
Interaction with 3D Environments using Multi-Touch Screens

Francisco Ortega, Naphtali Rishe
School of Computing and Information Sciences

Florida International University
Miami, FL. USA

Forte007@fiu.edu, NDR@acm.org

Armando Barreto, Malek Adjouadi
Electrical and Computer Engineering Department

Florida International University
Miami, FL. USA

BarretoA@fiu.edu, Adjouadi@fiu.edu

Abstract—The increase in availability of multi-touch devices
has motivated us to consider interaction approaches outside the
limitations associated with the use of a mouse. The problem
that we try to solve is how to interact in a 3D world using a
2D surface multi-touch display. Before showing our proposed
solution, we briefly review previous work in related fields that
provided a framework for the development of our approach.
Finally, we propose a set of multi-touch gestures and outline
an experiment design for the evaluation of these forms of
interaction.

Keywords-Multi-Touch; 3D Interaction ;3D Navigation ;Ges-
tures

I. INTRODUCTION

This paper presents the initial development of our ap-
proach to work with 3D data environments using a multi-
touch display. We introduce our emerging methods in the
context of important previous work, resulting in our pro-
posed gesture recognition approach and definition of transla-
tion and rotation gestures for multi-touch interaction with 3D
worlds. In this same process, we try to answer two important
questions and provide an evaluation path to be implemented
in the near future.

3D navigation and manipulation are not new problems in
Human-Computer Interaction (e.g., [1], [2]) as will be shown
in our brief review of previous work. However, with the
availability of multi-touch devices such as the iPad, iPhone
and desktop multi-touch monitors (e.g., 3M M2256PW 22”
Multi-Touch Monitor) new concepts have developed in order
to help the transition to a post-Windows-Icon-Menu-Pointer
(WIMP) era. This gives rise to important questions such as:
(1) What is the most appropriate mapping between the 2D
interface surface and the 3D world? and (2) Can previous
techniques used with other devices (e.g., joystick, keyboard
and mouse) be used in 3D navigation?

To begin answering these questions, we first endeavor
to understand touch interactions and previous multi-touch
work. We believe that all those aspects create a foundation
that is necessary for the development of a sound post-WIMP
framework [3]. After the related work section, we cover our
proposed solution, discussion and future work.

II. BACKGROUND

A. Understanding Touch Interactions

A common option for multi-touch interaction is to use the
set of points corresponding to n touches in a direct manner.
However, to achieve a more natural interaction between the
screen and the user, studies like [4]–[8] provide a different
take on how touch information can be used. For example,
[4] studies finger orientation for oblique touches which gives
additional information without having extra sensors (e.g.,
left/right hand detection.) In another example, Benko and
Wilson [8] study dual finger interactions (e.g, dual finger
selection, dual finger slider, etc.) Additional work dealing
with contact shape and physics can be found in [6], [7]. In
a very comprehensive review of finger input properties for
multi-touch displays [5] provides suggestions that have been
used already in [4].

One aspect that is important to have in mind is whether
to keep rotations, translations and scaling separate [9] or
combined [10]. If the latter is chosen, the user’s ability to
perform the operations separately may become a problem
[9].

One very important point found in [11], [12] is that one-
hand techniques are better for integral tasks (e.g., rotation)
and two hands perform better with separable tasks. For our
particular work, one can think of using one hand to perform
common rotations and translations, and using two hands
when special rotations need to be performed, utilizing the
second hand to indicate a different point of reference.

B. Virtual Devices

In [1], Nielsen and Olsen used a triad mouse to emulate
a 3D mouse. What is important about this work is how
they perform 3D rotations, translations and scaling (one at
a time). For example, in 3D rotation, they use point P1 as
the axis reference and points P2 and P3 to define the line
forming the rotation angle to be applied to the object. In
more recent work [10], one can find subtle similarities with
[1],in the proposition of defining a point of reference to
allow seamless rotation and translation.

The Virtual Sphere [2] is an important development in
3D rotation methods previously proposed, which was tested

against other virtual control devices. It was found that the
Virtual Sphere and the continuous XY+Z device behaved
best for complex rotations (both devices behave similar with
the exception that the XY+Z device does not allow for
continuous rotations about all x, y, z axes). The Virtual
Sphere simulates a real 3D trackball with the user moving
left-right (x-axis), top-down (y-axis) and in circular fashion
(z-axis) to control the rotation of the device. Similar work
can be found in [13] with The Rolling Ball and in [14] with
the Virtual Trackball. Another idea, similar to The Virtual
Sphere [2] is the ARCBALL [15]. The ARCBALL “is based
on the observation that there is a close connection between
3D rotations and spherical geometry” [16].

C. Gesture Recognition

Different methods for gesture recognition have been used
in the past including Hidden Markov Models [17], finite
state machines [18], [19], neural networks [20], featured-
based classifiers [21], dynamic programming [22], template
matching [23], ad hoc recognizer [24] and simple geometric
recognizers [25]–[27]. An in-depth review can be found in
[28]. For the purpose of this paper, we have concentrated
in the simple geometric classifier, also known as geometric
template matching.

The $1 algorithm [25] provides a simple way to develop
a basic gesture recognizer directed at people that don’t
have either the time or knowledge to implement more
complicated algorithms. For example, algorithms based on
Hidden Markov Models or neural networks. At the same
time, $1 provides a very fast solution to interactive gesture
recognition with less than 100 lines of code [25]. The
algorithm goes through four steps. The first step is to
resample the points in the path. The idea is to make gestures
comparable, by resampling each gesture at N points (e.g.,
N=64) [25]. The second step is to find “the angle formed
between the centroid of the gesture and gesture’s first point”
[25], which is called the indicative angle. Then this step of
the algorithm rotates the gesture so the indicative angle is
equal to zero. The third step includes the scaling of the
gesture to a reference square which will help to rotate the
gesture to its centroid. After scaling, the gesture is translated
to a reference point so the centroid is at (0,0). Finally,
step 4 calculates the distance between the candidate gesture
to each stored template and using a score formula which
gives 0 to the closest gesture and 1 to farthest gesture [25].
The primary limitation of this algorithms are found in the
incorrect processing of 1D gestures.

The $N algorithm [26] extends the $1 algorithm [25]
primarily to allow single strokes to be recognized. The
algorithm works by storing each multistroke as a unique
permutation. This means that for each multistroke composed
of two 2 strokes, the system creates 8 unistrokes. Another
particular feature of this algorithm is that it allows the option
for the stroke to be bounded by an arbitrary amount of rota-

tion invariance. For example, to make a distinction between
A and ∀, rotation must be bounded by less than ±90◦ [26].
This algorithm also supports automatic recognition between
1D and 2D gestures by using “the ratio of the sides of
a gestured’s oriented bounding box (MIN-SIDE vs MAX-
SIDE)” [26]. In addition, to better optimize the code, $N
only recognizes a sub-set of the templates to process. This
is done by determining if the start directions are similar, by
computing the angle formed from the start point through the
eight point. In general, this algorithm which contains 240
lines, was faster than $1 when using 20 to 30 templates.
Algorithms $1 and $N utilized the Golden Section Search
[29]

Other methods similar to $1 [25] and $N [26] algorithms
have been implemented. For example, the Protractor Gesture
Recognizer algorithm [27] works by applying a nearest
neighbor approach. This algorithms is very close to the
$1 algorithm [25] but attempts to remove different drawing
speeds, different gesture locations on the screen and noise
in gesture orientation.

D. Multi-Touch Techniques

We believe that all of the related work dealing with multi-
touch, regardless whether it was designed for manipulation
of objects or navigation of 3D graphical scenes, can con-
tribute to the set of unifying ideas that serves as the basis
for our approach.

Some of the work in 3D interactions has been specific for
multi-touch, which is our focus as well. In [10], Hancock
et al. provide algorithms for one, two and three-touches.
This allows the user to have direct simultaneous rotation
and translation. The values that are obtained from initial
touches T1, T2 and T3 and final touches T ′1, T ′2 and T ′3 are
∆yaw, ∆roll and ∆pitch which are enough to perform the
rotation in all three axes and ∆x, ∆y, ∆z to perform the
translation. A key part of their study showed that users prefer
gestures that involve more simultaneous touches (except for
translations). Using gestures involving three touches was
always better for planar and spatial rotations [10].

A different approach is presented in RNT (Rotate ’N
Translate) [30], which allows planar objects to be rotated and
translated using opposing currents. This particular algorithm
is useful for planar objects and it has been used by 3D
interaction methods (e.g., [31]).

A problem that occurs when dealing with any type of
3D interaction in multi-touch displays, is the one of spatial
separability [9]. To address this problem, in [9], the authors
proposed different techniques that will allow the user to
perform the correct combination of transformations (e.g.,
scaling, translation + rotation, scaling + rotation + trans-
lation, etc.). The two methods that were most successful
were Magnitude Filtering and First Touch Gesture Matching.
Magnitude Filtering works similarly to snap-and-go [9].
This method has some differences from normal snapping

techniques because it does not snap to pre-selected values or
objects. In addition, the authors introduce a catch-up zone
allowing“continuous transition between the snap zone and
the unconstrained zone.” [9]. The latter method, First Touch
Gesture Matching, works by minimizing “the mean root
square difference between the actual motion and a motion
generated with a manipulation subset of each model” [9]. To
select the most appropriate model, each prospective model
creates two outputs, best-fit error and magnitude of the
appropriate transformation. These outputs are given to an
algorithm that decides which models to apply.

E. Design Guidelines

In [3], Jacob et al. proposed interfaces within a post-
WIMP framework. In this framework, they try to find a
balance between Reality Based Interactions (RBI) and artifi-
cial features. RBI includes Naı̈ve Physics, Body Awareness
and Skills, Environment Awareness and Skills and Social
Awareness and Skills. To allow an application to balance
itself, they proposed certain unrealistic features, providing
a tradeoff between RBI and artificial methods. The charac-
teristics that can be traded are: expressive power, efficiency,
versatility, ergonomics, accessibility and practicality [3].

In another work [10], Hancock et al. also proposed some
more specific guidelines when dealing with multi-touch
rotations and translation. This includes the ability to provide
more degrees of freedom than classical WIMP (ability to
do rotation and scale independently or together), provide
a constant connection between the visual feedback and the
interaction, prevent cognitive disconnect by avoiding actions
that the user may not be expecting, and provide realistic 3D
visual feedback.

For a concise set of guides for 3D interaction, please
review Bowman et al. [16].

III. PROPOSED SOLUTIONS

A. Set up

1) Camera: To test our work, we use OpenGL and
perform the visualization through a virtual camera developed
in [32] and described by [33], as shown in Figure 1. One can
see that the UP vector indicates which way is up, the EYE
(or ORIGIN) vector indicates the position of the camera
and the AT (or FORWARD) vector indicates the direction
in which the camera is pointing.

2) Multi-Touch: We are using Windows 7 multi-touch
technology [34] to test our proposed solutions with a 3M
M2256PW Multi-touch Display. Windows 7 provides two
ways of using the touches from the device. The first one is
gesture-based, identifying simple pre-defined gestures and
the second is the raw touch mode which provides the ability
to develop any type of interaction. We chose the latter be-
cause our end goal is to create custom user interactions and
for that we preferred to work at the lowest level possible that
is available to us. Each touch has a unique identification (ID)

Figure 1: Camera View [33]

that is given at the moment of TOUCHDOWN, to be used
during the TOUCHMOVE, and to end when TOUCHUP has
been activated. The ID gives us a very nice way to keep track
of a trace, which is defined as the path of the touch from
TOUCHDOWN to TOUCHUP.

3) Visual Display: As a test case, we have created a world
with 64 by 64 by 64 spheres, in a cubic arrangement, drawn
in perspective mode, where each sphere has a different color.
This allows the user to test the 3D navigation provided by
our gestures while having a visual feedback. It is important
to note that we colored the spheres in an ordered fashion
using the lowest RGB values in one corner and the highest
values in the opposite corner of the cube of spheres.

B. Gesture Recognition

We decided to perform our own gesture recognition as
opposed to using language oriented libraries [35]. The reason
is that this gives us an ability to improve in current tech-
niques, specially when performance is required. This also
gives us the power to choose the best recognition techniques
to use them in combination, while assuring that users do
not notice performance degradation. Finally, we believe
that working at a low level gives us control of the entire
interaction environment. This will keep the process simple
without using obfuscated libraries, that provide additional
functionalities that may slow down the user experience.

For this particular study, we decided to use ad-hoc recog-
nition because of the few gestures we implemented. For
example, for the swipe gestures shown in Figures 3b and
3c, we determined if a given set of N points of the total M
points from a given trace (path) increased either in x and/or
y axes. If the value increases, then this qualifies as a swipe
gesture.

However, this ad hoc method will be replaced with a tem-
plate based matching [25]–[27], in particular an adaptation
of $N [26] algorithm. The reason that this was not selected
at this point, is that the $N algorithm will always yield a

gesture. This means that if a user performs an unknown
gesture, the algorithm will still classify the closest one. Thus,
yielding an incorrect interaction. In future work, we will
try to find a proper threshold or a modification to the $N
algorithm to remove this constraint.

C. Gestures Interaction

We have decided to develop separate gestures for transla-
tion and rotation to understand what combinations are more
efficient for the user for 3D navigation. This means that
when rotating, the user will be rotating by a specific axis
and translations will be performed using two axes. We also
decided to provide simple gestures for our initial design to
see the interaction of the users. Once we have collected
more data about the interaction, we can create more complex
gestures, if needed.

1) Translation: In order to translate the camera, we
decided to combine the X & Y axes and leave Z by itself.
The algorithm for the Y axis is similar to Algorithm 1,
replacing the variable X with the variable Y. The algorithm
for the Z axis is similar to the Y axis with the exception
that it uses 3 touches. In general, the user can perform
simultaneous translation by the x and y axes using one
finger or translate by the z axis using three fingers. All the
movements can be executed with a single hand.

Algorithm 1 Translation over X

Require: TouchCount = 1
if Point.X < PrevPoint.X then
MoveRight(delta)

else if Point.X >= PrevPoint.X then
MoveRight(−delta)

end if

2) Rotations: To address rotations, we have to think of
rotation about x, y and z independently, given that is our
belief that separating the rotation will demand a lower cog-
nitive load from the user. This expectation is also supported
by [9], [11], [12]. In addition, all the rotations are designed
to use only one hand, which is preferable, as demonstrated
in [9]. To keep the constraint of using only one hand, the
algorithm checks that the touches are within a cluster.

The gesture for rotation about x, as shown in Figure 2,
merits to be described in more detail because the other two
rotations about y and z use very similar algorithms to those
already described for the translations. The only difference is
that y and z rotations require two touches each. The gesture
for rotation about x begins with T1 and T2, which form an
angle α with the horizontal axis. The user’s final state is
represented with T ′1 and T ′2, forming an α′ angle with the
horizontal. Then, the difference between α′ and α gives the
rotation angle to be applied, about x.

Figure 2: Rotation about the 3D x axis (see Figure 1)

IV. DISCUSSION

A. Gestures

We believe that the set of gestures that we are proposing
based on the literature reviewed in the background section
and our own preliminary testing will give a starting point to
find the most natural gestures to interact in a 3D world using
a multi-touch device. Even after finding the most natural
gestures for 3D navigation, one will have to compare with
other devices such as the ones found in Bowman et al. [16].
As we will outline in the next section, we suggest to make
the comparison with a 3D mouse [36]

The first question asked in the introduction was: What
is the most appropriate mapping between the 2D interface
surface and the 3D world? We have proposed a simple
solution to the problem, through the set of gestures described
above. Defining and implementing the most natural mapping
between this 2D multi-touch interface and the 3D world may
still require additional work, but the concepts advanced in
this paper may provide an interesting direction towards the
solution of this ongoing challenge.

The other question asked in the introduction was: Can
previous techniques used with other devices (e.g., Joystick,
keyboard and mouse) be used in 3D navigation? We propose
that the answer is yes. We can build upon existing work that
was developed for the mouse or other interfaces, adapting
it for use with multi-touch displays whenever possible.
An example of this is The Virtual Sphere [2]. We could
take The Virtual Sphere and create a similar device for
use with multiple fingers to allow a pure 3D rotation and
translation, even emulating a 3D mouse [36]. However, those
considerations would be outside the scope of this paper.

In general, we find that multi-touch displays can work
efficiently for achieving a more natural user 3D interaction
and 3D manipulation.

B. Proposed Evaluation Technique

The considerations presented above inform our current
process of planning the experimental protocol and data
analysis methods we will use for evaluating our approach. To

(a) About 3D x axis (b) About 3D z axis (c) About 3D y axis

Figure 3: Multi-Touch Rotation Gestures

answer our research questions and test the proposed gestures,
we will recruit at least 30 subjects from the college student
population at our university. The reason for our choice of
target population is that we believe that all students will have
a good grasp of basic mouse interaction, which will facilitate
the completion of the experimental tasks by the subjects.

The actual experiment, after allowing the user to become
familiarized with the interface, will consist of a set of tasks
to test translation and rotation gestures (independently) using
our 3M 22” Multi Touch Monitor (Model M2256PW) and
the 3D mouse made by 3DConnexion [36]. For each of the
tasks, we will measure the time of execution to complete the
task, and the accuracy of the movement. For the completion
time, we will use an external game controller to start and
stop the time, and for the accuracy of the movement, we
will automatically record the initial and final positions. In
addition to the automated recording of performance data,
we will ask the subjects to complete a short usability
questionnaire [37].

V. CONCLUSION

Recently, multi-touch displays have become more widely
available and more affordable. Accordingly, the search for
protocols that will simplify the use of these devices for inter-
action in 3D data environments has increased in importance.
In this paper we have outlined some of the most valuable
previous contributions to this area of research, highlighting
some of the key past developments that have emerged
in the 3D-interaction community. This review of pertinent
literature provides a context for the presentation of the core
elements of the solution we propose for the interaction in
3D environments through a multi-touch display.

Specifically, we proposed a set of multi-touch gestures
that can be used to command translations and rotations in 3
axes, within a 3D environment. Our proposed solution has
been implemented using a 3M M2256PW 22” Multi-Touch
Monitor as the interaction device. This paper explained the
proposed gestures and described how these gestures are to be
captured using the information provided by the device. In our
definition of the proposed multi-touch gesture set we have
established independent gestures for each type of translation

and also for each type of rotation. We decided to proceed in
this way so that we can study how users prefer to combine
or concatenate these elementary gestures.

The next step in the development of our approach is
to evaluate its efficiency in a comparative study involving
other 3D interaction mechanisms, such as a 3D mouse. The
ongoing process of planning the experiments for evaluation
takes into account the nature of the devices and general
principles of design of experiments, in an effort to minimize
the presence of confounding effects, such as subject fatigue,
etc. Our experiments may lead us to define alternative
gestures to allow more innovative means of interaction.

ACKNOWLEDGMENTS

This work was sponsored by NSF grants HRD-0833093,
and CNS-0959985. Mr. Francisco Ortega is the recipient of a
GAANN fellowship, from the US Department of Education,
at Florida International University.

REFERENCES

[1] G. Nielson and D. Olsen Jr, “Direct manipulation techniques
for 3D objects using 2D locator devices,” Proceedings of
the 1986 workshop on Interactive 3D graphics, pp. 175–182,
1987.

[2] M. Chen, S. Mountford, and A. Sellen, “A study in interactive
3-D rotation using 2-D control devices,” ACM SIGGRAPH
Computer Graphics, vol. 22, no. 4, p. 129, 1988.

[3] R. Jacob, A. Girouard, L. Hirshfield, M. S. Horn, O. Shaer,
E. T. Solovey, and J. Zigelbaum, “Reality-based interaction:
a framework for post-WIMP interfaces,” Proceeding of the
twenty-sixth annual SIGCHI conference on Human factors in
computing systems (CHI ’08), pp. 201–210, 2008.

[4] F. Wang, X. Cao, X. Ren, and P. Irani, “Detecting and
leveraging finger orientation for interaction with direct-touch
surfaces,” Proceedings of the 22nd annual ACM symposium
on User interface software and technology, pp. 23–32, 2009.

[5] F. Wang and X. Ren, Empirical evaluation for finger input
properties in multi-touch interaction. ACM, Apr. 2009.

[6] A. Wilson, S. Izadi, O. Hilliges, A. Garcia-Mendoza, and
D. Kirk, “Bringing physics to the surface,” Proceedings of
the 21st annual ACM symposium on User interface software
and technology, pp. 67–76, 2008.

[7] X. Cao, A. Wilson, R. Balakrishnan, K. Hinckley, and S. Hud-
son, “ShapeTouch: Leveraging contact shape on interactive
surfaces,” Horizontal Interactive Human Computer Systems,
2008. TABLETOP 2008. 3rd IEEE International Workshop
on, pp. 129–136, 2008.

[8] H. Benko, A. Wilson, and P. Baudisch, “Precise selection
techniques for multi-touch screens,” in In Proceedings of the
SIGCHI conference on Human Factors in computing systems
(CHI ’06), 2006, pp. 1263–1272.

[9] M. A. Nacenta, P. Baudisch, H. Benko, and A. Wilson, “Sepa-
rability of spatial manipulations in multi-touch interfaces,” in
GI ’09: Proceedings of Graphics Interface 2009. Canadian
Information Processing Society, May 2009.

[10] M. Hancock, S. Carpendale, and A. Cockburn, “Shallow-
depth 3d interaction: design and evaluation of one-, two-
and three-touch techniques,” Proceedings of the SIGCHI
conference on Human Factors in computing systems, p. 1156,
2007.

[11] K. Kin, M. Agrawala, and T. DeRose, Determining the
benefits of direct-touch, bimanual, and multifinger input on
a multitouch workstation. Canadian Information Processing
Society, May 2009.

[12] T. Moscovich and J. Hughes, “Indirect mappings of multi-
touch input using one and two hands,” Proceeding of the
twenty-sixth annual SIGCHI conference on Human factors
in computing systems (CHI ’08), pp. 1275–1284, 2008.

[13] A. S. Glassner, Graphics gems. Morgan Kaufmann, Jun.
1993.

[14] J. Arvo, Graphics Gems II. Morgan Kaufmann, Oct. 1994.

[15] P. S. Heckbert, Graphics gems IV. Morgan Kaufmann, 1994.

[16] D. A Bowman, “3D user interfaces: theory and practice,” p.
478, Jan. 2005.

[17] T. Sezgin and R. Davis, “HMM-based efficient sketch recog-
nition,” Proceedings of the 10th international conference on
Intelligent user interfaces (IUI ’05), 2005.

[18] P. Hong and T. Huang, “Constructing finite state machines
for fast gesture recognition,” 15th International Conference
on Pattern Recognition (ICPR’00), vol. 3, p. 3695, 2000.

[19] P. Hong, T. Huang, and M. Turk, “Gesture modeling and
recognition using finite state machines,” IEEE Conference on
Face and Gesture Recognition, Mar. 2000.

[20] J. Pittman, “Recognizing handwritten text,” in Human factors
in computing systems: Reaching through technology (CHI
’91), New York,NY, 1991, pp. 271–275.

[21] D. Rubine, “Specifying gestures by example,” ACM SIG-
GRAPH Computer Graphics, vol. 25, no. 4, pp. 329–337,
1991.

[22] S. MacLean and G. Labahn, “Elastic matching in linear time
and constant space,” International Workshop on Document
Analysis Systems 2010 (DAS ’10), 2010.

[23] L. Kara and T. Stahovich, “An image-based, trainable symbol
recognizer for hand-drawn sketches,” Computers & Graphics,
vol. 29, no. 4, pp. 501–517, 2005.

[24] M. Notowidigdo and R. MIller, “Off-line sketch interpreta-
tion,” AAAI Fall Symposium, pp. 120–126, 2004.

[25] J. Wobbrock and A. Wilson, “Gestures without libraries,
toolkits or training: a $1 recognizer for user interface pro-
totypes,” Proceedings of the 20th annual ACM symposium on
User interface software and technology (UIST ’07), 2007.

[26] L. Anthony and J. Wobbrock, “A lightweight multistroke
recognizer for user interface prototypes,” in Proceedings of
Graphics Interface 2010 (GI’10), Toronto, ON, 2010.

[27] Y. Li, “Protractor: a fast and accurate gesture recognizer,” in
Proceedings of the 28th international conference on Human
factors in computing systems (CHI ’10), New York, NY, 2010.

[28] G. Johnson, M. Gross, and J. Hong, “Computational support
for sketching in design: a review,” Foundations and Trends
in Human-Computer Interaction 2, 2009.

[29] W. H. PRESS, B. P. FLANNERY, S. A. TEUKOLSKY, and
W. T. VETTERLING, Numerical Recipes, 3rd ed., ser. the art
of scientific computing. Hong Kong: Cambridge University
Press, 2007.

[30] R. Kruger, S. Carpendale, S. Scott, and A. Tang, “Fluid
integration of rotation and translation,” Proceedings of the
SIGCHI conference on Human Factors in computing systems,
pp. 601–610, 2005.

[31] J. Reisman, P. Davidson, and J. Han, “A screen-space for-
mulation for 2D and 3D direct manipulation,” Proceedings of
the 22nd annual ACM symposium on User interface software
and technology, pp. 69–78, 2009.

[32] R. S. Wright, N. Haemel, G. Sellers, and B. Lipchak,
OpenGL SuperBible, ser. Comprehensive Tutorial and Ref-
erence. Addison-Wesley Professional, Jul. 2010.

[33] J. Han and J. Kim, 3D Graphics for Game Programming.
Chapman & Hall, Feb. 2011.

[34] Y. Kiriaty, L. Moroney, S. Goldshtein, and A. Fliess, Intro-
ducing Windows 7 for Developers. Microsoft Pr, Sep. 2009.

[35] U. Laufs, C. Ruff, and J. Zibuschka, “MT4j-A Cross-platform
Multi-touch Development Framework,” ACM EICS 2010,
Workshop: Engineering patterns for multi-touch interfaces,
pp. 52–57, 2010.

[36] T. O’Brien, D. Keefe, and D. Laidlaw, “A case study in using
gestures and bimanual interaction to extend a high-DOF input
device,” in Proceedings of the 2008 symposium on Interactive
3D graphics and games (I3D ’08), New York, NY, 2008.

[37] J. Lazar, D. Jinjuan Heidi Feng, and D. Harry Hochheiser, Re-
search Methods in Human-Computer Interaction, Jan. 2010.

