
TAMGeF: Touch-midAir-Motion Framework for Spatial Input

Francisco R. Ortega
Florida International Univeristy

fortega@fiu.edu

Naphtali D. Rishe
Florida International Univeristy

ndr@acm.org

Armando Barreto
Florida International Univeristy

barretoa@fiu.edu

CCS Concepts
•Human-centered computing→User interface toolk-
its; Touch screens;

Keywords
Input Devices; Framework; User Interfaces

1. INTRODUCTION
With the explosion of modern input devices, such as multi-

touch, vision-based systems (mid-air interaction with de-
vices such as Microsoft Kinect), and inertial navigational
systems, the complexity of development has increased. There
are different libraries or toolkits that support different fea-
tures. For example, VRPN1, which is a C/C++ (primarly
C-based) library with socket client/server architecture, pro-
vides access to different multiple input devices. Other frame-
work or libraries exist, such as OpenNI that provide vision-
based functionality. However, VRPN is meant as the layer
between input devices and the developer. We propose a
framework that goes further in providing a complete solu-
tion. Takala et al. provided a good understanding about
the current development challenges for 3D User Interface
(3DUI) developers [3]. TAMGeF is based on previous input
taxonomies [2], multi-touch interaction framework research
(e.g., Mudra and Midas) [1], and our experience accumlated
over time. In this paper, we explore two contributions: de-
vice abstraction and parallel message handling.

2. TAMGeF FOR SPATIAL INPUT
TAMGeF, a modern C++ cross-platform, template-based,

multi-threaded framework for spatial input devices, is de-
signed with multiple layers to provide greater flexibility.
The primary layers are: (0) input devices; (1) platform core
(desktop, web, mobile); (2) gesture recognition; (3) Toolkit
modules (plugin, experimentation, task-parallelism, and vi-
sualziation); (4) bindings (e.g, Python, Unity, Java, etc.).
In this paper, we will discuss part of the lower layer.

We have modified the definition from [2] to a generalized
input device: (1) manipulation (M) provides the degrees of
freedom (DOF) that a device supports. For example, a 6-
DOF can be defined as M = {Tx, Ty, Tz,Rx,Ry,Rz}. (2)

1http://www.cs.unc.edu/Research/vrpn/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SUI ’15 August 8–9, 2015, Los Angeles, CA, USA
c© 2015 ACM. ISBN 123-4567-24-567/08/06. . . $15.00

DOI: 10.1145/2788940.2794355

...

ID=4 X=100 Y=250

ID=4 X=100 Y=250

ID=4 X=100 Y=250

...

ID=1 X=111 Y=263

ID=1 X=107 Y=261

ID=2 X=300 Y=245

ID=1 X=105 Y=256

...

...

...

...

Observer

Controller

INPUT

DEVICE
Listener

4

Listener

3

Listener

2

Listener

1

Figure 1: Observer-Queue Controller

Input Domain (In) provides the original device domain. For
example, a multi-touch display may provide X and Y values
between 0 to the maximum resolution. (3) The resolution
function (Rf) provides a way to map the input to the output
domain. (4) The output domain (Out) is the desired result
provided by Rf. (5) The possible states (S) of the device
(e.g, down, move, up, idle, cancel, for multi-touch). (6) The
possible events Ev that the device may fire. This is related
to S but it provides the mechanism to notify listeners. (7)
The connection (Cn) provides the concrete mechanism to
connect the device D. Therefore, a device is defined by a
7-tuple: D = <M, In, Rf, Out, S, Ev, Cn>.

There are multiple ways to fire an event: callback func-
tion, message queue, and observer pattern, among others.
They all have drawbacks. In particular, the observer pat-
tern creates problems when working in a multi-threaded en-
vironment, as we have experienced and it has been noted by
others [1]. While TAMGeF does provide the flexibility to
choose the mechanism, we provide some default behaviours.
We have proposed a specialized pattern for input devices
called Observer-Queue Controller, shown in Figure 1.
This is an approach to combine a thread-safe message queue,
an observer controller, and a set of listeners. This reduces
the amount of thread locks and provides a simpler interface.

3. CONCLUSION
This paper provided a brief understanding of the lower

layer of TAMGeF providing the generalization of a de-
vice (which can use set-theory to describe it) and a highly-
optimized, thread-safe observer-queue controller pattern. We
are currently developing this solution at our institution.

4. REFERENCES
[1] L. Hoste, B. Dumas, and B. Signer. Mudra: a unified

multimodal interaction framework. In ICMI ’11:
Proceedings of the 13th international conference on
multimodal interfaces. ACM, Nov. 2011.

[2] J. Mackinlay, S. Card, and G. Robertson. A semantic
analysis of the design space of input devices.
Human–Computer Interaction, 5(2):145–190, 1990.

[3] T. M. Takala, P. Rauhamaa, and T. Takala. Survey of
3DUI applications and development challenges. 3D
User Interfaces (3DUI), 2012 IEEE Symposium on,
pages 89–96, 2012.

