList)
29 {
30 Ogre::Quaternion q;
31 q.FromAngleAxis(fr.r,fr.axis);
32 fr.rot = q;
33 fr.r *= DEFAULT_FRICTION;
34 fr.step = fr.rot;
35 mCamera->rotate(fr.step);
36 }
37 //Delete items past criteria
38 ...

Listing 3.14: Navigation (Push Translation)
1 ...
2 //public
3 void Navigation::applyTranslationForce(const direction& dir, const

translation_force& n, const navigation_time& t,
4 const navigation_type& ntype)
5 {
6 applyTranslationForce(dir,n,t,ntype,"TranslationForce");
7 }
8 //private

114

9 void Navigation::applyTranslationForce(const direction& dir, const
translation_force& n, const navigation_time& t,

10 const navigation_type& ntype,const std::string &
moveType)

11 {
12 //acceleration
13 translation_force_data f;
14 f.navType = ntype;
15 f.dir = dir;
16 f.n = n;
17 f.t = t;
18 f.vel = 0;
19 f.elapsedTime =0;
20 f.acel =0;
21 f.vel_initial = 0;
22 f.pos_initial = 0;
23 f.moveType = moveType;
24 mTranslationForceList.push_back(f);
25 }
26 ...

Listing 3.15: Navigation (Push Rotations)
1 ...
2 //public
3 void Navigation::applyRotationForce(const direction& axis, const

rotation_force& r, const navigation_time& t,
4 const navigation_type& ntype)
5 {
6 applyRotationForce(axis,r,t,ntype,"RotationForce_Radian");
7 }
8 void Navigation::applyRotationForce(const direction& axis, const

rotation_force_degrees& r, const navigation_time& t,const
navigation_type& ntype)

9 {
10 applyRotationForce(axis,r,t,ntype,"RotationForce_Degrees");
11 }
12 void Navigation::applyRotationForce(const direction& axis, const

rotation_force_degrees& r, const navigation_time& t,const
navigation_type& ntype,

13 const std::string & moveType)
14 {
15 const rotation_force rd(r);
16 applyRotationForce(axis,rd,t);
17 }
18 //private
19 void Navigation::applyRotationForce(const direction& axis, const

rotation_force& r, const navigation_time& t,

115

20 const navigation_type& ntype,const std::string &
moveType)

21 {
22 rotation_force_data f;
23 f.navType = ntype;
24 f.t = t; f.vel = 1;
25 f.elapsedTime =0;
26 f.vel = 0;
27 f.acel =0;
28 f.r = r;
29 f.axis = axis;
30 f.vel_initial = 0;
31 f.pos_initial = 0;
32 f.moveType = moveType;
33 mRotationForceList.push_back(f);
34 }
35 ...

Listing 3.16: Navigation (Push Translation)
1 ...
2 void Navigation::rotateZ(const rotation_force_degrees & degree,
3 const navigation_time & t,const navigation_type& ntype)
4 {
5 direction dir(0,0,1);
6 applyRotationForce(dir,degree,t,ntype,"RotateZ-RotationForce_Degrees");
7 }
8 ...

3.6 Hold-and-Roll: Finding a Gesture for the Z Axis

In the search for a more intuitive 3D interaction, different gestures were considered. There

are many possible gestures, as detailed in Chapter 2. The consideration of other gestures

and the design choices for those will be explained in more detail in Chapter 4. The follow-

ing section describes the Hold-and-Roll gesture used for the Z axis.

Hold-and-Roll is intended to be a bi-manual multi-touch interaction. With this said, it

is possible to try to perform this gesture with one hand, as will be clear when the gesture is

explained. The gesture was originally designed with the following criteria:

116

• It is meant to be used on a desktop display, wall display or surface display. This

gesture was not meant to be used with mobile or tablet devices.

• The gesture uses the two stationary fingers with the non-dominant hand and a rolling

gesture with the finger of the dominant hand.

• The gesture could be modified to have one stationary finger and one rolling finger.

• The finger from the dominant hand rolls vertically, either up and down, or down and

up (in the case of the desktop display).

• It is possible to extended the rolling to horizontal and diagonal movements ,if needed.

• If the user releases the rolling finger, the navigation continues while the stationary

fingers are pressed. This can be modified with the following options:

– The rolling finger can be assigned a momentum value, which will decay over

time.

– When the user is not rolling the finger, there can be a time factor to stop the

movement.

• The velocity is constant while the user is not rolling the finger. However, when the

user rolls it again, the navigation stops and continues, creating a small break when

navigating.

• The velocity is determined with the movement of the rolling finger. Small movements

will not create enough momentum to keep the automatic movement.

The gesture designed allowed for a different gesture to move forward and back (Z di-

rection) than the typical scale gesture. Actually, the scale gesture was disabled from the

experiment because it is reserved for zoom in or out or adjusting the camera’s view angle.

It is important to considered that moving forward and back, is not the same as zooming

in our out of the virtual world. It may appear to be so, but they are two different actions.

117

A simple example is to stay stationary at the end of one street. If one uses binoculars, it

can come toward and forward with the vision. However, if one walks toward the other end

of the street, it is actually translating. The actual details of how Hold-and-Roll was used

for the experiment, and the decision to included it in the experiment are explained in the

following chapters.

118

CHAPTER 4

3DNAV: MULTI-TOUCH SYSTEM PROTOTYPE

This chapter covers the essential parts of 3DNav and the considerations that led to the

final design of this prototype. Therefore, the chapter has two objectives: First, describe

3DNav and its functioning, including the contribution of 3DNav. Second, explain how

structure of 3DNav facilitated making the design of experiment (Chapter 5) independent

of the input technologies tested. This requires providing some technical details of the

apparatus.

4.1 Preliminary Device Testing

During the initial part of the research, it wasn’t completely clear which device needed to

be used to compare the multi-touch device, nor which gestures were needed for 3DNav.

The system itself was developed with various devices in order to address these questions.

The decision to test the multi-touch display versus the GamePad controller is explained in

detail in Chapter 5. This section provides information about different devices that were

tested and how they were implemented.

4.1.1 Device Listeners and Common Interfaces

Some devices needed to be implemented using third-party API or using the WINAPI low-

level access to devices. This led this author to adopt the common design pattern [56, 64],

known as the observer pattern. This pattern allows a central object (subject) to keep a list

of dependents (observers). In this approach the device has a listener waiting for an event.

Each device has its own device listener. An example for the 3D mouse is shown in Listings

4.1,4.2, and 4.3. The listener (Listing 4.1) provides an interface for any class that needs

to receive the event data input when it triggers. The registry (Listing 4.2 provides two

119

functionalities: registration to the list of observers (registryListener(...)), and the signaling

method for the raw input methods (e.g., WINAPI) to signal an event to all subscribed

observers. The concrete implementation is shown in Listing 4.3. Finally, it is important

to mention that a common interface was created for all game navigation controllers, which

is called InputPad. This interface allows users to have common functionalities across

devices. The InputPad interface is shown in Listing 4.4.

Listing 4.1: Observer Pattern (Listener.h)
1 typedef struct DOF6 {
2 int tx;
3 int ty;
4 int tz;
5 int rx;
6 int ry;
7 int rz;
8 } DOFSix;
9

10 typedef struct BDATA {
11 unsigned char p3;
12 unsigned char p2;
13 unsigned char p1;
14 } BData;
15
16 class Win3DXOgreListener
17 {
18 public:
19 virtual bool handleNavigator(int message,DOFSix & D,BData & B) = 0;
20 };

Listing 4.2: Observer Pattern (Registry.h)
1 #include "Win3DXOgreListener.h"
2 #include <vector>
3 #include <map>
4
5 class Win3DXOgreEventRegistry
6 {
7 public:
8 static bool registerListener(int inMessage, Win3DXOgreListener*

inListener);
9

10 static bool signalNavigator(int inMessage, int outMessage,DOFSix
& D,BData & B);

11

120

12 enum MESSAGES {M_UNKNOWN = 100,M_BUTTON = 101,M_NAVIGATOR = 102};
13 enum REGISTER {LISTEN_ALL=0};
14
15 protected:
16 static std::map<int, std::vector<Win3DXOgreListener*>>

sListenerMap;
17
18 };

Listing 4.3: Observer Pattern (Registry.cpp)
1 // Implements the EventRegistry class
2 #include "Win3DXOgreEventRegistry.h"
3 using namespace std;
4 map<int, vector<Win3DXOgreListener*>> Win3DXOgreEventRegistry::

sListenerMap;
5
6 bool Win3DXOgreEventRegistry::registerListener(int inMessage,

Win3DXOgreListener* inListener)
7 {
8 if (inMessage != REGISTER::LISTEN_ALL) return false;
9 sListenerMap[inMessage].push_back(inListener);

10 return true;
11 }
12
13 bool Win3DXOgreEventRegistry::signalNavigator(int inMessage, int

outMessage,DOFSix & D,BData & B)
14 {
15 if (inMessage != REGISTER::LISTEN_ALL || sListenerMap.find(inMessage)

== sListenerMap.end())
16 return false;
17 for (auto iter = sListenerMap[inMessage].begin();
18 iter != sListenerMap[inMessage].end(); ++iter)
19 {
20 (*iter)->handleNavigator(outMessage, D, B);
21
22 }
23 return true;
24 }

Listing 4.4: InputPad (Interface)
1 #include <string>
2 using namespace std;
3 class InputPad
4 {
5 public:
6 virtual void updateInput(const double,const unsigned long long)=0;

121

Figure 4.1: 3D Mouse Space Sensor†

†: ©2014 3Dconnexion.All rights reserved.
3Dconnexion, the 3Dconnexion logo, and
other 3Dconnexion marks are owned by

3Dconnexion and may be registered.

7 virtual string getPlayerName()=0;
8 virtual string getDeviceName()=0;
9 virtual void setPlayerName(const string & playerName)=0;

10 virtual void setDeviceName(const string & deviceName)=0;
11 virtual void enableInputDevice(bool enabled)=0;
12 virtual void enableWrite(bool enabled)=0;
13 };

4.1.2 3D Mouse

The 3D Mouse by 3DConnextion1, a division of the popular company Logitech2, provides

a 6-DOF interaction. The company has reported over one million units sold as of March,

20113.

1See http://www.3dconnexion.com.

2See http://www.logitech.com.

3See http://bit.ly/1nFpujp.

122

http://www.3dconnexion.com
http://www.logitech.com
http://bit.ly/1nFpujp

Figure 4.2: 3D Mouse Functions†

†: ©2014 3Dconnexion.All rights reserved.
3Dconnexion, the 3Dconnexion logo, and
other 3Dconnexion marks are owned by

3Dconnexion and may be registered.

This 3D mouse, shown in Figure 4.1, provides the three rotations yaw (spin), roll, and

pitch (tilt). It also provides three additional movements that can be used for the transla-

tions in X, Y, and Z coordinates, which they called pan left/right, pan up/down, and zoom,

respectively, as shown in Figure 4.2.

While the device does provide 6-DOF, the user is restricted by the device to small

movements in each of the six possible interactions provided by the 3D Mouse. For exam-

ple, the movements along the Z axis (zoom) are restricted to approximately 0.5 mm from

center to either direction (in/out). The device can be a complement to current navigation

techniques. However, during a pilot study users reported that the device was difficult to

use. Nevertheless, it is used by some 3D cad and 3D modelers, working in AutoCAD, 3Ds

Max, Maya, and other similar tools.

Implementation

During the time that the 3D Mouse was tested, the Software Development Kit (SDK) pro-

vided by 3DConnexion had some problems remained unresolved. Currently, there is new

SDK that has been updated as of late 2013. However, the testing was performed using low-

123

level driver support from WINAPI, running on Windows 7. The following implementation

describes the low-level implementation4 to access the 3DMouse.

First, the device must be initialized, as shown in Listing 4.5. In lines 2-5, the process

defines a few global variables required for the entire device recognition and device listening

at the raw level. Then, the initialize function must be executed, as shown in lines 7-21. If

the function is successful, it will return true, as shown in line 20.

After verifying during the initialization process that there is a device, there needs to

be a search for the type of device present, which in this case,is the 3D mouse. The actual

model is called 3D Mouse Space Navigator. The steps indicated in Listing 4.5 are shown

in Listing 4.6. During the for loop included in lines 1-37, the process must determine if the

3D mouse is found, to later register up to 8 devices. First, the process must check if the

device type is RIM_TYPEHID, which is defined as the constant equal to 2. In line 15, the

function GetRawInputDeviceInfo(...), checks to see if the return value is a number greater

than zero and the type is equal to RIM_TYPEHID. Note that RIDI_DEVICEINFO is

equal to the hexadecimal number of 2000000B (5366870923 in decimal value). If this

is the case, and the usUsagePage = 1 and the usUsage, the device is registered into the

list g_RawInpuDevices. Finally, the devices found are registered using RegisterRawIn-

putDevices, in line 38, using the list of devices already stored. It is important to note that

g_pRawInputDeviceList must have its memory released once the process completes using

the free method (f ree(g_pRaw)), which is equally important for any other data structure

allocated using the C language method malloc(...), when ir is no longer needed.

Once the devices are registered, the actual data can be extracted from the device using

the Windows event loop available. the actual data can be extracted from the device. The

typical error checks are performed in Listing 4.7. The device input data process is shown

in Listing 4.8. It is important to note that data packets are not triggered in one cycle, but

4See http://www.ogre3d.org/forums/viewtopic.php?f=2&t=69156.

124

http://www.ogre3d.org/forums/viewtopic.php?f=2&t=69156

independent events, which are captured by checking the bRawData. This variable is equal

to one for the translation movement, equal to two for the rotation movements, and equal

to three if the buttons were pressed. This is why lines 8-36 have an if-elseif-else logic, to

obtain the data packets. Once the process is completed, there are different options for the

developer. For example, the developer may desire to fire each event independently or test

some criteria before firing. For example, if bRotation and bTranslation are true, then the

input event is fired. An example of firing the event data listener is shown in line 35. The

signalNavigator(...) is how the listeners are advised of new device data when fired. This is

described in 4.1.1, including the listing for the observer pattern, already explained.

Listing 4.5: 3DMouse (Global and Initial Checks)
1 ...
2 //Global variables
3 PRAWINPUTDEVICELIST g_pRawInputDeviceList;
4 PRAWINPUTDEVICE g_pRawInputDevices;
5 int g_nUsagePage1Usage8Devices;
6
7 BOOL InitRawDevices()
8 {
9 UINT nDevices;

10 if (GetRawInputDeviceList(NULL, &nDevices, sizeof(RAWINPUTDEVICELIST))
!= 0)

11 return FALSE; // no 3D Mouse Found
12 if ((g_pRawInputDeviceList = (PRAWINPUTDEVICELIST)malloc(sizeof(

RAWINPUTDEVICELIST) * nDevices)) == NULL)
13 return FALSE; // malloc fails
14 if (GetRawInputDeviceList(g_pRawInputDeviceList, &nDevices, sizeof(

RAWINPUTDEVICELIST)) == -1)
15 return FALSE; //fails to get input devices
16
17 g_pRawInputDevices = (PRAWINPUTDEVICE)malloc(nDevices * sizeof(

RAWINPUTDEVICE));
18 g_nUsagePage1Usage8Devices = 0;
19 ...
20 RETURN TRUE;
21 }
22 ...

Listing 4.6: 3DMouse (Partial Initialize)
1 for(UINT i=0; i<nDevices; i++)

125

2 {
3 if (g_pRawInputDeviceList[i].dwType == RIM_TYPEHID)
4 {
5 UINT nchars = 300;
6 TCHAR deviceName[300];
7 if (GetRawInputDeviceInfo(g_pRawInputDeviceList[i].hDevice,
8 RIDI_DEVICENAME, deviceName, &nchars) >= 0)
9 fprintf(stderr, "Device[%d]: handle=0x%x name = %S\n", i,

g_pRawInputDeviceList[i].hDevice, deviceName);
10
11 RID_DEVICE_INFO dinfo;
12 UINT sizeofdinfo = sizeof(dinfo);
13 dinfo.cbSize = sizeofdinfo;
14 if (GetRawInputDeviceInfo(g_pRawInputDeviceList[i].hDevice,
15 RIDI_DEVICEINFO, &dinfo, &sizeofdinfo) >= 0)
16 {
17 if (dinfo.dwType == RIM_TYPEHID)
18 {
19 RID_DEVICE_INFO_HID *phidInfo = &dinfo.hid;
20 fprintf(stderr, "VID = 0x%x\n", phidInfo->dwVendorId);
21 fprintf(stderr, "PID = 0x%x\n", phidInfo->dwProductId);
22 fprintf(stderr, "Version = 0x%x\n", phidInfo->dwVersionNumber);
23 fprintf(stderr, "UsagePage = 0x%x\n", phidInfo->usUsagePage);
24 fprintf(stderr, "Usage = 0x%x\n", phidInfo->usUsage);
25
26 if (phidInfo->usUsagePage == 1 && phidInfo->usUsage == 8)
27 {
28 g_pRawInputDevices[g_nUsagePage1Usage8Devices].usUsagePage =

phidInfo->usUsagePage;
29 g_pRawInputDevices[g_nUsagePage1Usage8Devices].usUsage =

phidInfo->usUsage;
30 g_pRawInputDevices[g_nUsagePage1Usage8Devices].dwFlags = 0;
31 g_pRawInputDevices[g_nUsagePage1Usage8Devices].hwndTarget =

NULL;
32 g_nUsagePage1Usage8Devices++;
33 }
34 }
35 }
36 }
37 }
38 if (RegisterRawInputDevices(g_pRawInputDevices,

g_nUsagePage1Usage8Devices, sizeof(RAWINPUTDEVICE)) == FALSE)
39 return FALSE; // fails to register
40 ...

Listing 4.7: 3DMouse (Process Input Error Checking)
1 RAWINPUTHEADER header;

126

2 UINT size = sizeof(header);
3 if (GetRawInputData((HRAWINPUT)lParam, RID_HEADER, &header, &size,

sizeof(RAWINPUTHEADER)) == -1)
4 return; \\error with device
5 }
6 size = header.dwSize;
7 LPRAWINPUT event = (LPRAWINPUT)malloc(size);
8 if (GetRawInputData((HRAWINPUT)lParam, RID_INPUT, event, &size, sizeof(

RAWINPUTHEADER)) == -1)
9 return; \\error with input

10 ...

Listing 4.8: 3DMouse (Process Input)
1 ...
2 if (event->header.dwType == RIM_TYPEHID)
3 {
4 static BOOL bGotTranslation = FALSE,
5 bGotRotation = FALSE;
6 static int all6DOFs[6] = {0};
7 LPRAWHID pRawHid = &event->data.hid;
8 if (pRawHid->bRawData[0] == 1) // Translation vector
9 {

10 all6DOFs[0] = (pRawHid->bRawData[1] & 0x000000ff) | ((signed short)(
pRawHid->bRawData[2]<<8) & 0xffffff00);

11 all6DOFs[1] = (pRawHid->bRawData[3] & 0x000000ff) | ((signed short)(
pRawHid->bRawData[4]<<8) & 0xffffff00);

12 all6DOFs[2] = (pRawHid->bRawData[5] & 0x000000ff) | ((signed short)(
pRawHid->bRawData[6]<<8) & 0xffffff00);

13 bGotTranslation = TRUE;
14 }
15 else if (pRawHid->bRawData[0] == 2) // Rotation vector
16 {
17 all6DOFs[3] = (pRawHid->bRawData[1] & 0x000000ff) | ((signed short)(

pRawHid->bRawData[2]<<8) & 0xffffff00);
18 all6DOFs[4] = (pRawHid->bRawData[3] & 0x000000ff) | ((signed short)(

pRawHid->bRawData[4]<<8) & 0xffffff00);
19 all6DOFs[5] = (pRawHid->bRawData[5] & 0x000000ff) | ((signed short)(

pRawHid->bRawData[6]<<8) & 0xffffff00);
20 bGotRotation = TRUE;
21 }
22 else if (pRawHid->bRawData[0] == 3)
23 {
24 DOFSix D;
25 BData B;
26 D.tx = 0;
27 D.ty = 0;
28 D.tz = 0;

127

29 D.rx = 0;
30 D.ry = 0;
31 D.rz = 0;
32 B.p3 = (unsigned char)pRawHid->bRawData[3];
33 B.p2 = (unsigned char)pRawHid->bRawData[2];
34 B.p1 = (unsigned char)pRawHid->bRawData[1];
35 Win3DXOgreEventRegistry::signalNavigator(Win3DXOgreEventRegistry::

LISTEN_ALL,Win3DXOgreEventRegistry::M_BUTTON,D,B);
36 }
37 }
38 ...

4.1.3 Inertial Navigation System

INS has become a popular method as an input device (see Chapter 2). One of the com-

ponents is the gyroscope. As it was described in 3.2, the gyroscope sensor was used to

complement multi-touch interaction. This type of system also includes accelerometers and

compasses. With the advanced of MEMS devices, they have become small and pervasive,

as seen with the WiiMote, and a standard in many tablets and smart phones, such as the

iPhone. This sections describes how 3DNav implements the MEMS sensor by YEI Tech-

nologies5, called 3-Space Sensor. The API provided by YEI Technologies works with

C/C++ and Python. The actual API is pure C, where 3DNav can use the techniques already

described in 4.1.2, to wrap it for a more modern C++ approach.

The actual sensor used comes with a wireless dongle that connects up to 15 devices.

Listing 4.9 shows the C++ wrapper used in 3DNav that works with the YEI API, version

2.0.6.16. The actual sensor wrapper is shown in Listing 4.10. YEI technologies provide

additional software. For example, they provide a suite to do testing, which requires no

coding at all. This can be quite useful for understanding the output of the device before

creating a prototype.

5See http://www.yeitechnology.com

6Updated March 06, 2014.

128

http://www.yeitechnology.com

Listing 4.9: YEI 3Space Sensor Wireless (Wrapper)
1 #include <yei_threespace_api.h>
2 using namespace std;
3 class MemsYeiDongle
4 {
5 public:
6 typedef enum YEI_DongleStatus
7 {
8 CONNECTED,
9 COMPORT_FAILED,

10 DONGLE_FAILED,
11 UNKNOWN
12 };
13 MemsYeiDongle(const string & friendlyDongleName);
14 ~MemsYeiDongle();
15 unsigned int getDeviceId();
16 YEI_DongleStatus connect();
17 shared_ptr<const string> getComPortFriendlyName();
18 shared_ptr<const string> getComPortName();
19 shared_ptr<const string> getFriendlyDongleName();
20 bool isConnected();
21 YEI_DongleStatus reconnect();
22 int getSensorType();
23 void closeDevice();
24 YeiSensorData getData();
25 private:
26 bool isConnected;
27 TSS_Device_Id dongle;
28 TSS_ComPort comport;
29 string dongleName;
30 const string comPortFriendlyName;
31 const string comPortName;
32 int sensorType;
33 };

Listing 4.10: YEI 3Space Sensor (Wrapper)
1 #include <yei_threespace_api.h>
2 using namespace std;
3 class MemsYeiDongle
4 {
5 public:
6 typedef enum YEI_DongleStatus
7 {
8 CONNECTED,
9 COMPORT_FAILED,

10 DONGLE_FAILED,

129

11 UNKNOWN
12 };
13 MemsYeiDongle(const string & friendlyDongleName);
14 ~MemsYeiDongle();
15 unsigned int getDeviceId();
16 YEI_DongleStatus connect();
17 shared_ptr<const string> getComPortFriendlyName();
18 shared_ptr<const string> getComPortName();
19 shared_ptr<const string> getFriendlyDongleName();
20 bool isConnected();
21 YEI_DongleStatus reconnect();
22 int getSensorType();
23 void closeDevice();
24 YeiSensorData getData();
25 private:
26 bool isConnected;
27 TSS_Device_Id dongle;
28 TSS_ComPort comport;
29 string dongleName;
30 const string comPortFriendlyName;
31 const string comPortName;
32 int sensorType;
33 };

4.1.4 Microsoft Kinect

In the original design of 3DNav, the Microsoft Kinect was not contemplated to be one of the

devices that would be used. The reasons were two-fold: First, the Kinect was not originally

well-suited to capture close proximity movements (i.e., within a few centimeters of the

Kinect camera). Second, the dissertation focus is not computer vision. However, given the

popularity of the Microsoft Kinect and the easy-to-use API, this author considered doing

some testing.

A bit of background is required to understand the Microsoft Kinect. The original de-

sign and intent was the capture of in-air gestures when using the Microsoft XBox 360 video

game console. Given the popularity and potential of the Kinect, the working system was

reverse-engineered to provide an unofficial API. It is not certain if this led Microsoft to

130

release Microsoft Kinect for Windows, but in any case, the release of Kinect for Windows

came with an official SDK provided from Microsoft and a modified firmware that included

a feature for the near/far distance detection. This SDK was used for testing. While Mi-

crosoft has released the new Kinect 2 for the XBox One video game console, and will be

releasing a Kinect 2 for windows soon, note that when the Kinect sensor is mentioned in

this dissertation, it refers to the Microsoft Kinect (version 1) for Windows.

The Kinect includes a microphone array, an infrared emitter, an infrared receiver, a

color camera, and a DSP chip. This all connects using a Universal Serial Bus (USB) 2 [26].

The use of both cameras allows for 3D vision to be captured. In other words, depth can be

captured using the Kinect. There are some limitations to the use of the Kinect, which are

listed below (adapted from [26]):

• Horizontal viewing angle: 57°.

• Vertical viewing angle: 43°.

• Far mode distance: 1.2 meters to 4.2 meters.

• Near7 mode distance: 0.4 meters to 3.0 meters.

• Standard Depth Range: 8000 mm.

• Near Mode Depth Range: 400 mm.

• Temperature: 5° to 35° Celsius.

• Motor controller vertical viewing position: ±28°

One feature provided by the Kinect SDK is the ability to track the human skeleton,

called Skeletal Tracking. It allows the tracking of the movements of joints by a user, as

shown in Figure 4.3. The tracking can be done for up to six persons simultaneously [26],

in its FOV.

7Only available with firmware update

131

The Implementation

The actual implementation differed from the other devices. While devices were kept in

3DNav, the Kinect was coded using an external program. There were different reasons to

do this. First, the Kinect SDK samples at the time of testing were given in their majority

in C# and all the documentation was created with C# in mind. Another reason is that

people have used an array of Kinects, using an external process or computer to capture

the data, and sent the information to a another process. Therefore, this author decided to

use a different approach to this device, to show that 3DNav could also work with external

processes. This provides the flexibility to have different processes in the same computer or

across a network.

This implementation was achieved using a WINAPI messaging system to send data be-

tween processes, as shown in Listing 4.11. This allows the Kinect process to send messages

to an external application running on the same computer. Of course, the implementation

of the method SendMessageTo could be replaced by another type of system or networking

communications (e.g., Communication Sockets [135]).

To perform the 3D navigation using the Kinect, a basic set of gestures was created, as

shown in Figure 4.3. In this figure, there are 8 positions where the user can move his or

her right or left hand to achieve a desired action. The user was presented with a model

of ruins from a ancient civilization, as shown in Figure 4.4, in full screen. The user could

also see the different parts of the system if needed8, as shown in Figure 4.5. What the user

experienced, from his or her point of view, is shown in Figure 4.5.

The final goal for the Kinect sensor, in the case of this dissertation, was to see if it could

be used for desktop environments. While it had been possible to mount it with a stand, in

general, when using it in close proximity to the desktop, it did not yield the results needed.

8Used primarily for development.

132

Figure 4.3: C# Skeleton Viewer (Possible Gestures)

With this said, this device was not pursued further. It is hoped that similar new devices

present an emphasis in near version, while keeping similar purchase costs. Finally, it is

important to mention that the development of the prototype was led by this author, with the

collaboration of Jose Camino, Karina Harfouche, and Holly Smith.

Listing 4.11: Kinect (WINAPI Messages)
1 private struct COPYDATASTRUCT
2 {
3 public IntPtr dwData;
4 public int cbData;
5 [MarshalAs(UnmanagedType.LPStr)]
6 public string lpData;
7 }
8 private const int WM_COPYDATA = 0x4A;
9 [DllImport("user32.dll", SetLastError = true)]

10 static extern IntPtr
11 FindWindow(string lpClassName, string lpWindowName);
12 [DllImport("User32.dll", EntryPoint = "SendMessage")]
13 private static extern int
14 SendMessage(IntPtr hWnd, int Msg, int wParam, ref COPYDATASTRUCT

lParam);

133

15
16 IntPtr hwnd FindWindow(null, "QTApp:KinectMessageHandler");
17
18 private void sendMessageTo(IntPtr hWnd, String msg)
19 {
20 int wParam = 0;
21 int result = 0;
22
23 if (hWnd != IntPtr.Zero)
24 {
25 byte[] sarr = System.Text.Encoding.Default.GetBytes(msg);
26 int len = sarr.Length;
27 COPYDATASTRUCT cds;
28 cds.dwData = IntPtr.Zero;
29 cds.lpData = msg;
30 cds.cbData = len + 1;
31 result = SendMessage(hWnd, WM_COPYDATA, wParam, ref cds);
32 }
33 }

Listing 4.12: Skelton Tracking (Left/Right)
1 ...
2 if (yMin != 0.0f && yMax != 0.0f && xMax != 0.0f && xMin != 0.0f)
3 {
4 //sends 'right' command: right hand in right square
5 if (skeleton.Joints[JointType.HandRight].Position.X >= xMax + 0.3f &&
6 skeleton.Joints[JointType.HandRight].Position.Y < yMax &&

skeleton.Joints[JointType.HandRight].Position.Y > yMin)
7 {
8 sendMessageTo(hwnd,"right");
9 }

10 //sends 'left' command: left hand in left square
11 if (skeleton.Joints[JointType.HandLeft].Position.X <= xMin - 0.3f &&
12 skeleton.Joints[JointType.HandLeft].Position.Y < yMax && skeleton

.Joints[JointType.HandLeft].Position.Y > yMin)
13 {
14 sendMessageTo(hwnd, "left");
15 }
16 }
17 ...

134

Figure 4.4: Ancient 3D ruins

Figure 4.5: Screen Closeup

135

Figure 4.6: From the user’s point of view

4.1.5 Keyboard and Mouse

The keyboard and mouse usage and implementation are pervasive. Therefore, very little

will be mentioned in this dissertation about these input devices. However, they are available

in 3DNav because of how common and available they are. What is more important is how

to handle the 3D navigation using a keyboard or a mouse. The following example, in

Listing 4.13, demonstrates the interface for keyboard navigation controller.

Listing 4.13: Keyboard (Navigation)
1 class KeyPad : public InputPad
2 {
3 public:
4 typedef float real;
5 KeyPad(Navigation * navigation,OIS::Keyboard* keyboard,const string &

playerName=string("Player"),const string & deviceName=string("
Keyboard"));

6 virtual void updateInput(const double,const unsigned long long);
7 virtual void enableInputDevice(bool enabled){mEnabled = enabled;}
8 virtual void enableWrite(bool enabled){mWriteEnabled = enabled;}

136

9 virtual void setPlayerName(const string & playerName) { mPlayerName =
playerName; }

10 virtual void setDeviceName(const string & deviceName) { mDeviceName =
deviceName;}

11 virtual string getPlayerName(){ return mPlayerName;}
12 virtual string getDeviceName(){ return mDeviceName;}
13
14 private:
15 //Methods
16 void moveLeft(real f,real t);
17 void moveRight(real f,real t);
18 void moveUp(real f,real t);
19 void moveDown(real f,real t);
20 void moveIn(real f,real t);
21 void moveOut(real f,real t);
22 void rotateX(real f,real t);
23 void rotateY(real f,real t);
24 void rotateZ(real f,real t);
25 void rotateInverseX(real f,real t);
26 void rotateInverseY(real f,real t);
27 void rotateInverseZ(real f,real t);
28 Navigation * mNavigation;
29 OIS::Keyboard * mKeyboard;
30 string mPlayerName;
31 string mDeviceName;
32 bool mEnabled;
33 bool mWriteEnabled;
34 };

4.1.6 GamePad

The GamePad is a type of video game controller that is the default device for every video

console game today. While video games tried different controllers in the late seventies and

early eighties, such as the joystick (4.7a)), paddles (Figure 4.7b), and other input devices,

the release of the GamePad in the third generation of the Nintendo Entertainment System

(NES) video game console marked the before and after for game controllers (Figure 4.7c).

The GamePad (also called joypad), shown in Figure 4.8a, provides a common form to nav-

igate in virtual worlds. In particular, 3DNav uses the XBox 360 controller, shown in Figure

137

(a) Atari Joystick (b) Atari Paddles (c) Nintendo NES Pad

Figure 4.7: Images

4.8b. This GamePad comes from the seventh generation of video game consoles [129].

The evolution of the GamePad has made them an excellent candidate for 3D navigation.

The most current GamePad, from the eight generation, is the XBox One controller, shown

in Figure 4.8c.

The Implementation

To use the XBox 360 GamePad in 3DNav, the use of the Microsoft XInput9 [81, 137]

library was utilized. XInput is the most current Microsoft Library for input devices, in spe-

cific, game controllers. Just like in the previous devices already mentioned, the wrapping

of the low-level access to the controller was developed, as shown in Listings 4.14 and 4.15.

The actual navigation was configured just like in the keyboard example. Here is a partial

sample of the code needed, shown in Listings 4.16 and 4.17. Finally, in 3DNav it is im-

portant to normalize the data and smooth the input10, to have a more continuous navigation

when using the GamePad, as shown in Listing 4.18.

Listing 4.14: XBox360 Controller (h)
1 #define WIN32_LEAN_AND_MEAN
2 // We need the Windows Header and the XInput Header
3 #include <windows.h>

9See http://msdn.microsoft.com/en-us/library/windows/desktop/ee417014(v=vs.85).aspx

10See http://www.altdevblogaday.com/2011/06/16/analog-input-processing/

138

http://www.altdevblogaday.com/2011/06/16/analog-input-processing/

(a) Sony Dual-Shock (PS1) (b) Xbox 360 (c) Xbox One

Figure 4.8: Images

4 #include <XInput.h>
5 // NOTE: COMMENT THE NEXT LINE, IF YOU ARE NOT USING A COMPILER THAT

SUPPORTS #pragma TO LINK LIBRARIES
6 #pragma comment(lib, "XInput.lib")
7
8 class CXBoxController
9 {

10 private:
11 XINPUT_STATE _controllerState;
12 int _controllerNum;
13 public:
14 typedef XINPUT_STATE controllerx_state;
15 CXBoxController(int playerNumber);
16 XINPUT_STATE GetState();
17 bool IsConnected();
18 void Vibrate(WORD leftVal = 0, WORD rightVal = 0);
19 };

Listing 4.15: XBox360 Controller (cpp)
1 #include "CXBoxController.h"
2 CXBoxController::CXBoxController(int playerNumber)
3 {
4 _controllerNum = playerNumber - 1;
5 }
6 XINPUT_STATE CXBoxController::GetState()
7 {
8 ZeroMemory(&_controllerState, sizeof(XINPUT_STATE));
9 XInputGetState(_controllerNum, &_controllerState);

10 return _controllerState;
11 }
12 bool CXBoxController::IsConnected()
13 {
14 ZeroMemory(&_controllerState, sizeof(XINPUT_STATE));
15 DWORD Result = XInputGetState(_controllerNum, &_controllerState);

139

16 if(Result == ERROR_SUCCESS)
17 return true;
18 else
19 return false;
20 }
21 void CXBoxController::Vibrate(WORD leftVal, WORD rightVal)
22 {
23 XINPUT_VIBRATION Vibration;
24 ZeroMemory(&Vibration, sizeof(XINPUT_VIBRATION));
25 Vibration.wLeftMotorSpeed = leftVal;
26 Vibration.wRightMotorSpeed = rightVal;
27 XInputSetState(_controllerNum, &Vibration);
28 }

Listing 4.16: Game Navigation Controller(h)
1 class XPad : public InputPad
2 {
3 public:
4 typedef enum {PlayerOne=1,PlayerTwo=2,PlayerThree=3,PlayerFour=4}

player_number;
5 typedef enum {Analog,Digital} process_type;
6 typedef float real;
7 typedef struct controller_data { ... };
8 typedef struct normalized_data { ... };
9 typedef struct deadzone_data { ... };

10 typedef struct player_data { ... };
11 typedef struct controller_values { ... };
12 ...
13 XPad(...);
14 void setNormalizedDeadZoneL(real v){mDeadzone.left =v;}
15 void setNormalizedDeadZoneR(real v){mDeadzone.right =v;}
16 void setNormalizedDeadZoneTrigger(real v){mDeadzone.trigger =v;}
17 player_data getPlayerData() { return mPlayerData;}
18 void setPolarity(bool p){mPolarity=p;}
19 void setDigital(bool d){mDigital=d;}
20 bool isConnected(){return true;}
21 virtual void updateInput(const double timeSinceLastFrame,const unsigned

long long cCount);
22 virtual void enableInputDevice(bool enabled){mEnabled = enabled;}
23 virtual void enableWrite(bool enabled){mWriteEnabled = enabled;}
24 virtual void setPlayerName(const string & playerName) { mPlayerName =

playerName; }
25 virtual void setDeviceName(const string & deviceName) { mDeviceName =

deviceName;}
26 virtual string getPlayerName(){ return mPlayerName;}
27 virtual string getDeviceName(){ return mDeviceName;}
28 XINPUT_STATE getState(){ return mPad.GetState();}

140

29 private:
30 ...
31 };

Listing 4.17: Game Navigation Controller(cpp)
1 class XPad : public InputPad
2 {
3 public:
4 typedef enum {PlayerOne=1,PlayerTwo=2,PlayerThree=3,PlayerFour=4}

player_number;
5 typedef enum {Analog,Digital} process_type;
6 typedef float real;
7 typedef struct controller_data { ... };
8 typedef struct normalized_data { ... };
9 typedef struct deadzone_data { ... };

10 typedef struct player_data { ... };
11 typedef struct controller_values { ... };
12 ...
13 XPad(...);
14 void setNormalizedDeadZoneL(real v){mDeadzone.left =v;}
15 void setNormalizedDeadZoneR(real v){mDeadzone.right =v;}
16 void setNormalizedDeadZoneTrigger(real v){mDeadzone.trigger =v;}
17 player_data getPlayerData() { return mPlayerData;}
18 void setPolarity(bool p){mPolarity=p;}
19 void setDigital(bool d){mDigital=d;}
20 bool isConnected(){return true;}
21 virtual void updateInput(const double timeSinceLastFrame,const unsigned

long long cCount);
22 virtual void enableInputDevice(bool enabled){mEnabled = enabled;}
23 virtual void enableWrite(bool enabled){mWriteEnabled = enabled;}
24 virtual void setPlayerName(const string & playerName) { mPlayerName =

playerName; }
25 virtual void setDeviceName(const string & deviceName) { mDeviceName =

deviceName;}
26 virtual string getPlayerName(){ return mPlayerName;}
27 virtual string getDeviceName(){ return mDeviceName;}
28 XINPUT_STATE getState(){ return mPad.GetState();}
29 private:
30 ...
31 };

Listing 4.18: XBox360 Controller (Smooth Input)
1 void XPad::normalizedData(controller_data & data,normalized_data & ndata)
2 {
3 //scale data will give you input from -1 to 1
4 //normalized will give you 0 to 1.

141

5 ndata.LX = NMath<short,real>::scaledData(MINTHUMB,MAXTHUMB,data.LX);
6 ndata.LY = NMath<short,real>::scaledData(MINTHUMB,MAXTHUMB,data.LY);
7 ndata.RX = NMath<short,real>::scaledData(MINTHUMB,MAXTHUMB,data.RX);
8 ndata.RY = NMath<short,real>::scaledData(MINTHUMB,MAXTHUMB,data.RY);
9 ndata.TL = NMath<short,real>::normalizedData(MINTRIGGER,MAXTRIGGER,data

.TL);
10 ndata.TR = NMath<short,real>::normalizedData(MINTRIGGER,MAXTRIGGER,data

.TR);
11 }
12 double XPad::smoothInput(double v,double alpha)
13 {
14 //data is expected to be normalized.
15 if (std::abs(v) < alpha)
16 return make_pair(0,0);
17 double u = NMath<real>::sgn(v) * (std::abs(v) - alpha) / (1.0f - alpha

) ;
18 return std::make_pair(u);
19 }

4.1.7 Multi-Touch

There are multiple forms used to detect the multi-touch input at the hardware level, as

explained in Chapter 2. Once the touches are detected, the data is communicated to the

system using different types of drivers or protocols. For example, in vision touch detection,

Tangible User Interface Objects (TUIO) are quite popular11. The protocol is defined in

[105], and is illustrated with a real user case in the ReactiVision system [104]. In capacitive

systems, it is common to use the drivers provider by the manufacturer or the operating

system. For example, the 3M M2256PW multi-touch display comes with its own drivers

provided by the manufacturer. In addition, this multi-touch (and others) can work using the

WINAPI12 multi-touch interface. Most languages and API have support for multi-touch.

This is true in objective-C for iPad and iPhone, C# for Windows (version 7 or greater)

11See http://tuio.org.

12Available in Windows 7 and 8.

142

http://tuio.org

desktop, tablets, phones, and Qt13 framework. Some of those have support for raw data

(points and traces), other for specific types of gestures, and some of them, support both

options (raw data and gesture mode). For the particular case of this dissertation, this author

tested with 3M API, Qt touch libraries, GWC by ideaum, and WINAPI. The latter provided

the best results when using raw data.

It is common for raw data to provide trace id, as well as X and Y coordinates. Additional

data is obtained depending on the system. For example, in WINAPI, it is possible to obtain

a time stamp, as well as the contact size for the X and Y coordinates. It is important to

note that the contact size does not provide a lot of information. It fluctuates between low

and high levels for the contact size, at least when tested with the 3M display. The gesture

mode provides defined gestures to work with. For example, the WINAPI used in Windows

7 provided a very small set of available gestures, which are the most common ones. GWC

provides richer set of gestures; however, it does create a lot of ambiguous. There is custom

gesture recognition that has been tried, as explained in Section 1.6, as well as Chapters

2 and 3. For this dissertation, the raw touch event data was used with the WINAPI. This

provided the opportunity to have custom-made recognition methods, such as FETOUCH.

The gesture recognition was performed with gesture works because it provides a larger

set of gestures, and it allowed the experiment to be performed in an unbiased way, using

a popular library. Yield was created to remove the ambiguity of GWC, as described in

Chapter 3.

Overview of Windows 7 Raw Multi-Touch

The implementation for raw data made use of the WINAPI using Windows 7 and Mi-

crosoft Visual Studio 2012. Most of the coding was done in C++, while the FETOUCH

was tested using C#. The primary reason for the decision to use WINAPI was because

13See Qt-project.org

143

of its performance, the understanding of WINAPI by the author and the vast amount of

information available in the Microsoft Software Developer Network (MSDN) site14, and

resources such as [113, 165]. Originally, the 3M M2256PW multi-touch display API was

used, but the results were not as satisfactory as those obtained with the WINAPI. Also, the

WINAPI offered the flexibility to use any multi-touch desktop, regardless of the brand, in a

Windows environment, including laptops, tablets, and phones. Finally, the maturity of the

Windows drivers provided an additional incentive to use the WINAPI.

Implementation: Multi-Touch Using Windows 7

When working with multi-touch using the WINAPI, the initialization, the event loop, and

the touch event (down, move, and up) are important to explain. To implement a solution

with multi-touch using the native calls of Microsoft requires some understanding of the

WINAPI. A detailed explanation of this topic is outside the scope of this dissertation. The

reader is suggested to review the classic Windows Programming book (fifth edition15) by

Charles Petzold [165] and the book by Kiriaty et al. [113]. Windows 8 has some addi-

tional features, which can be accessed using either the WINAPI or the Windows run-time

(WinRT) libraries [166].

Listing 4.19 provides the basic initialization of a Windows process and the Multi-Touch

functionality. In this listing, lines 8-17 check all the possible direct input interactions avail-

able in Windows 7. For example, these lines check if a pen is available to the system. The

one that is of concern to this dissertation is the multi-touch functionality. This is checked

in line 13. This means that the system must have a multi-touch display attached at the

moment of this check. Otherwise, the application will exit. Then, like any typical WINAPI

application, the initialization obtains calls in WinMain, as shown in Listing 4.20 (line 16).

14See http://msdn.microsoft.com

15Note that the next edition does not cover WINAPI.

144

http://msdn.microsoft.com

Once the multi-touch has been initialized, the next step is to receive the messages in the

Windows event loop. The GetMessage(...) method is seen in Listing 4.20. An alternate way

of receiving the messages is using PeekMessage(...). The difference is that by receiving

messages, messages are removed. By peeking at a message, the messages are left in the

loop. This is very important when working with 3D graphics, as the main event loop

may be controlled by another driver. For example, in OGRE, if the developer was to call

the GetMessage(...) method, it will remove other important messages from Windows. In

games, PeekMessage(...) is the preferred method [137].

The common way to handle messages in WINAPI is shown in Listing 4.21. With

regards to multi-touch events, Listing 4.22 shows the correct form to handle multi-touch

data events. If there is multi-touch input data to be processed, then a for loop is executed

in lines 15-29. This means that each input is fired independently. Furthermore, each data

point in this cycle may have different event modes, which includes down, move, and up.

As stated earlier in this dissertation, the down event happens when the finger is pressed for

the first time into the display, the move event generates the continuous set of data points

while the point has stayed on the touch surface, (regardless of if it is moving or not), and

the up event marks the finger’s removal from the surface. Each trace is denoted by an id

number, in this case, provided by the Windows system. Finally, it is important to deallocate

the multi-touch display resource, which had been previously allocated (in the initialization

phase), as shown in line 37.

Finally, the events help to handle the multi-touch interaction. The basic interaction

generates 2D points. For example, a painting application can be used with this information.

The utilization of the 2D point information received depends on the application. 3DNav

stores the points in a hash table (map), where each trace becomes the key, and the value of

the map becomes a list of points (in order of arrival). In FETOUCH, this is later broken

in half to compute the gesture. This is really application specific. Listing 4.23 displays

145

an example of using (thread-safe) data structures to store the data points, during the down,

move, and up events. Two important aspects about the data touch points must be taken into

account. First, the data structures shown are thread-safe, meaning that it is safe to run them

in parallel if needed16. Second, during the up event, no points are removed from the hash

table. This is because it is expected to have another process deal with the points and delete

them. Finally, the Trace class, in this context, contains information about a data point that

belongs to a certain trace.

Listing 4.19: WINAPI (Multi-Touch init)
1 BOOL InitInstance(HINSTANCE hInstance, int nCmdShow)
2 {
3 g_hInst = hInstance;
4 g_hWnd = CreateWindow(g_wszWindowClass, g_wszTitle, WS_OVERLAPPEDWINDOW

,
5 CW_USEDEFAULT, 0, CW_USEDEFAULT, 0, NULL, NULL, hInstance, NULL);
6 if (!hWnd)
7 return FALSE;
8 if (value & NID_READY){ /* stack ready */}
9 if (value & NID_INTEGRATED_TOUCH) {/* integrated touch device in the PC

enclouser */}
10 if (value & NID_EXTERNAL_TOUCH) { /* Touch device is not integrated in

the PC enclouser */ }
11 if (value & NID_INTEGRATED_PEN){/* Integrated pan support is in the PC

enclouser */ }
12 if (value & NID_EXTERNAL_PEN){/* Pan is supported but not as part of

the PC enclouser */ }
13 if (((value & NID_MULTI_INPUT) == NID_MULTI_INPUT))
14 {
15 if(!RegisterTouchWindow(hWnd, 0))
16 return FALSE;
17 }
18 ...
19 ASSERT(IsTouchWindow(hWnd, NULL));
20 ShowWindow(hWnd, nCmdShow);
21 UpdateWindow(hWnd);
22 ...
23 return TRUE;
24 }

Listing 4.20: WINAPI (Multi-Touch WinMain)

16There still a synchronization aspect between down, move, and up events.

146

1 int APIENTRY wWinMain(HINSTANCE hInstance,
2 HINSTANCE hPrevInstance,
3 LPWSTR lpCmdLine,
4 int nCmdShow)
5 {
6 ...
7 GdiplusStartupInput gdiplusStartupInput;
8 ULONG_PTR gdiplusToken;
9 MSG msg;

10 HACCEL hAccelTable;
11 //Initialize GDI+
12 GdiplusStartup(&gdiplusToken, &gdiplusStartupInput, NULL);
13
14 ...
15 MyRegisterClass(hInstance);
16 if (!InitInstance (hInstance, nCmdShow))
17 return FALSE;
18 ...
19 // Main message loop:
20 while (GetMessage(&msg, NULL, 0, 0))
21 {
22 if (!TranslateAccelerator(msg.hwnd, hAccelTable, &msg))
23 {
24 TranslateMessage(&msg);
25 DispatchMessage(&msg);
26 }
27 }
28 ...
29 GdiplusShutdown(gdiplusToken);
30 return (int) msg.wParam;
31 }

Listing 4.21: WINAPI (Events)
1 LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM

lParam)
2 {
3 int wmId, wmEvent;
4 PAINTSTRUCT ps;
5 HDC hdc;
6 switch (message)
7 {
8 case WM_COMMAND:
9 ...

10 break;
11 case WM_PAINT:
12 ...

147

13 break;
14 case WM_TOUCH:
15 ...
16 break;
17 case WM_DESTROY:
18 ...
19 PostQuitMessage(0);
20 break;
21 default:
22 return DefWindowProc(hWnd, message, wParam, lParam);
23 }
24 return 0;
25 }

Listing 4.22: WINAPI (Multi-Touch Touch Events)
1 switch (message)
2 {
3 ...
4 case WM_TOUCH:
5 UINT numInputs = (UINT) wParam;
6 TOUCHINPUT* pTIArray = new TOUCHINPUT[numInputs];
7 if(NULL == pTIArray)
8 {
9 CloseTouchInputHandle((HTOUCHINPUT)lParam);

10 break;
11 }
12
13 if(GetTouchInputInfo((HTOUCHINPUT)lParam, numInputs, pTIArray,

sizeof(TOUCHINPUT)))
14 {
15 for(UINT i=0; i<numInputs; ++i)
16 {
17 if(TOUCHEVENTF_DOWN == (pTIArray[i].dwFlags &

TOUCHEVENTF_DOWN))
18 {
19 OnTouchDownHandler(hWnd, pTIArray[i]);
20 }
21 else if(TOUCHEVENTF_MOVE == (pTIArray[i].dwFlags &

TOUCHEVENTF_MOVE))
22 {
23 OnTouchMoveHandler(hWnd, pTIArray[i]);
24 }
25 else if(TOUCHEVENTF_UP == (pTIArray[i].dwFlags &

TOUCHEVENTF_UP))
26 {
27 OnTouchUpHandler(hWnd, pTIArray[i]);
28 }

148

29 }
30 }
31
32 CloseTouchInputHandle((HTOUCHINPUT)lParam);
33 delete [] pTIArray;
34 break;
35
36 case WM_DESTROY:
37 if(!UnregisterTouchWindow(hWnd))
38 ...
39 break;
40 ...
41 }
42 ...

Listing 4.23: WINAPI (Multi-Touch down,move,up)
1 void OnTouchDownHandler(HWND hWnd, const TOUCHINPUT& ti)
2 {
3 POINT pt = GetTouchPoint(hWnd, ti);
4 unsigned long iCursorId = GetTouchContactID(ti);
5 Trace trace(iCursorId,ti,hWnd);
6 trace.requestTimeStamp();
7 concurrent_vector<Trace> vtrace;
8 vtrace.push_back(trace);
9 mapTraces.insert(pair<unsigned long,concurrent_vector<Trace>>(iCursorId

,vtrace));
10 }
11
12 void OnTouchMoveHandler(HWND hWnd, const TOUCHINPUT& ti)
13 {
14 unsigned long iCursorId = GetTouchContactID(ti);
15 POINT pt;
16 pt = GetTouchPoint(hWnd, ti);
17 concurrent_unordered_map<unsigned long,concurrent_vector<Trace>>::

iterator p = mapTraces.find(iCursorId);
18 Trace trace(iCursorId,ti,hWnd);
19 trace.requestTimeStamp();
20 int touchCount = mapTraces.size();
21 int traceSize = p->second.size();
22 Trace lastTrace = p->second[traceSize - 1];
23 ...
24 if (moving)
25 p->second.push_back(trace);
26 else //not moving
27 p->second[traceSize - 1].IncCount();
28 }
29

149

30 void OnTouchUpHandler(HWND hWnd, const TOUCHINPUT& ti)
31 {
32 //Delete point only if not handled by a external
33 // resource such as gesture recognition method.
34 }

Implementation: Gesture Data

Besides FETOUCH, 3DNav implemented GWC, which was used for the experiment de-

tailed in Chapter 5. A more detailed explanation of why it was selected for the experiment

is given on that chapter. GWC API comes with a C binding of its Dynamic Link Library

(DLL)17 and a few C++ classes. Everything else is a black box, since it is contained in their

DLL. The 3DNav contains its own C++ classes. Listings 4.24 and 4.25, show the classes

to handle GWC in 3DNav.

Listing 4.24: GWC (GWTouch.h)
1 #include <GestureWorksCore.h>
2 #include <GWCUtils.h>
3 ...
4 #ifdef _WIN64
5 #define GWDLL "GestureworksCore64.dll"
6 #elif
7 #define GWDLL "GestureworksCore32.dll"
8 #endif
9 class GwTouch

10 {
11 public:
12 GwTouch();
13 bool Register(HWND hwnd);
14 bool RegisterByWindowName(const string & windowName);
15 void init(int screenWidth, int screnHeight,string & pathGmlFile);
16 void resize(int screenWidth, int screenHeight);
17 void registerTouchObject(const string & objectName);
18 bool deregisterTouchObject(const string & objectName);
19 bool addGesture(const string & touchObjectName, const string &

gestureId);
20 bool removeGesture(const string & touchObjectName, const string &

gestureId);

17Early 2014 version of GWC.

150

21 bool addGestureSet(const string & touchObjectName, const string &
setName);

22 bool removeGestureSet(const string & touchObjectName, const string &
setName);

23 bool enableGesture(const string & touchObjectName, const string &
gestureId);

24 bool DisableGesture(const string & touchObjectName, const string &
gestureId);

25 void processFrame();
26 std::vector<gwc::PointEvent> consumePointEvents();
27 std::vector<gwc::GestureEvent> consumeGestureEvents();
28 bool assignTouchPoint(const string & touchObjectName, int pointId);
29 void addTouchEvent(TouchPoint touchEvent);
30 int getScreenWidth() const;
31 int getScreenHeight() const;
32 HWND getHWND() const;
33 string getWindowName() const;
34 bool loadGMLFile(string & pathGmlFile);
35 private:
36 int width;
37 int height;
38 HWND hWnd;
39 string wName;
40 };

Listing 4.25: GWC (GWTouch.cpp)
1 ...
2 bool GwTouch::Register(HWND hwnd)
3 {
4 return gwc::registerWindowForTouch(hwnd);
5 }
6 bool GwTouch::RegisterByWindowName(const string & windowName)
7 {
8 return gwc::registerWindowForTouchByName(windowName);
9 }

10 bool GwTouch::loadGMLFile(string & pathGmlFile)
11 {
12 return gwc::loadGML(pathGmlFile);
13 }
14
15 void GwTouch::init(int screenWidth, int screenHeight,string & pathGmlFile

)
16 {
17 int lgw = gwc::loadGestureWorks(GWDLL);
18 bool lgml = loadGMLFile(pathGmlFile);
19 width = screenWidth;
20 height = screenHeight;

151

21 gwc::initializeGestureWorks(width,height);
22 }
23
24 void GwTouch::resize(int screenWidth, int screnHeight)
25 {
26 gwc::resizeScreen(screenWidth,screnHeight);
27 }
28 void GwTouch::registerTouchObject(const string & objectName)
29 {
30 gwc::registerTouchObject(objectName);
31 }
32 bool GwTouch::deregisterTouchObject(const string & objectName)
33 {
34 return gwc::deregisterTouchObject(objectName);
35 }
36 ...
37 std::vector<gwc::PointEvent> GwTouch::consumePointEvents()
38 {
39 return gwc::consumePointEvents();
40 }
41 std::vector<gwc::GestureEvent> GwTouch::consumeGestureEvents()
42 {
43 return gwc::consumeGestureEvents();
44 }

4.2 OGRE

Given that the objective is to perform 3D navigation tests, there was a need to use some

type of 3D engine. Originally, OpenGL was tested. Given the nature of OpenGL, which has

a close relationship with the GPU, it was a very likely candidate. For example, a big cube

of color spheres was tested in OpenGL, as shown in Figure 4.9. While OpenGL provided

a great way to work with graphics, there was a need to be able to define virtual worlds.

Without using a full-blown game engine, there was a need to have a graphics engine that

provided a bit more help, in terms of regular housekeeping tasks, which in game engines

are taken for granted. For example, it was desirable to have a framework that would provide

a scene graph (as described in Chapter 2) and collision detection, while still keeping the

152

Figure 4.9: OpenGL Cube of Spheres

freedom to code in C++. OGRE was selected because it provided a very capable graphics

engine that could run under OpenGL or DirectX. The engine contains a scene controller,

as well as other tools. In addition, it used a third-party exporter, called OgreMax18, which

allows exporting complete scenes from 3DS Max and Maya. This allows a scene to be built

with one of those types of software and then exported into a .scene (see Listing 4.26) file

created by OgreMax. Figure 4.10 shows 3Ds Max scene, which can be exported to a .scene

file using OgreMax. At the point that the development started for 3DNav, OGRE provided

all the components needed for 3D navigation, except advanced collision detection (but it

can be provided using the Bullet physics engine).

OGRE: The Implementation

This section outlines the essential issues pertaining to the implementation of 3DNav uis-

ing OGRE. The OGRE engine is a very well-documented graphics engine. Most of the

18See http://www.ogremax.com.

153

http://www.ogremax.com

Figure 4.10: 3DS Max Scene

documentation is found in its online wiki19, with some additional information found in

[65, 100, 109]. 3DNav used the Advanced Ogre Framework20 to provide a simplified solu-

tion to different states of the experiment. This framework facilitated the use of the OGRE

engine for things such as start-up for the engine, and different stages of the experiment,

among other functionalities. The Advanced Ogre Framework provided a state machine to

control the different levels of the process. In the case of the experiment, these were menu

state (initial state) and game state (experiment mode). A partial listing is provided for the

advanced framework definition, as shown in 4.27, and the definition of the menu and game

states, shown in Listings 4.28 and 4.29, respectively.

The applications states (menu and game), shown in Listings 4.28 and 4.29, have a few

items in common. First, they have access to an advanced framework singleton [56] object.

In addition, the states share a common interface as shown in Listing 4.30. This provides

developers with enter, exit, pause, resume, and update methods. The most important meth-

19See http://www.ogre3d.org/tikiwiki/tiki-index.php.

20See tutorial in http://www.ogre3d.org/tikiwiki.

154

http://www.ogre3d.org/tikiwiki/tiki-index.php
http://www.ogre3d.org/tikiwiki

ods here are the enter, which provides with the initial configuration needed for the given

state (e.g., experiment setup), the exit, to clean up the state, and the update method. The

update method is what fires for every frame that is rendered. The input listeners are also

shared across states whenever it makes sense. For example, the keyboard is useful in any

state (menu and experiment modes).

3DNav used the Object-Oriented Input System (OIS)21, which provides basic input

functionalities, to enable the keyboard and mouse. However, the rest of the input, as already

described in this chapter, used the WINAPI (or external libraries). A partial listing showing

the wiiMote (lines 7-8), and the 3D mouse (lines 13-22), is shown in listing 4.31. This is

executed in the OgreFramework class (from the Ogre Advanced Framework), in a method

called initOgre(...). Once OGRE is rendering, for each frame, there needs to be a check if

new input event data is available. If it is, then the system fires the appropriate events, as

described in previous sections. This happens in the AppStateManager class, in a method

called start(...). Partial code is shown in Listing 4.32.

A few additional items are important in reference to OGRE for the 3DNav prototype.

Collision detection was achieved using bounding volumes provided by the SDK. An ex-

ample is shown in Listing 4.33. Additional testing was performed using the Bullet physics

engine, but it was not used during the experiment. For more information about collision

detection, refer to Chapter 2. Finally, to achieve GUI buttons and windows in OGRE, the

library called MyGui22 was used.

Listing 4.26: Scene Nodes (Partial XML file)
1 <?xml version="1.0" encoding="UTF-8"?>
2 <scene formatVersion="1.0" upAxis="y" unitsPerMeter="1" unitType="meters"

minOgreVersion="1.8" ogreMaxVersion="2.6.1" author="OgreMax Scene
Exporter (www.ogremax.com)" application="3DS Max">

3 <environment>

21See http://www.ogre3d.org/tikiwiki/tiki-index.php?page=OIS.

22See http://mygui.info.

155

http://www.ogre3d.org/tikiwiki/tiki-index.php?page=OIS
http://mygui.info

4 <colourAmbient r="0.333333" g="0.333333" b="0.333333"/>
5 <colourBackground r="0" g="0" b="0"/>
6 <clipping near="0" far="2540"/>
7 </environment>
8 <nodes>
9 <node name="SPACE">

10 <position x="0" y="0" z="0"/>
11 <scale x="0.5" y="0.5" z="0.5"/>
12 <rotation qx="0" qy="0" qz="0" qw="1"/>
13 <entity name="SPACE" castShadows="true" receiveShadows="true"

meshFile="SPACE.mesh">
14 <subentities>
15 <subentity index="0" materialName="Material#0"/>
16 </subentities>
17 </entity>
18 </node>
19 <node name="planet_with_craters">
20 <position x="8.23713" y="69.6509" z="-171.328"/>
21 <scale x="0.210295" y="0.210295" z="0.210295"/>
22 <rotation qx="0" qy="0" qz="0" qw="1"/>
23 <entity name="planet_with_craters" castShadows="true"

receiveShadows="true" meshFile="planet_with_craters.mesh"
>

24 <subentities>
25 <subentity index="0" materialName="

planet_with_craters"/>
26 </subentities>
27 </entity>
28 </node>
29 </nodes>
30 </scene>

Listing 4.27: OGRE (Advanced Framework (h))
1 class OgreFramework : public Ogre::Singleton<OgreFramework>, OIS::

KeyListener, OIS::MouseListener, Ogre::FrameListener, Ogre::
WindowEventListener, Win3DXOgreListener

2 {
3 public:
4 OgreFramework();
5 ~OgreFramework();
6 bool initOgre(Ogre::String wndTitle, OIS::KeyListener *pKeyListener =

0, OIS::MouseListener *pMouseListener = 0);
7 void updateOgre(double timeSinceLastFrame);
8 bool keyPressed(const OIS::KeyEvent &keyEventRef);
9 bool keyReleased(const OIS::KeyEvent &keyEventRef);

10 bool mouseMoved(const OIS::MouseEvent &evt);
11 bool mousePressed(const OIS::MouseEvent &evt, OIS::MouseButtonID id);

156

12 bool mouseReleased(const OIS::MouseEvent &evt, OIS::MouseButtonID id);
13 bool handleNavigator(int message,DOFSix & D, BData & B);
14 private:
15 void windowResized(Ogre::RenderWindow* rw);
16 bool frameStarted(const Ogre::FrameEvent& evt);
17 bool frameEnded(const Ogre::FrameEvent& evt);
18 public:
19 Ogre::Root* m_pRoot;
20 Ogre::RenderWindow* m_pRenderWnd;
21 Ogre::Viewport* m_pViewport;
22 ...
23 private:
24 ...
25 BOOL InitRawDevices(void);
26 void FreeRawInputDevices(void);
27 OgreFramework(const OgreFramework&);
28 OgreFramework& operator= (const OgreFramework&);
29 };

Listing 4.28: OGRE (Menu State (h))
1 class MenuState : public AppState
2 {
3 public:
4 MenuState();
5 DECLARE_APPSTATE_CLASS(MenuState)
6 void enter();
7 void createScene();
8 void exit();
9 bool keyPressed(const OIS::KeyEvent &keyEventRef);

10 bool keyReleased(const OIS::KeyEvent &keyEventRef);
11 bool mouseMoved(const OIS::MouseEvent &evt);
12 bool mousePressed(const OIS::MouseEvent &evt, OIS::MouseButtonID id);
13 bool mouseReleased(const OIS::MouseEvent &evt, OIS::MouseButtonID id);
14 bool handleNavigator(int message,DOFSix & D, BData & B);
15 void notifyMouseButtonClick(MyGUI::Widget* _sender);
16 void notifyComboAccept(MyGUI::ComboBox* _sender, size_t _index);
17 void notifyMessageBoxResult(MyGUI::Message* _sender, MyGUI::

MessageBoxStyle result);
18 void notifyQuestionBoxResult(QuestionPanel* _sender, QuestionPanelStyle

result);
19 void update(double timeSinceLastFrame);
20 private:
21 bool m_bQuit;
22 };

Listing 4.29: OGRE (Game State (h))

157

1 class GameState : public AppState
2 {
3 public:
4 GameState();
5 DECLARE_APPSTATE_CLASS(GameState)
6 void enter();
7 void exit();
8 bool pause();
9 void resume();

10 void moveCamera();
11 void getInput(const double timeSinceLastFrame,const unsigned long long

cCount);
12 void getWiiMoteInput();
13 bool getGamePad();
14 bool keyPressed(const OIS::KeyEvent &keyEventRef);
15 bool keyReleased(const OIS::KeyEvent &keyEventRef);
16 bool mouseMoved(const OIS::MouseEvent &arg);
17 bool mousePressed(const OIS::MouseEvent &arg, OIS::MouseButtonID id);
18 bool mouseReleased(const OIS::MouseEvent &arg, OIS::MouseButtonID id);
19 bool handleNavigator(int message,DOFSix & D, BData & B);
20 void onLeftPressed(const OIS::MouseEvent &evt);
21 void onRightPressed(const OIS::MouseEvent &evt);
22 void update(double timeSinceLastFrame);
23 private:
24 void createScene();
25 void createCamera();
26 void wiiMotionPlus(const wiimote const & remote);
27 double vPrime(double v,double lambda, double vmax);
28 void notifySentenceQuestionPanelResult(SentenceQuestionPanel* _sender,

QuestionPanelStyle result);
29 ...
30 };

Listing 4.30: OGRE (App State Interface)
1 class AppState : public OIS::KeyListener, public OIS::MouseListener,

public Win3DXOgreListener
2 {
3 public:
4 static void create(AppStateListener* parent, const Ogre::String name)

{};
5 void destroy() { delete this;}
6 virtual void enter() = 0;
7 virtual void exit() = 0;
8 virtual bool pause(){return true;}
9 virtual void resume(){};

10 virtual void update(double timeSinceLastFrame) = 0;
11 protected:

158

12 AppState(){};
13 AppState* findByName(Ogre::String stateName){return m_pParent->

findByName(stateName);}
14 void changeAppState(AppState* state){m_pParent->changeAppState(state);}
15 bool pushAppState(AppState* state){return m_pParent->pushAppState(state

);}
16 void popAppState(){m_pParent->popAppState();}
17 void shutdown(){m_pParent->shutdown();}
18 void popAllAndPushAppState(AppState* state){m_pParent->

popAllAndPushAppState(state);}
19
20 ...
21 AppStateListener* m_pParent;
22 Ogre::Camera* m_pCamera;
23 Ogre::SceneManager* m_pSceneMgr;
24 };

Listing 4.31: OGRE (InitOgre)
1 Ogre::LogManager* logMgr = new Ogre::LogManager();
2 m_pLog = Ogre::LogManager::getSingleton().createLog("OgreLogfile.log",

true,true,false);
3 m_pLog->setDebugOutputEnabled(true);
4 m_pRoot = new Ogre::Root(mPluginsCfg);
5 if (!m_pRoot->showConfigDialog())
6 return false;
7 m_wiiMote.ChangedCallback = on_wiimote_state_change;
8 m_wiiMote.CallbackTriggerFlags = (state_change_flags)(CONNECTED |

EXTENSION_CHANGED | MOTIONPLUS_CHANGED);
9 m_pRenderWnd = m_pRoot->initialise(true, wndTitle);

10 size_t hWnd = 0;
11 OIS::ParamList paramList;
12 m_pRenderWnd->getCustomAttribute("WINDOW",&hWnd);
13 if (!InitRawDevices())
14 {
15 OgreFramework::getSingletonPtr()->m_pLog->logMessage("[3DX] Error

InitRawDevices()");
16 m_bRawDevicesOn = false;
17 }
18 else
19 {
20 m_bRawDevicesOn = true;
21 Win3DXOgreEventRegistry::registerListener(Win3DXOgreEventRegistry::

LISTEN_ALL,this);
22 }
23 ...
24 m_pRoot->addFrameListener(this);
25 Ogre::WindowEventUtilities::addWindowEventListener(m_pRenderWnd, this);

159

26 ...
27 return true;

Listing 4.32: OGRE (Check Input)
1 ...
2 while (!m_bShutdown)
3 {
4 if(OgreFramework::getSingletonPtr()->m_pRenderWnd->isClosed())
5 m_bShutdown = true;
6 if(OgreFramework::getSingletonPtr()->m_pRenderWnd->isActive())
7 {
8 MSG msg;
9 HWND hwnd;

10 bool navOn = OgreFramework::getSingletonPtr()->m_bRawDevicesOn;
11 OgreFramework::getSingletonPtr()->m_pRenderWnd->getCustomAttribute("

WINDOW", (void*)&hwnd);
12 if(navOn && PeekMessage(&msg, hwnd, 0, 0, PM_REMOVE))
13 {
14 if(msg.message == WM_INPUT)
15 {
16 OgreFramework::getSingletonPtr()->ProcessWM_INPUTEvent(msg.lParam

);
17 }
18 else
19 {
20 TranslateMessage(&msg);
21 DispatchMessage(&msg);
22 }
23 }
24 }
25 Ogre::WindowEventUtilities::messagePump();
26
27 if(OgreFramework::getSingletonPtr()->m_pRenderWnd->isActive())
28 {
29 ... //DO Ogre work.
30 }
31 else
32 {
33 Sleep(1000);
34 sleep(1);
35 }
36 }
37 ...

Listing 4.33: OGRE (Collision)
1 void CollisionTrigger::onUpdate()

160

2 {
3 if(!_nodeA || !_nodeB)
4 return;
5 updateActions();
6 if(_nodeA->_getWorldAABB().intersects(_nodeB->_getWorldAABB()))
7 onCollision();
8 else
9 cancelActions();

10 }
11 void CameraCollisionTrigger::onUpdate()
12 {
13 if(!_camera || !_nodeB)
14 return;
15 updateActions();
16 if(_nodeB->_getWorldAABB().intersects(Ogre::Sphere(_camera->

getDerivedPosition(), _cameraRadius)))
17 onCollision();
18 else
19 cancelActions();
20 }

4.3 ECHoSS: Experiment Module

The experiment module, called Experiment Controller Human Subject System (ECHoSS),

contained a series of C++ classes and additional configuration files, designed for 3DNav, to

make the environment suitable for human-subject testing in the area of 3D navigation. This

section describes the components that make 3DNav into an experiment system. The ex-

periment module is composed of a few sub-modules. Those are the experiment controller,

experiment device, experiment task, and experiment search object. With this, it is enough

to specify a running experiment.

The experiment controller, shown in Listing 4.34, controls a human-subject test. It

is composed of devices (e.g., multi-touch) and tasks (e.g., objects to find). The exper-

iment controller can be built by adding devices using AddExperiment(...) or by adding

training devices by using AddTraining(...). Actually, a device can be added by using Ad-

dDevice(...), since the device can specify if it is a training device or treatment device.

161

Another important method that must be called after starting the experiment (start(...)) is

the processNext() method, which allows the system to go from one device to the other.

Depending on the initialization of the experiment controller, the queue holding the devices

is determined as follows:

• Training devices will be the first devices to be placed in the queue.

• If controller is not responsible of randomizing the devices23, the order of devices will

be set by their insertion.

• If controller is responsible of randomizing the devices, then it will perform a random

sorting of devices, sorting separately the training devices from the treatment devices.

The experiment device class, as shown in listing 4.35, allows the control of each treat-

ment (e.g., input device) that will handle a series of tasks. For example, in the case of the

experiment, the user must search for five objects. This means that each device contains a

series of objectives, defined in the experiment tasks class. This class, as shown in Listing

4.36, provides the definition for a task. In particular, the tasks used in this example add

the keyboard task, in addition to the object to be found. However, this is an example for

this particular case, since the developer can modify the settings. The actual concrete im-

plementation of the task is defined in the search object class, as shown in Listing 4.37. The

specific search object made use of the entities found in OGRE to keep track of the object in

question and the marker (e.g., flag) that provides visual feedback to the user. An important

part of the task is that it also has knowledge where to place the object to be searched. This

allows the experimenter to move the objects, depending on the treatment and requirements

of the experiment.

ECHoSS provides a way to create generic human-subject tests, while keeping the re-

quirements separate from the actual 3D implementation. It is the objective of this part

23The author chose this option for the experiment.

162

of 3DNav to allow for further studies, providing the developer with more flexibility when

using a 3D navigation task.

Listing 4.34: Experiment Controller
1 class ExperimentController : public ...
2 {
3 public:
4 typedef boost::system::error_code error_code;
5 typedef enum {Init,Started,Device_Running,Device_Exited,

Device_Exit_By_Time_Expired,Stopped} experiment_state;
6 typedef enum {None,Training,Treatment} experiment_mode;
7 ...
8 ExperimentController(const string & subjectName,const string &

experimentName, bool shuffleDevices=true, bool, shuffleTraining=
true);

9 ~ExperimentController();
10 bool AddExperiment(const ExperimentDevice & experimentDevice);
11 bool AddTraining(const ExperimentDevice & experimentDevice);
12 bool AddDevice(ExperimentDevice & experimentDevice);
13 bool start();
14 bool stop();
15 bool pause();
16 bool resume();
17 bool abort();
18 void update(const double timeElapased,const unsigned long long cCount);
19 virtual bool handleExperiment(...);
20 bool isExperimentStarted(){return _guard.mStarted;}
21 bool isDeviceRunning();
22 bool isPaused() { return _guard.mPaused;}
23 bool processNext();
24 bool isNextAvailable();
25 bool getCurrentDevice(ExperimentDevice & dev);
26 string getExperimentName() { return mExperimentName;}
27 inline size_t getTotalObjectCount() { return mTotalObjectCount;}
28 inline bool hasStarted() { return _guard.mStarted;}
29 private:
30 ...
31 };

Listing 4.35: Experiment Device
1 class ExperimentDevice : public ...
2 public:
3 ...
4 typedef enum {PreInitialized,Initialized,Running,Completed,

CompletedByExpiredTime,Aborted,Paused} device_state;

163

5 typedef enum {MultiTouch,GamePad,Mouse,Keyboard,Mouse3D,WiiMote,
LeapMotion,Generic} device_type;

6 ExperimentDevice(ExperimentTimerPtr timer,string & deviceName,const
size_t order,bool isTrainingDevice=false);

7 ExperimentDevice(string & deviceName,const size_t order, bool
isTrainingDevice=false);

8 typedef vector<ExperimentTask> tasks;
9 ...

10 ExperimentDevice();
11 ~ExperimentDevice();
12 bool start();
13 bool isInitialized();
14 bool addTask(ExperimentTask & task);
15 bool exit();
16 bool pause();
17 bool abort();
18 virtual void update(double timeElapsed,unsigned long cycleCount);
19 bool isTrainingDevice() { return mIsTrainingDevice;}
20 //define copy constructor and equal operator
21 ...
22 virtual bool handleExperiment(...);
23 inline const size_t getOrder() { return mOrder;}
24 inline const size_t getFoundObjectCount() { return mFoundObjectCount;}
25 inline const size_t getFoundObjectWithSentenceCount() { return

mFoundObjectWithSentenceCount;}
26 inline string getDeviceType() { return mDeviceType;}
27 inline void setDeviceType(const string & deviceType){mDeviceType =

mDeviceType;}
28 ...
29 };

Listing 4.36: Experiment Task
1 class ExperimentTask : public ...
2 {
3 public:
4 typedef struct view_data
5 {
6 ...
7 Ogre::Vector3 position;
8 Ogre::Quaternion orientation;
9 Ogre::Vector3 direction;

10 }view_data;
11 typedef struct location_data
12 {
13 ...
14 Ogre::Vector3 position;
15 Ogre::Quaternion orientation;

164

16 }location_data;
17 typedef struct object_data
18 {
19 ...
20 view_data camera;
21 location_data object;
22 location_data object_flag;
23 bool enabled;
24 }object_data;
25 ExperimentTask(SearchObject * searchObject,const std::string &

taskName, const object_data & objectData=object_data());
26 virtual ~ExperimentTask();
27 typedef enum task_state {Init,Started,Stopped,Aborted,Unkown};
28 void start();
29 void stop();
30 void abort();
31 bool isTaskFinished();
32 bool isHit(){ return mHit;}
33 bool isFound(){ return mFound;}
34 task_state getTaskState() { return mTaskState;}
35 bool isEnabled(){return mIsEnabled;}
36 void setEnabled(bool enabled){enabled = mIsEnabled;}
37 virtual void searchEvent(SearchObject::SearchObjectListener::EventType

type, SearchObject* sender, map<string,string> userData);
38 SearchObject * getSearchObject();
39 void update(double TimeSinceLastFrame,unsigned long cycleCount);
40 string getTaskName(){return mTaskName;}
41 string getKeyboardSentence() { return mKeyboardSentence;}
42 void setKeyboardSentence(const std::string & str) { mKeyboardSentence=

str;}
43 void reset();
44 ...
45 };

Listing 4.37: Experiment Search Object
1 class SearchObject
2 {
3 public:
4 typedef struct view_data
5 {
6 ...
7 Ogre::Vector3 position;
8 Ogre::Quaternion orientation;
9 Ogre::Vector3 direction;

10 }view_data;
11 typedef struct score_data
12 {

165

13 ...
14 int score;
15 bool objectFound;
16 bool objectHit;
17 bool flagFound;
18 bool flagHit;
19 }score_data;
20
21 SearchObject(Ogre::SceneNode* node, Ogre::SceneNode* flagNode);
22
23 virtual ~SearchObject();
24
25 Ogre::SceneNode* getNode();
26 Ogre::SceneNode* getFlagNode();
27
28
29 bool isFound();
30 bool isHit();
31 void update(double timeSinceLastFrame);
32 ...
33 };
34 extern SearchObjects* SearchObjectsCollection;

4.4 Overview

This chapter provided a description of the important implementations for 3DNav. It pre-

sented enough information about the implementation, while leaving the concrete experi-

ment settings for Chapter 5. 3DNav has enough flexibility built-in that it could be cus-

tomized in the future for different versions. Furthermore, it established a path for how to

create a full-fledged 3D input UI experiment API.

166

CHAPTER 5

DESIGN OF EXPERIMENT: 3D NAVIGATION

This section details the design of experiment for 3D navigation using the multi-touch

display. This includes the choices of input devices, the subject population, and the differ-

ent decisions made before performing the experiment. The results, statistical analysis, and

discussion are explored in the following chapters. Therefore, this chapter concentrates on

the actual experimental design and procedures. Finally, it is important to note that the ex-

periment was approved by Florida International University (FIU) IRB. The corresponding

approved memos are shown in Appendix C.

5.1 Experiment Objective

Defining the goals of the experiment was imperative to have a well-designed human-subject

test. The primary objective was to see if there are any significant differences when using

the 3M M2256PW multi-touch displayand the XBox 360 GamePad for 3D navigation (with

6-DOF). Intrinsic to this question, there was the need to know if any co-factors could in-

fluence the results for these two devices. The following list summarizes the questions to be

answered through the experiment:

1. Is there any statistical difference between multi-touch display and the GamePad con-

troller when searching for objects in a virtual 3D world?

2. Are there any co-factors that may show a statical difference in reference to item 1?

3. Is there any statical difference when switching from multi-touch to keyboard, versus

GamePad to keyboard?

4. Do subjective questionnaires validate the finding of the objective data?

167

ID Type of User Visits
A Regular iPhone and iPad

User. Little experience with
video game console

5

B Regular PC user. No video
game console experience.
iPad user

3

C Game developer and experi-
enced game player

2

D Regular iPhone and MAC
user. Little experience with
video game console

2

E Multi-touch user. iPad and
iPhone User. Experienced
game user.

6

Table 5.1: Pre-Trial Users.

5.2 Pre-Trials

Before proceeding with the experiment, this author asked a few subjects with different

skills to test a preliminary version of the experimental protocol. The pre-trial users were

five, as shown in Table 5.1. This table describes each user (identified by a letter). Each

user spent between 30 minutes to up to 4 hours per visit. The pre-trials were very useful to

finalize the design of experiment. The decisions for multi-touch gestures, multi-touch and

GamePad mappings, visual cues, and the reset button, among others, were derived from by

pre-trial feedback. Later in the chapter, those decisions are discussed.

5.3 Device Selection

After testing various devices (see Chapters 3 and 4), the GamePad controller was selected

as the device to compare to the multi-touch display, for the 3D navigation tasks. Originally,

the device selected was one that provided a full 6-DOF, such as the 3D mouse. The problem

168

was that the mouse did not provide a simple means of navigation in the early test of 3DNav.

After various iterations of devices, the GamePad, which has been perfected for more than

30 years, was selected. A possible alternative would have been a vision-based solution,

such as the Microsoft Kinect. However, given that this dissertation was not focusing on

computer vision, and the Kinect pre-trials we had were not as successful as first expected,

the GamePad was chosen instead.

The other decision that needed to be made was how to detect the gesture when using the

multi-touch display. While FETOUCH worked well for the gestures that were originally

built into it, such as swipe, scale, and rotate, it didn’t have enough gestures 3D navigation.

The possibility of extending it was an option, but it was also considered that this author was

looking for a more unbiased experiment when comparing devices. This meant that using

a standard, commercial gesture recognition software would provide a better comparison.

Another factor that helped this decision is that early work in a new prototype suffered

from similar problems as the one exhibited by GWC (describe later). Therefore, GWC

API by ideum was selected. This, in this author’s opinion, would provide the best method

for the experiment, because GWC is a mainstream framework for multi-touch recognition.

Furthermore, GWC would require a contribution by this author to remove gesture detection

conflicts (using Yield).

5.4 Experimental Subjects

During the initial design of the experiment, the only requirement was the age of the sub-

jects, who were required to be between 18 and 65 years old. This allowed the range of

possible subjects available to the experiment to be quite large. No prior experience was

required and a high level of experience with games was not a disqualifying factor.

169

Figure 5.1: 3M M2256PW multi-touch display

5.5 Experiment Apparatus

The experiment apparatus consisted of various pieces of hardware and software. This sec-

tion describes the actual pieces used for the experiment. This included the actual configu-

ration of 3DNav and details important to reproduce the experiment if needed.

5.5.1 Hardware Setup

The equipment used for the experiment consisted of a few pieces of hardware. This in-

cluded a PC, multi-touch display (Figure 5.1), keyboard, mouse, GamePad (Figure 5.2),

higher-quality GPU, stereo speakers, and numeric keypad. The following list details each

component:

• Dell Precision T3500 PC.

– Intel Xeon central processing unit (CPU) W3530 2.8 giga Hertz (GHz).

– Four-core CPU.

– 12 gigabyte (GB) random-access memory (CPU), 1333 mega Hertz (MHz).

– Two 500 GB hard drives.

• AMD ATI FirePro V7800 (FireGL).

170

Figure 5.2: XBox 360 GamePad

– GPU 1440 processor.

– 4096 megabyte (MB) RAM.

• GMYLE Super Slim USB 2.0 Mini Keyboard, as shown in Figure 5.4a.

• Standard PC Mouse.

• 3M M2256PW multi-touch display.

– 22-Inch monitor.

– 20 independent touches1.

– Maximum Resolution 1680x1050 at 60 Hz.

• Perixx PERIPAD-201B, Numeric Keypad.

• Microsoft Xbox 360 Wireless Controller for Windows.

– This includes USB wireless receiver.

1However, Windows 7 reports 30 independent touches.

171

5.5.2 Software Setup

The software utilized for the design of experiment included Windows 7, third-party li-

braries, Microsoft Visual Studio 2012, and solutions developed by this author. The follow-

ing is a detailed list of the software required2 to replicate this experiment:

• Microsoft Windows 7 64 bit (Service Pack 1).

• Microsoft Visual Studio Ultimate 2012 (Update 4).

• OGRE engine, version 1.9.

• GWC API.

• Research applications.

– 3DNav.

– Yield.

– ECHoSS.

– FaNS.

• DirectX 11 and OpenGL 4.1.

• DirectX SDK June 2010.

• MyGui API, version 3.2.

• OpenAL (audio library).

The GWC and the research modules have been described in Chapters 3 and 4. There

are a few aspects that must be expanded, which relate to the design of the experiment.

In specific, the setup required to have the experiment running with ECHoSS. The other

research modules worked as described in the previous chapters. The gesture selection in

GWC is detailed later in 5.6.

2Higher version of the software listed should also work but may require small changes.

172

Setting ECHoSS in 3DNav

To set up ECHoSS in 3DNav, a configuration file (game.cfg) is provided. The configura-

tion file is processed in the GameLogicController class. However, there are some important

aspects that are relevant to this experiment, which shows how the experiment was config-

ured.

As stated before, the system determines if the randomization is done at the program-

ming level or at the configuration level. In the case of this experiment, the randomization

is done at the configuration levels by setting the UseRandom variable to 0, as shown in

Listing 5.1, line 2.

In the Devices section in Listing 5.1, line 3, the actual input devices were configured.

For this particular experiment, two devices for training and two for treatment were created

using the gamepad and multi-touch input systems. Later, in the Tasks sections in line 9,

all the the tasks were configured. This included the training tasks and the treatment tasks.

Note that the second parameter for the task is a name for a set, which allowed to group the

tasks for each device.

This makes more sense when the section Experiment_Permutations is explained. This

starts in Listing 5.1, line 18, where three important variables are defined. The first one,

DevicePermutation, defines the name of the permutation, and then how the permutation

should behave. For example, for permutation y in line 2, the set contains y = {gamepad

training, multi-touch training, multi-touch treatment, gamepad treatment}. The TaskPer-

mutations follows a similar logic, but uses the set of tasks. Finally, the UserPermutation-

Count is the number of how many permutations are required to have a complete set. The

reason for the 16 permutations is because when there are 2 devices, 2 training devices, 2

sets of tasks, and 2 sets of training tasks, the numbers of possible permutations is 16.

The tasks, defined starting line 9 in Listing 5.1, show a few examples of the actual tasks

given in the experiment. In general, and it is true for this configuration file, besides the

173

normal key/value assignment in a typical initialization (INI)3 file, a hash table is produced

for values that are repeated. This is true for the tasks section. The following description

provides the specifications for a task defined in game.cfg, in order of values separated by

commas:

1. Object Name.

2. Set Name.

3. Object Position. 3D vector.

4. Orientation. Quaternion.

5. Position of marker (flag). 3D vector.

6. Orientation of marker (flag). Quaternion.

7. Position of camera for automatic viewing. 3D vector.

8. Orientation of camera for automatic viewing. Quaternion.

9. Direction of camera for automatic viewing. 3D vector.

10. Keyboard sentence to be typed by subject.

Listing 5.1: 3DNAV game.cfg (Experiment Setup)
1 [Experiment_Default]
2 UseRandom = 0
3 [Devices]UseRandom = 0
4 DeviceTraining = 0, "Multi-Touch Training" , 0 , 300, 60 , "MT" , "

TouchGesturePad" , "Multi-Touch"
5 DeviceTraining = 1, "GamePad Training", 0, 300, 60, "PAD", "XPAD", "Multi

-Touch"
6 Device = 2, "Multi-Touch Treatment", 0, 300, 60, "MT", "TouchGesturePad",

"GamePad"
7 Device = 3, "GamePad Treatment", 0, 300, 60, "PAD", "XPAD", "GamePad"
8 [Tasks]
9 UseRandom = 0

3See http://en.wikipedia.org/wiki/INI_file.

174

http://en.wikipedia.org/wiki/INI_file

10 TaskTraining="hypercube", "X", -37.9252 -52.4117 -163.951, 1 0 0 0, -33.0
-52.4 -164.0, 1 0 0 0, -34.3721 -51.0749 -146.844, 1 0 -0 -0 , 0 0
-1, "Soccer is the greatest sport of the world."

11 #...
12 #set A
13 Task="creature_barrier", "A", 276.044 -302.008 -221.937, 1 0 0 0, 262.044

-290 -220, 0.991445 0.130526 0 0, 308.293 -200.245 -58.013, 0.885552
-0.340648 -0.301152 -0.095582, 0.468252 -0.660892 -0.586533, "I'm
looking forward to Brazil 2014."

14 Task="BALL", "A", 64.5 99.5 -100.54, 1 0 0 0, 59 100 -100.54, 1 0 0 0,
60.8526 99.8465 -80.827, 1 0 0 0, 0 0 -1, "I'm having to type short
sentences."

15 #...
16 #set B
17 #...
18 [Experiment_Permutations]
19 DevicePermutation = "w", 0 , 1 , 2 , 3
20 DevicePermutation = "x", 0 , 1 , 3 , 2
21 DevicePermutation = "y", 1 , 0 , 2 , 3
22 DevicePermutation = "z", 1 , 0 , 3 , 2
23 TaskPermutation = "a", "X", "Y", "A", "B"
24 TaskPermutation = "b", "Y", "X", "A", "B"
25 TaskPermutation = "c", "X", "Y", "B", "A"
26 TaskPermutation = "d", "Y", "X", "B", "A"
27 UserPermutationCount=16

5.6 Multi-Touch Gesture Design

This section provides the definition of a subset of gestures that were considered, the gesture

mapping for the 3D navigation, and explains the decision process for the selected gestures

with their mappings.

5.6.1 Gesture Definition

Table 5.2 provides definitions for multi-touch gestures that were considered for the ex-

periment. The definitions here are considered to be the base-line gestures, given that the

175

number of fingers required varies. For example, a more specific gesture could be a two-

finger versus a three-finger swipe.

5.6.2 Gesture Selection

Using the definitions of Table 5.2, during the pre-trial phase (see 5.2), a series of test and

informal questions were asked to find a set of gestures that would work best with 3D navi-

gation. For the translation, which was used more frequently than rotations, users preferred

to use a one-finger swipe gesture. For the rotations, the most intuitive use of the rotate

gesture was for the roll4 action. For the reminding rotations, a two-finger vertical swipe

was mapped as the yaw action, and a two-finger horizontal swipe was mapped to the pitch

action. This made sense to the users, as well as this author, during the pre-trials. The scale

gesture was a candidate for translating on the Z axis. However, while this gesture is perva-

sive, the experimenter decided to use a bi-manual gesture, called Hold-and-Roll (described

in Table 5.2). This decision was made for various reasons. First, the scale gesture seems to

indicate to the user a zoom-in/zoom-out effect, which is common when using smart phones

or tablets (e.g., iPhone). This was not the mapping required for this experiment, since trans-

lating is the action of moving in the positive or negative direction on the z axis. Second, the

scale gesture could be more appropriate in 3D navigation for either scaling a single object

required for visualization, or changing the viewing angle of the camera. The latter allows

the frustum (see 2.1.1) to be altered, providing an additional DOF. Finally, the bi-manual

interaction was an interesting approach, which will be explored further in the discussion

part of this dissertation, in Chapter 7.

4See 2.1.2 for a review about yaw, pitch, and roll.

176

Name Definition Pervasive Mode
Swipe This gesture involves one or more fingers go-

ing in the same direction.
Yes UP

Drag Similar to swipe. Some may define this ges-
ture a bit slower than swipe, as if it is dragging
an object.

Yes UP

Rotate A gesture that requires two or more fingers in
a circular direction.

Yes UP

Scale This gesture, also called zoom, is defined as
the movement of two or more fingers, with at
least one of them going in opposite direction
(zoom out) or towards each other (zoom in).

Yes BI

Tap This gestures is similar to a mouse click.
There may be single tap, double tap, or triple
tap. It is defined as a touch within a time con-
straint.

Yes UM

Hold This gesture is similar to the tap, but the user
does not lift the finger from the display.

Yes UM

Flicker This gesture involves one or more (usually two
or three) fingers moving in the same direction
for a short time, and moving all of them in
the opposite direction, repeating this pattern n
times. This creates a flickering effect.

No UP

Tilt This gesture involves two or more fingers. At
least one of the fingers is moving to create
a tilt effect. The gesture is meant to stay in
place.

No UP

Hold-and-
Roll

This gesture, designed by this author, provides
a bi-manual interaction to hold with the non-
dominant hand (at least one finger) and roll
with the dominant hand. The roll movement
is considered to emulate the scroll wheel of a
mouse.

No BM

Table 5.2: Gesture Definitions.

Interaction Mode Legend

BM Bi-Manual Only
UM Uni-Manual Only
UP Uni-Manual Preferred
BP Bi-Manual Preferred
BI Either BM or UM

177

Fingers Gesture Action
1 Swipe horizontal Translate X
1 Swipe vertical Translate Y
3 Hold-and-Roll bi-manual Translate Z
1 Swipe diagonal Translate X & Y.
2 Swipe horizontal Yaw
2 Swipe vertical Pitch
2 Rotate Roll
2 Swipe diagonal Disabled
n Scale gesture Disabled

Table 5.3: Gesture Mappings.

5.6.3 Gesture Mapping

Once the gestures were selected for this experiment, the mapping associating gestures to

actions, as shown in Table 5.3, was created. This provided the human subjects with a 3D

navigation using multi-touch enabling 6-DOF. Some constrains were established. First,

diagonal translations were enabled for the X and Y axes. This was possible because the

swipe gesture allowed for the user to move diagonally. For the Z axis, the Hold-and-

Roll gesture was meant to be independent. The same case applied to the rotate gesture,

because it provided an action for only one type of rotation. In the case of the pitch and yaw

rotations, there was a possibility to provide dual rotation, since it used a two-finger swipe

gesture. However, during the pre-trials, this created confusion in the users. Therefore,

this was disabled from the interaction. To overcome the possibility of the user creating

a small diagonal when he/she meant to do a horizontal or vertical swipe, in a rotation

action, the system provided a way to adjust the swipe to the closest match (either vertical or

horizontal.) In addition, different thresholds and noise reduction techniques were applied,

which are part of Yield (see 3.4).

178

Control Direction Action Analog
Left thumb-stick Up/down Translate y axis Yes
Left thumb-stick Left/right Translate X axis Yes
Left thumb-stick Diagonal Translate Y axis Yes
Left/Right trigger - Translate Z axis Yes
Right thumb-stick Up/down Pitch Yes
Right thumb-stick Left/right Yaw Yes
Left/Right shoulder - Roll No

Table 5.4: Controller Mappings.

5.7 GamePad Design

The GamePad design was also tested during trials. In specific, one of the pre-trial users is

a game developer, leader of the Miami Game Developer Guild5, and an experienced game

player. He, along with the other users, helped to test the GamePad implementation for 3D

navigation. This helped to make the design decisions for the experiment.

The Xbox 360 controller comes with two thumb-sticks. A thumb-stick is a small joy-

stick that is designed for the use of a thumb. By providing two analog thumb-sticks (this

has been standard, since the introduction of the Sony Dual Analog Controller and Dual-

Shock [129]), this type of dual-thumb-stick GamePad can provide a more accurate move-

ment with 4-DOF6. In gaming, it is customary to prevent the character from looking up or

down past a given angle [233, pp. 561–572]7. In some domain-specific scenarios, having

less than 6-DOF is very suitable [201]. In the case for this experiment, 6-DOF were needed.

Therefore, additional mapping was required, which is shown in Table 5.4. For an expanded

picture of the Xbox 360 controller, with a description for each of the thumb-sticks, triggers

and buttons, see Appendix D.

5See http://www.gamedevelopersguild.com.

6Using the additional buttons, is possible to have 6-DOF navigation.

7See also [131, Chapter 14] and [144, pp. 47–49].

179

http://www.gamedevelopersguild.com

Figure 5.3: Multi-Touch Reset Button

5.8 Additional Controller Design

In addition to the design in Sections 5.6 and 5.7, there are some additional settings required

for the experiment. First, the reset button was created to come back to the original starting

point, for the multi-touch and the GamePad controllers. This button was the red button

(button B) on the XBox controller and a similar red button on top of the screen, shown in

Figure 5.3, for the multi-touch case. Second, the mouse cursor needed to be disabled for

the experiment. Human subjects were not given a mouse. Third, the experiment included

the use of a keyboard. A notebook-like keyboard was used, which has become common

because of notebooks8. The keyboard, as shown in Figure 5.4a , allowed users to type

sentences when prompted by the experiment. Finally, the experimenter had a numeric

keypad to control certain aspects of the experiment, as shown in Figure 5.4b.

8The Apple wireless keyboard has also become pervasive among Mac users.

180

(a) Experiment Keyboard (b) Experiment KeyPad

Figure 5.4: Additional Keyboard Input

5.9 Techniques

This sections describes the techniques for these experiments and why they where chosen.

In particular, the techniques for: finding objects in a 3D world (primed search), device

switching, and visual cues. More details about the actual techniques are provided in Chap-

ter 2.

5.9.1 Primed Search

Search was the task chosen for this experiment, as reviewed in Chapter 2 and described

in [17]. The search technique was selected to measure the time taken with each device

when finding the targets. This would have proven difficult under the exploration technique.

Once the search technique was chosen, the options of using naïve and primed searches were

evaluated. It is hard to say where the naïve interaction ends and the primed search begins

(see Chapter 2).

If the user did know where the objects where located, which was an option tested in

pre-trial, this would be a primed search. In the actual 3DNav, the functionality to show

181

Figure 5.5: Hyper Cube for Training

where the objects were was provided by pressing the V option of the keypad9 (see Figure

5.4b). Instead, the appearances of the five objects that the user needed to find were shown

on a piece of paper, and the user was given a written clue about the location of one of the

objects. However, to reduce a possible frustration factor, two objects were always very

easy to spot, one less easy to spot, and two more difficult to find. During the training,

the user did not see the actual objects, but was presented with a hypercube, as shown in

Figure 5.5. The virtual world with the static objects was the same during the training and

treatment phases. This meant that the user would know the world around it, without the

actual targets. Therefore, this can be viewed as a naïve search with some primed search

features (see Chapter 2).

5.9.2 Visual Cues

The visual cues that were provided were minimal. First, the subjects were told that the

universe was surrounded by a big sphere, called the inner sphere. They were told that

all the objects would be found inside the inner sphere. The users were also told that an

outer sphere surrounded the inner sphere. Exiting the inner sphere would be allowed, given

9The actual key was keypad 7.

182

Figure 5.6: Search Object Marker (Flag)

that there was a space between both spheres. However, if the users found themselves too

close to the outer sphere, the environment would trap them, forcing them to press the reset

button. Pressing the reset button would produce a large penalty in distance traversed. It is

important to note that while all the objects were inside the inner sphere, the user could not

see them right away. This allowed the users to try to stay within the boundaries of the inner

sphere. The decision to let them out of the traversal space (in the inner sphere) was done to

keep navigation smooth, while users were in the boundaries.

The users were also told that the targets would have a flag, as shown in Figure 5.6. This

flag would indicate that the object next to it was a target, as there were other objects in the

virtual world that were not targets. Once a target was reached, its flag would disappear.

For each treatment, all the search objects would start with their flags showing, and as they

subject reach them, the flag would disappear. In addition to the flag, in the top right corner,

the name of the targets would appear, written in red, once they were reached.

Another visual cue given to the users was a paper handout, which included the search

objects. In here, the handout also included also a tip, indicating that one of the objects

would be found near a purple nebula. The users were not told about the other three nebulas

in the virtual world, which were: yellow, green, and blue (see Figure B.1 in Appendix B).

183

Figure 5.7: Three-Ring Sphere

Note that the user did not know the location of the object. Finally, the other non-target

objects provided a cue for navigation.

Additionally, the users were provided with a position indicator, in the bottom center

of the screen. This provided the X, Y, and Z coordinates. The users were not provided

with the rotation angles. However, 3DNav provided a three-ring sphere for reference. The

three-ring sphere looked similar to a gimbal10 [139, pp. 314-315].

Three-ring Sphere

The three-ring sphere, which appears visually like a gimbal, was envisioned to provide a

rotational indicator. This was composed of four components: an outer ring (red), a middle

ring (green), an inner ring (blue), and a center disk connecting the inner ring. This three-

ring sphere is shown in Figure 5.7

5.9.3 Device Switching

The device switching, also known as users’ access time [46], is the measurement of time for

a user to go from device A to device B. For example, this could mean that someone using a

GamePad to navigate, may be required to put down this device before using the keyboard.

10See http://en.wikipedia.org/wiki/Gimbal.

184

http://en.wikipedia.org/wiki/Gimbal

In the case of the experiment, the objective was to see if there was any difference when

subjects performed the switch between the two devices tested (GamePad and multi-touch)

and the keyboard. This meant the time the user took between the target collision and

the successful sentence completion using the keyboard. Similar approaches to the switch

between two devices have been studied [194]. The users’ access time is called homing,

when working with the Keystroke-Level Model (KLM) [25]. The KLM is related to Goals,

Operators, Methods, and Selection (GOMS) [37] because it tries to break down complex

tasks. The KLM and GOMS are important models, but they are outside the scope of this

dissertation, given that none of these methods were used or applied.

5.10 Questionnaires

Subjects were given entry and exit questionnaires. A subset of subjects were given addi-

tional questions for the entry and exit surveys. Given the length of the survey, the actual

surveys are shown in Appendix B. Before listing the questions in each survey, the legend

that accompanied the survey is shown in Table 5.5. Some questions will be simplified

for sake of space in this chapter. All the relevant questions in the survey are discussed in

Chapter 6.

The entry survey, shown in Table 5.6, provided a way to classify the subject game ex-

pertise level (casual or experienced). This measured a ranking for the 3D navigation using

a GamePad controller. The criteria designed to quantify the user’s expertise is discussed

later. An additional questionnaire was given to a selected number of subjects. This helped

validate the previous question’s objective, which it was to find the expertise of the subjects

in relation to game playing. The additional questions are shown in Table 5.7.

The exit survey provided a subjective evaluation of the system. Besides understanding

what each subject internalized during the process, the survey looked to validate the objec-

185

Symbol Choices

¶ 6 months; 1 year; 2-4 years; 4-6 years; 5-10 years; 10 or more years

§ Never; Rarely; Daily; Weekly; Once a month; Once every 3 months;
Once in 6 months; Once a Year.

† 5:Extremely well skilled; 4: Very good; 3: Good; 2: Not very skilled;
1: Not skilled at all.

‡ Choose either for GamePad or multi-touch, each of the following oper-
ations:
Rotation: Yaw, Roll, Pitch

Translations: Up/Down, Left/Right, Forward/Back

See Appendix B for more information.

Table 5.5: Multiple Choice Legend.

tive data, or explain the discrepancies observed in them. The questions are shown in Table

5.12. Additional questions were given to a selected number of subjects to understand the

interaction with the Hold-and-Roll bi-manual gesture. This is shown in Table 5.8.

5.11 Gamers’ Experience

Ahead of time, before the experiment started, there was a valid concern that some users

may have extensive experience with the GamePad when navigating 3D games. The entry

questionnaire shown in Table 5.6 provided a way to classify users in this regard. Similar

methods to gamers’ classification have been used before in [120]. Equation 5.1 shows the

game experience calculation, which is the weighted sum of some questions divided by the

186

Question Type
1 Have you ever played PC Games? If Yes, list a few of them

and when you played them.
Open

2 Have you ever played Console Games (XBOX, PlayStation,
Nintendo)? If yes, list a few of them and when you played
them

Open

3 Have you ever played smart phone or tablet games? If yes, list
a few of them, and list the device and when you played them

Open

4 If you play video games rarely or don’t play video games, can
you tell us why? Is it cost, low interest, lack of time, lack of
skills or another set of reasons?

Open

5 How long have you been playing video games? Please circle
one option.

Range¶

6 How often (approximately) do you currently play video
games? Please circle one.

Range§

7 How would you describe your skill level at playing video
games in a scale of 1-5, with 5 the being the most skilled and
1 the least skilled?

Range†

8 What gaming systems do you own or have you owned in the
past? Please list them and specify if you still own them. Also,
include if there are any systems you would like to own in the
next year.

Open

9 Please list your favorite video games. List at least a couple, if
possible, and tell us why.

Open

10 Please tell us what other devices besides multi-touch or
GamePad have you used to play video games. Have you used
the Nintendo WiiMote or PlayStation Move? You can describe
any device that you have used to play games in this question.

Open

11 Have you heard about the Oculus Rift (experimenter will show
you one) or similar devices? Can you tell us what you think
about those devices and playing video games with them, if you
have an opinion? Have you ever use them?

Open

12 Please feel free to write any other opinions you want to express
about video games below.

Open

Table 5.6: Entry Questionnaire.

187

Question Type
13 How often do you use GamePad to play video games (cur-

rently)?
Range§

14 If you don’t use it as often now, describe how often you used
to use it before.

Range§

14b Describe when (about 14). Open
15 Rate how easy you find the GamePad (very easy = 10, very

hard = 1).
Scale 1-10

16 Do you have a preference for any type of GamePad (e.g.,
XBOX ONE, Logitech, Playstation)? List them in order of
preference, if you have more than one

Open

17 Please describe what you think of GamePads. Open

Table 5.7: Additional Entry Questionnaire.

Question Type
23 Please rate the Hold-and-Roll gesture you used during the ex-

periment (10 = very useful , 1= not useful at all)
Scale 1-10

24 Would you like to see this gesture in new games? Please ex-
plain.

Open

25 Would you like to see this gesture in new applications? Please
explain.

Open

26 What is you opinion about Hold-and-Roll? Open
27 Please describe what benefits the multi-touch interaction gave

you during this experiment. How about for your daily use?
Open

28 Please describe what benefits did the GamePad gave you dur-
ing the interaction. How about for your daily use?

Open

Table 5.8: Additional Exit Questionnaire.

188

maximum score (13.25), providing a normalized value from 0 to 1 (0% to 100%). This

formula contains Qn, where Q stands for question and the index n stands for the question

number, a weight for each question (reflecting its importance), and the constant of 13.25 to

normalized the results into L, which is the game-level experience. The actual classifications

for each question are shown in Table 5.9. Table 5.10 describes the game levels in detail.

Studies have looked at finding measurements for game levels (see [97, 206]). In this

particular approach, Equation 5.1 was validated by selecting a subset of subjects and per-

forming an additional interview. The second validation was provided by the additional

questions in Table 5.8. By no means is this a general model, and further study is needed

to determine a general approach to game-level classification. Nevertheless, for this exper-

iment, this approach gave correct results and provided a way to define a game-level factor

for the experiment.

L =
(3∗Q1 +6∗Q2 +0.25∗Q5 +1.5∗Q6 +1.5∗Q7 +0.5∗Q8 +0.5∗Q9)

13.25
(5.1)

5.12 Objective Measurements

A set of measurements were recorded, which included: travel time, switching time, and

sentence error rate. The travel time was defined as the time from the start of the treatment to

the the final sentence typed. The switching time was defined as the time from the question

prompt to the successful sentence completion using the keyboard. A third time can be

derived, that is the treatment time minus the keyboard time. The sentence error rate is the

number of incorrect sentences typed after pressing the enter key.

189

Level 6 Level 5 Level 4 Level 3 Level 2 Level 1 Level 0 None
Q1 1.00 0.75 0.50 0.40 0.35 0.30 0.20 0.00
Q2 1.00 0.75 0.50 0.40 0.35 0.30 0.20 0.00
Q9 1.00 0.75 0.50 0.40 0.35 0.30 0.20 0.00

6 mo. 1 yr. 2-4 yrs. 4-6 yrs. 6-10
yrs.

10+ yrs. - -

Q5 0.05 0.10 0.30 0.50 0.80 1.00 - -
Never Rarely Daily Monthly Every 3

mos.
Every 6
mos.

Yearly

Q6 0.05 0.09 1.00 0.70 0.40 0.20 0.12 0.08
Extremely
well

Very
good

Good Not very
Skilled

Not-
skilled

- - -

Q7 1.00 0.80 0.60 0.40 0.20 - - -
5+ 3-5 2 1 none - - -

Q8 1.00 0.70 0.50 0.25 0.00 - - -

Table 5.9: Game Classification.

Level Classification Description
6 Very Experienced Gamer Also refereed as to Hard-Core gamer, This is

a gamer that plays games very frequently and
those games consist of 3D games

5 Experienced Gamer Similar to Level 6, but plays less frequent
4 Semi-Experience Gamer Similar to Level 6, but their game play is more

recent
3 Classic This is a person that plays many 2D games. It is

called a classic gamer, because involves games
that are designed using the 1980s type of games.
This is different from casual games, since it in-
volves a joystick or similar devices.

2 Strategy This is a gamer that plays mostly strategy
games. Most of this games required a different
set of skills

1 Classic Casual This is similar to Level 3, but plays less frequent
and it plays more casual games

0 Casual This is a gamer that plays casual games. This
users will play touch games like angry-birds or
card games

- None In some instances, the user may have no expe-
rience or almost no experience.

Table 5.10: Game Classification Description

190

5.13 Experiment Procedure

The procedure for the subject included the entry and exit questionnaires, a video tutorial,

two training sessions, and two treatment sessions. The following list describes a brief step-

by-step procedure for each of the subjects:

1. Read and sign FIU IRB user’s consent for this experiment.

2. Request a user to draw a number, which will provide his or her identification number.

This will provide the permutations as described in 5.5.2.

3. Briefly explained to the user the logistics of the experiment (2 minutes).

4. Ask the subject to respond to entry survey, shown in Table 5.6.

(a) additional questions where provided if subject was selected (see Table 5.7).

5. Have the subject view the tutorial video.

6. Train subject with both devices, in the order provided by the identification number

(drawn in 2).

7. The subject performs the navigation with both devices, in the order provided by the

identification number (drawn in 2).

8. Ask the subject to respond the exit survey, shown in Table 5.12.

(a) additional questions where provided if subject was selected (see Table 5.8).

9. Conclude Experiment.

5.14 3D Navigation Experiment Tour

The experiment provided the entry and exit survey, as well as a training video. There were

five objects to find. In the case of the training, the hypercube (Figure 5.5) was used to

191

search. The five objects for the search task (in both treatments) were a hypersphere (Figure

5.8), a spaceship (Figure 5.10), a green creature (Figure 5.11a), a space satellite (Figure

5.11b), and a tetrahedron (Figure 5.11c). A series of static non-target objects were also

placed in the virtual world, which included a red creature (Figure 5.12a), and a green space

ship (Figure 5.12b), among others. A screenshot of the actual experiment display (on the

multi-touch screen) is shown in Figure 5.9.

For the actual treatment, the subjects were asked to use a multi-touch or GamePad

device (in random order) to be used for the treatment session. The user advised when he/she

was ready to start the experiment. Once ready, the experimenter pressed the special function

key N11 (see Figure 5.4b). When a target was found, the user was required to collide with

the target. Once the collision was detected, an input text box message appeared in the

middle of the screen, as shown in Figure 5.13, asking the user to type a sentence. The user

was only allowed to use the keyboard at this point. The sentence had to be typed correctly

to move to the next phase. This would iterate for each object. The next device treatment

was the same, but the objects were swapped between them. The actual sentences for the

experiment are found in Table 5.11. Note that one word used British spelling purposely

(“travelled”).

A set of figures are provided to visualize the experiment trials. A subject is shown in

Figures 5.14 and 5.15. The subject is performing different actions. In Figures 5.14a and

5.14b, a subject is performing a one-hand two-finger rotation to perform a yaw. The subject

is also typing once an object has collided, shown in figure 5.14c. In Figures 5.15a, 5.15b,

and 5.15c, the subject is performing the Hold-and-Roll (bi-manual) gesture to acquire a

target (by moving forward/back).

11This correspond to the keypad 9.

192

Figure 5.8: Hyper sphere (Target Object)

Figure 5.9: 3D Navigation Experiment Display

Figure 5.10: Space Ship (Target Object)

193

(a) Green Creature (b) Satellite (c) Tetrahedron

Figure 5.11: Target Objects

(a) Red creature (b) Green Space Ship

Figure 5.12: Non-Target Objects

Sentence Mode
Soccer is the greatest sport of the world. Training
I’m having to type short sentences. Treatment
The greatest coach of all time has travelled† to France. Treatment
I dream with a big library full of books. Treatment
I have been told not to write with CAPS (Uppercase). Treatment
I’m having to type short sentences. Treatment

Table 5.11: Sentences.

† British spelling.

194

Figure 5.13: Keyboard Pop Up

(a) Subject: Yaw (b) Subject: Yaw 2 (c) Subject typing

Figure 5.14: Subject

(a) Subject: Hold-and-Roll 1 (b) Subject: Hold-and-Roll 2 (c) Subject Hold-and-Roll 3

Figure 5.15: Hold-and-Roll

195

Table 5.12: Exit Questionnaire.

Question Type

1 On a scale of 1 to 10, please rank how much easier you found the

multi-touch display compared to the GamePad for 3D navigation.

The higher you rank (10), the easier you found the multi-touch dis-

play versus the GamePad.

Scale 1-10

2 On a scale of 1 to 10, please rank how much easier you found the

GamePad device compared to the multi-touch display. The higher

you rank (10), the easier you found the GamePad device versus the

multi-touch display.

Scale 1-10

3 On a scale of 1 to 10, please rank how intuitive you found the multi-

touch display. The higher you rank (10), the more intuitive you found

it

Scale 1-10

4 For the task given during the experiment: how do you rank the in-

teraction to perform the search with the multi-touch display? The

higher you rank (10), the better you found the experience with the

device to perform the assigned task during the experiment.

Scale 1-10

5 For the task given during the experiment: how do you rank the inter-

action to perform the search with the GamePad? The higher you rank

(10), the better you found the experience with the device to perform

the assigned task during the experiment.

Scale 1-10

6 Given the time you took with multi-touch display, rank how likely

you are to use this device for daily use if you had access to it. The

higher you rank, the more you expect to use if it was available to you.

Scale 1-10

7 Given the time you took with the GamePad device, rank how likely

you are to use this device for daily use if you had access to it. The

higher you rank, the more you expect to use if it was available to you.

Scale 1-10

Continued on next page

196

Table 5.12 – Continued from previous page

Question Type

8 Please rank how the multi-touch display compared to the GamePad

device for rotating the camera. The higher you rank (10), the better

you found the multi-touch display for rotations

Scale 1-10

9 Please rank how the GamePad device compared to the multi-touch

display for rotating the camera. The higher you rank (10), the better

you found the GamePad device for rotations.

Scale 1-10

10 Please rank how the multi-touch display compared to the GamePad

device for translation (up, down, left, right, forward, back). The

higher you rank (10), the better you found the multi-touch display

for translation movements.

Scale 1-10

11 Please rank how the GamePad compared to the multi-touch display

for translation (up, down, left, right, forward, back). The higher you

rank (10), the better you found GamePad for translation movements.

Scale 1-10

12 Which device do you prefer: GamePad, multi-touch, No Difference

(both). (please circle one)

multiple-

choice

13 Which device did you find better to switch to the keyboard (when

asked to type)? GamePad, multi-touch, No Difference (both).

(Please circle one).

multiple-

choice

14 Please select which Rotation or Translation you found better for the

experiment you tested. Please mark with X for each of the categories.

multiple-

choice‡

15 Please tell us what you thought about the experiment? Open

16 Tells us why you prefer one device over the other for the experiment. Open

17 Tell us why you prefer one device over the other when you have to

type, as the experimented demanded.

Open

18 Please tell us your overall opinion about the design of the multi-touch

display.

Open

Continued on next page

197

Table 5.12 – Continued from previous page

Question Type

19 Please tell us your overall opinion about the design of the GamePad

device.

Open

20 Please tell us how we did in the experiment. Is there anything in the

experiment that can be done better next time?

Open

21 What do you think about the three-ring sphere that gave you a sense

of rotation in space?

Open

22 You can use the rest of this page to write any comments before start-

ing the experiment about the questions asked. Please feel free to

write anything about video games below.

Open

198

CHAPTER 6

EXPERIMENT ANALYSIS

This chapter presents the statistical data analysis for the 3DNav experiment described

in Chapter 5. The objective of this chapter is to provide the quantitative and qualitative

analysis of the data. Several statistical tests were performed, including t-tests and Analysis

of variance (ANOVA) tests. The software used to perform the data analysis included IBM

SPSS version 19 and Microsoft Excel. The results will be interpreted in Chapter 7.

6.1 Data Outliers

When looking at the primary measurement factor (time), two subjects were considered out-

liers. One of the subjects (Row #7, ID #6, female, age 29) showed a huge difference in time

when using the GamePad compared to the rest of the subjects, as shown in Figure 6.1a. This

subject was interviewed at a later time to see if the discrepancy could be understood. The

user said that she gave up at times when using the GamePad out of frustration. The subject

also reported that she had trouble using the controller for all types of navigation purposes.

The other subject (Row #9, ID #8, male, age 33) showed a difference from the rest of the

subjects when using the multi-touch display, as shown in Figure 6.1b. The difference was

apparent to the experimenter during the trial. The user had physical problems that made

it difficult for him to use the multi-touch display. Therefore, both subjects where removed

from the analysis, bringing the total pool of subjects to 28. It is important to note that the

removal of the outliers mentioned did not make a difference in the significance of the com-

parison of means. Furthermore, a possible third outlier, described later, was not removed

from the dataset.

199

GP_TIME_MS

700,000

600,000

500,000

400,000

300,000

200,000

100,000

7

(a) Outlier GamePad

MT_TIME_MS

700,000

600,000

500,000

400,000

300,000

200,000

100,000

9

(b) Outlier multi-touch

Figure 6.1: Outliers

6.2 The Dataset

The data collected consisted of quantitative (objective) data and qualitative (subjective)

data) for 30 participants. The final pool was reduced to 28 subjects for reasons explained

already in 6.1. The actual data items collected are described extensively in Chapter 5.

The subject pool analysis consisted of 28 subjects, of which 18 were male and 12 were

female. The average age was 27 years old (27.2857143), with the oldest subject having

42 years of age and the youngest subject having 19 years of age (the mode was 23). The

population was primarily from the School of Computing and Information Sciences and

the Engineering College. This consisted of 15 undergraduate students (mostly junior and

seniors), 8 graduate students (master’s and PhD), and 5 professional subjects who had at

least a bachelor’s degree.

6.3 Quantitative Data

The quantitative data provided an objective understanding of the interaction of the user with

each device. The most crucial measurements were the time taken in total for each device

200

(referred to as Td), the time taken to type sentences with the keyboard for each treatment

(refer as Tk), and the difference between Td and Tk (Tdnk = Td−Tk). Additionally, the other

measurement taken is the number of tries per device when typing on the keyboard, with the

lowest count expected to be five (for a total of 5 sentences per device). When analyzing

some of the objective data, a co-factor was taken into consideration. This is the Experience

Level1, which is divided into two categories: Casual gamers, which is category 1 (60%

or lower), and experienced gamers, which is category 2 (above 60%). This is discussed

in 5.11. It is important to note that this game’s expertise level refers to the person’s skills

in video game consoles or games that required the use of GamePad. The reason for this

co-factor is that it was expected for regular GamePad users to be able to manipulate this

controller better than regular users. Finally, the time variables were recorded in millisec-

onds. Therefore, unless otherwise stated, the default unit of measurement of time in this

experiment is milliseconds, or the log(x) transformation of such time.

6.3.1 Time: GamePad and Multi-Touch

The time considered for each treatment was from the start of treatment to the completion

of the final objective of the trial. This measurement (Td) provides an unbiased look at the

completion time for each device. Table 6.1 includes: mean (x̄), standard error of mean

(SEM), median (x̃), mode (MO), standard deviation (SD), variance (Var), minimum (Min),

maximum (Max), and population size (N), among others. The variables MT_TIME_MS

and GP_TIME_MS describe the time elapsed for the multi-touch treatment (in millisec-

onds) and GamePad, respectively. The mean for multi-touch is x̄ = 262.28 seconds and for

the GamePad is x̄ = 270.29 seconds. This means that the multi-touch mean has an slight

advantage of 8 seconds.

1Also referred to as Hard-Core Gamers.

201

MT_TIME_MS GP_TIME_MS
Mean 262288.29 270298.96
Std. Error of Mean 14289.806 14516.009
Median 271057.00 241555.50
Mode 159130¶ 108266¶

Std. Deviation 75614.544 76811.499
Variance 5717559249.619 5900006358.628
Skewness .613 .109
Std. Error of Skewness .441 .441
Kurtosis .232 -.562
Std. Error of Kurtosis .858 .858
Range 304142 320982
Minimum 159130 108266
Maximum 463272 429248
Percentiles
25 200434.25 216771.00
50 271057.00 241555.50
75 312495.75 335238.50

Table 6.1: Descriptive Statistics for Td

Table Legend: ¶ Multiple modes exist. The smallest value is shown

Table 6.2 shows the normality tests (i.e., the Kolmogorov-Smirnov and Shapiro-Wilk

tests). The latter shows that the data is normal for both treatment variables. The former

test (Kolmogorov-Smirnov) shows that is only normal for multi-touch. While this may

be concerning, when looking at the QQ plots, the normality can be visualized in Figures

6.4b and 6.4a. Nevertheless, the data can be converted using a log transformation function

(log(x)) [48], which passed all the normality tests, as shown in Table 6.3. This transformed

data is called Tdx. The QQ plots for the transformations are shown in Figures 6.5a and 6.5b.

The histograms with the Gaussian curve are shown for non-transformed and transformed

cases, in Figures 6.7 and 6.6. Finally, the descriptive information for the transformed data

is shown in Table 6.4

202

Kolmogorov-Smirnov † Shapiro-Wilk
Statistic df Sig. Statistic df Sig.

MT_TIME_MS .108 28 .200¶ .948 28 .175
GP_TIME_MS .180 28 .020 .961 28 .372

Table 6.2: Normality Test for Td

Table Legend:
† Lilliefors Significance Correction.
¶ This is a lower bound of the true significance.

Kolmogorov-Smirnov † Shapiro-Wilk
Statistic df Sig. Statistic df Sig.

MT_TIME_LOG .129 28 .200¶ .963 28 .411
GP_TIME_LOG .141 28 .163 .940 28 .114

Table 6.3: Normality Test for Tdx

Table Legend:
† Lilliefors Significance Correction.
¶ This is a lower bound of the true significance.

After the Log transformation, Figure 6.3a displayed an outlier on the graph (Row #16, ID

#16, male, age 24). However, after careful analysis, this subject was kept in the pool of

data used for analysis for the following two reasons: First, the subject was not an outlier in

the data before the transformation. Second, his low time for both devices was just part of

his vast game experience, as this subject is in the hard-core category, with a hard-core level

of 94%. The actual times for this subject were 159 seconds for the multi-touch device, and

108 seconds for the GamePad. Notice that the other outliers had a large difference between

the mean and each of their times. For example, subject ID #6 had a total of 586.59 seconds

for the GamePad device, yielding over 300 second difference. Subject ID #8 had a total

of 673.52 seconds, yielding over 400 second difference. This was not the case for ID #16,

whose difference to the mean was less than 90 seconds for each of the devices. Therefore,

the conclusion was to leave the subject in the dataset.

203

MT_TIME_Log GP_TIME_Log
Mean 5.4016 5.4134
Std. Error of Mean .02356 .02519
Median 5.4331 5.3830
Mode 5.20¶ 5.03¶

Std. Deviation .12466 .13330
Variance .016 .018
Skewness .011 -.704
Std. Error of Skewness .441 .441
Kurtosis -.719 .947
Std. Error of Kurtosis .858 .858
Range .46 .60
Minimum 5.20 5.03
Maximum 5.67 5.63
Percentiles
25 5.3019 5.3360
50 5.4331 5.3830
75 5.4947 5.5253

Table 6.4: Descriptive Statistics for Tdx = Log(Td)

Table Legend: ¶ Multiple modes exist. The smallest value is shown

GP_TIME_MS

500,000

400,000

300,000

200,000

100,000

(a) GamePad

MT_TIME_MS

500,000

400,000

300,000

200,000

100,000

(b) multi-touch

Figure 6.2: BB Plot

204

GP_TIME_LOG

5.6

5.4

5.2

5.0

16

(a) Logx GamePad

MT_TIME_LOG

5.6

5.4

5.2

5.0

(b) Logx multi-touch

Figure 6.3: BB Plot (Transform Data)

Observed Value

500,000400,000300,000200,000100,000

E
x

p
e

c
te

d
 N

o
rm

a
l

3

2

1

0

-1

-2

-3

Normal Q-Q Plot of GP_TIME_MS

(a) GamePad

Observed Value

500,000400,000300,000200,000100,000

E
x
p

e
c
te

d
 N

o
rm

a
l

3

2

1

0

-1

-2

-3

Normal Q-Q Plot of MT_TIME_MS

(b) multi-touch

Figure 6.4: QQ Plot

205

Observed Value

5.65.45.25.0

E
x
p

e
c
te

d
 N

o
rm

a
l

2

0

-2

-4

Normal Q-Q Plot of GP_TIME_LOG

(a) Logx GamePad

Observed Value

5.65.45.25.0

E
x
p

e
c
te

d
 N

o
rm

a
l

2

0

-2

-4

Normal Q-Q Plot of MT_TIME_LOG

(b) Logx multi-touch

Figure 6.5: QQ Plot (Transform Data)

GP_TIME_MS

500000400000300000200000100000

F
re
q
u
e
n
cy

8

6

4

2

0

GP_TIME_MS

Mean = 270298.96

Std. Dev. = 76811.499

N = 28

(a) GamePad

MT_TIME_MS

500000400000300000200000100000

F
re
q
u
e
n
cy

8

6

4

2

0

MT_TIME_MS

Mean = 262288.29

Std. Dev. = 75614.544

N = 28

(b) multi-touch

Figure 6.6: Histograms

206

GP_TIME_LOG

5.805.605.405.205.00

F
re
q
u
e
n
cy

12

10

8

6

4

2

0

GP_TIME_LOG

Mean = 5.41

Std. Dev. = .133

N = 28

(a) Log GamePad

MT_TIME_LOG

5.805.605.405.205.00

F
re
q
u
e
n
cy

12

10

8

6

4

2

0

MT_TIME_LOG

Mean = 5.40

Std. Dev. = .125

N = 28

(b) Log multi-touch

Figure 6.7: Histograms (Transformed Data)

Comparison of Means

After analyzing the descriptive statistics and showing that the mean for the multi-touch

device (4 minutes and 37 seconds) was smaller than the GamePad device (4 minutes and

50 seconds), the analysis needed to determine if the difference was significant. The t-

test showed that the difference of the means was not statically significant. Therefore, the

difference between the multi-touch device and the GamePad, yielded t(27) = -.490, p > .05.

The same was the case for the transformed data (using log(x)), that yielded t(27) = -.432,

p > .05.

One-way ANOVA: Repeated Measures

The analysis of the data is performed with the transformed data. The premise is that the

data complies with the assumptions required for ANOVA [48]. Nevertheless, the non-

transformed data, while failing one of the normality tests, does appear to be normally dis-

tributed (see Figures 6.4a and 6.4a). When running ANOVA, it is expected that a similar

result from the previous t-test will also yield a non-significant difference for Tdx. This was

the case as well, with ANOVA results of F(1,26) = .1, p > 0.5.

207

Factor Input Time Mean Std. Error

Casual
Multi-touch 5.437 0.031
GamePad 5.495 0.026

Experienced
Multi-touch 5.361 0.033
GamePad 5.319 0.028

Table 6.5: Co-Factor Means Tdx

An additional test was performed using the game-level factor (see 5.11). In the subject

pool, 13 subjects were classified as experienced gamers and 15 subjects were classified as

casual users. The study sought to see if there was any difference between the experience

gamers and the casual players when using the GamePad and the multi-touch device. In

this test, the hypothesis was that experienced gamers would pull the average completion

time down, for the GamePad controller. This hypothesis showed to be significant. In other

words, for experienced gamers only the difference of mean completion times between both

devices was significant, with p < 0.1. This was not the case for casual gamers, showing that

the difference of means was not significant, p > 0.5. Looking at the non-transformed data

that provides the actual time, it is possible to see the differences between both groups. The

mean for the experienced gamers was 214.8 seconds with the GamePad and 239.4 seconds

with the multi-touch device. For the casual gamers, the mean was 318 seconds with the

GamePad and 282 seconds with the multi-touch device. Table 6.5 provides the means of

the transformed data and the analysis of the interaction of the factor with each device is

reported in Table 6.6.

Time: Breaking the groups

The casual gamer group is composed of 8 males and 7 females, with an average age of

29.80 (SD=7.153), a mode of 23, and minimum/maximum of 23 and 38, respectively. The

208

Input Time (I) Factor (J) Factor Mean Difference (I− J) Std. Error Sig.†

Multi-touch
Casual Experienced 0.76 0.46 0.108
Experienced Casual -0.76 0.46 0.108

GamePad
Casual Experienced 0.176¶ 0.38 0.00
Experienced Casual -0.176¶ 0.38 0.00

Table 6.6: Co-Factor Analysis Tdx

Table Legend:
† Adjustment for multiple comparisons:

Least Significant Difference (equivalent to no adjustments).
¶ The mean difference is significant at the .05 level.

experienced gamer group was composed of 11 males and 2 females, with an average age

of 24.38 (SD=3.61), a mode of 23, and a minimum/maximum of 19 and 35, respectively.

The data is normal for both groups as shown in Table 6.7. For the homogeneity (Levene)

test, the variance of the Tdx
2 for both game factors (casual and experienced) was equal for

the GamePad F(1,26) = 2.362, p > 0.05 and the multi-touch F(1,26) = 0.64. Therefore, the

homogeneity test passed.

After running the t-tests for each group3, the expected outcome showed that it was

significant for the casual gamer category. In other words, casual gamers completed their

tasks in less time when using the multi-touch device (x̄ = 5.44, SD = 0.11) compared to the

GamePad device (x̄ = 5.51, SD = 0.87), with t(15) = -1.942, one-tailed significance of p <

0.05 (Two-tailed significance was equal to 0.073, divided by 2 gives one-tailed significance

of 0.036), r = 0.46. In the experienced gamer category, there was no significance, with a

mean of 5.36 for the multi-touch and 5.32 for the GamePad. To place the results of the first

category (casual gamers) into context, the actual average time for the multi-touch device

was 282 seconds, and for the GamePad device, 318.6 seconds. For the latter category

(experienced gamer), the average time to complete the tasks for the multi-touch device was

239.4 seconds and for the GamePad device was 214.8 seconds. There is a clear tendency

2Using the transformed data with Log(x).

3Using the split file function of SPSS.

209

Game Group
Kolmogorov-Smirnov † Shapiro-Wilk
Statistic df Sig. Statistic df Sig.

Casual
MT_TIME .165 15 .200¶ .958 15 .655
GP_TIME .201 15 .104 .937 15 .345

Experienced
MT_TIME .171 13 .200¶ .948 13 .090
GP_TIME .222 13 .081 .884 13 .081

Table 6.7: Normality Test for Tdx by Group

Table Legend:
† Lilliefors Significance Correction.
¶ This is a lower bound of the true significance.

for experienced gamers to perform faster (without statistical significance) when using the

GamePad controller. This will be discussed in detail in Chapter 7.

6.3.2 Homing: Switching Devices

Participants were required to switch from either the GamePad or the multi-touch to use the

keyboard. In the case of this study, the time is Homing plus the time to complete a sentence

successfully. This can be formulated as the sum of homing (H) plus the time that it takes

to successfully complete the sentence requested by the experiment using the keyboard (K),

as shown in Equation 6.1. The data analysis used untransformed data (in milliseconds)

because it passed all the normality tests and the homogeneity of variance test when looking

at the game category groups (casual and experienced).

In addition to the time St , the error rate for the keyboard (Ek) is also taken into account.

For each device, the user was required to type five sentences correctly per device. Any

additional tries after that are considered user errors. For example, a user with 6 tries for the

multi-touch would have a 0.20 (20%) error rate. This is calculated using Equation 6.2.

St = Ht +Kt (6.1)

210

Ek = (T RIES/5)−1 (6.2)

Sentence Completion Time

The average time for the multi-touch display to keyboard, the completion time, was 81.6

seconds, and for the GamePad to keyboard, the completion time was 85.8 seconds. The

data passed the normality test. When looking at the entire population, without regard for

the game-category factor, there was no significant difference between either device when

switching to the keyboard and completing a correct sentence. The result yielded t(27) =

−.490, with p > 0.05. When looking at the separate game experience groups, there was

also no significant difference.

Error Rate

The error rate is determined by how many times the user hit enter with an incorrect answer,

as described in Equation 6.2. However, the error rate is not normally distributed. For

this reason, a non-parametric test, the Wilcoxon-signed-rank test was used to see if the

assumption that users would have a more fluid interaction between two devices in favor of

the the multi-touch and keyboard switch. This yielded a one-tailed significant difference.

The Wilcoxon-signed-rank test allowed the analysis to find if there is any difference

between the error rates for each device. As expected, there was a difference when users

transitioned to the keyboard from each device. In particular, users had a higher error rate

when using the GamePad and the keyboard (mean = 0.1857, SD = 0.335), compared to the

multi-touch and the keyboard (mean = 0.0643, SD = 0.163). In other words, T=0, p < 0.05

(One tailed significance), r = -0.352 for the GamePad. Users tended to make more errors

when using the transition between the GamePad and keyboard, as shown in Tables 6.8 and

6.9.

211

Rank Type N Mean Rank Sum of Ranks
Negative 3† 5.17 15.50
Positive 9‡ 6.94 62.50
Ties 16*

Total 28

Table 6.8: Wilcoxon-signed-rank test: GP_Keyboard - MT_Keyboard

Table Legend:
† GP_KEYERROR < MT_KEYERROR
‡ GP_KEYERROR > MT_KEYERROR
* GP_KEYERROR = MT_KEYERROR

Z -1.861†

Sig. (1-tailed) 0.0315
r -0.352

Table 6.9: Wilcoxon-signed-rank statistics: GP_Keyboard - MT_Keyboard

Table Legend: † Based on negative ranks.

6.4 Qualitative Data

Section 6.3 provides the analysis of the objective data. This is an important aspect of

user study. However, there are aspects that quantitative data cannot easily measure, which

qualitative data can complement. This section describes the relevant questions from the

exit survey described in Chapter 5 that ties into the objective of the experiment. Detailed

discussion about this section will be covered in Chapter 7.

6.4.1 Paired Questions

Two questions were asked to the subjects, which are meant to be treated as pairs. These

were questions Q1 and Q2 in 5.10 (see Table 5.12). These questions tried to get feedback

212

from the user in regards to the multi-touch versus the GamePad, and vice versa, using a

scale of 1-10. The purpose was to try to remove some bias and see if the answers were

coherent, within each pair. For example, if the user found the multi-touch very easy to

use, it would be expected that the user would rank in the following question (that asked the

reverse), the GamePad not easy at all. Therefore, for this set of questions, the data analysis

would include looking at each of them independently (e.g., mean), the bivariate correlation

between them, and the ranking between both.

The GamePad scored higher (Q2), with a mean of 7.86 (mode = 10.0, median = 8.0)

versus the multi-touch (Q1), with a mean of 5.46 (mode = 4.0, median = 5.00). The nor-

mality tests were not passed for Q2, with both the Kolmogorov-Smirnov and Shapiro-Wilk

tests showing a significant value of p< 0.05. Therefore, any correlation tests would need to

use non-parametric methods. The Spearman’s rho (rs) and Kendall’s tau (τ) tests were per-

formed. Both of them show a (2-tailed) significant difference, with rs =−0.485, p < 0.01

and τ = −0.376, p < 0.05. This relationship is negative because as Q1 increases, Q2 de-

creases, and vice-versa. When looking at the Wilcoxon-signed-rank non-parametric test,

it also shows a significance, where Q2−Q1 is (2-tailed) significant, with a negative rank-

ing, with p < 0.01, Z = −2.739, and r = −0.376, as shown in Tables 6.10 and 6.11. This

means that users found the GamePad controller to be easier over the multi-touch device for

3D navigation.

When analyzing Q2 and Q1 by game groups (casual or experienced), there were some

different results. When looking at the correlation, both tests (Spearman’s rho and Kendall’s

tau) were used. The test showed a significant correlation for Q1 and Q2 in both tests

(while Kendall’s tau has more importance since it works better with smaller samples) for the

experienced gamers. The tests yielded rs = −0.592, p < 0.05 and τ = −0.491, p < 0.05.

This showed a negative relationship, which meant that as Q2 increases, Q1 decreases.

213

Rank Type N Mean Rank Sum of Ranks
Negative 6† 9.08 54.50
Positive 18‡ 13.64 245.50
Ties 4*

Total 28

Table 6.10: Wilcoxon-signed-rank test: Q2−Q1

Table Legend:
† Q2 < Q1
‡ Q2 > Q1
* Q2 = Q1

Z -2.739†

Sig. (2-tailed) 0.006
r -0.376

Table 6.11: Wilcoxon-signed-rank statistics: Q2−Q1

Table Legend: † Based on negative ranks.

For the Wilcoxon-signed-rank test, it only yielded (2-tailed) statistical significance for

the experienced category. The mean for Q1 was 5.15 (SD= 2.478) and the mean for Q2 was

8.62 (SD = 1.66) when looking at the experienced gamer group, for a total N = 13. There

were 2 negative rankings, with mean rank of 3.50, 10 positive ranks with mean ranking of

7.10, and one tie ranking. The Wilcoxon-signed-rank test yielded Z = −2.547, p < 0.05,

r = −0.68 (large effect size), with a negative ranking. This meant that the experienced

gamer found the GamePad controller easier than the multi-touch display.

6.4.2 Additional Pairs of Questions

Additional paired questions were asked. However, these questions did not made a compar-

ison between GamePad and multi-touch. The questions were only asked about one device,

214

but the type of questions were the same. The questions were Q4 to Q11 in pairs (e.g., 4-5,

5-6, and so forth), from the exit survey, shown in Chapter 5 (see Table 5.12). Most question

did not pass the normality tests (Kolmogorov-Smirnov and Shapiro-Wilk), as shown in Ta-

ble 6.12. Therefore, the analysis is better suited for non-parametric methods. The analysis

is similar to the previous pair of questions (see 6.4.1). The descriptive statistics are shown

in Table 6.13.

When looking at the bivariate correlation between each pair of questions, it must be

interpreted a bit differently (and with caution) from the previous comparison in 6.4.1. This

is because the questions did not put each device against each other, but they were considered

independent. The reason that they are pairs is because the question is the same with just

replacing the device name. Nevertheless, the correlation will still help in the discussion

chapter.

Only the pairs {Q6,Q7} and {Q8,Q9} showed a statistical (2-tailed) significance. For

{Q6,Q7}, Spearman’s rho yielded rs = −0.504, p < 0.05 and Kendall’s tau yielded τ =

−0.386, p < 0.01, with a negative relationship. This was also the case for {Q8,Q9} with

rs =−0.388, p < 0.05 and τ =−0.330, p < 0.05, with a negative relationship. This meant

that as Q6 increased, Q7 decreased, and when Q8 increased, Q9 decreased.

The Wilcoxon-signed-rank test did not show any significant difference between the pair

of questions. However, there are statistically significant results when looking at each gamer

group category (casual, experienced). When looking at the casual gamers, the ranking for

Q7−Q6 yielded a (2-tailed) significant difference based on a positive ranking. This meant

that casual users said that based on their experience of the experiment, they were more

likely to use the multi-touch display versus the GamePad controller. The mean for Q6

was 8.87 (SD = 1.356) and the mean for Q7 was 5.00 (SD = 2.390), both with N = 15.

The Wilcoxon-signed-rank results where Z = −2.940, p < 0.01, and r = −0.56. For the

experienced group, there was a statistical (2-tailed) significance for Q7−Q6 and Q9−Q8,

215

Kolmogorov-Smirnov † Shapiro-Wilk
Statistic df Sig. Statistic df Sig.

Q4 0.220 27 0.002 0.882 27 0.005
Q5 0.236 27 0.000 0.883 27 0.006
Q6 0.144 27 0.161 0.912 27 0.026
Q7 0.130 27 0.200* 0.930 27 0.070
Q8 0.144 27 0.155 0.952 27 0.245
Q9 0.230 27 0.001 0.821 27 0.000
Q10 0.132 27 0.200* 0.933 27 0.082
Q11 0.211 27 0.003 0.852 27 0.001

Table 6.12: Normality Test for Q4 to Q11

Table Legend:
† Lilliefors Significance Correction.
* This is a lower bound of the true significance.

both favoring the GamePad, both with p < 0.05. The results for the experienced group are

shown in Tables 6.14 and 6.15.

6.4.3 GamePad or Multi-Touch

Two questions were very specifically asking the user if they preferred the GamePad con-

troller or the multi-touch display. Questions Q12 and Q13 are from the exit survey, shown in

Chapter 5 (see Table 5.12). Question Q12 asked the subject to select which device was pre-

ferred. Question Q13 asked the subject to select which device was preferred when switching

to the keyboard. For both questions, the possible answers were multi-touch (1), GamePad

(2), or both4 devices (3).

4Which means that subject found them equal.

216

Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11
Mean 7.07 7.82 7.64 6.48 6.14 7.36 6.75 7.36
SEM† 0.405 0.337 0.361 0.516 0.495 0.533 0.487 .520
Median 8.00 8.00 8.00 7.00 6.00 8.50 7.00 8.50
Mode 8 9 10 10 8 9§ 7§ 9§

SD‡ 2.142 1.786 1.909 2.728 2.621 2.818 2.577 2.752
Variance 4.587 3.189 3.646 7.443 6.868 7.942 6.639 7.571
Range 7 7 6 9 9 9 9 9
Minimum 3 3 4 1 1 1 1 1
Maximum 10 10 10 10 10 10 10 10
Percentiles
25 6.00 7.00 6.00 4.00 4.00 5.25 5.00 5.25
50 8.00 8.00 8.00 7.00 6.00 8.50 7.00 8.50
75 9.00 9.00 9.75 9.00 8.00 9.75 9.00 9.75

Table 6.13: Descriptive Statistics for Q4 to Q11

Table Legend:

† Standard Error of Mean.
‡ Standard Deviation.
§ Multiple modes exists.

The smallest shown.

Rank Type N Mean Rank Sum of Ranks

Q7−Q6

Negative 2† 7.50 15.00
Positive 10‡ 5.67 51.00
Ties 1*

Total 13

Q9−Q8

Negative 3¶ 4.33 9.00
Positive 10§ 7.80 78.00
Ties 0ð

Total 13

Table 6.14: Wilcoxon-signed-rank tests: Experienced gamer

Table Legend:
† Q7 < Q6 ¶ Q9 < Q8
‡ Q6 > Q6 § Q9 < Q8
* Q7 = Q6 ð Q9 = Q8

217

Q7−Q6 Q9−Q8
Z -2.373† -2.280†

Sig. (2-tailed) 0.018 0.023
r -0.448 -0.431

Table 6.15: Wilcoxon-signed-rank statistics: Experienced gamer

Table Legend: † Based on negative ranks.

When looking at the entire sample (N = 28), the preferred device (Q12) was the GamePad

(mean = 1.64), with GamePad = 18, multi-touch =10, and both = 0. The preferred device

when switching to keyboard was the multi-touch display (mean = 1.25), with multi-touch

= 23, GamePad = 3, and both = 2.

There was a preference for the multi-touch display when looking only at the casual

gamers group. It was only a slight preference for the multi-touch display (mean = 1.53),

with 8 users preferring the multi-touch display, and 7 preferring the GamePad.

6.4.4 Rotation and Translations Questions

A table was provided, which asked the user to select which device was preferred for a

specific rotation or translation (see example in Figure 6.8). It it important to remember

that users were provided with a figure of an airplane. Additional help was provided by the

experimenter if the user had questions about the rotations and translation. The questions

were very specific, asking the user if they preferred the GamePad controller or the multi-

touch display for a given operation. This question (Q14) is broken down into 6 categories,

with Q14a to Q14c for the rotations and Q14d to Q14 f for the translations, as shown in Table

6.16.

218

Figure 6.8: Experiment Table

Question # Type
Q14a Rotation: Yaw
Q14b Rotation: Roll
Q14c Rotation: Pitch
Q14d Translation: Up-Down
Q14e Translation: Left-Right
Q14 f Translation: Forward-Back

Table 6.16: Question 14: GamePad or multi-touch

6.4.5 Other Questions

Several open questions were asked to the user. Some examples are shown in the next chap-

ter. For three of the additional questions, the answeres were grouped in categories by the

experimenter. These were Q16, Q17, and Q21. The results are shown in Tables 6.17 and

6.18. From the perspective of the user, they preferred the GamePad for 3D navigation

(Q16). When asked which device they preferred when switching to keyboard, the major-

ity preferred the multi-touch display (Q17). For the three-ring sphere, the answers where

generally positive (Q21).

6.4.6 Hold-And-Roll Questions

A subset of subjects of the entire sample (N = 28), were asked to answer questions about

the Hold-and-Roll gesture. The total number of subjects asked was twenty. In particular,

two questions can be quantified to understand the preference of the users (Q23,Q24, and

219

Type Frequency Count
Q16 Q17

No response 3 5
Multi-touch 8 19
Game-Pad 16 2
Both Devices 1 2

Table 6.17: Questions 16 and 17

Type # Frequency
No response 3
Very negative 1
Negative 1
Neutral 5
Positive 13
Very Positive 5

Table 6.18: Question 21

Q25, see Table 5.8). Q23 had a scale from 1 to 10, with 10 being the highest ranking.

The mean for Q23 was 7.70 (SEM = 0.31,SD = 1.526), median of 8.0, mode of 7.0, and

minimum/maximum of 5 and 10, respectively. Q24 asked the user if they would like to see

this gesture incorporated into new games. From the 21 subjects asked, 13 of them said yes,

1 of them said no, and 7 of them said maybe. Q25 asked the user if they would like to see

this gesture incorporated into new applications. From the 21 subjects asked, 14 of them

said yes, 3 of them said no, and 4 of them said maybe. Finally, when looking at subjects

that performed better with one device or the other, and their answer to Q24, there was no

statistical significance. There was also no statical significance for users who preferred one

device over the other (from Q12) in relation to Q24. The same was found for Q25.

220

CHAPTER 7

EXPERIMENT DISCUSSION

This chapters provides a discussion about the data analysis performed in Chapter 6,

which includes quantitative and qualitative results. It also provides a discussion about open

questions in the exit survey, the observations from the experimenters during the experiment

trials, and presents a view of how all of this helps to understand 3D navigation using multi-

touch desktop displays.

7.1 Assimilating Experimental Results

It is common in HCI to experiment on different prototypes and techniques. This is very

important in HCI. However, they are a few pointers that are important to have in mind. One

of them is the bias towards objective, quantifiable measurements, treated as facts, without

the incentive of re-testing by others [63]. Also, Greenberg and Buxton provided compelling

arguments about one myth held by some people in the community. Some researchers may

think that to have a successful experiment, the new device must outperform the old one.

A counter example offered by the authors in [63] is Marconi’s wireless radio (1901). This

radio would not have passed any usability test and it was severely criticized at the time.

This leads to the question whether a device is usable or useful (or both)? It is the opinion

of this author (and the authors in [63]), the usefulness at early stages is far more important.

Usability comes later in the process, as has been the experience in the field [20, 63].

Ht Hu Hv Hw Hx Hy Hz
False False True False True False True

Table 7.1: Hypothesis Results

221

7.2 3D Navigation

Chapter 1 provided a series of questions (Q) with their hypotheses (H) in Table 1.1. The

first question Qs, helps to place the experiment in context. This was the first question when

this project started. Can a user navigate in 3D using a 2D multi-touch display? Given that

the users where able to navigate, it does help to validate the hypothesis. It was clear that the

subjects, all of them, were able to use a multi-touch display to complete the primed search

tasks while navigating in 3D. The other questions helped to find the validity of specific

hypotheses. The results from Chapter 6 are shown in Table 7.1.

The primary aim was to know if, when given a task (primed search) while navigating in

3D, there would be any significant difference (either way) between the multi-touch display

and the GamePad controller. This was not the case. The significance value (p) was not

within the range that would make Ht true. The question remains: Why was it not signif-

icant? Is the interaction of both devices comparable? This author believes that there are

a few factors that made a difference. The first factor is that there is a difference between

experienced gamers and casual gamers. This is apparent when looking at hypothesis Hv,

which resulted to be true. This meant that there was a significant difference in the time

average of both groups when they used the GamePad. This was not the case for hypothesis

Hu (when both groups used the multi-touch), where there was no significant difference.

This meant that experienced gamers had exposure to the GamePad and time to train, in

comparison to the other subjects. As noted in 6.3.1, experienced gamers did significantly

better with the GamePad than with the multi-touch, 214.8 seconds and 239.4 seconds, re-

spectively. Casual gamers did better with the multi-touch. The second factor, which may

explain why Ht was not supported, is that experienced gamers may be better when navigat-

ing in 3D because of previous exposures. The other two hypotheses, that required looking

at the groups separately (and running t-tests), showed that casual gamers (Hx) did have a

statistically significant difference in their average task time when both devices were con-

222

sidered. This meant that the multi-touch display allowed the casual gamers to finish the

task in less time than the GamePad, as predicted in Hx. This was not the case for Hw, which

showed no significant difference for experience gamers when using the GamePad.

Finally, the other question that this dissertation had was about the switching of devices.

In hypothesis Hy, there was a prediction that the sentence completion would take less time

when using the multi-touch display. However, Hy could not be supported. Is it possible that

there is no difference? Twenty-three subjects out of 28 preferred the multi-touch display

(with 2 subjects having no preference). This leads the author to think that further studies,

with additional variables, can show a difference in time. Furthermore, this is corroborated

when looking at the error rate hypothesis Hz. The result was statistically significant, stating

that users would have a higher error rate when switching from the GamePad to the key-

board. This underlines the belief that a larger sample of subjects may lead to show that the

assumption made in in Hy was correct after all.

The qualitative data (see 6.4) provided some important insight, from the perspective

of the subject. The assumption that Q1 and Q2 (see 6.4.1) would be correlated, with a

negative relationship, proved to be correct. This meant that not only did users preferred

the GamePad versus the multi-touch display, but when asked the question in reverse, they

were consistent. It also showed that the preference of the GamePad versus the multi-touch

for Q2 were statistically significant. Why did users preferred the GamePad, when there

was no significant difference between them? Could this indicate that in a larger sample the

GamePad performed significantly better than a multi-touch device? The possible answer

for the former question, is that user did perceived the GamePad as a better device. This

was probably due to the indirect nature of the device for the rotations. When users were

performing rotations with the multi-touch displays, the rotation did not always match with

the visual understanding of the action. When the user performed a few rotations, and then

came back to rotate using the roll, for example, the subject expected to see the display

223

image to move in the same manner as before. However, this is not possible, since the roll

movement will reflect the current state of the camera rotation. In the case of the GamePad,

the user could adjust the device to match the interaction. The latter question, would seem

to imply that that the GamePad would outperform the multi-touch display with a larger

N. However, the results did not support this for all the groups. It may be a possibility

with experienced gamers, but not for the casual gamers. For the other pairs of questions,

Q4 to Q11 (see 6.4.2), there were only some pairs that were correlated, with a negative

relationship. In the questions that were not correlated, it could be the case that subjects’

answers were about the same for both devices. The questions that showed to be statistically

significant for casual gamers were Q6 and Q7. This showed a clear preference by users for

the multi-touch desktop display in day-to-day use, regardless of the task at hand. Finally,

users did prefer the GamePad over the multi-touch display. This is a subjective response

that must be taken into consideration. This can be attributed to the fact that users are more

accustomed to the GamePad interaction (at least the experienced gamers), or that the multi-

touch interaction is still somewhat challenging for the users. This author believes in the

latter. There still more work to do with multi-touch.

7.2.1 Open Questions

Open questions found in 5.10 (see Tables 5.12 and 5.8) provided comments to improve

the interaction in the near future. Some of the answers did not provide much information.

Hence, they were ignored. Table 7.2 provides some of the comments given by the subjects.

Some of the comments were extrapolated into categories for questions Q16, Q17, and Q21,

as described in 6.4.5. Open questions are useful for future design, but it is the opinion of this

author that their anecdotal nature does not help to see a trend, in most instances. It was clear

that Q15 and Q20 were answered with positive statements or neutral statements, without

224

much thought. However, some of the other questions provide an insight into future design.

Six major points were obtained with some of the anecdotal comments by the subjects:

1. Some users requested the pinch gestures to move forward and back.

2. Subjects found the multi-touch device easier to transition to the keyboard and back.

3. The nature of the direct interaction created cognitive disconnect with the rotations.

4. Users have different ideas of what the ideal gestures for 3D navigation are.

5. Some subjects found the GamePad to be easier.

6. Orientation indicators, such as the three-ring sphere, do provide orientation help.

7.2.2 Hold-and-Roll

The Hold-and-Roll gesture provided a bi-manual interaction. The response was positive

by most users asked about this gesture, as described in 6.4.6. While this is encouraging,

users also requested the pinch gesture to be used for moving back and forth. This does

need further study and it will be discussed in Chapter 8. There are some comments from

question Q22, which are very interesting to share. Some of the typical comments are shown

in Table 7.3. A very detailed comment was provided in the last entry of the table.

7.3 Lessons learned

The work in this dissertation and the experiment conducted provided some interesting in-

sight into the interaction of multi-touch displays for 3D navigation. The hope is that it can

be applied in future work, which is discussed in Chapter 8. The observations have also

provided additional guidelines that may be applied for better interactions.

The most important lesson learned is the nature of direct interaction. In this type of

interaction when using a multi-touch display, rotations can become problematic, as already

225

described in this chapter. Another important lesson is that users want to control the speed

differently when using multi-touch displays. While this was provided, it seems to be more

intuitive to think that the more you push a joystick, the more speed the user will have. In

the case of the multi-touch display, the speed was given by the speed of the movement of

the gesture. However, this must be studied further. The following recommendations are

based on the experiences during the experiment, and the comments by the users:

• Rotation gestures must be dynamic. As the camera moves, the option for the gesture

must also change.

• The mapping of gestures is important for each action. Further study is merited to find

the most optimal gestures.

• Orientation gizmos are important for the interaction in 6-DOF.

7.4 Limitations of the Study

The study has limitations. The first limitation is that it worked with a subset of gestures

that were highly optimized for the environment. This is true for the GamePad as well. If

the same set of gestures were used into another environment, while it is possible that the

behavior would be comparable, it is unknown at this point. Also, due to the fact that the

study was performed with a desktop multi-touch display, it made assumptions, which are

not always true with tablets or phones. This is the case for the hold-and-roll gesture which

is a bi-manual gesture developed for a desktop or tabletop surface. Finally, the objects in

the universe were spread with significant distances between each other. Results may be

different for a different type of 3D navigation where the objects are found very close to

each other (in a dense environment). With this said, I find that our universe applies to many

(but not all) environments. In the next sub-sections, the internal and external validity of the

experiment are discussed.

226

7.4.1 Internal Validity

Internal Validity1 “has to do with defending against sources of bias arising in research

design, typically by affecting the process being studied by introducing covert variables”

[58]. In other words, other variables may be responsible for the observed effect.

The experiment bias (similar to Hawthrone effect) was not shown during the experi-

ment. Furthermore, the experimenter used a commercial multi-touch gesture API to avoid

any bias toward his approach. It is also important to note that subjects where not aware

that the experimenter preferred one device over the other. With this said, there is always a

possibility that a subject may have assumed that the multi-touch or the GamePad was the

preferred device. However, is the opinion of this author, that this was not a internal threat.

This also helped to avoid as much as possible the “look good” effect, where the subject has

a tendency to answer positive answers in favor of the experimenter. Having said this, it is

always possible for some subjects to want to impress the experimenter. This was avoided

by using objective and subjective measurements.

Avoiding selection bias was important during the experiment design phase. Subjects

where recruited via emails sent to the School of Computer Information and Sciences and

requesting participation om different classes in the Engineering College. We also received

a few other subjects which were from different majors. The experimenter tried to avoid

selection bias but a bigger universe of subjects could always help.

The experiment had two groups: casual and experienced gamers. However, the sub-

jects were not aware that they were classified into those categories nor which category they

belonged to. This made rivalry threat non-existent. The selection of the subjects into the

groups where made in a post-hoc analysis with questions that the subjects didn’t know

where meant for categorization. The categorization also helped to minimized the test expe-

1See Wikipedia: Internal Validity for an overview.

227

rience. While the subjects were presented with the experiment only once, it was expected

for some users to performed better with the GamePad because of their previous exposure

to this device and the type of environments where the device was used (e.g., 3D games).

This is very important because some confounding variables where suspected before the

experiment, avoiding typical confounding threats. Nevertheless, it is possible that another

confounding variable may had an effect. However, this author believes that the designed

experiment was carefully planned to avoid this type of internal threats.

There are other threats to validity (e.g, maturation), however those where not applicable

to this test. In summary, while there are some possible internal threats to be aware, the

design was created with this in mind.

7.4.2 External Validity

External validity2 “has to do with possible bias in the process of generalizing conclusions

from a sample to a population, to other subject populations, to other settings, and/or to

other time periods” [58]. This refers to the potential of this experiment to be generalized

across situations and across people. In the case of the experiment found in this dissertation,

the external validity plays an important role and sets a path for future experiments.

Already mentioned in the limitations of this study is the fact that this 3D universe is

not dense in objects. This makes it hard to generalize the experiment for all types of 3D

domains. This author found that one possible optimal way to test 6-DOF was to have a

pseudo-universe where objects performed a search task. This is because navigation is a

secondary task to achieve the primary task, which in this case was search. However, there

are other possible scenarios. One example is navigating a real 3D city of Manhattan. It is

not clear if the experiment found here may be generalized for that type of scenario.

2See Wikipedia: External Validity for an overview.

228

Another threat to external validity has to do with generalization of our categorization

equation. It has already been mentioned that the author does not claim the equation to be a

general model but a path forward to it. This also leads to the aptitude-treatment interaction

effect. It is unclear that the results would be the same if other subjects, with different skills,

had performed the experiment? The author finds that the subject categorization for 3D

environments must be studied further and in detail to be able to achieve results that could

be generalized.

229

Q# Answer
15 It was a good experiment. I enjoyed looking for the items in the nebula.
15 Good experiment for user input.
16 I prefer the GamePad because I grew up with playing on physical controllers

and find it easier.
16 Multi-touch is excellent for navigation in space. Not so, for FPS games.
16 I prefer the GamePad because I can make multiple inputs quickly, whereas as

with the display, it took more effort.
16 Both, but the approach in GamePad provides more control. The multi-touch,

too, but I wish to have the possibility to move my fingers in such a way that the
program can interpret exactly what I want. Both are good, but a combination
of both would be better. Something similar to the touch system used by Tony
Stars in Ironman.

16 It’s easier to find objects by using multi-touch.
16 I prefer multi-touch because the controls are more realistic than those of the

gamepad.
16 I prefer multi-touch because I don’t feel tired and also I can switch quickly

between devices to the keyboard.
17 Not sure why, but I found typing a bit easier when doing multi-touch.
17 Game-Pad has to be set down. In multi-touch, all you have to do is begin

typing.
17 I preferred the multi-touch because I didn’t have to let go of a remote to type.
17 Typing was quicker if I did not have a device (GamePad) in my hand.
18 The zoom must be the “pinch” gesture.
18 I think it is useful, just that it has many options to rotate, which can confuse

the user at times. Once you become expert, there will be no problem.
18 The rotation was more difficult to assimilate.
18 It is easy to control the 3D space camera because it’s realistic when you con-

trol the camera by your hand.
20 I enjoyed the experiment. Perhaps maybe add more items and differentiate

them so they have different patterns or colors so you really have to think
before you choose the correct one.

20 Need more training time.
21 It was helpful in helping me orient myself, although it would probably be

more helpful with experience or maybe it would eventually become so famil-
iar that it would be annoying.

21 Extremely helpful. I would suggest some sort of indicator [for direction], like
an arrow.

Table 7.2: Open Question Results¶

Table Legend: ¶ Sentences where modified only to correct grammar.

230

Q# Answer
22 Needs work, but could be easier than pinch and zoom if you don’t care about

two hands.
22 Easy to implement, but should have easier speed adjustments.
22 I didn’t like it very much.
22 Yes, it can be useful in an application.
22 Yes. It will be better if the “HOLD” part of the gesture can specify the center

of rotation for a gesture.
22 I would think it would give people something new and would be great in new

apps.
22 At first, it was counter-intuitive in terms of trying of zoom in using a touch

screen interface Like most, I was used to holding my index finger and thumb
together, then releasing them to enlarge or zoom in. However, after a few
trials, I generally found the Hold-and-Roll gesture much simpler to use. It
allows the user to generate one fluid forward-moving motion with one roll
of the fingers and allows the user to seize motion when necessary, which as
opposed to using the index finger and thumb to create the motion would take
several movements to travel the idealized distance. Perhaps the Hold-and-
Roll gesture is more time consuming but, at least from my experience, I had
more time to react and control the movement.

Table 7.3: Hold-and-Roll Comments¶

Table Legend: ¶ Sentences where modified only to correct grammar.

231

CHAPTER 8

CONCLUSIONS & FUTURE WORK

8.1 Concluding Remarks

This dissertation presented a novel approach to 3D navigation using multi-touch display

devices. The contributions included a novel multi-touch recognition method (FETOUCH),

a gyroscope and multi-touch interaction (GyroTouch), a multi-touch model using HLPN

(PeNTa), a gesture conflict resolution technique (Yield), and a 3D navigation prototype for

human-subject testing (3DNav). The 3D prototype included Yield, FaNS, and ECHoSS in

its implementation. Also, the author created a categorization equation to divide the subjects

into casual games and experienced gamers. Finally, the author proposed a novel gesture

called Hold-and-Roll. This dissertation was concluded with an experiment to answer the

questions postulated in Chapter 1.

When looking at the experiment conducted, this dissertation showed that experienced

gamers can affect the comparison between GamePad and multi-touch devices. It also

showed that casual gamers performed significantly faster when using the multi-touch dis-

play. Furthermore, the experiment showed that users performed a significantly higher num-

ber of errors when switching from the GamePad to the keyboard. However, the experiment

was not able to conclude if there was a significant difference when looking at the entire

subject pool between multi-touch and the GamePad, even though the multi-touch average

time was lower than the time for the GamePad. This was attributed to the previous use of

the GamePad by experienced gamers.

This dissertation described the proposed questions and hypotheses in Chapter 1, the

background required to understand the material in Chapter 2, the contributions of the re-

search in Chapters 3 and 4, the experiment design in Chapter 5, and the experiment data

232

and its conclusions in Chapters 6 and 7. The following list details the primary findings of

this dissertation:

1. Casual gamers performed significantly better when they used the multi-touch display

(analyzed as a group).

2. The ANOVA co-factor analysis (gamer experience) indicated that when looking at

both groups, the experienced gamers performed significantly better when using the

GamePad compared to casual gamers.

3. When users switched from the GamePad to the keyboard, they performed signifi-

cantly worse in typing a target sentence. Each error meant that the user hit enter

believing that they had entered a correct sentence, when in fact they had not.

4. While users took less time with the multi-touch display, the data analysis did not

yielded significant results.

5. In the exit survey, most users reported preferring the GamePad for 3D navigation.

6. In the exit survey, most users reported preferring the multi-touch display when they

were required to switch to the keyboard and type target sentences.

7. An observation made by the experimenter was that when users performed rotation

movements with the multi-touch display, the users required having a matching rota-

tion for the orientation of their fingers.

In addition to the findings reported in Chapter 6 and the full discussion of Chapter 7,

there were additional contributions. Those contributions are listed below:

• Proposed a set of gestures for 6-DOF 3D navigation, which included a new gesture

called Hold-and-Roll for the Z axis.

• Proposed a framework for the 3D navigation experiment.

233

• Designed a feature extraction method for multi-touch gestures.

• Designed a mathematical framework for multi-touch interaction.

• Complemented multi-touch with Gyroscope.

• Designed an algorithm to manage the ambiguity that exists in the results of some

gestures classifications methods.

With the above contributions, this dissertation added to the body of knowledge in the

fields of 3DUI, HCI, and Computer Science. It is the vision of this author that modern input

devices are changing the interaction of computer users, will revolutionized the paradigms

of HCI, and will provide the building blocks required for ubiquitous computing.

8.2 Future Work

Multi-touch surfaces have become pervasive and are expected to continue to be important

devices in the immediate future. Multi-touch is not the only path to the post-WIMP era,

but one of many devices to achieve ubiquitous computing. It is, in this author’s opinion,

one of the pillars of ubiquitous computing. It is expected that with multi-touch surface,

researchers will keep pushing the body of knowledge with bendable surfaces, stereoscopic

surfaces with multi-touch, and possibly many new devices that are yet to come. This will

bring new challenges and problems to the field of 3DUI. It is the hope of this section to

provide pointers for future work that will continue the spirit of this dissertation and beyond.

The most immediate need is to find a simple, standard algorithm that will work with

multi-touch. It is this author’s belief that the answer lies in previous work from stroke

recognition. This author implemented a limited solution, but a full-fledged, general solution

is still needed. In addition to this, as demonstrated with GyroTouch, finding ways of how

multi-touch can interact with other modern devices is needed. To continue looking at new

234

problems, stereoscopic multi-touch, which has been worked on by some researchers, needs

to continue being in the fore-front of the 3DUI evolution. In addition, as is customary

in HCI, a set of experiments and a benchmark that can be used to validate multi-touch

interaction for 3D navigation (and manipulation) still need to be expanded and optimized

to gain deeper understanding of the interactions performed with these devices. This will

also be shaped by the new devices to come.

Another aspect that requires the attention of 3DUI is the modeling of modern devices.

In specific, the modeling of multi-touch interaction is also needed, as described by this au-

thor’s contribution and other contributions. The multi-modal aspect of modern interaction

requires a better modeling to test, analyze, and implement solutions. Finally, there needs to

be better understanding of the type of users who are tested for 3D navigation. A predictive

model that describes the type of user (e.g., the casual gamer) is required to understand the

interaction between the users and the interfaces. This should be mathematically sound.

It is the hope of this author that this dissertation, and the continuous progress in the

fields of 3DUI and HCI, encourages new and current practitioners and researchers to ad-

vance techniques, models, and interactions to new frontiers. This author hopes that Mark

Weiser’s vision is realized for ubiquitous computing [219]. This dissertation concludes

with the words of the pioneer Ivan Sutherland [203]:

“The ultimate display would, of course, be a room within which the com-

puter can control the existence of matter. A chair displayed in such a room

would be good enough to sit in. Handcuffs displayed in such a room would be

confining, and a bullet displayed in such a room would be fatal.”

235

BIBLIOGRAPHY

[1] Touch Technology Brief : Projected Capacitive Technology. Technical Report 3M
PCT TECH BRIEF-1013, 2013.

[2] M. J. Abásolo and J. M. Della. Magallanes: 3D navigation for everybody. In Pro-
ceedings of the 5th international conference on Computer graphics and interactive
techniques in Australia and Southeast Asia, GRAPHITE ’07, page 135. ACM, Dec.
2007.

[3] T. Akenine-Möller, E. Haines, and N. Hoffman. Real-Time Rendering, Third. A K
Peters, Ltd., July 2008.

[4] L. Anthony and J. Wobbrock. A lightweight multistroke recognizer for user interface
prototypes. In Proceedings of Graphics Interface 2010, GI’10, Toronto, ON, 2010.

[5] P. Apostolellis, B. Laha, and D. Bowman. A Gaming Interface Using Body Gestures
for Collaborative Navigation. In IEEE Symposium on 3D User Interfaces (3DUI),
2012, 3DUI ’12, Mar. 2012.

[6] J. Arvo. Graphics Gems II. Morgan Kaufmann, Oct. 1994.

[7] R. S. Astur, M. L. Ortiz, and R. J. Sutherland. A characterization of performance by
men and women in a virtual Morris water task:: A large and reliable sex difference.
Behavioural brain research, 1998.

[8] E. Beheshti, A. Van Devender, and M. Horn. Touch, click, navigate: comparing
tabletop and desktop interaction for map navigation tasks. In Proceedings of the
2012 ACM international conference on Interactive tabletops and surfaces, ITS ’12,
pages 205–214. ACM, 2012.

[9] H. Benko, A. Wilson, and P. Baudisch. Precise selection techniques for multi-touch
screens. In Proceedings of the SIGCHI conference on Human Factors in computing
systems, CHI ’06, pages 1263–1272. ACM, 2006.

[10] M. Berg, M. Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry.
Springer, Berlin, Heidelberg, second edition, 2000.

[11] E. A. Bier, M. C. Stone, K. Pier, W. Buxton, and T. D. DeRose. Toolglass and magic
lenses: The see-through interface. In Proceedings of the 20th Annual Conference
on Computer Graphics and Interactive Techniques, SIGGRAPH ’93, pages 73–80.
ACM, 1993.

236

[12] M. Blumenstein, B. Verma, and H. Basli. A novel feature extraction technique for
the recognition of segmented handwritten characters. In Seventh International Con-
ference Proceedings on Document Analysis and Recognition, 2003, pages 137–141.
IEEE Computer Society, 2003.

[13] M. Botsch, L. Kobbelt, M. Pauly, P. Alliez, and B. Levy. Polygon Mesh Processing.
CRC Press, Oct. 2010.

[14] D. Bowman, J. Chen, C. Wingrave, A. Ray, N. Polys, Q. Li, Y. Haciahmetoglu,
and J. Kim. New directions in 3d user interfaces. International Journal of Virtual
Reality, 5(2):3–14, 2006.

[15] D. A. Bowman, D. B. Johnson, and L. F. Hodges. Testbed evaluation of virtual en-
vironment interaction techniques. In Proceedings of the ACM symposium on Virtual
reality software and technology, VRST ’99, pages 26–33. ACM, Dec. 1999.

[16] D. A. Bowman, D. Koller, and L. F. Hodges. Travel in immersive virtual environ-
ments: an evaluation of viewpoint motion control techniques. In Virtual Reality An-
nual International Symposium, 1997, pages 45–52. IEEE Computer Society Press,
1997.

[17] D. A. Bowman, E. Kruijff, J. J. LaViola, Jr, and I. Poupyrev. 3D user interfaces:
theory and practice. Addison-Wesley Professional, 2004.

[18] A. Boyali and M. Kavakli. 3D and 6 DOF user input platform for computer vision
applications and virtual reality. In Symposium on Innovations in Intelligent Systems
and Applications (INISTA), 2011 International, INISTA ’11, pages 258–263, 2011.

[19] G. C. Burdea and P. Coiffet. Virtual Reality Technology. John Wiley & Sons, June
2003.

[20] B. Buxton. Sketching User Experiences: Getting the Design Right and the Right
Design. Focal Press, Morgan Kaufmann, 2010.

[21] W. Buxton. A three-state model of graphical input. Human-computer interaction-
INTERACT ’90, 90:449–456, 1990.

[22] W. Buxton and B. Myers. A study in two-handed input. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, CHI ’86, pages 321–
326. ACM, 1986.

237

[23] R. Camiciottoli, J. M. Corrifoni, A. d. Bimbo, E. Vicario, and D. Lucarella. 3D
navigation of geographic data sets. MultiMedia, IEEE, 5(2):29–41, 1998.

[24] X. Cao, A. Wilson, R. Balakrishnan, K. Hinckley, and S. Hudson. ShapeTouch:
Leveraging contact shape on interactive surfaces. Horizontal Interactive Human
Computer Systems, 2008. 3rd IEEE International Workshop on TABLETOP 2008,
pages 129–136, 2008.

[25] S. K. Card, T. P. Moran, and A. Newell. The keystroke-level model for user perfor-
mance time with interactive systems. Communications of the ACM, 23(7):396–410,
1980.

[26] D. Catuhe. Programming with the Kinect for Windows Software Development Kit.
Microsoft Press, 2012.

[27] X. J. Chai and L. F. Jacobs. Effects of cue types on sex differences in human spatial
memory. Behavioural brain research, 2010.

[28] L. Chang. A Nested Petri Net Framework for Modeling and Analyzing Multi-Agent
Systems. PhD thesis, Florida International University, 2011.

[29] M. Chen, S. J. Mountford, and A. Sellen. A study in interactive 3-d rotation using
2-d control devices. In Proceedings of the 15th Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH ’88, pages 121–129. ACM, 1988.

[30] Y.-R. Chen, T. Wang, X. Chen, and X. Bai. Research on navigation method in
3d geographic information system for water conservancy projects of large basin.
In Education Technology and Training, 2008. and 2008 International Workshop on
Geoscience and Remote Sensing. ETT and GRS 2008. International Workshop on,
volume 2, pages 521–524, Dec 2008.

[31] D. Coffey, N. Malbraaten, T. B. Le, I. Borazjani, F. Sotiropoulos, A. G. Erdman, and
D. F. Keefe. Interactive Slice WIM: Navigating and Interrogating Volume Data Sets
Using a Multisurface, Multitouch VR Interface. IEEE Transactions on Visualization
and Computer Graphics, 18(10):1614–1626, 2012.

[32] M. Czerwinski, D. S. Tan, and G. G. Robertson. Women take a wider view. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
CHI ’02, pages 195–202, New York, New York, USA, Apr. 2002. ACM.

238

[33] R. P. Darken and W. P. Banker. Navigating in natural environments: a virtual envi-
ronment training transfer study. In Proceedings on Virtual Reality Annual Interna-
tional Symposium, pages 12–19. IEEE Computer Society, 1998.

[34] R. P. Darken and J. L. Sibert. Wayfinding strategies and behaviors in large virtual
worlds. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’96, pages 142–149, New York, New York, USA, Apr. 1996. ACM.

[35] R. David and H. Alla. Discrete, Continuous, and Hybrid Petri Nets. Springer, Nov.
2010.

[36] P. Dietz and D. Leigh. DiamondTouch: a multi-user touch technology. Proceedings
of the 14th annual ACM symposium on User interface software and technology, page
226, 2001.

[37] A. Dix, J. Finlay, G. D. Abowd, and R. Beale. Human-computer Interaction. Pearson
Education, 2004.

[38] N. Doulamis and C. Yiakoumettis. Personalised 3D navigation and understanding of
Geo-referenced Scenes. In IEEE 14th International Symposium and Workshops on a
World of Wireless, Mobile and Multimedia Networks (WoWMoM), 2013, WowMoM
’13, pages 1–6, June 2013.

[39] F. Dunn and I. Parberry. 3D Math Primer for Graphics and Game Development. A
K Peters/CRC Press, second edition, Nov. 2011.

[40] F. A. Ebeling, R. L. Johnson, and R. S. Goldhor. Infrared Light Beam XY Position
Encoder for Display Devices. US Patent 3,775,560, 1973.

[41] D. H. Eberly. 3D Game Engine Architecture. Engineering Real-Time Applications
with Wild Magic. Elsevier, 2005.

[42] D. H. Eberly. 3D Game Engine Design. A Practical Approach to Real-Time Com-
puter Graphics. Gulf Professional Publishing, 2007.

[43] D. H. Eberly. Game Physics. Morgan Kaufmann, Apr. 2010.

[44] J. Edelmann, A. Schilling, and S. Fleck. The DabR - A multitouch system for intu-
itive 3D scene navigation. In 3DTV Conference: The True Vision - Capture, Trans-
mission and Display of 3D Video, 2009, pages 1–4. IEEE, 2009.

239

[45] W. El Oraiby. Scene Management. In D. Astle, editor, More OpenGL Game Pro-
gramming, pages 565–605. Thomson Course Technology, 2004.

[46] W. K. English, D. C. Engelbart, and M. L. Berman. Display-Selection Techniques
for Text Manipulation. IEEE Transactions on Human Factors in Electronics, (1):5–
15, 1967.

[47] C. Ericson. Real-time Collision Detection. Morgan Kaufmann, 2005.

[48] A. P. Field. Discovering Statistics Using SPSS for Windows. SAGE, third edition,
2009.

[49] G. Fitzmaurice, J. Matejka, I. Mordatch, A. Khan, and G. Kurtenbach. Safe 3D
navigation. Proceedings of the 2008 symposium on Interactive 3D graphics and
games (I3D ’08), Feb 2008.

[50] G. W. Fitzmaurice, H. Ishii, and W. A. S. Buxton. Bricks: laying the foundations
for graspable user interfaces. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’95. ACM Press/Addison-Wesley Publishing
Co. Request Permissions, May 1995.

[51] J. D. Foley, A. Van Dam, S. K. Feiner, and J. F. Hughes. Computer Graphics:
Principles & Practice In C. Pearson Education India, second edition, Sept. 1996.

[52] D. Fryberger and R. G. Johnson. Touch actuable data input panel assembly. US
Patent 3,673,327, 1972.

[53] C.-W. Fu, W. B. Goh, and J. A. Ng. Multi-touch techniques for exploring large-scale
3D astrophysical simulations. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’10, pages 2213–2222. ACM, Apr. 2010.

[54] R. Fuchs and H. Hauser. Visualization of Multi-Variate Scientific Data. Computer
Graphics Forum, 28(6):1670–1690, 2009.

[55] L. Gallo, G. De Pietro, and I. Marra. 3d interaction with volumetric medical data:
Experiencing the wiimote. In Proceedings of the 1st International Conference on
Ambient Media and Systems, Ambi-Sys ’08, pages 14:1–14:6, 2008.

[56] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Elements of
Reusable Object-Oriented Software. Pearson Education, Oct. 1994.

240

[57] G. Gan, C. Ma, and J. Wu. Data Clustering: Theory, Algorithms, and Applica-
tions (ASA-SIAM Series on Statistics and Applied Probability). SIAM, Society for
Industrial and Applied Mathematics, May 2007.

[58] G. D. Garson. Validity and Reliability. Statistical Associates Blue Book Series.
Statistical Associates Publishers, Kindle edition, Feb 2013.

[59] H. J. Genrich. Predicate/transition nets. In W. Brauer, W. Reisig, and G. Rozenberg,
editors, Advances in Petri nets 1986, part I on Petri nets: central models and their
properties. springer, jan 1987.

[60] H. J. Genrich and K. Lautenbach. System modelling with high-level Petri nets.
Theoretical computer science, 13(1):109–135, 1981.

[61] A. S. Glassner. Graphics Gems. Morgan Kaufmann, June 1993.

[62] W. D. Gray, B. E. John, and M. E. Atwood. Project Ernestine: Validating a
GOMS analysis for predicting and explaining real-world task performance. Human–
Computer Interaction, 8(3):237–309, 1993.

[63] S. Greenberg and B. Buxton. Usability evaluation considered harmful (some of the
time). In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’08. ACM, Apr. 2008.

[64] M. Gregoire, N. A. Solter, and S. J. Kleper. Professional C++. John Wiley & Sons,
Sept. 2011.

[65] I. Grinblat and A. Peterson. OGRE 3D 1.7 Application Development Cookbook.
Packt Publishing Ltd, 2012.

[66] F. Guéniat, J. Christophe, Y. Gaffary, A. Girard, and M. Ammi. Tangible windows
for a free exploration of wide 3D virtual environment. In Proceedings of the 19th
ACM Symposium on Virtual Reality Software and Technology, VRST ’13, page 115,
New York, New York, USA, Oct. 2013. ACM.

[67] Y. Guiard. Asymmetric division of labor in human skilled bimanual action: The
kinematic chain as a model. Journal of motor behavior, 19:486–517, 1987.

[68] M. Hachet, B. Bossavit, A. Cohé, and J.-B. de la Rivière. Toucheo: multitouch and
stereo combined in a seamless workspace. In Proceedings of the 24th annual ACM
symposium on User interface software and technology, UIST ’11, pages 587–592,
New York, New York, USA, Oct. 2011. ACM.

241

[69] M. Hachet, F. Decle, and P. Guitton. Z-Goto for efficient navigation in 3D environ-
ments from discrete inputs. In Proceedings of the ACM symposium on Virtual reality
software and technology, VRST ’06, pages 236–239, New York, New York, USA,
Nov. 2006. ACM.

[70] M. Hachet, F. Decle, S. Knödel, and P. Guitton. Navidget for 3D interaction: Camera
positioning and further uses. International Journal of Human-Computer Studies,
67(3):225–236, Mar. 2009.

[71] B. Hagedorn and J. Döllner. Sketch-Based Navigation in 3D Virtual Environments.
In A. Butz, B. Fisher, P. Olivier, and M. Christie, editors, Proceedings of the 9th
international symposium on Smart Graphics, SG ’08, pages 239–246. Springer-
Verlag, Aug. 2008.

[72] P. Haigron, G. Le Berre, and J. L. Coatrieux. 3D navigation in medicine. Engineer-
ing in Medicine and Biology Magazine, IEEE, 15(2):70–78, 1996.

[73] R. R. Hainich and O. Bimber. Displays. Fundamentals and Applications. CRC Press,
July 2011.

[74] K. S. Hale and K. M. Stanney. Handbook of Virtual Environments. Design, Imple-
mentation, and Applications. CRC Press, Jan. 2002.

[75] A. Hamon, P. Palanque, J. L. Silva, Y. Deleris, and E. Barboni. Formal description
of multi-touch interactions. In Proceedings of the 5th ACM SIGCHI symposium on
Engineering interactive computing systems, EICS ’13, pages 207–216, New York,
New York, USA, June 2013. ACM.

[76] J. Han. Low-cost multi-touch sensing through frustrated total internal reflection.
Proceedings of the 18th annual ACM symposium on User interface software and
technology, pages 115–118, 2005.

[77] J. Han. 3D Graphics for Game Programming. Chapman & Hall, Feb. 2011.

[78] M. Hancock, S. Carpendale, and A. Cockburn. Shallow-depth 3d interaction: de-
sign and evaluation of one-, two-and three-touch techniques. In Proceedings of the
SIGCHI conference on Human Factors in computing systems, CHI ’07, pages 1147–
1156. ACM, 2007.

[79] C. Hand. A survey of 3D interaction techniques. Computer Graphics Forum,
16(5):269–281, 1997.

242

[80] A. J. Hanson and E. A. Wernert. Constrained 3d navigation with 2d controllers. In
Proceedings of the 8th Conference on Visualization ’97, VIS ’97, pages 175–182.
IEEE, 1997.

[81] J. S. Harbour. Beginning Game Programming. Cengage Learning, third edition,
2010.

[82] X. He and T. Murata. High-Level Petri Nets-Extensions, Analysis, and Applications.
In W. Chen, editor, Electrical Engineering Handbook, pages 459–475. Elsevier Aca-
demic Press, 2005.

[83] P. S. Heckbert. Graphics Gems IV. Morgan Kaufmann, 1994.

[84] M. L. Heilig. Sensorama simulator. US Patent 3,050,870 A, August 1962.

[85] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan Kauf-
mann, first edition, Mar. 2008.

[86] C. F. Herot and G. Weinzapfel. One-point touch input of vector information for com-
puter displays. In Proceedings of the 5th Annual Conference on Computer Graphics
and Interactive Techniques, SIGGRAPH ’78, pages 210–216. ACM, 1978.

[87] M. A. Hiltzik. Dealers of Lightning. Xerox PARC and the Dawn of the Computer
Age. HarperCollins, May 2009.

[88] K. Hinckley. Input Technologies and Techniques. In A. Sears and J. A. Jacko,
editors, Human-Computer Interaction, pages 161–176. CRC, New York, 2012.

[89] K. Hinckley, M. Pahud, and B. Buxton. 38.2: Direct Display Interaction via Simul-
taneous Pen+ Multi-touch Input. Society for Information Display SID Symposium
Digest of Technical Papers, 41:537–540, May 2010.

[90] P. Hong and T. Huang. Constructing finite state machines for fast gesture recog-
nition. In 15th International Conference on Pattern Recognition, volume 3 of
ICPR’00, 2000.

[91] P. Hong, T. Huang, and M. Turk. Gesture modeling and recognition using finite state
machines. IEEE Conference on Face and Gesture Recognition, Mar. 2000.

[92] J. F. Hughes, A. Van Dam, M. McGuire, D. F. Sklar, J. D. Foley, S. K. Feiner, and
K. Akeley. Computer Graphics. Principles and Practice. Addison-Wesley Profes-
sional, July 2013.

243

[93] A. Hülsmann and J. Maicher. HOUDINI: Introducing Object Tracking and Pen
Recognition for LLP Tabletops. In Human-Computer Interaction. Advanced Inter-
action Modalities and Techniques, pages 234–244. Springer International Publish-
ing, Cham, Switzerland, 2014.

[94] E. C. Ifeachor and B. W. Jervis. Digital Signal Processing. A Practical Approach.
Pearson Education, 2002.

[95] B. Jackson, D. Schroeder, and D. F. Keefe. Nailing down multi-touch: anchored
above the surface interaction for 3D modeling and navigation. In Proceedings of
Graphics Interface 2012, GI ’12. Canadian Information Processing Society, May
2012.

[96] R. Jacob, A. Girouard, L. Hirshfield, M. S. Horn, O. Shaer, E. T. Solovey, and
J. Zigelbaum. Reality-based interaction: a framework for post-WIMP interfaces.
In Proceeding of the twenty-sixth annual SIGCHI conference on Human factors in
computing systems, CHI ’08, pages 201–210. ACM, 2008.

[97] C. Jennett, A. L. Cox, P. Cairns, S. Dhoparee, A. Epps, T. Tijs, and A. Walton. Mea-
suring and defining the experience of immersion in games. International Journal of
Human-Computer Studies, 66(9), Sept. 2008.

[98] K. Jensen and L. Kristensen. Coloured Petri Nets. Basic Concepts, Analysis Meth-
ods and Practical Use. Springer, 1996.

[99] G. Johnson, M. Gross, and J. Hong. Computational support for sketching in design:
a review. Foundations and Trends in Human-Computer Interaction 2, 2009.

[100] G. Junker. Pro OGRE 3D Programming. Apress, Sept. 2006.

[101] P. Kabbash, W. Buxton, and A. Sellen. Two-handed input in a compound task. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
CHI ’94, pages 417–423. ACM, Apr. 1994.

[102] P. Kabbash, I. S. MacKenzie, and W. Buxton. Human performance using computer
input devices in the preferred and non-preferred hands. In Proceedings of the IN-
TERACT ’93 and CHI ’93 Conference on Human Factors in Computing Systems,
CHI ’93, pages 474–481. IOS Press, 1993.

[103] G. Kaindl. Exploring multi-touch interaction: An overview of the history, HCI issues
and sensor technology of multi-touch appliances. VDM Verlag, Germany, Apr. 2010.

244

[104] M. Kaltenbrunner. reacTIVision and TUIO: a tangible tabletop toolkit. In Proceed-
ings of the ACM International Conference on Interactive Tabletops and Surfaces,
ITS ’09, pages 9–16. ACM, Nov. 2009.

[105] M. Kaltenbrunner, T. Bovermann, and R. Bencina. TUIO: A protocol for table-
top tangible user interfaces. In Proceedings of the 6th International Workshop on
Gesture in Human-Computer Interaction and Simulation, GW 2005, 2005.

[106] D. Kammer, J. Wojdziak, M. Keck, R. Groh, and S. Taranko. Towards a formaliza-
tion of multi-touch gestures. In International Conference on Interactive Tabletops
and Surfaces, ITS ’10. ACM, Nov. 2010.

[107] L. Kara and T. Stahovich. An image-based, trainable symbol recognizer for hand-
drawn sketches. Computers & Graphics, 29(4):501–517, 2005.

[108] J. S. Kelso, D. L. Southard, and D. Goodman. On the coordination of two-handed
movements. Journal of experimental psychology. Human perception and perfor-
mance, 5(2):229–238, 1979.

[109] F. Kerger. Ogre 3D 1.7 Beginner’s Guide. Packt Publishing Ltd, 2010.

[110] A. Khan, B. Komalo, J. Stam, G. Fitzmaurice, and G. Kurtenbach. Hovercam: In-
teractive 3d navigation for proximal object inspection. In Proceedings of the 2005
Symposium on Interactive 3D Graphics and Games, I3D ’05, pages 73–80. ACM,
2005.

[111] K. Kin, M. Agrawala, and T. DeRose. Determining the benefits of direct-touch,
bimanual, and multifinger input on a multitouch workstation. In Proceedings of
Graphics Interface 2009, GI ’09, pages 119–124. Canadian Information Processing
Society, may 2009.

[112] K. Kin, B. Hartmann, T. DeRose, and M. Agrawala. Proton++: a customizable
declarative multitouch framework. In Proceedings of the 25th annual ACM sympo-
sium on User interface software and technology, UIST ’12. ACM, Oct. 2012.

[113] Y. Kiriaty, L. Moroney, S. Goldshtein, and A. Fliess. Introducing Windows 7 for
Developers. Microsoft Press, Sept. 2009.

[114] R. Kosara, H. Hauser, and D. L. Gresh. An interaction view on information visual-
ization. Proceedings EuroGraphics 2003: State-of-the-Art Report, 2003.

245

[115] S. Kratz and M. Rohs. A $3 gesture recognizer: simple gesture recognition for
devices equipped with 3D acceleration sensors. In Proceedings of the 15th interna-
tional conference on Intelligent user interfaces, IUI ’10, pages 341–344, New York,
New York, USA, Feb. 2010. ACM.

[116] S. G. Kratz and M. Rohs. Protractor3D: a closed-form solution to rotation-invariant
3D gestures. In Proceedings of the 16th international conference on Intelligent user
interfaces, IUI ’11, pages 371–374, 2011.

[117] P.-O. Kristensson and S. Zhai. SHARK2: a large vocabulary shorthand writing
system for pen-based computers. In Proceedings of the 17th annual ACM symposium
on User interface software and technology, UIST ’04, page 43, New York, New
York, USA, Oct. 2004. ACM.

[118] M. W. Krueger, T. Gionfriddo, and K. Hinrichsen. VIDEOPLACE—an artificial
reality. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’85, pages 35–40, New York, New York, USA, Apr. 1985. ACM.

[119] R. Kruger, S. Carpendale, S. Scott, and A. Tang. Fluid integration of rotation and
translation. In Proceedings of the SIGCHI conference on Human Factors in comput-
ing systems, CHI ’05, pages 601–610. ACM, 2005.

[120] A. Kulshreshth, J. J. LaViola, and Jr. Evaluating performance benefits of head track-
ing in modern video games. In Proceedings of the 1st symposium on Spatial user
interaction, SUI ’13, pages 53–60. ACM, July 2013.

[121] E. Langetepe and G. Zachmann. Geometric data structures for computer graphics.
A K Peters, Ltd., 2006.

[122] S. Lao, X. Heng, G. Zhang, Y. Ling, and P. Wang. A gestural interaction design
model for multi-touch displays. Proceedings of the 23rd British HCI Group Annual
Conference on People and Computers: Celebrating People and Technology (BCS-
HCI ’09), pages 440–446, 2009.

[123] J. F. Lapointe, P. Savard, and N. G. Vinson. A comparative study of four input de-
vices for desktop virtual walkthroughs. Computers in Human Behavior, 27(6):2186–
2191, Nov. 2011.

[124] C. A. Lawton. Gender differences in way-finding strategies: Relationship to spatial
ability and spatial anxiety. Sex Roles, 1994.

246

[125] S. Lee, W. Buxton, and K. C. Smith. A multi-touch three dimensional touch-sensitive
tablet. pages 21–25, 1985.

[126] A. Leganchuk, S. Zhai, and W. Buxton. Manual and cognitive benefits of two-
handed input: an experimental study. Transactions on Computer-Human Interaction
(TOCHI), 5(4):326–359, Dec. 1998.

[127] Y. Li. Protractor: a fast and accurate gesture recognizer. In Proceedings of the 28th
international conference on Human factors in computing systems, CHI ’10. ACM,
2010.

[128] S. Liu, R. Zeng, and X. He. PIPE-A Modeling Tool for High Level Petri Nets. 2011.

[129] B. Loguidice and M. Barton. Vintage Game Consoles. An Inside Look at Apple,
Atari, Commodore, Nintendo, and the Greatest Gaming Platforms of All Time. CRC
Press, Feb. 2014.

[130] H. Lü and Y. Li. Gesture coder: a tool for programming multi-touch gestures by
demonstration. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’12, pages 2875–2884. ACM, 2012.

[131] Luna. Introduction to 3d Game Programming With Directx 11. Jones & Bartlett
Publishers, July 2011.

[132] C. Lundstrom, T. Rydell, C. Forsell, A. Persson, and A. Ynnerman. Multi-Touch Ta-
ble System for Medical Visualization: Application to Orthopedic Surgery Planning.
IEEE Transactions on Visualization and Computer Graphics, 17(12):1775–1784,
2011.

[133] I. S. Mackenzie. Human-Computer Interaction: An Empirical Research Perspective.
Morgan Kaufmann;, Dec. 2012.

[134] S. MacLean and G. Labahn. Elastic matching in linear time and constant space. In
International Workshop on Document Analysis Systems 2010, DAS ’10, 2010.

[135] D. B. Makofske, M. J. Donahoo, and K. L. Calvert. TCP/IP Sockets in C#. Practical
Guide for Programmers. Morgan Kaufmann, 2004.

[136] J. McCrae, I. Mordatch, M. Glueck, and A. Khan. Multiscale 3D Navigation. In
Proceedings of the 2009 Symposium on Interactive 3D Graphics and Games, I3D
’09, pages 7–14. ACM, 2009.

247

[137] M. McShaffry. Game Coding Complete, Fourth. Cengage Learning, fourth edition,
2013.

[138] J. C. Meng and M. Halle. Using a 2D colon to guide 3D navigation in virtual
colonoscopy. In Proceedings of the 1st Symposium on Applied perception in graph-
ics and visualization, APGV ’04, page 179, New York, New York, USA, Aug. 2004.
ACM.

[139] F. C. Moon. The Machines of Leonardo Da Vinci and Franz Reuleaux: kinematics
of machines from the Renaissance to the 20th Century. Springer, 2007.

[140] K. H. Mortensen. Efficient data-structures and algorithms for a coloured Petri nets
simulator. pages 57–74, 2001.

[141] M. E. Mortenson. Geometric modeling. Industrial Press Inc., New York, third edi-
tion, 2006.

[142] T. Moscovich and J. Hughes. Indirect mappings of multi-touch input using one and
two hands. CHI ’08, pages 1275–1284. ACM, 2008.

[143] T. Moscovich and J. F. Hughes. Indirect mappings of multi-touch input using one
and two hands. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’08, pages 1275–1284, New York, New York, USA, Apr.
2008. ACM.

[144] R. Mukundan. Advanced Methods in Computer Graphics. With Examples in
OpenGL. Springer Science & Business Media, London, Feb. 2012.

[145] C. Müller-Tomfelde. Tabletops: Horizontal Interactive Displays, 2010.

[146] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the
IEEE, 77(4):541–580, 1989.

[147] B. A. Myers. A new model for handling input. ACM Transactions on Information
Systems (TOIS), 8(3):289–320, 1990.

[148] M. A. Nacenta, P. Baudisch, H. Benko, and A. Wilson. Separability of spatial ma-
nipulations in multi-touch interfaces. In Proceedings of Graphics Interface 2009, GI
’09. Canadian Information Processing Society, May 2009.

248

[149] M. Naef and E. Ferranti. Multi-touch 3D navigation for a building energy man-
agement system. IEEE Symposium on 3D User Interfaces (3DUI), 2011, pages
113–114, 2011.

[150] L. H. Nakatani and J. A. Rohrlich. Soft machines: A philosophy of user-computer
interface design. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’83, pages 19–23, New York, New York, USA, Dec. 1983.
ACM.

[151] Y. Nam, N. Wohn, and H. Lee-Kwang. Modeling and recognition of hand gesture
using colored Petri nets. IEEE Transactions on Systems, Man and Cybernetics, Part
A: Systems and Humans, 29(5):514–521, 1999.

[152] H.-l. P. Nets-Concepts. Definitions and graphical notation. Final Draft International
Standard ISO/IEC, 15909, 2000.

[153] W. M. Newman. A system for interactive graphical programming. pages 47–54,
1968.

[154] J. Nielsen. Usability Engineering. Elsevier, Nov. 1994.

[155] G. Nielson and D. Olsen Jr. Direct manipulation techniques for 3D objects using
2D locator devices. Proceedings of the 1986 workshop on Interactive 3D graphics,
pages 175–182, 1987.

[156] F. Ortega, A. Barreto, N. Rishe, M. Adjoudi, and F. Abyarjoo. Poster: Real-Time
Gesture Detection for Multi-Touch Devices. In IEEE 8th Symposium on 3D User
Interfaces, 3DUI ’13, pages 167–168. IEEE, 2013.

[157] F. R. Ortega, A. Barreto, and N. Rishe. Augmenting multi-touch with commodity
devices. In Proceedings of the 1st symposium on Spatial user interaction, SUI ’13,
page 95, New York, New York, USA, July 2013. ACM.

[158] F. R. Ortega, A. Barreto, N. D. Rishe, M. Adjouadi, and F. Abyarjoo. GyroTouch:
Complementing the Multi-Touch Display. In ACM Richard Tapia Celebration of
Diversity in Computing, Seattle, Feb. 2014.

[159] F. R. Ortega, F. Hernandez, A. Barreto, N. D. Rishe, M. Adjouadi, and S. Liu. Ex-
ploring modeling language for multi-touch systems using petri nets. In Proceedings
of the 2013 ACM international conference on Interactive tabletops and surfaces, ITS
’13. ACM, Oct. 2013.

249

[160] F. R. Ortega, S. Liu, F. Hernandez, A. Barreto, N. Rishe, and M. Adjouadi. PeNTa:
Formal Modeling for Multi-touch Systems Using Petri Net. In Human-Computer
Interaction. Theories, Methods, and Tools, pages 361–372. Springer International
Publishing, Cham, Switzerland, Jan. 2014.

[161] F. R. Ortega, N. Rishe, A. Barreto, F. Abyarjoo, and M. Adjouadi. Multi-Touch
Gesture Recognition using Feature Extraction. Innovations and Advances in Com-
puter, Information, Systems Sciences, and Engineering. Lecture Notes in Electrical
Engineering, 152, 2013.

[162] R. Parent. Computer Animation. Algorithms and Techniques. Newnes, second edi-
tion, 2008.

[163] J.-H. Park and T. Han. LLP+: multi-touch sensing using cross plane infrared laser
light for interactive based displays. SIGGRAPH 2010 Posters, page 1, July 2010.

[164] J. L. Peterson. Petri net theory and the modeling of systems. Prentice Hall, 1981.

[165] C. Petzold. Programming Windows. Microsoft Press, fifth edition, 1998.

[166] C. Petzold. Programming Windows. Writing Windows 8 Apps With C# and XAML.
Microsot Press, sixth edition, 2013.

[167] R. W. Pew and S. Baron. Perspectives on human performance modelling. Automat-
ica, 19(6):663–676, 1983.

[168] E. Pipho. Focus on 3D Models. Thomson Course Technology, 2003.

[169] J. Pittman. Recognizing handwritten text. In Human factors in computing systems:
Reaching through technology, CHI ’91, pages 271–275. ACM, 1991.

[170] R. Plamondon and S. N. Srihari. Online and off-line handwriting recognition: a
comprehensive survey. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 22(1):63–84, 2000.

[171] I. Poupyrev, M. Billinghurst, S. Weghorst, and T. Ichikawa. The Go-go Interaction
Technique: Non-linear Mapping for Direct Manipulation in VR. pages 79–80, 1996.

[172] I. Poupyrev, S. Weghorst, and S. Fels. Non-isomorphic 3D rotational techniques.
In Proceedings of the SIGCHI conference on Human Factors in computing systems,
CHI ’00, pages 540–547. ACM, 2000.

250

[173] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical
Recipes. the art of scientific computing. Cambridge University Press, Hong Kong,
third edition, 2007.

[174] W. Reisig. Understanding Petri Nets: Modelins Techniques, Analysis Methods, Case
Studies. Springer, July 2012.

[175] J. Reisman, P. Davidson, and J. Han. A screen-space formulation for 2D and 3D
direct manipulation. In Proceedings of the 22nd annual ACM symposium on User
interface software and technology, UIST ’09, pages 69–78. ACM, 2009.

[176] A. Remazeilles, F. Chaumette, and P. Gros. 3D navigation based on a visual memory.
In Proceedings 2006 IEEE International Conference on Robotics and Automation,
2006, ICRA 2006, pages 2719–2725. IEEE, 2006.

[177] G. Robertson, M. Czerwinski, and M. van Dantzich. Immersion in desktop virtual
reality. In Proceedings of the 10th annual ACM symposium on User interface soft-
ware and technology, UIST ’97. ACM, Oct. 1997.

[178] Y. Rogers, H. Sharp, and J. Preece. Interaction Design. Beyond Human - Computer
Interaction. John Wiley & Sons, June 2011.

[179] T. Ropinski, F. Steinicke, and K. Hinrichs. A constrained road-based VR navigation
technique for travelling in 3D city models. In Proceedings of the 2005 international
conference on Augmented tele-existence, ICAT ’05, page 228. ACM, Dec. 2005.

[180] D. Rubine. Specifying gestures by example. In Proceedings of the 18th annual con-
ference on Computer graphics and interactive techniques, SIGGRAPH ’91, pages
329–337. ACM, July 1991.

[181] R. A. Ruddle, S. J. Payne, and D. M. Jones. Navigating large-scale virtual envi-
ronments: what differences occur between helmet-mounted and desk-top displays?
Precense: Teleoperators and Virtual Environments, 8(2):157–168, 1999.

[182] S. Rümelin, E. Rukzio, and R. Hardy. NaviRadar: A Novel Tactile Information
Display for Pedestrian Navigation. pages 293–302, 2011.

[183] C. Russo dos Santos, P. Gros, P. Abel, D. Loisel, N. Trichaud, and J. P. Paris.
Metaphor-aware 3D navigation. In IEEE Symposium on Information Visualization,
InfoVis 2000, pages 155–165, 2000.

251

[184] H. Samet. Foundations of Multidimensional and Metric Data Structures. Morgan
Kaufmann, 2006.

[185] S. R. Santos, S. R. d. dos Santos, and P. M. Duarte. Supporting Search Navigation
by Controlled Camera Animation. 2011 XIII Symposium on Virtual Reality, pages
207–216, May 2011.

[186] C. Saona-Vazquez, I. Navazo, and P. Brunet. The visibility octree: a data structure
for 3D navigation. Computers & Graphics, 23(5):635–643, Oct. 1999.

[187] C. Scholliers, L. Hoste, B. Signer, and W. De Meuter. Midas: a declarative multi-
touch interaction framework. pages 49–56, 2011.

[188] L. Schomaker and E. Segers. Finding features used in the human reading of cursive
handwriting. International Journal on Document Analysis, 2(1):13–18, 1999.

[189] T. Sezgin and R. Davis. HMM-based efficient sketch recognition. Proceedings of
the 10th international conference on Intelligent user interfaces (IUI ’05), 2005.

[190] D. Shreiner and B. T. K. O. A. W. Group. OpenGL Programming Guide. The Official
Guide to Learning OpenGL version 4.3. Pearson Education, Mar. 2013.

[191] B. Signer, U. Kurmann, and M. C. Norrie. iGesture: A General Gesture Recog-
nition Framework. In Ninth International Conference on Document Analysis and
Recognition, 2007, ICDAR 2007, pages 954–958. IEEE, 2007.

[192] M. Sipser. Introduction to Theory of Computation. Cengage, second edition, 2006.

[193] O. Sommer, A. Dietz, and R. Westermann. An interactive visualization and naviga-
tion tool for medical volume data. Computers & Graphics, Jan. 1999.

[194] H. Song, H. Benko, F. Guimbretiere, S. Izadi, X. Cao, and K. Hinckley. Grips and
gestures on a multi-touch pen. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’11, page 1323, New York, New York, USA,
May 2011. ACM.

[195] B. Sousa Santos, P. Dias, A. Pimentel, J.-W. Baggerman, C. Ferreira, S. Silva, and
J. Madeira. Head-mounted display versus desktop for 3D navigation in virtual real-
ity: a user study. Multimedia Tools and Applications, 41(1):161–181, Aug. 2008.

[196] B. Sousa Santos, B. Prada, H. Ribeiro, P. Dias, S. Silva, and C. Ferreira. Wiimote as
an Input Device in Google Earth Visualization and Navigation: A User Study Com-

252

paring Two Alternatives. In Information Visualisation (IV), 2010 14th International
Conference, IV 2010, pages 473–478, July 2010.

[197] L. D. Spano. Developing Touchless Interfaces with GestIT. Ambient Intelligence,
2012.

[198] L. D. Spano, A. Cisternino, and F. Paternò. A compositional model for gesture defi-
nition. In Proceedings of the 4th international conference on Human-Centered Soft-
ware Engineering, HCSE’12, pages 34–52, Berlin, Heidelberg, Oct. 2012. Springer-
Verlag.

[199] L. D. Spano, A. Cisternino, F. Paternò, and G. Fenu. GestIT: a declarative and
compositional framework for multiplatform gesture definition. In Proceedings of
the 5th ACM SIGCHI symposium on Engineering interactive computing systems,
EICS ’13, pages 187–196. ACM, June 2013.

[200] S. L. Stoev, D. Schmalstieg, and W. Straßer. Two-handed through-the-lens-
techniques for navigation in virtual environments. In Proceedings of the 7th Eu-
rographics conference on Virtual Environments & 5th Immersive Projection Tech-
nology, EGVE’01. Eurographics Association, Jan. 2001.

[201] N. Sultanum, E. V. Brazil, and M. C. Sousa. Navigating and annotating 3D geo-
logical outcrops through multi-touch interaction. In Proceedings of the 2013 ACM
international conference on Interactive tabletops and surfaces, ITS ’13. ACM, Oct.
2013.

[202] I. E. Sutherland. Sketchpad: a man-machine graphical communication system. In
AFIPS ’63 (Spring): Proceedings of the May 21-23, 1963, spring joint computer
conference. ACM, May 1963.

[203] I. E. Sutherland. The Ultimate Display, invited lecture. In IFIP Congress, 1965.

[204] D. S. Tan, G. G. Robertson, and M. Czerwinski. Exploring 3D navigation: combin-
ing speed-coupled flying with orbiting. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’01, pages 418–425. ACM, Mar.
2001.

[205] C. C. Tappert, C. Y. Suen, and T. Wakahara. The state of the art in online handwrit-
ing recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence,
12(8):787–808, 1990.

253

[206] M. S. Terlecki and N. S. Newcombe. How important is the digital divide? The
relation of computer and videogame usage to gender differences in mental rotation
ability. Sex Roles, 2005.

[207] T. Theoharis, G. Papaioannou, N. Platis, and N. M. Patrikalakis. Graphics and
Visualization. Principles & Algorithms. CRC Press, May 2008.

[208] D. R. Trindade and A. B. Raposo. Improving 3D navigation in multiscale environ-
ments using cubemap-based techniques. In Proceedings of the 2011 ACM Sympo-
sium on Applied Computing, SAC ’11, page 1215, New York, New York, USA, Mar.
2011. ACM.

[209] B. Ullmer and H. Ishii. The MetaDESK: Models and Prototypes for Tangible User
Interfaces. ACM Symposium on User Interface Software and Technology, pages
223–232, 1997.

[210] D. Valkov, F. Steinicke, G. Bruder, and K. Hinrichs. A multi-touch enabled human-
transporter metaphor for virtual 3D traveling. In IEEE Symposium on 3D User In-
terfaces 2010, 3DUI ’10, pages 79–82, 2010.

[211] S. Vallance and P. Calder. Context in 3D planar navigation. In In Proceedings User
Interface Conference, 2001. Second Australasian, AUIC 2001, pages 93–99. IEEE
Computer Society, 2001.

[212] G. van den Bergen. Collision Detection in Interactive 3D Environments. Morgan
Kaufmann, 2004.

[213] R. D. Vatavu, L. Anthony, and J. O. Wobbrock. Gestures as point clouds: a $ P rec-
ognizer for user interface prototypes. In Proceedings of the 14th ACM international
conference on Multimodal interaction, ICMI ’12, pages 2875–2884, 2012.

[214] S. Voelker, K. Nakajima, C. Thoresen, Y. Itoh, K. I. Øvergård, and J. Borchers.
PUCs: detecting transparent, passive untouched capacitive widgets on unmodified
multi-touch displays. In UIST ’13 Adjunct: Proceedings of the adjunct publication
of the 26th annual ACM symposium on User interface software and technology.
ACM, Oct. 2013.

[215] F. Wang, X. Cao, X. Ren, and P. Irani. Detecting and leveraging finger orientation for
interaction with direct-touch surfaces. In Proceedings of the 22nd annual ACM sym-
posium on User interface software and technology, UIST ’09, pages 23–32. ACM,
2009.

254

[216] F. Wang and X. Ren. Empirical evaluation for finger input properties in multi-touch
interaction. CHI ’09, pages 1063–1072. ACM, Apr. 2009.

[217] A. H. Watt and F. Policarpo. 3D Games, volume 1 of Real-time rendering and
Software Technology. Addison-Wesley, 2001.

[218] A. H. Watt and F. Policarpo. 3D Games, volume 2 of Animation and Advanced
Real-Time Rendering. Addison-Wesley, 2003.

[219] M. Weiser. The computer for the 21st century. Scientific American, pages 94–104,
1991.

[220] P. Wellner. The digitaldesk calculator: Tangible manipulation on a desk top display.
In Proceedings of the 4th Annual ACM Symposium on User Interface Software and
Technology, UIST ’91, pages 27–33. ACM, 1991.

[221] A. Williams. C++ Concurrency in Action: Practical Multithreading. Manning
Publications, first edition, Feb. 2012.

[222] B. Williamson, C. Wingrave, and J. laviola. Realnav: Exploring natural user inter-
faces for locomotion in video games. In IEEE Symposium on 3D User Interfaces
2010, 3DUI ’10, Jan. 2010.

[223] A. Wilson, S. Izadi, O. Hilliges, A. Garcia-Mendoza, and D. Kirk. Bringing physics
to the surface. In Proceedings of the 21st annual ACM symposium on User interface
software and technology, UIST ’09, pages 67–76. ACM, 2008.

[224] A. M. Wing. Timing and co-ordination of repetitive bimanual movements. The
Quarterly Journal of Experimental Psychology, 34(3):339–348, 1982.

[225] J. O. Wobbrock, A. D. Wilson, and Y. Li. Gestures without libraries, toolkits or
training: a $1 recognizer for user interface prototypes. In Proceedings of the 20th
annual ACM symposium on User interface software and technology, UIST ’07, New
York, New York, USA, Oct. 2007. ACM.

[226] J. A. Wolfeld. Real time control of a robot tacticle sensor. PhD thesis, University of
Pennsylvania, 1981.

[227] M. Wolter, B. Hentschel, I. Tedjo-Palczynski, and T. Kuhlen. A direct manipulation
interface for time navigation in scientific visualizations. In Proceedings of the 2009
IEEE Symposium on 3D User Interfaces, 3DUI ’09, pages 11–18.

255

[228] A. Wu, D. Reilly, A. Tang, and A. Mazalek. Tangible Navigation and Object Ma-
nipulation in Virtual Environments. pages 37–44, 2011.

[229] K. P. Yee. Two-handed interaction on a tablet display. CHI’04 Extended Abstracts
on Human Factors in Computing Systems, 2004.

[230] L. Yu, K. Efstathiou, P. Isenberg, and T. Isenberg. Efficient Structure-Aware Selec-
tion Techniques for 3D Point Cloud Visualizations with 2DOF Input. IEEE Trans-
actions on Visualization and Computer Graphics, 18(12):2245–2254, 2012.

[231] L. Yu, P. Svetachov, P. Isenberg, M. H. Everts, and T. Isenberg. FI3D: Direct-Touch
Interaction for the Exploration of 3D Scientific Visualization Spaces. IEEE Trans-
actions on Visualization and Computer Graphics, 16(6):1613–1622, 2010.

[232] P. Zarchman and H. Musoff. Fundamentals of Kalman Filtering: A Practical Ap-
proach. AIAA, third edition, 2009.

[233] M. Zechner and R. Green. Beginning Android 4 Game Development. Apress, Berke-
ley, CA, 2011.

[234] S. Zhai. Human Performance in Six Degree of Freedom Input Control. PhD thesis,
University of Toronto, 1995.

[235] U. Zölzer. Digital Audio Signal Processing. John Wiley & Sons, Chichester, UK,
July 2008.

256

APPENDIX A

This appendix explains how to get additional information about the source code that

was not included in this dissertation. Note that all the listing and algorithms needed to

re-implement the solutions are provided in this dissertation.

3DNav prototype contains more than 30,000 lines of code. In addition, many third-

party libraries, data files, configuration files, and many other additional data for 3DNav.

Also, there are additional prototypes created for this dissertation, that includes source code

and additional files. With this in mind, it is impossible to add all this information in this

dissertation. There are a few ways to obtain the source code for the prototype.

• For the Yield essential source code, the reader may retrieve it from the Florida Inter-

national University Library, as it has been uploaded as additional files to this disser-

tation. Go to http://digitalcommons.fiu.edu/etd/.

• It is possible to go to http://www.FranciscoRaulOrtega.com, this author’s website.

In particular, the page Projects should include information on how to download the

source code. The source code may not be available until the end of 2015.

• Some additional code, and newer iterations of the code, may be available at https:

//github.com/iblues76. The source code may not be available until the end of 2015.

• If the source code you are looking for, it is not available, you can write an email to

forte007@fiu.edu or FranciscoRaulOrtega@gmail.com.

257

http://digitalcommons.fiu.edu/etd/
http://www.FranciscoRaulOrtega.com
https://github.com/iblues76
https://github.com/iblues76
mailto:forte007@fiu.edu
mailto:FranciscoRaulOrtega@gmail.com

APPENDIX B

This appendix includes sample handouts given to the subjects during the experiment. This

appendix include the entry and exit surveys including additional questions that were only

asked to a subset of subjects. It also includes the handout with the search objects.

258

Natural	
 User	
 Interface	
 Questionnaire	

Pre-­‐Questionnaire	

Please answer the following question. There is no time limit and you can stop at any
time.

Gender: (Circle one) Female / Male Experiment ID: _____________

Date: ________________________ Age: ______________________

Major: _______________________ Major Completed Date:_______

Other Degrees: __

1. Have you ever played PC Games? If Yes, list a few of them and when you played
them:
__
__
__

2. Have you ever played Console Games (XBOX, PlayStation, Nintendo)? If yes,
list a few of them and when you played them:
__
__
__

3. Have you ever played smart phone or tablet games? If yes, list a few of them, and
list the device and when you played them:
__
__
__
__

259

4. If you play video games rarely or don’t play video games, can you tell us why? Is
it cost, low interest, lack of time, lack of skills or another set of reasons? :
__
__

5. How long have you been playing video games? Please circle one option:

 6 Months 1 Year 2-4 years 4-6 years 5-10 years 10 or more
years

6. How often (approximately) do you currently play video games? Please circle one.

Never Rarely Daily
Weekly
Once a month Once every 3 months Once in 6 months
Once a Year

7. How would you described your skill level at playing video games with a scale of
1 – 5, with 5 the being the most skilled and 1 the least skilled?

5: Extremely well skilled 4: Very good 3: Good

2: Not very skilled 1: Not skilled at all.

8. What gaming systems do you own or have you owned in the past? Please list
them and specify if you still own them. Also, include if there are any systems you
would like to own in the next year.
__
__
__
__

9. Please list your favorite video games. List at least a couple, if possible, and tell us
why:
__
__
__

10. Please tell us what other devices besides multi-touch or gamepad you have used
to play games? Have you used the Nintendo Wii Mote, PlayStation move? You
can describe any device that you have used to play games in this question:

260

__
__
__
__

11. Have you heard about the Oculus Rift (experimenter will show you one) or
similar devices? Can you tell us what you think about those devices and playing
video games with them, if you have an opinion? Have you ever use them?
__
__
__

Thank you for participating. You can use the rest of this page to write any
comments before starting the experiment about the questions asked.

12. Please feel free to write anything about video games below.

261

Additional questions (for selected subjects)

13) How often do you use gamepad to play video games (currently) ? Please circle
one.

Never Rarely Daily
Weekly
Once a month Once every 3 months Once in 6 months
Once a Year

14. If you don’t use it as often now, describe how often you used to use it before?
Please circle one.

Never Rarely Daily
Weekly
Once a month Once every 3 months Once in 6 months
Once a Year

14b) Described when : __________________

 15. Rate how easy you find the game pad (very easy = 10, very hard = 1)

 1 2 3 4 5 6 7 8 9 10

16. Do you have a preference for any type of game pad (e.g., XBOX ONE, Logitech,
Playstation)? List them in order of preference, if you have more than one.

 17. Please describe what you think of game pads?

262

Natural	
 User	
 Interface	
 Questionnaire	

Exit-­‐Questionnaire	

Please answer the following question. There is no time limit and you can stop at any time.

Gender: (Circle one) Female / Male Experiment ID: _____________

Date: ________________________ Age: ______________________

Major: _______________________ Major Completed Date: _______

Other Degrees: __

Please circle your answer when appropriate or write free text in open questions.

1. On scale of 1 to 10, please rank how much easier you found the multi-touch
display compared to the GamePad for 3D navigation. The higher you rank (10), the
easier you found the multi-touch display versus the GamePad.

 1 2 3 4 5 6 7 8 9 10

2. On scale of 1 to 10, please rank how easy you found the GamePad device compared

to the multi-touch display. The higher you rank (10), the easier you found the
GamePad device versus the multi-touch display.

 1 2 3 4 5 6 7 8 9 10

3. On scale of 1 to 10, please rank how intuitive you found the multi-touch display. The
higher you rank (10), the more intuitive you found it.

 1 2 3 4 5 6 7 8 9 10

 4. For the task given during the experiment: how do you rank the interaction to perform
the search with the multi-touch display? The higher you rank (10), the better you
found the experience with the device to perform for the assigned task during the
experiment.

 1 2 3 4 5 6 7 8 9 10

263

5. For the task given during the experiment: how do you rank the interaction to perform

the search with the GamePad? The higher you rank (10), the better you found the
experience with the device to perform for the assigned task during the experiment.

 1 2 3 4 5 6 7 8 9 10

6. Given the time you took with multi-touch display, rank how likely you are to use this
device for daily day use if you had access to it. The higher you rank, the more you
expect to use if it was available to you.

 1 2 3 4 5 6 7 8 9 10

 7. Given the time you took with the GamePad device, rank how likely you are to use
this device for daily day use if you had access to it. The higher you rank, the more
you expect to use if it was available to you.

 1 2 3 4 5 6 7 8 9 10

 8. Please rank how did the multi-touch display compared to the GamePad device for
rotating the camera. The highest you rank (10), the better you found the multi-touch
display for rotations.

 1 2 3 4 5 6 7 8 9 10

9. Please rank how the GamePad device compare to the multi-touch display for rotating
the camera. The higher you rank (10), the better you found the GamePad device for
rotations.

 1 2 3 4 5 6 7 8 9 10

 10. Please rank how the multi-touch display compared to the GamePad device for
translation (up, down, left, right, forward, back). The higher you rank (10), the better
you found the multi-touch display for translation movements.

 1 2 3 4 5 6 7 8 9 10

 11. Please rank how the GamePad compared to the multi-touch display for
translation (up, down, left, right, forward, back). The higher you rank (10), the better
you found GamePad for translation movements.

 1 2 3 4 5 6 7 8 9 10

264

 12. Which device do you prefer: GamePad or multi-touch or No Difference (Both)? --
(please circle one)

 13.Which device did you find better when asked to typed? GamePad or multi-touch or
No Difference (Both) -- (please circle one)

265

14. Please select which Rotation or Translation you found better for the experiment you
tested. Please mark with X for each of the categories. Use previous figure for
reference.

 GamePad Device Multi-Touch Display

Rotation: Yaw

Rotation: Roll

Rotation: Pitch

Up – Down

Left – Right

Forward – Back

15. Please tell us what did you thought about the experiment.

16. Tells us why you prefer one device over the other for the experiment.

17. Tell us why do you prefer one device over the other when you have to type, as the
experimented demanded.

18. Please tell us your overall opinion about the design of the multi-touch display

266

19. Please tell us your overall opinion about the design of the GamePad device.

20. Please tell us how we did in the experiment. Is there anything in the experiment that
can be done better next time?

21. What do you think about the sphere that gave you a sense of rotation in space?

 Thank you for participating.

267

 22. You can use the rest of this page to write any comments before starting the

experiment about the questions asked. Please feel free to write anything about video
games below.

Additional questions for Hold-and-Roll (selected subjects only)

23) Please rate the Hold-and-Roll gesture you used during the experiment

(10 = very useful, 1= not useful at all)

 1 2 3 4 5 6 7 8 9 10

24) Would you like to see this gesture in new games? Please explain

25) Would you like to see this gesture in new applications? Please explain

26) What is you opinion about Hold-and-Roll?

27) Please describe what benefits the multi-touch interaction gave you during this

experiment. How about for your daily use?

28) Please describe what benefits the GamePad gave you during the interaction. How

about for your daily use?

268

Figure B.1: Handout with Search Objects

269

APPENDIX C

The following appendix provides memorandums from the Office of Research Integrity, sent

to the principal investigator, Dr. Armando Barreto, and this author (Francisco R. Ortega).

For more information, use the IRB protocol approval number (IRB-13-0212) or Topaz

reference number (101085). This appendix includes the first memorandum issued on June

7,2013 and the second memorandum issued on April 29, 2014.

270

	

Office of Research Integrity
Research Compliance, MARC 270

MEMORANDUM

To: Dr. Armando Barreto

CC: File
From: Maria Melendez-Vargas, MIBA, IRB Coordinator

Date: June 7, 2013

Protocol Title: "3D Data Navigation Via Multi-Touch Display"

The Health Sciences Institutional Review Board of Florida International University has approved
your study for the use of human subjects via the Expedited Review process. Your study was
found to be in compliance with this institution’s Federal Wide Assurance (00000060).

IRB Protocol Approval #: IRB-13-0212 IRB Approval Date: 05/31/13
TOPAZ Reference #: 101085 IRB Expiration Date: 05/31/14

As a requirement of IRB Approval you are required to:

1) Submit an Event Form and provide immediate written notification to the IRB of:

x Any additions or changes in the procedures involving human subjects.
x Every serious or unusual or unanticipated adverse event as well as problems with the rights

or welfare of the human subjects.
2) Utilize copies of the date stamped consent document(s) for the recruitment of subjects.
3) Receive annual review and re-approval of your study prior to your expiration date.

Projects should be submitted for renewal at least 30 days in advance of the expiration date.
4) Submit a Project Completion Report Form when the study is finished or discontinued.

Special Conditions: N/A

For further information, you may visit the IRB website at http://research.fiu.edu/irb.

271

	

Office of Research Integrity
Research Compliance, MARC 270

MEMORANDUM

To: Dr. Armando Barreto

CC: File
From: Maria Melendez-Vargas, MIBA, IRB Coordinator

Date: April 29, 2014

Protocol Title: "3D Data Navitation Via Multi-Touch Display"

The Health Sciences Institutional Review Board of Florida International University has
re-approved your study for the use of human subjects via the Expedited Review process. Your
study was found to be in compliance with this institution’s Federal Wide Assurance (00000060).

IRB Protocol Approval #: IRB-13-0212 IRB Approval Date: 04/22/14
TOPAZ Reference #: 101085 IRB Expiration Date: 04/22/15

As a requirement of IRB Approval you are required to:

1) Submit an IRB Amendment Form for all proposed additions or changes in the procedures

involving human subjects. All additions and changes must be reviewed and approved by the
IRB prior to implementation.

2) Promptly submit an IRB Event Report Form for every serious or unusual or unanticipated
adverse event, problems with the rights or welfare of the human subjects, and/or deviations
from the approved protocol.

3) Utilize copies of the date stamped consent document(s) for obtaining consent from subjects
(unless waived by the IRB). Signed consent documents must be retained for at least three
years after the completion of the study.

4) Receive annual review and re-approval of your study prior to your IRB expiration date.
Submit the IRB Renewal Form at least 30 days in advance of the study’s expiration date.

5) Submit an IRB Project Completion Report Form when the study is finished or discontinued.

Special Conditions: N/A

For further information, you may visit the IRB website at http://research.fiu.edu/irb.

272

APPENDIX D

This appendix has the legends for the Xbox 360 controller, as shown in Figures D.1 and

D.2. This is the control used during the experiment. Figure D.1, shows both thumb-sticks

(left and right), the digital pad (dPad), and the four buttons (A,B,X,Y). Figure D.2 shows

the left and right shoulder back (LB,RB) and the analog left and right triggers.

273

Le Thumb-S!ck

Right Thumb-S!ck

Bu"ons

Back / Special / Start

Digital Pad (DPAD)

Figure D.1: Xbox 360 Legend

274

Right Back Shoulder
Le Back Shoulder

Le Trigger Le Trigger

Figure D.2: Xbox 360 Legend

275

APPENDIX E

IRML for PeNTa The Syntax and Static Semantics

A HLPN is a tuple:

HLPN = (N,Spec, ins)

where:

• N = (P,T,F) is a net structure:

– P a finite set of nodes called places;

– T a finite set of nodes, called transitions disjoint from P;

– F a finite set of directed flow relations called arcs, where F ⊆ (P×T)∪(T ×P).

• Spec = (S,OP,Eq) is the underlying specifications:

– S a set of sorts;

– OP a set of sorted operations;

– Eq S-equations that define the meanings and properties of operations in OP.

– Note: Tokens of a HLPN are ground terms of the signature (S,OP);

• ins = (ϕ,L,R,M0) is the net inscrption:

– ϕ the data definition associates each place p ∈ P with sorts;

– L labeling of net, an abbreviation is defined as L(x,y) iff (x,y) ∈ F and ÃŸ

otherwise;

– R = (Pre,Post) well defined constraning mapping, associates each transition

t ∈ T with constraint algebraic formulas and predefined functions; Pre and Post

are the pre and post mappings of marking;

276

– M0 sort-respecting initial marking that assigns a multi-set of tokens to each

place p ∈ P.

Dynamic Semantics

• Marking: Markings of a HLPN are mappings M : P→ Tokens;

• Enabling: Given a marking M, a transition t ∈ T is enabled at marking M iff Pre(t)≤

M

• Concurrent Enabling: Given a marking M, αt is an assignment for variables of t that

satisfies its transition condition and At denotes the set of all assignments. Define the

set of all transition modes to be T M = {(t,αt) |t ∈ T,αt ∈ At} iff Pre(T M)≤M.

• Transition Rule: Given a marking M, if t ∈ T is enabled in mode αt , firing t by a

step may occur in a new marking M′ = M−Pre(tαt)+Post (tαt); A step is denoted

by M[t > M′.

• Behavior of a HLPN: an execution sequence M0[t0 > M1[t1 > ... is either finite when

the last marking is terminal (no more enabled transition) or infinite. The behavior of

a HLPN model is the set of all execution sequences staring from M0.

277

APPENDIX F

This appendix contains the list of algorithms and the list of source code. For the list of

tables and figures, please refer to the beginning of the document.

278

LIST OF ALGORITHMS

3.1 GestureDetection . 70

3.2 TOUCHMOVE . 73

3.3 GestureDetection . 75

3.4 Rotation Algorithm for a Gyroscope . 81

3.5 Yield: Fetch Points . 102

3.6 Yield: Fetch Gestures . 104

3.7 Yield: Reset Active Gesture . 105

3.8 Yield: Process Candidate . 108

3.9 Yield: Pre-Process Action . 109

3.10 Yield: Pre-Process Action (alt) . 109

279

SOURCE CODE LISTING

3.1 CloudFeatureMatch (onDown) . 76

3.2 CloudFeatureMatch (onUp) . 76

3.3 CloudFeatureMatch (onMove) . 76

3.4 CloudFeatureMatch (Slit) . 77

3.5 CloudFeatureMatch (BreakTop) . 77

3.6 CloudFeatureMatch (Features) . 78

3.7 WiiMote (Initialize) . 81

3.8 Gyroscope (wiiMote) . 81

3.9 Yield (gc) . 98

3.10 Yield (processActionGesture) . 110

3.11 Yield (Data Structures) . 111

3.12 Yield (Gesture.ProcessGesture) . 111

3.13 Navigation (Update) . 113

3.14 Navigation (Push Translation) . 114

3.15 Navigation (Push Rotations) . 115

3.16 Navigation (Push Translation) . 116

4.1 Observer Pattern (Listener.h) . 120

4.2 Observer Pattern (Registry.h) . 120

4.3 Observer Pattern (Registry.cpp) . 121

4.4 InputPad (Interface) . 121

4.5 3DMouse (Global and Initial Checks) . 125

4.6 3DMouse (Partial Initialize) . 125

4.7 3DMouse (Process Input Error Checking) . 126

4.8 3DMouse (Process Input) . 127

4.9 YEI 3Space Sensor Wireless (Wrapper) . 129

280

4.10 YEI 3Space Sensor (Wrapper) . 129

4.11 Kinect (WINAPI Messages) . 133

4.12 Skelton Tracking (Left/Right) . 134

4.13 Keyboard (Navigation) . 136

4.14 XBox360 Controller (h) . 138

4.15 XBox360 Controller (cpp) . 139

4.16 Game Navigation Controller(h) . 140

4.17 Game Navigation Controller(cpp) . 141

4.18 XBox360 Controller (Smooth Input) . 141

4.19 WINAPI (Multi-Touch init) . 146

4.20 WINAPI (Multi-Touch WinMain) . 146

4.21 WINAPI (Events) . 147

4.22 WINAPI (Multi-Touch Touch Events) . 148

4.23 WINAPI (Multi-Touch down,move,up) . 149

4.24 GWC (GWTouch.h) . 150

4.25 GWC (GWTouch.cpp) . 151

4.26 Scene Nodes (Partial XML file) . 155

4.27 OGRE (Advanced Framework (h)) . 156

4.28 OGRE (Menu State (h)) . 157

4.29 OGRE (Game State (h)) . 157

4.30 OGRE (App State Interface) . 158

4.31 OGRE (InitOgre) . 159

4.32 OGRE (Check Input) . 160

4.33 OGRE (Collision) . 160

4.34 Experiment Controller . 163

4.35 Experiment Device . 163

281

4.36 Experiment Task . 164

4.37 Experiment Search Object . 165

5.1 3DNAV game.cfg (Experiment Setup) . 174

282

APPENDIX G

This appendix contains miscellaneous notes about this dissertation and permission letters

to reprint figures.

• Web links where provided as footnotes. In most cases, the typical format was “See

http://fiu.edu.”. Note the last period of the web address is not part of the URL. In

a few instances, because of the web address’s length, the “See” keyword and/or the

last period were omitted.

• For footnotes with “See Wikipedia: topic”, please search using http://www.wikipedia.

com the “topic”.

• All pictures are owned by this author, except when external images were used. When

external images were used, permission was obtained in writing.

283

http://fiu.edu
http://www.wikipedia.com
http://www.wikipedia.com

Francisco Ortega <franciscoraulortega@gmail.com>

Re: Fw: Permission

ikimball@mmm.com <ikimball@mmm.com> Wed, Sep 24, 2014 at 9:55 AM
To: franciscoraulortega@gmail.com

Hi Francisco,

You have our permission to use these images for your dissertation These images are publicly variable on our website
and intended for public consumption.

Thanks,

Ian

Ian Kimball | Market Development Manager
Display Materials & Systems Division
501 Griffin Brook Park Drive | Methuen, MA 01844
Office: 978 659 9377 | Mobile: 978 404 0254
ikimball@mmm.com | www.3M.com/multitouch | touchtopics.com

From: Francisco Ortega <franciscoraulortega@gmail.com>
To: us-ts-techsupport <us-ts-techsupport@mmm.com>
Date: 09/22/2014 11:54 AM
Subject: Permission

Hello,

I would like to have permission to print 7 images from Tech Brief-1013 (2013)
http://solutions.3m.com/3MContentRetrievalAPI/BlobServlet?lmd=1332776733000&
locale=en_US&assetType=MMM_Image&assetId=1319224169961&blobAttribute=ImageFile

Images 1,2,3,4,5,6,7, to be added to my dissertation, since I used a 3M Multi-Touch monitor.

Can you provide with the email for permissions or provide such permission via email.

Thanks,
Francisco R. Ortega
Ph.D. Candidate in Computer Science
Mcknight DYF Fellow, GAANN Fellow

284

Francisco Ortega <franciscoraulortega@gmail.com>

Press Images request 3DConnexion : 3D Mouse Space Navigator

Mike Kaput <mike@pr2020.com> Thu, Jul 31, 2014 at 10:29 AM
To: Francisco Ortega <franciscoraulortega@gmail.com>

Hi Francisco,

Thank you so much for reaching out. Glad to hear you're using a 3D mouse (and writing about them!).

I've attached a ZIP file with the images you requested. Also, here's a link to the image of the SpaceNavigator. We're
going through an update / improvement process right now, so this is the only photo we've got at the moment—but I
may be able to send some more over next week.

Please feel free to use these images in your two publications. And be sure to send the final publications to us when
you're done, as we'd love to read them :)

Note: Could you please use the following copyright with the images:

© 2014 3Dconnexion. All rights reserved. 3Dconnexion, the 3Dconnexion logo, and other 3Dconnexion marks
are owned by 3Dconnexion and may be registered.

I'm working right now to confirm the 1,000,000 sold number. I'll update you when I have more information. If you don't
hear back from me in time on that number, please just use the 1,000,000 sold number in the press release.

Thanks, Francisco! Best of luck with your writing! Just let me know if you need anything else.

Best,

Mike Kaput
[Quoted text hidden]
--
Mike Kaput
Consultant | PR 20/20
@mikekaput
216.812.3960

3Dconnexion_Images-for-Francisco.zip
1346K

285

10/10/14, 4:30 PMCopyright Clearance Center

Total order items: 1 Order Total: 0.00 USD

Step 3: Order Confirmation

Confirmation Number: 11270276
Order Date: 10/10/2014

If you paid by credit card, your order will be finalized and your card will
be charged within 24 hours. If you choose to be invoiced, you can
change or cancel your order until the invoice is generated.

Francisco Ortega
franciscoraulortega@gmail.com
+1 (305)3056391
Payment Method: n/a

Thank you for your order! A confirmation for your order will be sent to your account email address. If you have questions
about your order, you can call us at +1.855.239.3415 Toll Free, M-F between 3:00 AM and 6:00 PM (Eastern), or write to us
at info@copyright.com. This is not an invoice.

Payment Information

Order Details

Permission type: Republish or display content
Type of use: Republish in a thesis/dissertation

Order detail ID: 65874912
Order License Id: 3485530797036

ISBN: 978-1-4398-2737-6
Publication Type: Book
Publisher: Chapman and Hall/CRC
Author/Editor: Han, JungHyun

3D graphics for game programming

Permission Status: Granted

View details

Note: This item will be invoiced or charged separately through CCC's RightsLink service. More info $ 0.00

This is not an invoice.

DIRECTPATH GET PERMISSION PRODUCTS & SOLUTIONS EDUCATION ABOUT US

286

11/13/14, 11:47 AMCopyright Clearance Center

Total order items: 1 Order Total: $0.00

Copy order

Confirmation Number: 11275519
Order Date: 11/04/2014

Print this page
Print terms & conditions
Print citation information
(What's this?)

Customer: Francisco Ortega
Account Number: 3000730667
Organization: Francisco Ortega
Email: franciscoraulortega@gmail.com
Phone: +1 (305)3056391

Back to view orders

Customer Information

Search order details by: Choose One

This is not an invoice

Order Details

Permission type: Republish or display content
Type of use: Thesis/Dissertation

3502130106832Order License Id:

Order detail ID: 65922990

ISBN: 978-0-12-405865-1
Publication Type: Book
Author/Editor: MacKenzie, I. Scott

Human-computer interaction : an empirical research perspective

Permission Status: Granted

View details

Billing Status:
N/A

Note: This item was invoiced separately through our RightsLink service. More info $ 0.00

DIRECTPATH GET PERMISSION PRODUCTS & SOLUTIONS EDUCATION ABOUT US

287

VITA

FRANCISCO RAUL ORTEGA

2005 - 2007 B.S., Computer Science

Florida International University
Miami, FL

2007 - 2008 M.S., Computer Science

Florida International University
Miami, FL

2009 - 2014 Ph.D., Computer Science

Florida International University
Miami, FL

PUBLICATIONS AND PRESENTATIONS

Francisco R. Ortega, Fatemeh Abyarjoo, Armando Barreto, Napthali Rishe, Malek
Adjouadi. 3D User Input Interfaces. CRC Press. 2015.

F. Ortega, A. Barreto, N. Rishe, M. Adjouadi, and P. Ren, “Emperical Analisys of 3D
Navigation using Multi-Touch with 6DOF”. Submitted, ACM Transactions on
Computer- Human Interaction (TOCHI).

Francisco R Ortega, Su Liu, Frank Hernandez, Armando Barreto, Naphtali Rishe, and
Malek Adjouadi, “PeNTa: Formal Modeling for Multi-Touch Systems Using Petri Net”,
In Human-Computer Interaction. Theories, Methods, and Tools, pp. 361–372. Springer
International Publishing, January 2014.

Hernandez H., Ortega F., “Eberos GML2D: A Graphical Domain-Specific Lan- guage for
Modeling 2D Video Games”, The 10th Workshop on Domain-Specific Model- ing
proceedings 2010.

P. Ren, A. Barreto, J. Huang, Y. Gao, F. R. Ortega, and M. Adjouadi, “Offline and online
stress detection through processing pupil diameter signal” Annals of Biomedical
Engineering, Vol. 42, No. 1, January 2014 (2013) pp. 162-176.

Ortega F., Barreto A., Rishe N., Adjoudi M., and Abyarjoo F., “Multi-Touch Gesture
Recognition using Feature Extraction”, Proceedings of CISSE 2012: The International
Joint Conferences on Computer, Information and Systems Sciences and Engineering, De-
cember 7–9, 2012, Bridgeport, CT. Springer 2014. LNEE 152, pp. (Note: Printed edition
contains typo in first author’s last name. It appears as Ortego).

288

Ortega F., Barreto A., Rishe N., and Adjoudi M.,“Interaction with 3D Environments
using Multi-Touch Screens”, Proceedings of CISSE 2011: The International Joint Con-
ferences on Computer, Information and Systems Sciences and Engineering, December 3,
2011, Bridgeport, CT. Springer 2013, LNEE 152, pp. 381–392.

Ortega, F., Barreto A., Rishe N. and Adjoudi M., Abyarjoo F, “GyroTouch: Comple-
menting the Multi-Touch Display”, ACM Richard Tapia Celebration of Diversity in
Com- puting, 2014. Seattle, WA.

Ortega, F., Hernandez, F., Barreto A., Rishe N., Adjouadi M., Liu S., “Exploring
Modeling Language for Multi-Touch Systems using PetriNet”, Proceedings of the 2013
ACM international conference on Interactive tabletops and surfaces (ITS ’13), ACM,
New York, NY, USA, 361–364.

Ortega F., Barreto A., Rishe N. “Augmenting Multi-Touch with Commodity Device”, In
Proceedings of the 1st symposium on Spatial user interaction (SUI ’13), ACM, New
York, NY, USA, p. 95.

Ortega F., Barreto A., Rishe N. and Adjoudi M., Abyarjoo F, “Poster: Real-Time Ges-
ture Detection for Multi-Touch Devices”, IEEE 8th Symposium on 3D User Interfaces,
2013, pp 167-168.

Ortega F., Barreto A., Rishe N. and Adjoudi M., “Towards 3D Data Environments using
Multi-Touch Screens”, ACHI 2012 : The Fifth International Conference on Ad- vances in
Computer-Human Interactions. pp 118-121.

Ortega, F., Rishe N, and Barreto A., “Multi-Touch Machine Framework – mtMachine”,
Provisional Patent Application Filed. USPTO. Expected to submit patent July, 2015.

Ortega, F., PeNTa: Formal Modeling for Multi-Touch Systems Using Petri Net, HCI
International 2014. Crete, Greece. June 2014.

Ortega, F., Exploring Modeling Language for Multi-Touch Systems using PetriNet. 2013
ACM international conference on Interactive tabletops and surfaces (ITS 2013). St.
Andrew, Scotland. October, 2013.

Verhoef T., Lisetti C., Barreto A., Ortega F., Van der Zant T. and Cnossen F.,“Bio-
sensing for Emotional Characterization without Word Labels”, Human-Computer
Interac- tion. Ambient, Ubiquitous and Intelligent Interaction, 13th International
Conference, HCI International, LNCS 5612, pp. 693–702,2009.

Wu Y., Hernandez F., Ortega F., Clarke PJ. and France R. ,“Measuring the Effort for
Creating and Using Domain-Specific Models”, The 10th Workshop on Domain-Specific
Modeling proceedings 2010.

289

	Florida International University
	FIU Digital Commons
	11-7-2014

	3D Navigation with Six Degrees-of-Freedom using a Multi-Touch Display
	Francisco Raul Ortega
	Recommended Citation

	INTRODUCTION
	Problem Statement
	Objective of Study
	Motivation
	Research Questions
	Significance of Study
	Literature Review
	Input Considerations
	Toward 3D Navigation
	3D Navigation
	Gesture Modeling and Petri Nets

	Dissertation Structure

	BACKGROUND
	Computer Graphics
	Camera Space
	3D Translation And Rotations
	Geometric Modeling
	Scene Managers
	Collision Detection

	Human-Computer Interaction
	Usability
	The Light Pen and the Computer Mouse
	Graphical User Interfaces and WIMP
	Input Technologies
	Input Device States
	Bi-Manual Interaction

	Multi-Touch Displays
	Projective Capacitive Technology
	Optical Touch Surfaces

	3D User Interfaces
	3D Output Interfaces
	Visual Displays Characteristics
	Understanding Depth
	Displays

	3D Input Interfaces
	3D Navigation
	3D Travel
	3D Travel Tasks

	Petri Nets
	Graphical Representation
	Formal Definition

	TOWARD 3D NAVIGATION WITH MULTI-TOUCH INTERACTIONS
	Multi-Touch Feature Extraction
	FETOUCH
	FETOUCH+
	Implementation: FETOUCH++

	GyroTouch
	Implementation

	PeNTa: Petri Nets
	Motivation and Differences
	HLPN: High-Level Petri Nets and IRML
	PeNTa and Multi-Touch
	Arc Expressions
	A Tour of PeNTa
	Simulation and Execution
	Overview

	Yield: Removing ambiguity
	Yield: How it Works
	Yield: The Algorithm
	Yield: The Implementation

	FaNS: Navigational System - A Fair Approach
	FaNS: The Implementation

	Hold-and-Roll: Finding a Gesture for the Z Axis

	3DNAV: MULTI-TOUCH SYSTEM PROTOTYPE
	Preliminary Device Testing
	Device Listeners and Common Interfaces
	3D Mouse
	Inertial Navigation System
	Microsoft Kinect
	Keyboard and Mouse
	GamePad
	Multi-Touch

	OGRE
	ECHoSS: Experiment Module
	Overview

	DESIGN OF EXPERIMENT: 3D NAVIGATION
	Experiment Objective
	Pre-Trials
	Device Selection
	Experimental Subjects
	Experiment Apparatus
	Hardware Setup
	Software Setup

	Multi-Touch Gesture Design
	Gesture Definition
	Gesture Selection
	Gesture Mapping

	GamePad Design
	Additional Controller Design
	Techniques
	Primed Search
	Visual Cues
	Device Switching

	Questionnaires
	Gamers' Experience
	Objective Measurements
	Experiment Procedure
	3D Navigation Experiment Tour

	EXPERIMENT ANALYSIS
	Data Outliers
	The Dataset
	Quantitative Data
	Time: GamePad and Multi-Touch
	Homing: Switching Devices

	Qualitative Data
	Paired Questions
	Additional Pairs of Questions
	GamePad or Multi-Touch
	Rotation and Translations Questions
	Other Questions
	Hold-And-Roll Questions

	EXPERIMENT DISCUSSION
	Assimilating Experimental Results
	3D Navigation
	Open Questions
	Hold-and-Roll

	Lessons learned
	Limitations of the Study
	Internal Validity
	External Validity

	CONCLUSIONS & FUTURE WORK
	Concluding Remarks
	Future Work

	Bibliography
	APPENDICES
	VITA

