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Abstract 
Interactive video-on-demand applications pose a num­
ber of interesting problems such as the support of fast 
forward and rewind at arbitrary speeds. While it has 
been shown that no single data layout scheme can sup­
port these functions at arbitrary speeds without vi­
olating load balance conditions, researchers are now 
exploring methods to allow at least a wide range of 
speeds to be supported under load balance conditions. 
In this paper, we introduce Declustered Mirror, a novel 
scheme that mirrors a set of striped disks to provide 
improved performance and fault tolerance for a video­
on-demand system. The improved performance is ob­
tained by the use of disk stripping to provide high 
I/ 0 bandwidth for multimedia data and by the use of 
Distributed Cyclic Layout (DCL) and Staggered Dis­
tributed Cyclic Layout (SDCL) to provide support for 
a wide range of fast forward and rewind speeds under 
load balance conditions. Fault tolerance is provided 
through mirroring. 

Keywords: load balance, fast forward , rewind, mir­
roring, stripping. 

1 Introduction 
The ability to digitize, store, retrieve, process, 

and transport analog information has changed the 
dimensions of information handling in the past few 
years. This is a consequence of various advance­
ments in different parts of the computing technol­
ogy. A by-product of these advances is the emer­
gence of multimedia information processing which en­
compasses the integrated generation, representation, 
processing, storage, and dissemination of independent 
machine processable information. Moreover, the ad­
vent of interactive video-on-demand applications have 
opened up a number of research issues in data lay­
out and placement. Due to the large sizes of some 
multimedia objects, the storage allocation strategies 
for multimedia systems have attracted a lot of at­
tention [9 , 8, 17, 16, 15]. Numerous storage strate­
gies for large objects have been proposed and uti-
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lized [11, 13, 6, 5, 14]. Most of these techniques 
are extensions to techniques used in traditional (non­
multimedia) data processing environments. Moreover 
most of the efforts in this direction appear to be f~ 
cused on the ability to satisfy the huge I/0 bandwidth 
requirements of these large objects. Very little if any 
effort has been directed to the problem of fault tol­
erance especially in interactive video-on-demand en­
vironments. The primary technique that has been 
adopted so far to satisfy this huge I/0 bandwidth re­
quirement is parallel I/0 in the form of disk striping. 

Disk striping was studied in [19, 11] and found to 
be an effective technique for satisfying the high band­
width requirements of certain supercomputing appli­
cations. However , the fault tolerance of the stripped 
disks was very poor since the failure of any single disk 
in the array meant the loss of data. 

Redundant array of inexpensive disks (RAID) [18] 
was introduced to address the fault tolerance require­
ments of stripped disk arrays. The RAID technique is 
very attractive because to provide fault tolerance for 
a single disk failure , it uses only one parity disk for 
every G disks in a disk array group unlike mirroring 
which uses a 100% space overhead. 

Disk mirroring is the replication of one logical disk 
in n physical disks. For simplicity we assume that 
n = 2. Mirroring has been implemented in many 
systemsr2o, 1] . Mirroring increases I/0 bandwidth 
and fauft tolerance is provided at a 100% space over­
head since every data item is replicated in a mirror 
disk. 

Most of the studies addressing bandwidth issues in 
multimedia systems have primarily used disk striping 
[4, 12] without considering the fault tolerance issues 
associated with disk striping. Although the argument 
could be made that the addition of a parity disk to a 
striped array is somewhat straightforward, we argue 
that the performance consequences of such a scheme 
especially in an interactive video-on-demand environ­
ment could be substantial. In this paper, we make the 
case for a Declustered Mirror, a scheme that mirrors a 
set of striped disks to provide improved performance 
and fault tolerance for a video-on-demand system. Al­
though in practice, one would expect only the hot set 
of data to be mirrored, we do not discuss this opti­
mization any further in this paper. The advantages of 



this technique are as follows: 

• It supports the high bandwidth requirements of 
multimedia systems . 

• It provides fault tolerance to a single disk failure 
using mirroring technique. 

• During normal mode operation, it provides load 
balance for a wide range of fast forward (rewind) 
speeds. 

• During degraded mode operation (when a sin­
gle disk has failed) , it provides load balance by 
spreading the load of the failed disk over many 
disks in the array while still supporting a broad 
range of fast forward (rewind) speeds. 

The primary disadvantage of this scheme is the 100% 
space overhead of disk mirroring. 

The remainder of this paper is organized as follows. 
In Section 2 we describe disk mirroring and another 
form of disk mirroring referred to as chained decluster­
ing (10] which motivated our Declustered Mirror. In 
Section 3 we discuss two disk stripping techniques Dis­
tributed Cyclic Layout (DCL) and t he Staggered Dis­
tributed Cyclic Layout (SDCL) (4] which also partly 
motivated our ideas. We present the Declustered Mir­
ror in Section 4 and conclude the paper in Section 5. 

2 Mirroring Techniques 

STORAGE 
DEVICES SERVER 

Figure 1: A single machine video server 

In this section we briefly overview traditional mir­
roring and another form of mirroring referred to as 
chained declustering. But firs t we discuss two lev­
els of data replication that are common in multimedia 
storage systems. These are Intra Node and Inter Node 
Replication. 

2.1 Intra node and inter node replication 
Intra Node Replication (INRra) is replication at the 

storage device level per node (machine), while Inter 
Node Replication (INRer) is replication at process­
ing nodes level. Given the architecture in Figure 1, 
the only possible replication is INRra where different 
copies of a large object (e.g., video file) or segments 
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of a large object are stored in different storage de­
vices. Given a set of storage devices, we can maintain 
two forms of replication aggregations, namely, Stor­
age Device Exclusivity (SDE) or Storage Device In­
clusivity (SDI). A replication strategy in INRra uses 
SDE when there is a set of storage devices that con­
tain only replicas of objects. A replication strategy in 
INRra uses SDI when every storage device can con­
tain both primary and secondary copies of objects. 
For example, using Figure 1, if {SD1 , SD2 , •.• , SD~} 
are used for the primary copies of video objects and 
{ S D ~ +1, ... , S D m} are used for t he secondary copies, 
then we maintain SDE technique. When a given stor­
age device becomes unavailable, then the requests to 
objects stored in it are directed to the replicas. 

SDl SD2 

G 6 
(a) INRra I SDE 

~
2 

Rl.2 
.2' 

(b) INRra I SDI 

SD3 SD4 

EJ [ R2J 

~ 
~ 

Figure 2: Intra node replication maintaining 
SDE and SDI 

Figure 2 uses four storage devices in a node (IN­
Rra) to illustrate SDE and SDI. In Figure 2 (a), SD1 
and SD2 hold the primary copies of the video data 
R1 and R2. The secondary copies R1 ' and R2 ' are 
maintained in storage devices SD3 and SD4. This is 
SDE since certain storage devices hold only secondary 
copies of video objects. Figure 2 (b) shows the case 
where each storage device holds both primary and sec­
ondary copies. Note that in this example, R1 is par­
titioned into two such that R1 = R1.1 U Rl.2. R2 
is also similarly partitioned. While the primary frag­
ments of R1 are held in SD1 and SD2, the secondary 
fragments are held in SD3 and SD4. Similarly, the 
primary and secondary fragments of R2 are held in 
SD3, SD4 and SD1 , SD2 respectively. Since every de­
vice contains both primary and secondary copies of 
objects, this illustrates SDI. 

2.2 Traditional mirroring 
Traditional mirroring maintains a logical disk image 

on two physical disks. The two physical disks are exact 
mirrors of one another. Figure 3 shows an example of 
traditional mirroring. Four disks are shown; disk 0 
and disk 1 contain identical data and hence form a 
mirror set; similarly disk 2 and disk 3 form another 
mirror set. 

Traditional mirroring improves reliability [1] and 
performance (3] over a single disk system. Reliability 



DiskO Diskl 

Rl rl 

Disk2 Disk3 

:::~~ :>:::: 
.... . . . . 
. . . . 

. . . . . 

Figure 3: Traditional mirroring. DiskO and Diskl 
form a mirror set while Disk2 and Disk3 form another 
set. 

is improved by replicating each component in the I/0 
subsystem. This allows continuous operation of the 
I/0 subsystem even in the event of a single component 
failure . 

When one of the disks in a mirror set fails , all 
requests are serviced by the surviving disk until the 
failed disk is reconstructed on another drive. For ex­
ample, if disk 0 fails , disk 1 picks up all the requests 
meant for disk 0 until disk 0 is repaired or recon­
structed . Disk reconstruction usually involves copy­
ing the survivor disk to a replacement disk. Note that 
regardless of the load on disks 2 and 3 they cannot par­
ticipate in sharing the load of the failed disk (disk 0). 
This might place a lot of burden on disk 1 potentially 
unbalancing the load on the disks during this period. 
This is the motivation behind Chained Declustering. 

2.3 Chained declustering 
As in tradtional mirroring, with chained decluster­

ing [10], two physical copies (a primary and a backup) 
of each relation are declustered over a set of disks such 
that the primary and backup copies of a fragment are 
always placed on different disks. The disks are divided 
into disjoint groups called relation clusters and tuples 
of each relation are declustered among the disks of the 
cluster. To simplify our discussion, we assume without 
loss of generality the existence of one relation cluster 
as shown in Figure 4. 

The data placement algorithm for chained declus­
tering operates as follows. Assume there are a total 
of D disks numbered 0, ... , D - 1. We partition the 
relation fragments in the primary segment as shown in 
Figure 4. Any partitioning and placement algorithm 
could be used. In Figure 4 a simple modulo D algo­
rithm which places fragment i in disk ( i modulo D) has 
been used. The backup fragments are placed using a 
modified form of this algorithm. In the backup region, 
fragment i is placed in disk ( ( i + 1) modulo D) . 0 b­
serve the chained formation of mirror sets. Unlike the 
traditional mirroring technique where two disks are 
tightly coupled in a mirrored relationship, the chained 
declustering is more flexible. 

The benefit of this scheme becomes obvious when 
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Copy 

DiskO Disk 1 Disk2 Disk3 
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rl 

Figure 4: Chained declustering. Note the chained 
formation of mirrored sets. 

disk 0 disk 1 disk 2 diSk J 
Primary - ~R1 *R2 R3 
Backup - ro ~rl tr2 

Table 1: Fragment Utilization with Chained 
Declustering After Failure of Disk 0 

a disk failure occurs. An example is shown in Ta­
ble 1 where disk 0 is assumed to have failed. Observe 
how the load is evenly spread over the three remain­
ing disks in the cluster providing better load balance 
than in the traditional mirror. Disk 1 services all re­
quests for fragment 0 using the backup copy it holds 
(ro), and one-third of requests for fragment 1 (kRt). 
The requests serviced by disks 2 and 3 can be similarly 
deduced from Table 1. Note that the load increase is 
uniform across all operational disks (33%). 

3 Stream Control in Interactive Video­
on-Demand Systems 

Users of high performance multimedia servers will 
soon have access to exciting applications such as multi­
media mail , high quality interactive video-on-demand, 
browsing remote multimedia archives and virtual re­
ality environments. A number of challenges have 
emerged from these exciting applications. One ofthem 
is the need to provide many of the functionalities cur­
rently supported in video cassettes. In this section, we 
take a closer look at some of these functionalities and 
some data layout schemes designed to support them. 

3.1 Interactive video-on-demand func-
tionalities 

Multimedia applications require interactivity in the 
form of stream playout control that allows a user to do 
fast forward (!f) , rewind {rw), slow play, slow rewind, 
pause, and stop-and-return on a media stream as is 
done in video cassettes . A user may also access the 
media streams in a random manner. These operations 
have implications for data layout and scheduling in 



an interactive video-on-demand (IVOD) environment. 
Two ways of implementing stream control for some of 
these operations are [4]: 

• Rate Variation Scheme (RVS) : In this tech­
nique, the rate of display at the client and hence 
the rate of data retrieval at the server is changed. 
For ff the data retrieval at the server is increased. 
A performance study of this type of scheme is 
presented in [i]. 

• Sequence Variation Scheme (SVS): In this 
technique, the sequence of frame display and 
hence the sequence of data retrieval and trans­
mission from the server is varied. The display 
rate at the client side is unaltered. 

There are three disadvantages of the RVS implemen­
tation for ff and rw [4]. These include (1) Increased 
network and storage bandwidth requirement since the 
data rate is increased; (2) Increased data handling re­
quirement for real-time decoders which may be unable 
to handle the increased throughput they now face; and 
(3) Increased buffer requirement at the client since the 
arrival rate of data has increased. 

Because of these drawbacks, the SVS implementa­
tion appears to be the preferred alternative. How­
ever, as noted in [4) , scheduling for ff (rw) is prob­
lematic with the SVS approach. Consider a system 
with storage nodes D = 6 and a ff implementation 
that skips alternate frames. In normal playout the 
frame sequence is {0, 1, 2, 3, 5, 6, ... }, whereas for the 
ffthe same sequence is {0, 2,4, 6, 8, 10, ... }. If data 
layout is simple round robin (modulo D) algorithm, 
then the set of nodes visited during normal playout is 
{0, 1, 2, 3, 4, 5, ... }, whereas in ff mode the nodes vis­
ited are {0, 2, 4, 0, 2, 4, . . . }. There are two problems 
with this simple example. First , the stream control al­
ters the sequence of node-visits from the normal linear 
(modulo D) sequence. Second, it creates "hot-spots" 
and in turn requires bandwidth to be reserved at each 
node to deal with the overloads. 
3.2 Data layout for interactive video-on­

demand systems 
A number of data layout schemes have been intro­

duced to address the load balancing problem identi­
fied above. In [12] the prime round robin (PRR) lay­
out policy was introduced. The PRR uses arbitrary 
number of disks (N) with uniform load balancing for 
fast retrievals as well as display and slow retrievals , 
but the rounding distance is the biggest prime num­
ber Np (~ N) instead of N. Using their model, the 
jth. segment of the ith. object would be stored in disk 
k of N , where k is given by 

k _ { (a+ j mod (N- Np + 1)) modN if j = cNp 
- (a+N-Np+(jmodNp))modN otherwise 

where a= (N- Np + 1) x i. 
PRR allows fast retrieval as well as play at any 

speed s -::1 eN to access N distinct disks provided N 
is prime. There are, however , a number of problems 
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Xl.S Xl.7 
Xl.12 

Xl.15 X1.17 
X1.22 
Xl.27 

X2.7 X2.8 X2.5 
X2.12 X2.13 X2.10 
X2.17 X2.18 X2.15 
X2.22 X2.23 X2.20 
X2.27 X2.28 X2.25 

Table 2: Placement of segments of three objects 
(0,1,2) across 6 disks using PRR algorithm. 

with the PRR algorithm. First, it is wasteful of disk 
space. For example, an installation that has an array 
of N = 10 disks uses only Np = 7 of them to store a 
stripe (since 7 is the greatest prime number less than 
or equal to 10). This is a 30% underutilization of avail­
able storage and also a 30% decrease in parallel I/0 
transfers. Second, if parity is added for fault tolerance 
[18] , PRR would complicate the parity placement al­
gorithm and in some cases cause the parity disk(s) 
to become a performance bottleneck. As an exam­
ple, consider a PRR placement scheme with N = 6 
and N'P = 5. Using the PRR placement algorithm we 
show in Table 2 the placement of the segments of three 
multimedia objects in the disk array. Observe that if 
the parity for each stripe is placed in the unused disk 
in each stripe (a logical thing to do) , the parity would 
not be evenly distributed over the disks. In fact, if we 
considered the three small objects shown in Table 2 
as a single large object, all the parity would map to 
disks 0 and 1. 

A number of multimedia data layout schemes were 
defined in [4] . Two of these are the Distributed Cyclic 
Layout (DCL} and the Staggered Distributed Cyclic 
Layout {SDCL). Table 3 shows an example. These are 
essentially forms of disk striping [19] , and while they 
increase the I/0 throughput of multimedia systems, 
they provide no fault tolerance. We note that DCL 
is basically analagous to the modulo D algorithm (D 
is number of disks in array), while SDCL is a slightly 
modified version of DCL where data placement for the 
next stripe starts at disk (k + s) modulo D given that 
the current stripe starts at disk k. s is the stagger 
distance. In Table 3, s = 1. SDCL is also similar to 
staggered striping introduced in [2] and chained declus­
tering [10] . 



X0.11 
X0.16 
X0.21 
X0.26 

X0.6 
X0.17 
X0.22 
X0.27 

X0.7 
X0.12 
X0.23 
X0.28 

X0.8 
X0.13 
X0.18 
X0.29 

Table 3: DCL (top half) and SDCL (bottom 
half) placement schemes 

The periodic nature of multimedia data makes it a 
good candidate for striping. If we consider a frame 
as a logical unit of repetition, we can assume that 
each logical unit is physically ~istributed on diffe~ent 
storage devices and accessed ill parallel. Recons1der 
the DCL placement scheme illustrated in Table 3, we 
note that each object segment of object XO can be a 
frame. The first frame in each group of frames that can 
be accessed in parallel is referred to as anchor frame 
[4] or pivot frame. Note that the location of anch<?r 
node is fixed in the DCL scheme. From Table 3, this 
is disk 0. The anchor frames are shown in bold in the 
table. 

As already indicated in Section 3.1, there are some 
problems with the DCL scheme. Consider the video 
frames stored in D = 6 nodes using the DCL algo­
rithm as shown in Table 3. In normal playout , the 
frame sequence is XO.O, X0.1, X0.2, X0.3, X0.5 , X0.6, 
. . . , whereas for ff the same sequence is XO.O, X0.2 , 
X0.4, X0.6, X0.8, X0.10, . . .. Since data layout is with 
DCL algorithm, the set of nodes visited during nor­
mal playout is 0,1,2,3,4,5, . . . , whereas in ff mode ~he 
nodes visited are 0,2,4,0,2,4, . . .. The problem w1th 
this is the stream control alters the sequence of node­
visits from the normal linear (modulo D) sequence. 
Moreover it creates "hot-spots" and in turn requires 
bandwidth to be reserved at each node to deal with 
the overloads. 

Note that if the SDCL scheme suggested in Table 3 
is used there would not be the hot-spots problems ob­
served 'with the DCL scheme. For example, reconsider 
the ff sequence XO.O, X0.2, X0.4, X0.6, X0.8, XO.lO, 
. . . . From Table 3 we observe that with SDCL the 
nodes visited are 0,2,4,1 ,3,5. 

3.3 Load balancing 
A set of D frames is said to be load-balanced if 

the set of nodes from which these frames are retrieved 
contains each of the D nodes only once [4]. Using 
this definition, a number of important load balancing 
theorems in distributed data layout were proved in 
[4]. We summarize the key features of the theorems 
as follows: 
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1. If the number of storage nodes is finite, no dis­
tributed (multimedia) data layout scheme will 
support fast forward (rewind) of arbitrary skip­
ping distance without violating the load balanc­
ing condition. 

2. For a DCL over D storage nodes, if the fast for­
ward (rewind) distance d1 is relatively prime to 
D, then the set of nodes S,. from which consec­
utive D frames in fast forward frame set Sf are 
retrieved is load-balanced. For example, if D = 
16, DCL will produce load-balance node sets for 
d1 = 3,5,7,11 ,13,15. These numbers are prime 
to 16. A corollary to this is that if D is prime 
and the ff (rw) distance is not a multiple of D, 
then the set of nodes from which D frames are 
retrieved is load-balanced. For example, for D = 
11, DCL will produce load-balance node sets for 
d1 = 2,3,4,5,6,7,8,9,10 for consecutive D frames 
retrieved. (See also PRR in Section 3.2). 

3. For a SDCL over D storage nodes with stagger 
distance s = 1, load-balance will be achieved 
under certain conditions. For example, if the ff 
starts at a node corresponding to an anchor frame 
- shown in bold in Table 3 (or 2D - 1 nodes from 
anchor node for rw) , and if the ff (rw) distance 
d1 is a factor of D, then the set of nodes from 
which D frames are retrieved is load-balanced. 
For example, if D = 16, SDCL will produce load­
balanced node sets for df = 2,4,8,16. 

4 Declustered Mirror 
Two issues of primary interest in this paper are: 

1. The support of a wide range of fast forward and 
rewind speeds under a load balance condition. 

2. The support of high 1/0 bandwidth under fault 
tolerant condition. 

Some ideas have been proferred for each of these 
problems. However, none of the solutions presents 
an integrated framework for addressing the two issues 
jointly. DecltJ.Stered mirror is a novel scheme that effi­
ciently addresses these problems within an integrated 
data layout strategy. Declustered mirror uses: 

• Disk stripping to provide high 1/0 bandwidth for 
multimedia data. 

• Distributed Cyclic Layout (DCL} and Staggered 
Distributed Cyclic Layout (SDCL) to provide a 
data layout scheme which supports a wide range 
of fast forward and rewind speeds under load bal­
ance condition for interactive video-on-demand 
systems. 

• Mirroring to provide fault tolerance against a sin­
gle disk failure. 

• Chained DecltJ.Steringto provide load balance dur­
ing failure mode operation. 



Table 4: Cluster 0 of declustered mirror. Clus­
ter size = 6. DCL algorithm is used for this 
primary copy cluster. 

Table 5: Cluster 1 of declustered mirror. Clus­
ter size = 6. SDCL algorithm is used for this 
backup copy cluster. 

Tables 4 and 5 show an example of data layout 
in a declustered mirror scheme. There are N = 12 
disks, numbered 0, 1, .. . , 11 . These disks are divided 
into two clusters as suggested in chained decluster­
ing [10]. Cluster 0 consists of disks 0, 1, . .. , 5 while 
cluster 1 consists of disks 6, 7, . .. , 11 . The clusters 
form a mirror pair in a manner almost analogous to 
chained declustering. All disks in a cluster form one 
logical disk, with the logical disk of cluster 0 holding 
the primary copy of data and the backup copy held 
in the logical disk that constitutes cluster 1. To sim­
plify exposition, we assume one large object X with 
sixty fragments X.O , X.!, . .. , X. 59 placed in the disks 
as shown in Tables 4 and 5. Data in the primary log­
ical disk is allocated using the DCL algorithm, while 
SDCL is used in the backup logical disk. Note that 
mirroring protection refers to a logical disk. For ex­
ample logical disk 0 is mirrored on logical disk 1. 

4.1 Address mapping 
We identify two address schemes in Tables 4 and 5. 

1. The address scheme of a logical disk (pri­
mary or backup). For our example in cluster 0 
(the primary copy cluster, or logical disk 0) , the 
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segment or fragment number is identical to the 
logical disk address . In other words , the logical 
addresses are assigned through all the disks in the 
cluster in a round robin manner. While the same 
round robin assignment of addresses is used in 
the SDCL scheme (logical disk 1) , it is important 
to note that it does not necessarily correspond to 
the segment or fragment number placed at the 
address . For example, note that in cluster 1 (Ta­
ble 5) , fragment 11 (X.ll) is placed in logical ad­
dress 6 of logical disk 1 (backup cluster). 

2. The physical addresses in each disk of a 
logical disk. In Tables 4 and 5, each column 
is equivalent to a physical disk, and ten physi­
cal addresses are shown for each disk. For ex­
ample, Table 6 shows the mapping between the 
object fragments in disk 0 and the physical disk 
addresses in which they are placed. 

Table 6: Physical Mapping of Segments of 
Disk 0 

During normal operation, playback requests can 
be serviced either from the primary or backup copy. 
Since application programs make requests using the 
primary address scheme, the primary addresses must 
be mapped to backup addresses if the backup copy 
of data must be used. The mapping scheme will 
vary from one installation to anot her depending on 
the logical partitioning of the disk between primary 
and backup segments. For illustration, we present 
a scheme which assumes the logical partitioning sug­
gested in Tables 4 and 5. 

The mapping problem can be generalized as fol­
lows: Given a DCL allocation scheme, determine a 
scheme that maps a given logical DCL address to cor­
responding logical and physical SDCL addresses , as­
suming that the SDCL scheme uses a stagger distance 
s = 1. 

The algorithm is straightforward. 

• Input: 

- Logical DCL address , DCLtogicat(A ), and, 
- Number of disks Din the cluster. 

• Output: 

- Logical SDCL address, SDCLtogicat(A), 
- Disk number d that holds the data item, and 

- Corresponding physical SDCL or DCL ad-
dress , SDCL,hvsicat(A) or DCL,hysicat(A) 
in disk d. 



The mapping is as follows. For the DCL scheme: 

Disknumberd = DCLtagica.I(A)modD (1) 

DCLphysica.t(A) = 

For the SDCL scheme: 

DCLtagica.t(A) 
D 

(2) 

Disk number d = ((T +F) mod D)+ D (3) 

S DC Lphysica.t (A) 
DCLtagica.t(A) (4) 

D = 
= DCLphysica.t(A) (5) 

SDCLtagica.t(A) = ((P + T +F) mod D)+ .1{'6) 

where 

• p = SDCL pivot= ( DCLr .J) cu i(A)) X D 

• T = SDCLpivot offset = 
( DCLr._b'car (A) ) mod D 

• F = Fragment offset from SDCL pivot = 
DCLtagica.t(A)- P 

Note then that given any logical request , the 
backup address can be speedily identified. Thus dur­
ing normal operation, the system can efficiently de­
termine whether the request is best serviced from the 
primary or backup location. Moreover, it is clear that 
since every data item is mirrored, fault tolerance is 
provided for a single disk failure. Note also that like 
chained declustering, there is no tight coupling be­
tween any two physical disks, so that should a disk 
fail, the data in that disk is spread over multiple disks 
in the other cluster. This provides a natural load bal­
ancing mechanism in the event of a failure. 

Since the data is stored using both DCL and SDCL 
techniques, the advantages of both can be utilized in 
providing a wide range of fast forward (rewind) speeds. 
For our specific example with D = 6, we note that 
DCL will provide load balance for fast forward speeds 
that are relatively prime to 6, i.e. for dt = 5. How­
ever, the SDCL scheme will provide load balance for 
dt = 2,3,6- factors of 6. Thus fast forward (rewind) 
speeds dt = 2,3,5,6 can be supported. For a carefully 
chosen number of disks , a wide range of speeds can be 
supported. Assume there are 32 disks, so that D = 
16, then DCL can support dt = 3,5,7,9,11,13,15, while 
SDCL can support dt = 2,4,8,16 for a total of eleven 
fast forward and rewind speeds. 
4.2 Effect of cluster size on performance 

The cluster size has a major impact on the perfor­
mance of declustered mirror. Our initial observations 
suggest that this scheme may not be appropriate for 
installations with a very large number of disks. There 
are two reasons for this. The first is the large cost 
associated with mirroring a large multimedia storage 
system. The second is intrinsic in the cluster size. Be­
yond a certain number of disks, there is practically 
no benefit in mirroring the data for performance. Re­
call that for our purposes here, performance is defined 
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in terms of the number of variable speeds supported 
under load-balanced condition. 

In Section 3.3, it was noted that the DCL algorithm 
provides load-balance for speeds that are prime to the 
number of disks (nodes) D , while SDCL provides load­
balance for speeds that are factors of D . What is 
observed is that as D increases, the numbers that are 
prime to D increase faster than the numbers that are 
factors of D . In fact , the factors of D fl.unctuate a 
lot and in the particular ca.ses when D is prime, no 
factors are obtained with the result that the SDCL 
scheme does not contribute to the number of variable 
speeds supported except at speed = D , the cluster 
size. 

#of %Supported #of %Supported 
Disks !JCL ::i!JCL Disks !JCL ::S!JCL 

2 0.0 50.0 30 73.0 :.:!J .U 
3 33.0 33.0 40 80.0 17.0 
4 25.0 50.0 50 88.0 10.0 
5 60.0 20.0 60 80.0 18.0 
6 33.0 50.0 70 89.0 10.0 
7 71.0 14.0 80 88.0 11.0 
8 50.0 38.0 90 87.0 12.0 
9 67.0 22.0 100 91.0 8.0 

10 60.0 30.0 no 93.0 6.0 
11 82.0 9.0 120 87.0 12.0 
12 50.0 42.0 130 94.0 5.0 
13 85.0 8.0 140 91.0 8.0 
14 71.0 21.0 150 92.0 7.0 
15 73.0 20.0 160 93.0 7.0 
16 69.0 25.0 170 95.0 4.0 
17 88.0 6.0 180 90.0 9.0 
18 67.0 28.0 190 96.0 4.0 
19 89.0 5.0 194 98.0 2.0 
20 70.0 25.0 195 96.0 4.0 
21 81.0 14.0 196 95.0 4.0 
22 82.0 14.0 197 99.0 1.0 
23 91.0 4.0 198 94.0 6.0 
24 67.0 29.0 200 94.0 5.0 

Table 7: % of all possible fast forward and 
rewind speeds supported by DCL and SDCL 
algorithms for various cluster sizes. 

Table 7 shows the percentage of all possible speeds 
supported by each of the schemes for a given cluster 
size. For example, for ten disks (cluster size = 10) , 
DCL will support fast forward (rewind) speeds, d1 = 
3,4,6, 7,8,9, that is a total of six speeds, while SDCL 
will support three speeds, dt = 2,5,10. Hence the 
corresponding values 60% and 30% in the table for 
ten disks. 

5 Conclusion 
The advent of interactive video-on-demand appli­

cations have opened up a number of research issues in 
data layout and placement. In this paper, we intro­
duced Declustered Mirror, a novel scheme that mir­
rors a set of striped disks to provide improved per-



formance and fault tolerance for a video-on-demand 
system. Declustered mirror uses: 

• Disk stripping to provide high I/0 bandwidth for 
multimedia data. 

• Distributed Cyclic Layout (DCL) and Staggered 
Distributed Cyclic Layout (SDCL) to provide a 
data layout scheme which supports a wide range 
of fast forward and rewind speeds under load bal­
ance conditions for interactive video-on-demand 
systems. 

• Mirroring to provide fault tolerance for a single 
disk failure. 

• Chained Declustering to provide load balance dur­
ing failure mode operation. 

The primary disadvantage of this scheme is the 100% 
space overhead of disk mirroring. 
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