
----------~-- ~-

9h -.D !.--. . ' . .

SEKE '9

The 8th International
Conference on

Software Engineering
and

Knowledge Engineering

SEKE '96
dUNE 10·12

PROCEEDINGS

~ P RINTED BY K~O\VLEDGE S YSTEI-.15 I NSTITUTE

Data Layout for Interactive Video-on-Demand Storage Systems*

Cyril U. Orji, Naphtali Rishe
High Performance Database Research Center

School of Computer Science

Kingsley C. Nwosu
Lucent Technologies
(AT&T Bell Labs.)

Florida International University
Miami, FL. 33199

{ orji, rishen} @jiu. edu

Abstract
Interactive video-on-demand applications pose a num­
ber of interesting problems such as the support of fast
forward and rewind at arbitrary speeds. While it has
been shown that no single data layout scheme can sup­
port these functions at arbitrary speeds without vi­
olating load balance conditions, researchers are now
exploring methods to allow at least a wide range of
speeds to be supported under load balance conditions.
In this paper, we introduce Declustered Mirror, a novel
scheme that mirrors a set of striped disks to provide
improved performance and fault tolerance for a video­
on-demand system. The improved performance is ob­
tained by the use of disk stripping to provide high
I/ 0 bandwidth for multimedia data and by the use of
Distributed Cyclic Layout (DCL) and Staggered Dis­
tributed Cyclic Layout (SDCL) to provide support for
a wide range of fast forward and rewind speeds under
load balance conditions. Fault tolerance is provided
through mirroring.

Keywords: load balance, fast forward , rewind, mir­
roring, stripping.

1 Introduction
The ability to digitize, store, retrieve, process,

and transport analog information has changed the
dimensions of information handling in the past few
years. This is a consequence of various advance­
ments in different parts of the computing technol­
ogy. A by-product of these advances is the emer­
gence of multimedia information processing which en­
compasses the integrated generation, representation,
processing, storage, and dissemination of independent
machine processable information. Moreover, the ad­
vent of interactive video-on-demand applications have
opened up a number of research issues in data lay­
out and placement. Due to the large sizes of some
multimedia objects, the storage allocation strategies
for multimedia systems have attracted a lot of at­
tention [9 , 8, 17, 16, 15]. Numerous storage strate­
gies for large objects have been proposed and uti-

"This work has been supported in part by grants from NASA
(NAGW-4080), ARO (BMDO grant DAAH04-0024) and NSF
(IRI-9409661) .

285

67 Whippany Road
Whippany, N J 07981-0903
nwosuck@harpo. wh. att. com

lized [11, 13, 6, 5, 14]. Most of these techniques
are extensions to techniques used in traditional (non­
multimedia) data processing environments. Moreover
most of the efforts in this direction appear to be f~
cused on the ability to satisfy the huge I/0 bandwidth
requirements of these large objects. Very little if any
effort has been directed to the problem of fault tol­
erance especially in interactive video-on-demand en­
vironments. The primary technique that has been
adopted so far to satisfy this huge I/0 bandwidth re­
quirement is parallel I/0 in the form of disk striping.

Disk striping was studied in [19, 11] and found to
be an effective technique for satisfying the high band­
width requirements of certain supercomputing appli­
cations. However , the fault tolerance of the stripped
disks was very poor since the failure of any single disk
in the array meant the loss of data.

Redundant array of inexpensive disks (RAID) [18]
was introduced to address the fault tolerance require­
ments of stripped disk arrays. The RAID technique is
very attractive because to provide fault tolerance for
a single disk failure , it uses only one parity disk for
every G disks in a disk array group unlike mirroring
which uses a 100% space overhead.

Disk mirroring is the replication of one logical disk
in n physical disks. For simplicity we assume that
n = 2. Mirroring has been implemented in many
systemsr2o, 1] . Mirroring increases I/0 bandwidth
and fauft tolerance is provided at a 100% space over­
head since every data item is replicated in a mirror
disk.

Most of the studies addressing bandwidth issues in
multimedia systems have primarily used disk striping
[4, 12] without considering the fault tolerance issues
associated with disk striping. Although the argument
could be made that the addition of a parity disk to a
striped array is somewhat straightforward, we argue
that the performance consequences of such a scheme
especially in an interactive video-on-demand environ­
ment could be substantial. In this paper, we make the
case for a Declustered Mirror, a scheme that mirrors a
set of striped disks to provide improved performance
and fault tolerance for a video-on-demand system. Al­
though in practice, one would expect only the hot set
of data to be mirrored, we do not discuss this opti­
mization any further in this paper. The advantages of

this technique are as follows:

• It supports the high bandwidth requirements of
multimedia systems .

• It provides fault tolerance to a single disk failure
using mirroring technique.

• During normal mode operation, it provides load
balance for a wide range of fast forward (rewind)
speeds.

• During degraded mode operation (when a sin­
gle disk has failed) , it provides load balance by
spreading the load of the failed disk over many
disks in the array while still supporting a broad
range of fast forward (rewind) speeds.

The primary disadvantage of this scheme is the 100%
space overhead of disk mirroring.

The remainder of this paper is organized as follows.
In Section 2 we describe disk mirroring and another
form of disk mirroring referred to as chained decluster­
ing (10] which motivated our Declustered Mirror. In
Section 3 we discuss two disk stripping techniques Dis­
tributed Cyclic Layout (DCL) and t he Staggered Dis­
tributed Cyclic Layout (SDCL) (4] which also partly
motivated our ideas. We present the Declustered Mir­
ror in Section 4 and conclude the paper in Section 5.

2 Mirroring Techniques

STORAGE
DEVICES SERVER

Figure 1: A single machine video server

In this section we briefly overview traditional mir­
roring and another form of mirroring referred to as
chained declustering. But firs t we discuss two lev­
els of data replication that are common in multimedia
storage systems. These are Intra Node and Inter Node
Replication.

2.1 Intra node and inter node replication
Intra Node Replication (INRra) is replication at the

storage device level per node (machine), while Inter
Node Replication (INRer) is replication at process­
ing nodes level. Given the architecture in Figure 1,
the only possible replication is INRra where different
copies of a large object (e.g., video file) or segments

286

of a large object are stored in different storage de­
vices. Given a set of storage devices, we can maintain
two forms of replication aggregations, namely, Stor­
age Device Exclusivity (SDE) or Storage Device In­
clusivity (SDI). A replication strategy in INRra uses
SDE when there is a set of storage devices that con­
tain only replicas of objects. A replication strategy in
INRra uses SDI when every storage device can con­
tain both primary and secondary copies of objects.
For example, using Figure 1, if {SD1 , SD2 , •.• , SD~}
are used for the primary copies of video objects and
{ S D ~ +1, ... , S D m} are used for t he secondary copies,
then we maintain SDE technique. When a given stor­
age device becomes unavailable, then the requests to
objects stored in it are directed to the replicas.

SDl SD2

G 6
(a) INRra I SDE

~
2

Rl.2
.2'

(b) INRra I SDI

SD3 SD4

EJ [R2J

~
~

Figure 2: Intra node replication maintaining
SDE and SDI

Figure 2 uses four storage devices in a node (IN­
Rra) to illustrate SDE and SDI. In Figure 2 (a), SD1
and SD2 hold the primary copies of the video data
R1 and R2. The secondary copies R1 ' and R2 ' are
maintained in storage devices SD3 and SD4. This is
SDE since certain storage devices hold only secondary
copies of video objects. Figure 2 (b) shows the case
where each storage device holds both primary and sec­
ondary copies. Note that in this example, R1 is par­
titioned into two such that R1 = R1.1 U Rl.2. R2
is also similarly partitioned. While the primary frag­
ments of R1 are held in SD1 and SD2, the secondary
fragments are held in SD3 and SD4. Similarly, the
primary and secondary fragments of R2 are held in
SD3, SD4 and SD1 , SD2 respectively. Since every de­
vice contains both primary and secondary copies of
objects, this illustrates SDI.

2.2 Traditional mirroring
Traditional mirroring maintains a logical disk image

on two physical disks. The two physical disks are exact
mirrors of one another. Figure 3 shows an example of
traditional mirroring. Four disks are shown; disk 0
and disk 1 contain identical data and hence form a
mirror set; similarly disk 2 and disk 3 form another
mirror set.

Traditional mirroring improves reliability [1] and
performance (3] over a single disk system. Reliability

DiskO Diskl

Rl rl

Disk2 Disk3

:::~~ :>::::
....
. . . .

.

Figure 3: Traditional mirroring. DiskO and Diskl
form a mirror set while Disk2 and Disk3 form another
set.

is improved by replicating each component in the I/0
subsystem. This allows continuous operation of the
I/0 subsystem even in the event of a single component
failure .

When one of the disks in a mirror set fails , all
requests are serviced by the surviving disk until the
failed disk is reconstructed on another drive. For ex­
ample, if disk 0 fails , disk 1 picks up all the requests
meant for disk 0 until disk 0 is repaired or recon­
structed . Disk reconstruction usually involves copy­
ing the survivor disk to a replacement disk. Note that
regardless of the load on disks 2 and 3 they cannot par­
ticipate in sharing the load of the failed disk (disk 0).
This might place a lot of burden on disk 1 potentially
unbalancing the load on the disks during this period.
This is the motivation behind Chained Declustering.

2.3 Chained declustering
As in tradtional mirroring, with chained decluster­

ing [10], two physical copies (a primary and a backup)
of each relation are declustered over a set of disks such
that the primary and backup copies of a fragment are
always placed on different disks. The disks are divided
into disjoint groups called relation clusters and tuples
of each relation are declustered among the disks of the
cluster. To simplify our discussion, we assume without
loss of generality the existence of one relation cluster
as shown in Figure 4.

The data placement algorithm for chained declus­
tering operates as follows. Assume there are a total
of D disks numbered 0, ... , D - 1. We partition the
relation fragments in the primary segment as shown in
Figure 4. Any partitioning and placement algorithm
could be used. In Figure 4 a simple modulo D algo­
rithm which places fragment i in disk (i modulo D) has
been used. The backup fragments are placed using a
modified form of this algorithm. In the backup region,
fragment i is placed in disk ((i + 1) modulo D) . 0 b­
serve the chained formation of mirror sets. Unlike the
traditional mirroring technique where two disks are
tightly coupled in a mirrored relationship, the chained
declustering is more flexible.

The benefit of this scheme becomes obvious when

287

Primary

Copy

Backup
Copy

DiskO Disk 1 Disk2 Disk3

Rl

rl

Figure 4: Chained declustering. Note the chained
formation of mirrored sets.

disk 0 disk 1 disk 2 diSk J
Primary - ~R1 *R2 R3
Backup - ro ~rl tr2

Table 1: Fragment Utilization with Chained
Declustering After Failure of Disk 0

a disk failure occurs. An example is shown in Ta­
ble 1 where disk 0 is assumed to have failed. Observe
how the load is evenly spread over the three remain­
ing disks in the cluster providing better load balance
than in the traditional mirror. Disk 1 services all re­
quests for fragment 0 using the backup copy it holds
(ro), and one-third of requests for fragment 1 (kRt).
The requests serviced by disks 2 and 3 can be similarly
deduced from Table 1. Note that the load increase is
uniform across all operational disks (33%).

3 Stream Control in Interactive Video­
on-Demand Systems

Users of high performance multimedia servers will
soon have access to exciting applications such as multi­
media mail , high quality interactive video-on-demand,
browsing remote multimedia archives and virtual re­
ality environments. A number of challenges have
emerged from these exciting applications. One ofthem
is the need to provide many of the functionalities cur­
rently supported in video cassettes. In this section, we
take a closer look at some of these functionalities and
some data layout schemes designed to support them.

3.1 Interactive video-on-demand func-
tionalities

Multimedia applications require interactivity in the
form of stream playout control that allows a user to do
fast forward (!f) , rewind {rw), slow play, slow rewind,
pause, and stop-and-return on a media stream as is
done in video cassettes . A user may also access the
media streams in a random manner. These operations
have implications for data layout and scheduling in

an interactive video-on-demand (IVOD) environment.
Two ways of implementing stream control for some of
these operations are [4]:

• Rate Variation Scheme (RVS) : In this tech­
nique, the rate of display at the client and hence
the rate of data retrieval at the server is changed.
For ff the data retrieval at the server is increased.
A performance study of this type of scheme is
presented in [i].

• Sequence Variation Scheme (SVS): In this
technique, the sequence of frame display and
hence the sequence of data retrieval and trans­
mission from the server is varied. The display
rate at the client side is unaltered.

There are three disadvantages of the RVS implemen­
tation for ff and rw [4]. These include (1) Increased
network and storage bandwidth requirement since the
data rate is increased; (2) Increased data handling re­
quirement for real-time decoders which may be unable
to handle the increased throughput they now face; and
(3) Increased buffer requirement at the client since the
arrival rate of data has increased.

Because of these drawbacks, the SVS implementa­
tion appears to be the preferred alternative. How­
ever, as noted in [4) , scheduling for ff (rw) is prob­
lematic with the SVS approach. Consider a system
with storage nodes D = 6 and a ff implementation
that skips alternate frames. In normal playout the
frame sequence is {0, 1, 2, 3, 5, 6, ... }, whereas for the
ffthe same sequence is {0, 2,4, 6, 8, 10, ... }. If data
layout is simple round robin (modulo D) algorithm,
then the set of nodes visited during normal playout is
{0, 1, 2, 3, 4, 5, ... }, whereas in ff mode the nodes vis­
ited are {0, 2, 4, 0, 2, 4, . . . }. There are two problems
with this simple example. First , the stream control al­
ters the sequence of node-visits from the normal linear
(modulo D) sequence. Second, it creates "hot-spots"
and in turn requires bandwidth to be reserved at each
node to deal with the overloads.
3.2 Data layout for interactive video-on­

demand systems
A number of data layout schemes have been intro­

duced to address the load balancing problem identi­
fied above. In [12] the prime round robin (PRR) lay­
out policy was introduced. The PRR uses arbitrary
number of disks (N) with uniform load balancing for
fast retrievals as well as display and slow retrievals ,
but the rounding distance is the biggest prime num­
ber Np (~ N) instead of N. Using their model, the
jth. segment of the ith. object would be stored in disk
k of N , where k is given by

k _ { (a+ j mod (N- Np + 1)) modN if j = cNp
- (a+N-Np+(jmodNp))modN otherwise

where a= (N- Np + 1) x i.
PRR allows fast retrieval as well as play at any

speed s -::1 eN to access N distinct disks provided N
is prime. There are, however , a number of problems

288

Xl.S Xl.7
Xl.12

Xl.15 X1.17
X1.22
Xl.27

X2.7 X2.8 X2.5
X2.12 X2.13 X2.10
X2.17 X2.18 X2.15
X2.22 X2.23 X2.20
X2.27 X2.28 X2.25

Table 2: Placement of segments of three objects
(0,1,2) across 6 disks using PRR algorithm.

with the PRR algorithm. First, it is wasteful of disk
space. For example, an installation that has an array
of N = 10 disks uses only Np = 7 of them to store a
stripe (since 7 is the greatest prime number less than
or equal to 10). This is a 30% underutilization of avail­
able storage and also a 30% decrease in parallel I/0
transfers. Second, if parity is added for fault tolerance
[18] , PRR would complicate the parity placement al­
gorithm and in some cases cause the parity disk(s)
to become a performance bottleneck. As an exam­
ple, consider a PRR placement scheme with N = 6
and N'P = 5. Using the PRR placement algorithm we
show in Table 2 the placement of the segments of three
multimedia objects in the disk array. Observe that if
the parity for each stripe is placed in the unused disk
in each stripe (a logical thing to do) , the parity would
not be evenly distributed over the disks. In fact, if we
considered the three small objects shown in Table 2
as a single large object, all the parity would map to
disks 0 and 1.

A number of multimedia data layout schemes were
defined in [4] . Two of these are the Distributed Cyclic
Layout (DCL} and the Staggered Distributed Cyclic
Layout {SDCL). Table 3 shows an example. These are
essentially forms of disk striping [19] , and while they
increase the I/0 throughput of multimedia systems,
they provide no fault tolerance. We note that DCL
is basically analagous to the modulo D algorithm (D
is number of disks in array), while SDCL is a slightly
modified version of DCL where data placement for the
next stripe starts at disk (k + s) modulo D given that
the current stripe starts at disk k. s is the stagger
distance. In Table 3, s = 1. SDCL is also similar to
staggered striping introduced in [2] and chained declus­
tering [10] .

X0.11
X0.16
X0.21
X0.26

X0.6
X0.17
X0.22
X0.27

X0.7
X0.12
X0.23
X0.28

X0.8
X0.13
X0.18
X0.29

Table 3: DCL (top half) and SDCL (bottom
half) placement schemes

The periodic nature of multimedia data makes it a
good candidate for striping. If we consider a frame
as a logical unit of repetition, we can assume that
each logical unit is physically ~istributed on diffe~ent
storage devices and accessed ill parallel. Recons1der
the DCL placement scheme illustrated in Table 3, we
note that each object segment of object XO can be a
frame. The first frame in each group of frames that can
be accessed in parallel is referred to as anchor frame
[4] or pivot frame. Note that the location of anch<?r
node is fixed in the DCL scheme. From Table 3, this
is disk 0. The anchor frames are shown in bold in the
table.

As already indicated in Section 3.1, there are some
problems with the DCL scheme. Consider the video
frames stored in D = 6 nodes using the DCL algo­
rithm as shown in Table 3. In normal playout , the
frame sequence is XO.O, X0.1, X0.2, X0.3, X0.5 , X0.6,
. . . , whereas for ff the same sequence is XO.O, X0.2 ,
X0.4, X0.6, X0.8, X0.10, Since data layout is with
DCL algorithm, the set of nodes visited during nor­
mal playout is 0,1,2,3,4,5, . . . , whereas in ff mode ~he
nodes visited are 0,2,4,0,2,4, The problem w1th
this is the stream control alters the sequence of node­
visits from the normal linear (modulo D) sequence.
Moreover it creates "hot-spots" and in turn requires
bandwidth to be reserved at each node to deal with
the overloads.

Note that if the SDCL scheme suggested in Table 3
is used there would not be the hot-spots problems ob­
served 'with the DCL scheme. For example, reconsider
the ff sequence XO.O, X0.2, X0.4, X0.6, X0.8, XO.lO,
. . . . From Table 3 we observe that with SDCL the
nodes visited are 0,2,4,1 ,3,5.

3.3 Load balancing
A set of D frames is said to be load-balanced if

the set of nodes from which these frames are retrieved
contains each of the D nodes only once [4]. Using
this definition, a number of important load balancing
theorems in distributed data layout were proved in
[4]. We summarize the key features of the theorems
as follows:

289

1. If the number of storage nodes is finite, no dis­
tributed (multimedia) data layout scheme will
support fast forward (rewind) of arbitrary skip­
ping distance without violating the load balanc­
ing condition.

2. For a DCL over D storage nodes, if the fast for­
ward (rewind) distance d1 is relatively prime to
D, then the set of nodes S,. from which consec­
utive D frames in fast forward frame set Sf are
retrieved is load-balanced. For example, if D =
16, DCL will produce load-balance node sets for
d1 = 3,5,7,11 ,13,15. These numbers are prime
to 16. A corollary to this is that if D is prime
and the ff (rw) distance is not a multiple of D,
then the set of nodes from which D frames are
retrieved is load-balanced. For example, for D =
11, DCL will produce load-balance node sets for
d1 = 2,3,4,5,6,7,8,9,10 for consecutive D frames
retrieved. (See also PRR in Section 3.2).

3. For a SDCL over D storage nodes with stagger
distance s = 1, load-balance will be achieved
under certain conditions. For example, if the ff
starts at a node corresponding to an anchor frame
- shown in bold in Table 3 (or 2D - 1 nodes from
anchor node for rw) , and if the ff (rw) distance
d1 is a factor of D, then the set of nodes from
which D frames are retrieved is load-balanced.
For example, if D = 16, SDCL will produce load­
balanced node sets for df = 2,4,8,16.

4 Declustered Mirror
Two issues of primary interest in this paper are:

1. The support of a wide range of fast forward and
rewind speeds under a load balance condition.

2. The support of high 1/0 bandwidth under fault
tolerant condition.

Some ideas have been proferred for each of these
problems. However, none of the solutions presents
an integrated framework for addressing the two issues
jointly. DecltJ.Stered mirror is a novel scheme that effi­
ciently addresses these problems within an integrated
data layout strategy. Declustered mirror uses:

• Disk stripping to provide high 1/0 bandwidth for
multimedia data.

• Distributed Cyclic Layout (DCL} and Staggered
Distributed Cyclic Layout (SDCL) to provide a
data layout scheme which supports a wide range
of fast forward and rewind speeds under load bal­
ance condition for interactive video-on-demand
systems.

• Mirroring to provide fault tolerance against a sin­
gle disk failure.

• Chained DecltJ.Steringto provide load balance dur­
ing failure mode operation.

Table 4: Cluster 0 of declustered mirror. Clus­
ter size = 6. DCL algorithm is used for this
primary copy cluster.

Table 5: Cluster 1 of declustered mirror. Clus­
ter size = 6. SDCL algorithm is used for this
backup copy cluster.

Tables 4 and 5 show an example of data layout
in a declustered mirror scheme. There are N = 12
disks, numbered 0, 1, .. . , 11 . These disks are divided
into two clusters as suggested in chained decluster­
ing [10]. Cluster 0 consists of disks 0, 1, . .. , 5 while
cluster 1 consists of disks 6, 7, . .. , 11 . The clusters
form a mirror pair in a manner almost analogous to
chained declustering. All disks in a cluster form one
logical disk, with the logical disk of cluster 0 holding
the primary copy of data and the backup copy held
in the logical disk that constitutes cluster 1. To sim­
plify exposition, we assume one large object X with
sixty fragments X.O , X.!, . .. , X. 59 placed in the disks
as shown in Tables 4 and 5. Data in the primary log­
ical disk is allocated using the DCL algorithm, while
SDCL is used in the backup logical disk. Note that
mirroring protection refers to a logical disk. For ex­
ample logical disk 0 is mirrored on logical disk 1.

4.1 Address mapping
We identify two address schemes in Tables 4 and 5.

1. The address scheme of a logical disk (pri­
mary or backup). For our example in cluster 0
(the primary copy cluster, or logical disk 0) , the

290

segment or fragment number is identical to the
logical disk address . In other words , the logical
addresses are assigned through all the disks in the
cluster in a round robin manner. While the same
round robin assignment of addresses is used in
the SDCL scheme (logical disk 1) , it is important
to note that it does not necessarily correspond to
the segment or fragment number placed at the
address . For example, note that in cluster 1 (Ta­
ble 5) , fragment 11 (X.ll) is placed in logical ad­
dress 6 of logical disk 1 (backup cluster).

2. The physical addresses in each disk of a
logical disk. In Tables 4 and 5, each column
is equivalent to a physical disk, and ten physi­
cal addresses are shown for each disk. For ex­
ample, Table 6 shows the mapping between the
object fragments in disk 0 and the physical disk
addresses in which they are placed.

Table 6: Physical Mapping of Segments of
Disk 0

During normal operation, playback requests can
be serviced either from the primary or backup copy.
Since application programs make requests using the
primary address scheme, the primary addresses must
be mapped to backup addresses if the backup copy
of data must be used. The mapping scheme will
vary from one installation to anot her depending on
the logical partitioning of the disk between primary
and backup segments. For illustration, we present
a scheme which assumes the logical partitioning sug­
gested in Tables 4 and 5.

The mapping problem can be generalized as fol­
lows: Given a DCL allocation scheme, determine a
scheme that maps a given logical DCL address to cor­
responding logical and physical SDCL addresses , as­
suming that the SDCL scheme uses a stagger distance
s = 1.

The algorithm is straightforward.

• Input:

- Logical DCL address , DCLtogicat(A), and,
- Number of disks Din the cluster.

• Output:

- Logical SDCL address, SDCLtogicat(A),
- Disk number d that holds the data item, and

- Corresponding physical SDCL or DCL ad-
dress , SDCL,hvsicat(A) or DCL,hysicat(A)
in disk d.

The mapping is as follows. For the DCL scheme:

Disknumberd = DCLtagica.I(A)modD (1)

DCLphysica.t(A) =

For the SDCL scheme:

DCLtagica.t(A)
D

(2)

Disk number d = ((T +F) mod D)+ D (3)

S DC Lphysica.t (A)
DCLtagica.t(A) (4)

D =
= DCLphysica.t(A) (5)

SDCLtagica.t(A) = ((P + T +F) mod D)+ .1{'6)

where

• p = SDCL pivot= (DCLr .J) cu i(A)) X D

• T = SDCLpivot offset =
(DCLr._b'car (A)) mod D

• F = Fragment offset from SDCL pivot =
DCLtagica.t(A)- P

Note then that given any logical request , the
backup address can be speedily identified. Thus dur­
ing normal operation, the system can efficiently de­
termine whether the request is best serviced from the
primary or backup location. Moreover, it is clear that
since every data item is mirrored, fault tolerance is
provided for a single disk failure. Note also that like
chained declustering, there is no tight coupling be­
tween any two physical disks, so that should a disk
fail, the data in that disk is spread over multiple disks
in the other cluster. This provides a natural load bal­
ancing mechanism in the event of a failure.

Since the data is stored using both DCL and SDCL
techniques, the advantages of both can be utilized in
providing a wide range of fast forward (rewind) speeds.
For our specific example with D = 6, we note that
DCL will provide load balance for fast forward speeds
that are relatively prime to 6, i.e. for dt = 5. How­
ever, the SDCL scheme will provide load balance for
dt = 2,3,6- factors of 6. Thus fast forward (rewind)
speeds dt = 2,3,5,6 can be supported. For a carefully
chosen number of disks , a wide range of speeds can be
supported. Assume there are 32 disks, so that D =
16, then DCL can support dt = 3,5,7,9,11,13,15, while
SDCL can support dt = 2,4,8,16 for a total of eleven
fast forward and rewind speeds.
4.2 Effect of cluster size on performance

The cluster size has a major impact on the perfor­
mance of declustered mirror. Our initial observations
suggest that this scheme may not be appropriate for
installations with a very large number of disks. There
are two reasons for this. The first is the large cost
associated with mirroring a large multimedia storage
system. The second is intrinsic in the cluster size. Be­
yond a certain number of disks, there is practically
no benefit in mirroring the data for performance. Re­
call that for our purposes here, performance is defined

291

in terms of the number of variable speeds supported
under load-balanced condition.

In Section 3.3, it was noted that the DCL algorithm
provides load-balance for speeds that are prime to the
number of disks (nodes) D , while SDCL provides load­
balance for speeds that are factors of D . What is
observed is that as D increases, the numbers that are
prime to D increase faster than the numbers that are
factors of D . In fact , the factors of D fl.unctuate a
lot and in the particular ca.ses when D is prime, no
factors are obtained with the result that the SDCL
scheme does not contribute to the number of variable
speeds supported except at speed = D , the cluster
size.

#of %Supported #of %Supported
Disks !JCL ::i!JCL Disks !JCL ::S!JCL

2 0.0 50.0 30 73.0 :.:!J .U
3 33.0 33.0 40 80.0 17.0
4 25.0 50.0 50 88.0 10.0
5 60.0 20.0 60 80.0 18.0
6 33.0 50.0 70 89.0 10.0
7 71.0 14.0 80 88.0 11.0
8 50.0 38.0 90 87.0 12.0
9 67.0 22.0 100 91.0 8.0

10 60.0 30.0 no 93.0 6.0
11 82.0 9.0 120 87.0 12.0
12 50.0 42.0 130 94.0 5.0
13 85.0 8.0 140 91.0 8.0
14 71.0 21.0 150 92.0 7.0
15 73.0 20.0 160 93.0 7.0
16 69.0 25.0 170 95.0 4.0
17 88.0 6.0 180 90.0 9.0
18 67.0 28.0 190 96.0 4.0
19 89.0 5.0 194 98.0 2.0
20 70.0 25.0 195 96.0 4.0
21 81.0 14.0 196 95.0 4.0
22 82.0 14.0 197 99.0 1.0
23 91.0 4.0 198 94.0 6.0
24 67.0 29.0 200 94.0 5.0

Table 7: % of all possible fast forward and
rewind speeds supported by DCL and SDCL
algorithms for various cluster sizes.

Table 7 shows the percentage of all possible speeds
supported by each of the schemes for a given cluster
size. For example, for ten disks (cluster size = 10) ,
DCL will support fast forward (rewind) speeds, d1 =
3,4,6, 7,8,9, that is a total of six speeds, while SDCL
will support three speeds, dt = 2,5,10. Hence the
corresponding values 60% and 30% in the table for
ten disks.

5 Conclusion
The advent of interactive video-on-demand appli­

cations have opened up a number of research issues in
data layout and placement. In this paper, we intro­
duced Declustered Mirror, a novel scheme that mir­
rors a set of striped disks to provide improved per-

formance and fault tolerance for a video-on-demand
system. Declustered mirror uses:

• Disk stripping to provide high I/0 bandwidth for
multimedia data.

• Distributed Cyclic Layout (DCL) and Staggered
Distributed Cyclic Layout (SDCL) to provide a
data layout scheme which supports a wide range
of fast forward and rewind speeds under load bal­
ance conditions for interactive video-on-demand
systems.

• Mirroring to provide fault tolerance for a single
disk failure.

• Chained Declustering to provide load balance dur­
ing failure mode operation.

The primary disadvantage of this scheme is the 100%
space overhead of disk mirroring.

References
[1] K. Bates and M. TeGrotenhuis. Shadowing

Boosts System Reliability. Computer Design,
April1985 .

[2] S. Berson and S. Ghandeharizadeh. Dynamic File
Allocation in Disk Arrays. In Proceedings of the
International Conference of the ACM SIGMOD,
Minneapolis, Minnesota, May 1994.

[3] D. Bitton and J. Gray. Disk Shadowing. In Pro­
ceedings of the 14th International Conference on
Very Large Data Bases, pages 331-338, Los An­
geles, California, September 1988.

[4] M. Buddhikot and G. Parulkar. Distributed Data
Layout, Scheduling and Playout Control in a
Large Scale Multimedia Storage Server. Tech­
nical Report WUCS-94-33 , Department of Com­
puter Science, Washington University, St. Louis,
MO 63130, 1994.

[5] C. Chen, K. Nwosu, and P. Bruce Berra. Mul­
timedia Object Modeling and Storage Allocation
Strategies for Heterogeneous Parallel Storage De­
vices in Real Time Multimedia Computing Sys­
tems. In Proceedings IEEE 17th Annual Interna­
tional Computer Software and Applications Con­
ference (COMPSAC) , pages 216-223, 1993.

[6] P. Chen and D. Patterson. Maximizing Perfor­
mance in a Striped Disk Array. In Proceedings of
the 11th International Symposium on Computer
Architecture, volume 18, No. 2, pages 322-331,
June 1990.

[7] J. Dey-Sircar, J. Salehi, J. Kurose, and
D. Towsley. Providing VCR Capabilities in Large­
Scale Video Servers. In Proceedings of ACM Mul­
timedia International Conference, pages 25-32,
San Franscisco, CA, October 1994.

292

[8] B. FUrht, D. Kaira, F . Kitson, A. Rodriguez, and
W. Wall. Design Issues for Interactive Televi­
sion Systems. IEEE Computer, pages 25-38, May
1995.

[9] D. Gemmell , H. Vin, D. Kandlur, P. Rangan, and
L. Rowe. Multimedia Storage Servers: A Tuto­
rial. IEEE Computer, pages 40-49, May 1995.

(10] H. Hsiao and D. DeWitt. Chained Declustering:
A New Availability Strat egy for Multiprocessor
Database Machines. In Proceedings of the IEEE
International Conference on Data Engineering,
pages 456-465, Los Angeles, California, February
1990.

[11] M. Kim. Synchronized Disk Interleaving. In IEEE
Transactions on Computers, Vol. C-35, No. 11 ,
November 1986.

[12] T. Kwon and S. Lee. Data Placement for Con­
tinuous Media in Multimedia DBMS. In Pro­
ceedings 1995 International Workshop on Multi­
Media Database Management Systems, 1995.

[13]

[14]

M. Livny, S. Khoshafian, and H. Boral. Multi­
Disk Management Algorithms. In Proceedings of
the 1967 ACM Sigmetrics Conference on Mea­
surement and Modeling of Computer Systems,
pages 69-77, Alberta, Canada, 1987.

K. Nwosu. Data Storage Modeling and Manage­
ment for Multimedia Information Systems. PhD
thesis , Syracuse University, Syracuse, New York,
December 1993.

[15] C. Orji, P. Bobbie, and K. Nwosu. Design and
Configuration Rationales for Digital Video Stor­
age and Delivery. Submitted to Journal of Mul­
timedia Tools and Applicat ions (JMTA).

(16] C. Orji, P. Bobbie, and K. Nwosu. Spatio­
Temporal Effects of Multimedia Objects Storage
and Delivery for Video-On-Demand Systems. To
appear in Multimedia Systems Journal (MSJ).

[17] C. Orji, K. Nwosu, and N. Rishe. Multimedia Ob­
ject Storage and Retrieval. In Proceedings of In­
ternational Symposium on Multimedia Systems,
1996.

[18] D. Patterson, P. Chen, G. Gibson, and R. Katz. A
Case for Redundant Arrays of Inexpensive Disks
(RAID) . In Proceedings of the International Con­
ference of the ACM SIGMOD, pages 109- 116,
Chicago, Illinois, June 1988.

[19] K. Salem and H. Garcia-Molina. Disk Striping.
In Proceedings of the IEEE International Con­
ference on Data Engineering, pages 336-345, Los
Angeles , California, February 1986.

(20] Tandem. Configuring Disks. Tandem Systems
Review, December 1986.

SEKE '96

Knowledge Systems Institute
Graduate School of Computer & Information Sciences and Management Information Systems

3420 Main Street, Skokie, IL 60076
Tel: 847-679-3135
Fax: 847-679-3166
E-mail:
WWW:

office@ksi.edu
http://www.ksi.edu

-..

PRINTED IN USA, MAY 1996

ISBN 0-9641699-3-2

