
Class-based Conditional MaxRSQuery in Spatial Data Streams
Mir Imtiaz Mostafiz

Bangladesh University of Engineering

and Technology

Dhaka, Bangladesh

1105002.mim@ugrad.cse.buet.ac.bd

S.M.Farabi Mahmud

Bangladesh University of Engineering

and Technology

Dhaka, Bangladesh

1105022.sm@ugrad.cse.buet.ac.bd

Muhammed Mas-ud Hussain
∗

Northwestern University

Dept of EECS, 2145 Sheridan Road

Evanston, Illinois 60208

mas-ud@u.northwestern.edu

Mohammed Eunus Ali

Bangladesh University of Engineering

and Technology

Dhaka, Bangladesh

eunus@cse.buet.ac.bd

Goce Trajcevski
∗

Northwestern University

Dept of EECS, 2145 Sheridan Road

Evanston, Illinois 60208

goce@eecs.northwestern.edu

ABSTRACT
We address the problem of maintaining the correct answer-sets to

the Conditional Maximizing Range-Sum (C-MaxRS) query in spatial

data streams. Given a set of (possibly weighted) 2D point objects,

the traditional MaxRS problem determines an optimal placement for

an axes-parallel rectangle r so that the number – or, the weighted

sum – of objects in its interior is maximized. In many practical

settings, the objects from a particular set – e.g., restaurants – can be

of distinct types – e.g., fast-food, Asian, etc. The C-MaxRS problem

deals with maximizing the overall sum, given class-based existential

constraints, i.e., a lower bound on the count of objects of interests

from particular classes. We first propose an efficient algorithm

to the static C-MaxRS query, and extend the solution to handle

dynamic (data streams) settings. Our experiments over datasets

of up to 100,000 objects show that the proposed solutions provide

significant efficiency benefits.

CCS CONCEPTS
• Information systems → Spatial-temporal systems; Loca-
tion based services; Database query processing;

KEYWORDS
Maximizing Range Sum Query, Constrained Query Processing, Spa-

tial Data Streams, C-MaxRS, Conditional MaxRS

ACM Reference format:
Mir Imtiaz Mostafiz, S.M.Farabi Mahmud, Muhammed Mas-ud Hussain[1],

Mohammed Eunus Ali, and Goce Trajcevski[1]. 2017. Class-based Condi-

tional MaxRS Query in Spatial Data Streams. In Proceedings of SSDBM ’17,
Chicago, IL, USA, June 27-29, 2017, 12 pages.
https://doi.org/http://dx.doi.org/10.1145/3085504.3085517

* Research supported by NSF grants III 1213038 and CNS 1646107, ONR grant N00014-

14-10215 and HERE grant 30046005.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SSDBM ’17, June 27-29, 2017, Chicago, IL, USA
© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5282-6/17/06. . . $15.00

https://doi.org/http://dx.doi.org/10.1145/3085504.3085517

1 INTRODUCTION
Rapid advances in accuracy and miniaturization of location-aware

devices (e.g., GPS, smartphones, etc.) and increased use of social

networks services (e.g., check-in updates) have enabled a genera-

tion of large volumes of spatial data [12]. Numerous methods for

effective processing of various queries of interest in such settings –

e.g., range, (k) nearest neighbor, reverse nearest-neighbor, skyline,
etc. – have been proposed in the literature [24, 26].

One particular query that has received recent attention is the

Maximizing Range-Sum (MaxRS) [5]: given a set of weighted spatial-

point objects O and a rectangle r with fixed dimensions (i.e., a × b),
MaxRS retrieves a location of r that maximizes the sum of the

weights of the objects in its interior. Due to diverse applications

of interest, variants of MaxRS [2, 6, 9, 17, 23] have been recently

addressed by the spatial database and sensor network communities.

What motivates this work is the observation that in many prac-

tical scenarios, the members of the given set O of objects can be

of different types, e.g., if O is a set of restaurants, then a given

oi ∈ O can belong to different classes: fast-food, Asian, French, etc.

Similarly, a vehicle can be a car, a truck, a motor-cycle, and so on.

In settings where data can be classified in different sub-categories,

r1
o1 o2

o3

r2

o4 o5

o6 o7

ClassBClassA ClassC

(i) time t1

r1
o1 o2

o3

r2

o4 o5

o6 o7

ClassCClassBClassA

o8

(ii) time t2

Figure 1: An example of C-MaxRS problem in spatial data
streams at time (i) t1 (ii) t2 .

https://doi.org/http://dx.doi.org/10.1145/3085504.3085517
https://doi.org/http://dx.doi.org/10.1145/3085504.3085517

SSDBM ’17, June 27-29, 2017, Chicago, IL, USA M. I. Mostafiz et al.

there might be class-based existential constraints when querying

for the optimum region – i.e., a desired/minimum number of ob-

jects from particular classes inside r . However, due to updates in

spatial databases – i.e., objects appearing and disappearing at dif-

ferent times – one needs to accommodate such dynamics too. For

example, let us assume that in an area under Google X’s Loon
Project [1], there are different types of users – premium (class A),

regular (class B), and free (class C), and users can disconnect or

reconnect anytime. Consider the following query:

Q1: “What should be the position of an Internet-providing balloon
at time t to ensure that there are at least Θi users from each Classi
inside the balloon-coverage and the number of users in its coverage is
maximized?”.

It is not hard to adapt Q1 to other applications settings: – envi-

ronmental tracking (e.g., optimizing a range-bounded continuous

monitoring of different herds of animals with both highest density

and diversity inside the region); – traffic monitoring (e.g., detecting

ranges with densest trucks); – video-games (e.g., determining a po-

sition of maximal coverage in dynamic scenarios involving change

of locations of players and different constraints).

We call such queries Conditional Maximizing Range-Sum (C-

MaxRS) queries, a variant of the traditional MaxRS problem, for

static scenario, and for dynamic settings we have Conditional Max-
imizing Range-Sum for Data Stream (C-MaxRS-DS) query. An ex-

ample of C-MaxRS query (for 7 users) with query rectangle size

a × b is shown in Figure 1, with the following conditions: at least

1, 1, and 1 user from classes A, B, and C, respectively. Rectangles

r1 and r2, with dimension a × b, are two candidates but although

r2 contains most users (the traditional MaxRS solution), r1 is the
solution for the C-MaxRS problem, given the constraints (see Fig-

ure 1(i)). Suppose, at t2, user o6 disconnects and a new user o8 joins
the system. The C-MaxRS solution will then change to r2 from r1
(see Figure 1(ii)).

Our key idea for efficient C-MaxRS processing is to partition

the space and apply effective pruning rules for each partition to

quickly update the results. The basic processing scheme follows the

technique of spatial subdivision from [6], dividing the space into a

certain number of slices, whose local maximum points construct the

candidate solution point set. In each slice, the subspace was divided

into slabs which helps in reducing the solution space. To handle dy-

namic data stream scenarios, i.e., appearances and disappearances

of objects, we propose two algorithms, C-MaxRS+ and C-MaxRS−

respectively, while solving the constrained maximum range sum

for the data stream (C-MaxRS-DS) problem. We incorporate heuris-

tics to reduce redundant calculations for the newly appeared or

disappeared points, relying on two trees: a quadtree and a balanced

binary search tree. Experiments over a wide range of parameters

show that our approach outperforms the baseline algorithm by a

factor of three to four, for both Gaussian and Uniform distribution

of datasets.

Our main contributions can be summarized as follows:

•We formally define the C-MaxRS problem and provide a baseline

solution using spatial subdivision (slices).

•We extend the solution to deal with spatial data streams (appear-

ing and disappearing objects). We utilize effective pruning schemes

for both appearing and disappearing events, capitalizing on a self-

balancing binary search tree (e.g., AVL-tree) and a quad-tree.

•We demonstrate the benefits of our proposed method via experi-

ments over a large dataset.

In the rest of this paper, Section 2 compares the workwith respect

to the existing literature, while Section 3 formalizes the C-MaxRS

problem. Section 4 describes the necessary properties of the condi-

tional weight functions and lays out the basic solution. Section 5

presents the details of our pruning strategies, data structures and

algorithms for incorporating dynamic data. Section 6 presents the

quantitative experimental analysis and Section 7 summarizes and

outlines directions for future work.

2 RELATEDWORKS
The Range Aggregation and Maximum Range Sum (MaxRS) queries,

and their variants have been extensively studied in recent years [4,

5, 11, 19, 21]. A Range Aggregation Query, returning the aggregate

result from a set of points, was solved for both 1-dimensional space

– i.e. calculating result from set of values in given interval [22] and

for 2 dimensional point space, i.e., calculating result from a given

rectangle with fixed location [16]. To calculate the aggregate result,

anAggregate Index, storing the summarized result for specific region

referenced by that index is used [4]. Different data structures are

introduced to store the aggregate index – e.g., [11] proposed Multi-
Resolution Aggregate tree (MRA-tree) to reduce the complexity.

The MaxRS problem was first addressed by researchers in com-

putational geometry [7, 10, 13], based on a technique that finds

connected components and a maximum clique of an intersection

graph of rectangles in the plane [10]. A solution based on plane

sweep strategy was presented in [13], where the input point-objects

were “dualized” into rectangles (centered at the points and with

dimensions equivalent to the query rectangle r). Then an interval

tree was used to record the regions (a.k.a. windows) with highest

number of intersecting (dual) rectangles along the sweep – denoting

the possible locations for placing the (center of the) query rectangle,

yielding O (n logn) time complexity. However these solutions are

not scalable, and [5] proposed scalable extensions suited for LBS-

applications – e.g., retrieve best location for a new franchise store

with a specified delivery range. Subsequently, different variants

of the MaxRS problem have been investigated: – constraining to

underlying road networks [17, 25]; – processing MaxRS queries

in wireless sensor networks [8, 23]; – considering rotating MaxRS

problem [3], where rectangles do not need to be axes parallel allow-

ing much more flexibility. A rather complementary work, tackling

the problem of approximate solution to the MaxRS query was pre-

sented in [20], using randomized sampling to bound the error with

higher probability, with increasing number of objects in question.

Monitoring MaxRS for dynamic settings, where objects can be

inserted and/or deleted was first addressed in [2]. To efficiently

detect the new locations for placing the query rectangle, [2] ex-

ploited the aggregate graph aG2 in a grid index and devised a

branch-and-bound algorithm [14] over that aG2 graph for efficient

approximation. We note that our work is complementary to [2], in

the sense that we addressed the settings of having different classes

of objects and existential constraints based on them – whereas [2]

Class-based Conditional MaxRSQuery in Spatial Data Streams SSDBM ’17, June 27-29, 2017, Chicago, IL, USA

solves the basic MaxRS problem. Moreover, [2] considered a sliding-

window based model in the problem settings (i.e., ifm new objects

appear, thenm old objects disappear in a time-window T), which
is completely different to our event-based model. Additionally, we

used contrasting approaches (and different data structures) in this

work – dividing the 2D space into slices and slabs.

An interesting variant of MaxRS is addressed in [6] – the, so

called, Best Region Search problem, which generalizes the MaxRS

problem in the sense that the goal of placing the query rectangle is to

maximize a broader class of aggregate functions
1
. Our work adapts

the concepts from [6] (slices and pruning) – however, we tackle a

different context: class-based constraints and dynamic/streaming

data updates and, towards that, we also incorporated additional

data structures (see Section 5).

As a summary, our methodology (as well as the actual implemen-

tation) is based on the idea of event driven approach for monitoring

appearing and disappearing cases of objects, and we included a

self-balancing binary tree (i.e., AVL-tree) to reduce the processing

time that is needed for computing the MaxRS as per the event queue

needs.

3 PRELIMINARIES
We now introduce the C-MaxRS problem, and also extend the

definition to include the possibility of appearing/disappearing

objects. In addition, we discuss the concept of submodular

monotone functions.

C-MaxRS & C-MaxRS-DS: Let us define a set of POIClass K =

{k1,k2, . . . ,km }, where each ki ∈ K refers to a class (alternatively,

tag and/or type) of the objects, a.k.a. points of interest (POI) . In

this setting, each object oi ∈ O is represented as a (location, class)
tuple at any time instant t . We denote a set X= {x1,x2, . . . ,xm }
as MinConditionSet, where |X | =|K | and each xi ∈ Z+ denotes the

desired lower bound of the count of objects of class ki in the interior
of the query rectangle r – i.e., the optimal region must have at least

xi number of objects of class ki . Let us assume li is the number of

objects of type ki in the interior of r centered at a point p. A utility

function f (O) : P (O) → N0, mapping a subset of spatial objects to

a non-negative integer is defined as below,

f (O) =



(
∑ |K |
i=1 li), if ∀i ∈ {1, 2, 3, ..., |K |}, li >= xi

0, if ∃i ∈ {1, 2, 3, ..., |K |}, li < xi
.

Additionally, we mark Orp as the set of spatial objects in the

interior of rectangle r centered at any point p. Formally, we define:

Definition 3.1. Conditional-MaxRS (C-MaxRS). Given a rect-

angular spatial field F, a set of objects of interestO (bounded by F), a
query rectangle r (of sizea×b), a set of POIClassK = {k1,k2, . . . ,km }
and aMinConditionSet X = {x1,x2, . . . ,xm }, the C-MaxRS query re-

turns an optimal location (point) p∗ for r such that:

p∗ = arдmaxp∈F f (Orp)

where Orp ⊆ O .

Note that, in case there is no placement p for which all the con-

ditions of MinConditionSet is met, the query will return an empty

1
More formally, [6] was considering submodular monotonic functions as aggregates.

answer – indicating the user to either increase the size of R or

decrease the lower bounds for some classes. We now proceed to

define C-MaxRS in dynamic scenario – Conditional-MaxRS for Data

Stream (C-MaxRS-DS). In a spatial data stream environment, old

points of interest may disappear and new ones may appear at any

time instant. We can deal with this in two-ways:

• Time-based: C-MaxRS is computed on a regular time-interval δ .
• Event-based: C-MaxRS is computed on an event, where C-MaxRS

is maintained (evaluated) every time a new point appears or an old

point disappears – both regarded as an event.
Although faster algorithms can be developed in time-based settings,

the solutions provided would be inherently erroneous for time

between t and t + δ . On the other hand, event-based processing

ensures that a correct answer-set is maintained all the time. Thus,

we deal with the streaming data in event-based manner, for which

we denote e+ as the new point appearance and e− as the old point

disappearance event. We note that, most of the settings for basic

C-MaxRS remains same, except that the set of objects O is altered

at each event. We define the set of points of interest in this data

stream for any event e as:

Oe =



O ∪ {oe }, if e .type = e+

O \ {oe }, if e .type = e−

. Formally,

Definition 3.2. Conditional-MaxRS for Data Stream (C-
MaxRS-DS). Given a rectangular spatial field F, a set of objects of
interests O (bounded by F), a query rectangle r (of size a × b),
a set of POIClass K = {k1,k2, . . . ,km }, a MinConditionSet X =

{x1,x2, . . . ,xm }, and a sequence of events E={e1, e2, e3, . . .} (where
each ei denotes the appearance or disappearance of a point of inter-
est), the C-MaxRS-DS query maintains the optimal location (point)

p∗ for r such that:

p∗ = arдmaxp∈F f (Orp)

where Orp ⊆ Oe for every event e in E of the data stream.

SubmodularMonotone Function: [6] devised solutions to a vari-
ant of the MaxRS problem (best region search) where the utility

function for the given POIs is a submodular monotone function –

which is defined as:

Definition 3.3 (Submodular Monotone Function). If Ω is a fi-

nite set, a submodular function is a set function f : P (Ω) →
R if ∀X ,Y ∈ Ω, with X ⊆ Y and x ∈ Ω \ Y we have (1)
f (X ∪ {x }) − f (X) >= f (Y ∪ {x }) − f (Y) and (2) f (X) ≤ f (Y).

In the above definition, (1) represents the condition of sub-

modularity, while (2) presents the condition of monotonicity of

the function. In Section 4, we will discuss these properties of our

introduced utility function f (O) : P (O) → N0.

Discussion: Note that, for the sake of simplicity we have consid-

ered only the counts of POIs when defining the utility function

or conditions in X throughout the paper. They can be extended to

incorporate different non-negative weights for objects in a straight-

forward manner – i.e., most of the techniques (including pruning)

devised in the work are still applicable with trivial modifications.

Similarly, although in our provided examples, for brevity, we’ve

SSDBM ’17, June 27-29, 2017, Chicago, IL, USA M. I. Mostafiz et al.

only depicted one class per object, the techniques proposed in this

work extends to the objects of multiple classes (or tags), e.g., objects

can be considered as (location, classes) tuple.

4 BASICC-MAXRS
In this section, we first convert the C-MaxRS problem to its dual

problem, and discuss important properties of the conditional weight

function f (.) and how we can utilize them to devise an efficient

solution to process C-MaxRS.

4.1 C-MaxRS→ Dual Problem
A naive approach to solve C-MaxRS is to choose each discrete

point p iteratively from the rectangular spatial field F and compute

the value of f (Orp) for the set of spatial objects covered by the

query rectangle r . As there can be infinite number of points in

F, this approach is too costly to be practical. Existing works (see

[6, 9, 13]) have demonstrated that feasible solutions can be derived

for MaxRS (and related problems) by transforming it into its dual

problem – rectangle intersection problem. A similar conversion is

possible for C-MaxRS as well, enabling efficient solutions. In this

regards, let R={r1, r2, . . . , rn } be a set of rectangles of user-defined
size a × b. Each rectangle ri ∈ R is centered at each point of

interest oi ∈ O , i.e., |R |=|O |. We define ri as the dual rectangle of
oi . Let us consider a function д : P (R) → N0 that maps a set of

dual rectangles to a non-negative integer. For a set of rectangles

Rk = {r1, r2, . . . , rk }, let д(Rk) = f ({o1,o2, . . . ,ok }). Note that,

a rectangle is affected by a point p if it is in the interior of that

rectangle. Let A(p) be the sets of rectangle affected by p ∈ F. Now,
we can redefine C-MaxRS as the following equivalent problem:

Given a rectangular spatial field F, a set of rectangles
R={r1, r2, . . . , rn } (with centers bounded by F) where each ri
is of a given size a × b, a set of POIClass K={k1,k2, . . . ,km } and a
MinConditionSet X={x1,x2, . . . ,xm }, retrieve an optimal location
(point) p∗ such that:

p∗ = arдmaxp∈Pд(A(p)),

where A(p) ⊆ R.
The bijection is illustrated with the help of Figure 2 using the

same example (and conditions) of Figure 1. Suppose, rectan-

gles {r1, r2, r3, . . . , r7} are the dual rectangles of given objects

{o1,o2,o3, . . . ,o7} in Figure 2, and p1 and p2 are two points

within the given space. p1 affects rectangles r1, r2, r3 and p2 af-

fects r4, r5, r6, r7, i.e., A(p1) = {r1, r2, r3} and A(p2) = {r4, r5, r6, r7}.
Thus, д(A(p1))=f ({o1,o2,o3}) = 3 as the points conform to the con-

straints mentioned in Section 1, whileд(A(p2))=f ({o4,o5,o6,o7}) =
0 as they do not.

Similarly, C-MaxRS-DS can be redefined as follows:

Given a rectangular spatial field F, a set of rectangles
R={r1, r2, . . . , rn } (with centers bounded by F) where each ri
is of a given size a × b, a set of POIClass K={k1,k2, . . . ,km }, a
MinConditionSet X={x1,x2, . . . ,xm }, and an event e (appear-
ance/disappearance of a rectangle re), update the optimal location
(point) p∗ such that:

p∗ = arдmaxp∈Pд(A(p)),

o1 o2

o4
o5

o6
o7

r1 r2

r4
r5

r6

r7

o3

ClassCClassBClassA

r3

p1

p2

Figure 2: C-MaxRS→ dual problem.

where

A(p) ⊆



R ∪ {re }, if e .type = e+

R \ {re }, if e .type = e−

.

4.2 Properties of f and д
[6] devised a method to solve an instance of Best Region Search
(BRS) problem where the weight function f : P (O) → R is a sub-

modular monotone function (see Definition 3.3). In [6], the problem

is first converted to the dual Submodular Weighted Rectangle Inter-
section (SIRI) problem, and then optimization techniques are applied

based on these properties of f (.). We now proceed to discuss sub-

modularity and monotonicity of functions f (O) : P (O) → N0
and д(R) : P (R) → N0 in our problem settings. We establish two

important results for f and д as follows:

Lemma 4.1. Both f and д are monotone functions.

Proof. For a set of spatial objects O ,

f (O) =



(
∑ |K |
i=1 li), if ∀i ∈ {1, 2, 3, ..., |K |}, li >= xi

0, if ∃i ∈ {1, 2, 3, ..., |K |}, li < xi

For any of the class, if the given condition is not met, i.e. ∃i ∈
{1, 2, 3, ..., |K |}, li < xi , then f (O)=0 for the spatial object setO . But,

if all of the conditions are satisfied, i.e. ∀i ∈ {1, 2, 3, ..., |K |}, li < xi ,
then the utility value is equal to the count of spatial objects in O .
Let Oi ⊆ O j . If Oi = O j , f (Oi) = f (O j), otherwise if Oi ⊂ O j ,

there are three possible cases:

Case (a): Both Oi and O j fail to conform to the MinConditionSet X
– then f (Oi) = f (O j) = 0.

Case (b): O j conforms to X , but Oi does not – then f (Oi) = 0 and

f (O j) = |O j |. Thus, f (Oi) < f (O j).
Case (c): Both Oi and O j conform to X , then f (Oi) = |Oi | and

f (O j) = |O j |. As Oi ⊂ O j , |Oi | < |O j |, implying, f (Oi) < f (O j).
We note that there are no possible cases where Oi conforms to X ,
but O j does not. Thus, f is a monotone function.

Let Ri and Rj be two sets of dual rectangles generated from the

aforementioned two sets of spatial objects –Oi andO j respectively.

Class-based Conditional MaxRSQuery in Spatial Data Streams SSDBM ’17, June 27-29, 2017, Chicago, IL, USA

Here,Oi ⊆ O j → Ri ⊆ Rj . According to the definition of д, д(Ri) =
f (Oi) and д(Rj) = f (O j). As f (Oi) ≤ f (O j), then д(Ri) ≤ д(Rj).
Thus, д is a monotone function too.

□

Lemma 4.2. None of f and д is a submodular function.

Proof. Let us consider the settings of the preceding proof, i.e.,

two sets of spatial objects Oi and O j (where Oi ⊆ O j), and cor-

responding sets of dual rectangles Ri and Rj . Suppose, O and R
are the set of all objects and dual rectangles respectively. Let us

consider a spatial object ok ∈ O \ O j and its associated dual rec-

tangle rk ∈ R \ Rj . Then there is a possible case where O j con-

forms to X , but neither Oi nor Oi ∪ {ok } conform to X . As O j
conforms to X , O j ∪ {ok } will conform too. Thus, f (Oi) = 0,

f (O j) = |O j |, f (Oi∪{ok }) = 0, f (O j∪{ok }) = |O j∪{ok }| = |O j |+1.

Interestingly, we obtain: f (Oi ∪ {ok }) − f (Oi) = 0 − 0 = 0

and f (O j ∪ {ok }) − f (O j) = |O j | + 1 − |O j | = 1; that means

f (Oi ∪{ok })− f (Oi) < f (O j ∪{ok })− f (O j) violating the condition
of submodularity. Hence, f is not submodular.

On the other hand, д(Ri ∪ {rk }) − д(Ri) = f (Oi ∪ {ok }) − f (Oi) =
0− 0 = 0 and д(Rj ∪ {rk }) −д(Rj) = f (O j ∪ {ok }) − f (O j) = |O j | +

1− |O j | = 1; which means д(Ri ∪{rk })−д(Ri) < д(Rj ∪{r })−д(Rj).
Thus, д is not submodular too. □

Let us consider the example of Figure 2 – supposeOi={o4,o5,o6,o7}
and two new POIs o8 and o9 arrive from class A and C respectively.

letO j=Oi ∪ {o8} (i.e.,Oi ⊆ O j). Now, f (Oi)=(0 + 2 + 2) (0) (1) (1)=0
and f (O j)=(1 + 2 + 2) (1) (1) (1)=5, i.e., f (Oi) ≤ f (O j), proving
monotonicity of f . But f (Oi ∪ {o9})=(0 + 3 + 2) (0) (1) (1)=0 and

f (O j ∪ {o9})=(1+ 3+ 2) (1) (1) (1)=6. Thus, (f (Oi ∪ {o9}) − f (Oi) =
0 − 0 = 0) < (f (O j ∪ {o9}) − f (O j) = 6 − 5 = 1), proving
non-submodularity of f . Similar examples can be shown for д too.

4.3 Processing C-MaxRS
Although f and д are not submodular functions, we show that their

monotonicity property can be utilized to derive efficient processing

and optimization strategies, similar to the ideas presented in [6].

4.3.1 Disjoint and Maximal Regions. The edges of the dual rect-
angles divide the given spatial field into disjoint regions where each
disjoint region Fdi is an intersection of a set of rectangles. Consider

the examples shown in Figure 3(i). Rectangles {r1, r2, ..., r7} divided
the space into distinct regions numbered 0− 19, e.g., region 0 is the

region outside all rectangles, and region 14 is the intersection of

rectangles {r4, r5, r6, r7}. Intuitively, all points in a single disjoint

region Fdi affects the same set of rectangles, i.e., A(p) is same for

all p ∈ Fdi . There could be at most O (n2) disjoint regions (shown
in [6]). To compute C-MaxRS, a straightforward approach can be

to iterate over all the O (n2) disjoint regions (one point from each

region) and choose the optimal one – thus reducing the search

space into a finite point set. For example, we only need to evaluate

20 points for the settings of Figure 3(i).

A disjoint region Fdi is termed as a maximal region Fmi if: (1) it

is rectangular, and (2) its left, right, bottom, top edges are (respec-

tively) the parts of the left, right, bottom and top edges of some dual

rectangles of R. In Figure 3(ii), region 5 and 14 are maximal regions.

For example, the left, right, bottom, and top edges of region 5 is a

part of the corresponding edges r2, r1, r1, r3 respectively. [6] showed
that for each distinct region Fdi , there exists a maximal region Fmi

such that A(Fdi) ⊆ A(Fmi). Using this idea, and the fact that д(.)
is monotonic, we can shrink the possible search space to only the

set of all maximal regions. As an example (see Figure 3), region 4

and 5 are affected by R1 = {r1, r3} and R2 = {r1, r2, r3} respectively.
As R1 ⊂ R2, so by the monotonicity of д, д(R1) ≤ д(R2). So, only
evaluating д(R2) is sufficient instead of evaluating both д(R1) and
д(R2). Though there could still be O (n2) maximal regions in the

worst case, the actual number in practice is much lower (compared

to disjoint regions).

4.3.2 Maximal Slabs and Slices. A maximal slab is the area be-
tween two horizontal lines in the space where the top line passes

along the top edge of a dual rectangle and bottom one passes along

the bottom edge of a dual rectangle, and the area between two

horizontal lines contains no top or bottom edge of any other dual

rectangles. In Figure 4i, there are three maximal slabs, enclosed by

the top and bottom edges of rectangles {r3, r1}, {r4, r3} and {r6, r5}
(top edges are solid line, and bottom edges are dotted lines). Ac-

cording to [6], each maximal region intersects at least one maximal

slab – i.e., the solution space can be reduced to the interior of all

the maximal slabs only. As maximal slabs are defined based on one

top and one bottom edge of dual rectangles, there could be at most

O (n) maximal slabs.

All the maximal slabs can be retrieved using a horizontal sweep

line algorithm in a bottom-up manner. A set is maintained to keep

track of the rectangles intersecting the current slab, and a flag to

indicate the type of the last horizontal edge processed. When the

sweep line is at the bottom (top) edge of a rectangle, it is inserted

into (deleted from) the set and flag is set to bottom (top). Addition-

ally, when processing a top edge of a rectangle, the algorithm checks

whether a maximal slab is encountered (i.e., currently flag=bottom).

We can compute the upper bound for a slab by applying д(.) on

o1 o2

o4
o5

o6
o7

r1 r2

r4
r5

r6

r7

o3
r3

1
2

3

ClassCClassBClassA

4 5
6

7

0

8 9 10

11 12

14

15

13

17

18 19

16

(i) Disjoint regions

o1 o2

o4
o5

o6
o7

r1 r2

r4
r5

r6

r7

o3

ClassCClassBClassA

r3

5

14

(ii) Maximal Regions

Figure 3: Disjoint & Maximal regions

SSDBM ’17, June 27-29, 2017, Chicago, IL, USA M. I. Mostafiz et al.

the rectangles intersecting that slab, i.e., if Rsi is the set of rect-
angles that intersects slab Fsi , then the upper bound of д(p) for
any point p ∈ Fsi is д(Rsi). For example, in Figure 4i, {r4, r5, r6, r7}
intersect the bottommost slab. So, the upper bound for that slab

is д({r4, r5, r6, r7}) = 0 (as no members of class A present – not

conforming to the introduced constraints in Section 1).

Finally, the monotonicity of д allows us to adapt another opti-

mization technique introduced in [6] – slices. The idea is to divide

the whole space into vertical slices (along x-axis). The width of

the slices is query-dependent, i.e., θ × b, where θ is a real positive

constant value (θ > 1 and optimal value can be tuned empirically)

and b is the width of the query rectangle r . After dividing the space
into slices, we retrieve the slabs within each slice using the horizon-

tal sweep-line algorithm described above and obtain upper-bound

of a slice by computing the maximum upper-bound among all the

slabs within that slice. We can then process the slices in a greedy

manner – sort them in order of their upper-bounds and process

one by one until the currently obtained result is greater than the

upper-bounds of the remaining slices. Similar greedy approach

can be adopted to process the maximal slabs within each slice. As

an example, suppose there are four slices {s1, s2, s3, s4} with upper

bounds {8, 3, 5, 2} respectively. The order in which the slices will be

processed is: {s1, s3, s2, s4}. Assume that after processing s1, current
optimal д value is 3. So there is a possibility the optimal solution

within s3 might exceed the current overall optimal solution of 3.

After processing s3, if the result is 4, then processing s2 and s4 is
unnecessary. Slices allow more pruning than slabs, and also still

O (n) maximal slabs is processed in all the slices (see [6]).

5 C-MAXRS IN DATA STREAMS
Given an efficient solution based on the dual problem and the

properties of the utility function, we now proceed to offer novel

techniques to deal with more realistic scenarios, i.e., data arriv-

ing in streams with the possibility of objects appearing and disap-

pearing at different time instants. Using the approach of the basic

o1 o2

o4
o5

o6
o7

r1 r2

r4
r5

r6

r7

o3
r3

ClassCClassBClassA

(i) Maximal Slabs

r1 r2

r4
r5

r6

r7

r3

θb

Slice1 Slice2

Slice3

(ii) Equal-width Slices

Figure 4: Maximal Slabs & Slices

o1
o2

o4

o5

o6
o7

o3

(i) Quadtree division

v0

v1 v2

v9v10

v5v3 v4 v6 v7
v8

{o1,o2,o3,o4,o5,o6,o7}

{o1,o2,o3} {o4,o5,o6,o7}

{o5,o7}

(ii) QTree

Figure 5: Quadtree

C-MaxRS problem (presented in previous section) as the founda-

tion, we augment the solution with compact data-structures and

pruning strategies that enable effective handling of data streams

environment.

5.1 Data Structures
Before proceeding with the details of the algorithms and pruning

schemes, we describe the data structures used. We will introduce

two necessary data structures: quadtree (denotedQTree) and a self-
balanced binary search tree (denoted SliceUpperBoundBST), and
describe the details of our representation of slices.

We re-iterate that while [6] tackled the problem of best-

placement with respect to an aggregate function, we are considering

different constraints – class membership. In addition, we do not

confine to a limited time-window. This is why, in addition to the

quadtree used in [6], we needed self-balancing binary tree to be

invoked as dictated by the dynamics of the modifications.

5.1.1 QTree . We need to process a large number of (variants of)

range queries when computing f for any point, i.e., finding inter-

secting rectangles for a given rectangle. To ensure this is processed

efficiently, we use quadtree ([18]) – a tree-based structure ensuring

fast (O (logn)) insertion, deletion, retrieval and aggregate opera-

tions in 2D space. QTree recursively partitions F into four equal

sized rectangular regions until each leaf only contains one POI. The

QTree for our running example settings is shown in Figure 5.

5.1.2 SliceUpperBoundTree . Recall that, the proposed algo-

rithm in Section 4.3 iterates through the slices in decreasing order of

their maximum possible utility values (upper-bounds). To achieve

this for basic C-MaxRS, sorting the slices in order is sufficient

(O (n logn) operation). On the other hand, there are possibility of

appearance (e+) and disappearance (e−) events in dynamic stream-

ing scenarios – i.e., upper-bounds of slices (and their respective

order) may change frequently with time. To deal with it efficiently,

we introduce a balanced binary search tree (SliceUpperBoundTree ,
see [15]) in our data structures instead of maintaining a sorted

Class-based Conditional MaxRSQuery in Spatial Data Streams SSDBM ’17, June 27-29, 2017, Chicago, IL, USA

list whenever an event occurs. Different kinds of self balancing bi-

nary search tree (e.g., AVL tree, Red-black tree, Splay tree, etc.)

can be used for this purpose. We used AVL tree in our imple-

mentation. If there are ϵ number of dynamic events and n num-

ber of slices, sorting them on each event would incur a total of

O ((ϵ+1)n logn) time-complexity. Whereas we can build a balanced

BST SliceUpperBoundTree initially in O (n logn), and update the

tree at each event in O (logn) time. Thus the total cost of maintain-

ing the sorted slices via SliceUpperBoundTree isO (n logn+ϵ logn)
time. As in real-world applications running for a long time, we

would incur large values of both ϵ and n, in which case, using

SliceUpperBoundTree is much more efficient.

To traverse the slices in decreasing order via

SliceUpperBoundTree , an in-order traversal from left to right order

is needed (assuming, higher values are stored on the left children),

and vice versa. SliceUpperBoundBST arranges the slices based on

their upper bounds of д. In Figure 6, a sample slice structure (of 7

slices) and their respective maximum utility upper bounds (dummy

values) are shown for two events at different times t1 and t2. The
corresponding SliceUpperBoundBST structure for both cases is

shown as well. The process of accessing the slices in decreasing

order (an in-order traversal) is demonstrated in Figure 6 (ii).

5.1.3 List of Slices. We use a list Ssl ice to maintain slices and

their related information. Each slice si ∈ Ssl ice is represented as

a 6−tuple (id,R, Sslabs ,pc , lazy,maxreдsearched). These fields are
described as follows:

• id : A numeric identification number for the slice.

• R: The set of rectangles currently intersecting with the corre-

sponding slice.

• Sslabs : The set of maximal slabs in the interior of the slice.

• pc : The local optimum point within the slice.

• lazy: This field is used to reduce computational overhead in cer-

tain scenarios. While processing streaming data, there are cases

when an e+ or e− event may alter the local solution (optimal point)

for a particular slice, but overall, the global solution is guaranteed

to remain unchanged. In those cases, we will not re-evaluate the

local processing of that slice (i.e., pruning) – rather will set the

(7, 6) (6, 2)

(5, 8) (1, 5) (3, 1)(4, 3)
Start End

62834 15

76542 31
Slice
ID

Max .
Upper
Bound

(ID,MaxVal)
(2, 4)

(i) at time t1

(7, 6) (2, 2)

(5, 7) (4, 4) (3, 1)(6, 2)
Start End

62642 13

76542 31

(1, 3)

Slice
ID

Max .
Upper
Bound

(ID,MaxVal)

(ii) at time t2

Figure 6: SliceUpperBoundBST at time t1 & t2

lazy field to true . Later, when the possibility of a global solution

change arises – local optimal points are re-processed for all the

lazy marked slices to sync with the up-to-date state. Initially, lazy
fields for all slices are set to f alse .
•maxreдsearched : This field is used to indicate whether the slice’s
local solution is up-to-date or not.maxreдsearched is set to true
when the corresponding slice is evaluated and its local maximal

point is stored in pc . Initially,maxreдsearched is set to f alse for
all the slices. While processing C-MaxRS by iterating through the

slices, all the slices with this field set to true are not re-evaluated
(skipped).

5.2 Base Method
In this section, we start by introducing two related functions (sub-

methods), and then describe the details of the base method to pro-

cess C-MaxRS using the ideas discussed so far.

5.2.1 PrepareSlices(Ssl ice). Function 1 takes Ssl ice as input

and sets up different fields of each slice accordingly. For each slice

si ∈ Ssl ice , their respective R and Sslabs are computed (lines 2-3),

and other variables are properly initialized (lines 4-6). In line 3, the

maximum upper bounds of д (denoted дmaxub) among all the slices

is retrieved as well, while ScanSlab is the horizontal sweep-line

procedure discussed in Section 4.3.2. SliceUpperBoundBST is also

build via line 7.

Function 1: PrepareSlices(Ssl ice)
Input : A set of slices Ssl ice

1 for each si in Ssl ice do
2 si .R ← the set of rectangles currently intersecting

with s .i;

3 (si .Sslabs ,дmaxub) ← ScanSlab(si .R);

4 SliceUpperBoundBST.update (si .id,дmaxub);

5 si .pc ← null ;

6 si .lazy ← f alse;

7 si .maxreдsearched ← f alse;

5.2.2 SliceSearchMR(p∗c). Function 2 takes the current global

maximal point p∗c as input and returns the updated solution. The

function iterates through all the slices via in-order traversal of

SliceUpperBoundBST from the root (lines 1-2). The process is ter-
minated if дmaxub of the current slice is ≤ of current maximum

utility value д(A(p∗c)) (lines 3-4), or when all the slices are evalu-

ated. At each iteration, we check whether there exists an already

computed solution (unchanged) for the slice. If so, we avoid re-

computing it (lines 6-7), otherwise we retrieve the current optimal

solution for the slice and update related variables accordingly (lines

9-11). Finally, we update the global optimal point by comparing it

with the local solution (lines 12-13).

5.2.3 SolveCMaxRS. Algorithm 1 presents the base method

SolveCMaxRS that retrieves the optimal point p∗c from a snapshot

of the database. p∗c ,QTree and SliceUpperBoundBST are initialized,

and the dual rectangles of the given POIs O is computed in lines

1-4. In lines 5-6, we update the QTree by inserting all the dual

SSDBM ’17, June 27-29, 2017, Chicago, IL, USA M. I. Mostafiz et al.

Function 2: SliceSearchMR(p∗c)

Input :Global maximal point p∗c
Output : Updated global maximal point p∗c

1 cnode ← SliceUpperBoundBST .root ;

2 while inorder traversal of SliceUpperBoundBST from
cnode is not done do

3 if cnode .дmaxub ≤ д(A(p∗c)) then
4 break;

5 else
6 if Ssl ice [cnode .sliceid].maxreдsearched = true

then
7 p∗local ← Ssl ice [cnode .sliceid].pc

8 else
9 p∗local ← Compute local optimal point ;

10 Ssl ice [cnode .sliceid].pc ← p∗local ;

11 Ssl ice [cnode .sliceid].maxreдsearched ← true;

12 if д(A(p∗local)) > д(A(p∗c)) then
13 p∗c ← p∗local ;

14 return p∗c

rectangles in the structure. Line 7 retrieves the list of slices using

the given width θb. Finally, the method uses Function 1 to initialize

the fields of slices properly in line 8, and computes the C-MaxRS

solution using Function 2 in line 9.

Algorithm 1: SolveCMaxRS(O,a,b)

Input : A set of objects O , query size a × b
Output : An optimal point p∗c

1 p∗c ← null ;

2 QTree .init ();

3 SliceUpperBoundBST .init ();

4 R ← the set of a × b rectangles centered at each o ∈ O ;

5 for each r ∈ R do
6 QTree .insert (new Node(r));

7 Ssl ice ← list of slices of width θb;

8 PrepareSlices(Ssl ice);

9 p∗c ← SliceSearchMR(p∗c);

10 return p∗c

5.3 Event-based Pruning
Recall that, to cope with the challenges of real-time dynamic up-

dates of the point space via data streams, we opted for the event-

driven approach rather than the time-driven approach. Our goal is

to maintain correct solution by performing instant updates during

an event. In case of spatial data streams, a straightforward approach

is to use Algorithm 1 whenever an event occurs. We now proceed

to identify specific properties/states of events (both e+ and e+) that
allow us to prune unnecessary computations while processing them.

Note that, in this settings, a bunch of e+ and e− events can occur

at the same time.

5.3.1 Pruning in e−. To derive an optimization technique for

e− events, let us first establish few related important results.

Lemma 5.1. Removal of a rectangle re (object oe) from the
point space F never increases the value of д(A(p)) (correspondingly
f (A(p))), ∀p ∈ P .

Proof. Let the removed rectangle be re . We consider two cases:

• re ∈ A(p): After the removal of re , the set of rectangles affected
by p becomes A(p) \ {re }. Now, A(p) \ {re } ⊂ A(p). Hence, from
Theorem 4.1, д(A(p) \ {re }) ≤ д(A(p)). Thus, the removal in this

case does not increase д(A(p)).
• re < A(p)): After removal of re , the set of rectangles affected by

p is still A(p). Hence, д(A(p)) remains unchanged. In this case as

well, the removal does not increase д(A(p)).
Similarly, we can show a proof for removing an object – i.e., oe
from F. □

Lemma 5.1 paves the way for the pruning of slices from being

considered a solution at e− events.

Lemma 5.2. The maximum utility point (global solution) p∗c is
unchanged after the removal of a rectangle re from the space F if
re < A(p

∗
c).

Proof. Here, re < A(p∗c). Suppose, after removing re , A
′(p∗c)

rectangles are affected by p∗c . Note that, A′(p∗c)=A(p
∗
c) (as re <

A(p∗c)), implying д(A′(p∗c)) = д(A(p∗c)). Thus, the utility values of

p∗c remains the same. By Lemma 5.1, the removal of re does not

increase the utility value of p,∀p ∈ P . Suppose, the utility value of

a point p, (p ∈ P and p , pc), are д(A(p)) and д
′(A(p)) respectively

before and after the removal of re , then д
′(A(p)) ≤ д(A(p)). Again,

p∗c being the maximal point, д(A(p)) ≤ д(A(p∗c)), ∀p ∈ P ,p , p∗c .
Above mentioned inequalities imply that д′(A(p)) ≤ д(A′(p∗c)),
∀p ∈ P ,p , p∗c , meaning p∗c remains unchanged. □

Using Lemma 5.2, we can prune local slice processing at an event

e−, if re < A(p
∗
c), i.e., we need to only update QTree in this case.

Lemma 5.3. The utility value of the maximal point p∗c is changed
after the removal of a rectangle re if re ∈ A(p∗c).

Proof. If p∗c is returned as the maximal point, then д(A(p∗c)) > 0

(i.e., we have a solution). After the removal of re , the set of rectan-
gles affected by p∗c becomes A(p∗c) − {re }. There are two possible

cases:

•A(p∗c)− {re } conforms to X : In this scenario, д(A(p∗c))−д(A(p
∗
c)−

{re }) = |A(p
∗
c) | − (|A(p∗c) | − 1) = 1.

• A(p∗c) − {re } does not conform to X : Here, д(A(p∗c)) − д(A(p
∗
c)) −

{re }) = |A(p
∗
c) | − 0 = |A(p

∗
c) |

In both cases, д(A(p∗c)) is changed. □

Lemma 5.3 implies that, if a rectangle removed at an e− event is

in A(p∗c), we need to re-evaluate local solutions for the respective

slice(s), and update global maximal point if necessary.

Class-based Conditional MaxRSQuery in Spatial Data Streams SSDBM ’17, June 27-29, 2017, Chicago, IL, USA

Lemma 5.4. Suppose a point space P is divided into a set of slices
Ssl ice , and the slice containing the maximum utility point p∗c is smax .
Let, Ss be another set of slices, where Ss ⊂ Ssl ice and smax < Ss .
Subsequently, the removal of a rectangle re spanning through only
the slices in Ss , i.e., affecting only the local maximum utility values of
si , ∀si ∈ Ss , does not have any effect on the global maximum utility
point p∗c .

Proof. Let p∗local be the maximum utility point of a slice si ∈ Ss .

∀p ∈ si where si ∈ Ss ,д(A(p
∗
c)) ≥ д(A(p∗local)) andд(A(p

∗
local)) ≥

д(A(p)). According to Lemma 5.1, after the removal of re , for any
si ∈ Ss , д(A(p−{re })) ≤ д(A(p)). From the above three inequalities,

we can deduce: ∀p ∈ si where si ∈ Ss , д(A(p) − {re }) ≤ д(A(p∗c)).
This holds true ∀si ∈ Ss . Thus, p

∗
c still remains the maximum utility

point (as smax is not altered), and smax is still the slice containing

p∗c . □

Lemma 5.4 implies that, if the slice containing global maximal

point p∗c is unchanged while some other slices are altered, then

following the update of QTree , we can delay the processing of

altered slices at that time instance as it is not going to affect the

global maximal answer anyway. For this reason, we incorporated

the lazy field in each slice. In this case, we set lazy to true for each
of these altered slices, indicating that they should be re-evaluated

later only when the slice containing global maximal point is altered.

5.3.2 Pruning in e+. During an e+ event, a rectangle (object) ap-
pears in the given space F. We present two lemmas in the following,

based on which we derive pruning strategies at e+ events.

Lemma 5.5. Addition of a rectangle re (object oe) in the given space
F never decreases the value of д(A(p)) (correspondingly f (A(p))),
∀p ∈ P .

Proof. Let the added rectangle be re . We consider two cases: •

re ∈ A(p): After the addition of re , the set of rectangles affected
by p becomes A(p) ∪ {re }. Now, A(p) ⊂ A(p) ∪ {re }. Hence, from
Theorem 4.1, д(A(p)∪ {re }) ≥ д(A(p)). So, in this case д(A(p)) does
not decrease.

• re < A(p)): After addition of re , the set of rectangles affected by

p still remains A(p). Hence, д(A(p)) does not change as well. Thus,
д(A(p)) does not decrease in this scenario as well.

Similarly, we can show a proof for adding an object – i.e., oe to

F. □

For e− events, we leveraged on ideas like Lemma 5.1 – i.e., re-

moval of a rectangle never increases utility value of a point, to

devise clever pruning schemes depending on the fact that local or

global maximal points are guaranteed to be unchanged in certain

scenarios. But, for e+ events, those are not applicable as addition
of a rectangle may increase utility of affected points. Interestingly,

though, there are scenarios when the utility values are unchanged,

e.g., when A(p) does not conform to X . Also, as shown in the 2nd

case of the proof of Lemma 5.5 – we only process a slice if its

affected by the addition of re .

Lemma 5.6. Suppose, we have a set of classes K = {k1,k2, . . . ,km },
and are given correspondingMinConditionSet X = {x1,x2, . . . ,xm }.
Let R be the set of rectangles overlapping with a slice si ∈ Ssl ice , and
let li be the count of rectangles of class ki in R. Then, addition of a

rectangle re of class ki has no effect on the local maximal solution of
si if:
(1) xi − li ≥ 2, or
(2) (∃lj , li) x j − lj ≥ 1

Proof. (1) In this settings, the maximum possible utility value

of si before addition of re is 0. Because, even if for a point p ∈ si ,
A(p) = R, then д(A(p))=0 as li < xi and R does not conform to X .
After the addition of re , suppose the count of class ki objects in R
is l ′i , i.e., l

′
i=li + 1. As given xi − li ≥ 2, then l ′i < xi . Thus, R still

does not conform to X , and maximum possible utility value of si
remains 0.

(2) Similarly, the maximum possible utility value of si before addi-
tion of re is 0. Because, even if for a point p ∈ si , A(p) = R, then
д(A(p))=0 as lj < xi for ∃lj , li , and R does not conform to X .
After the addition of re of class ki , lj remains unchanged. Thus, R
still does not conform to X , and maximum possible utility value of

si remains 0. □

Lemma 5.6 lays out the process of pruning during an e+ event.
For each slice, we maintain an integer value diff (i.e., xi − li) per
class in K denoting whether the corresponding upper-bound for

that class has been met or not. When adding a rectangle of class

ki , for each affected slices, we first check whether diffi ≥ 2, and if

so – we just update diffi and skip processing that slice. Similarly,

if diffi ≤ 1, but for ∃diffj ≥ 1, we can skip the slice. For example,

suppose we have a setting of three classesA, B,C where X={2, 3, 5}.

Suppose a slice contains {2, 1, 4} members of respective classes. In

this case, arrival of a rectangle of class B or C has no effect on that

slice. We incorporate these ideas in our Algorithm 3 (although, for

brevity, we skip details of implementing and maintaining diff in

algorithms) .

5.4 Algorithmic Details
We now proceed to augment the ideas from the previous section

in our base solution. In this regard, we provide the details of two

algorithms SolveCMaxRS− and SolveCMaxRS+, implementing the

ideas of pruning in e− and e+ events respectively.

5.4.1 SolveCMaxRS−. In Algorithm 2, we present the detailed

method for maintaining C-MaxRS result during an e− event using

the ideas introduced in Section 5.3.1. At first re is retrieved (from oe)
and then deleted from thenQTree is updated accordingly (see lines
1-2). In lines 3-4, all the slices intersecting with re is retrieved and

the set of slices marked lazy (Slazy) is initialized. Lines 5-8 iterate
through all the affected slices one by one and check for each of them

to see if the local maximal point si .p
∗
c is affected by re – if so, it

marks them as lazy for future update and also adds them to Slazy . If
the slice containing global maximal point i(i.e., smax) is not affected,

then the processing of slices in Slazy i skipped (pruning) in lines

9-12. Otherwise, if pruning is not possible, necessary computations

are carried out in lines 11-12.

5.4.2 SolveCMaxRS+. In Algorithm 3, we initially retrieve the

dual rectangle re associated with the event and update QTree by
inserting re as a new node in lines 1-2. Then, the set of slices affected

by re is computed and Slazy is initialized in lines 3-4. We introduce

a Boolean variable isPrunable in line 5 to track whether Lemma 5.6

SSDBM ’17, June 27-29, 2017, Chicago, IL, USA M. I. Mostafiz et al.

Algorithm 2: SolveCMaxRS
− (e− (oe),a,b,p

∗
c)

Input :An e− (oe) event, query size a × b, and current

maximal point p∗c
Output : Updated maximal point p∗c

1 re ← the a × b rectangle centered at oe ;

2 QTree .delete (re);

3 Se ← set of slices intersecting re ;

4 Slazy ← set of slices marked lazy;

5 for each si ∈ Se do
6 if before the removal re ∈ A(si .p

∗
c) then

7 si .lazy ← true;

8 Slazy ← Slazy ∪ {si };

9 smax ←slice containg global p∗c ;

10 if smax .lazy = true then
11 PrepareSlices(Slazy);

12 p∗c ← SliceSearchMR(p∗c);

13 return p∗c

can be applied or not. Lines 6-10 iterate through all the affected

slices one by one, an checks: if si .R now conforms to X and makes

change accordingly (modifies isPrunable), and sets-up si .lazy and

list Slazy properly. Lines 11-12 prunes the event if conditions of

Lemma 5.6 is satisfied, i.e., if isPrunable = true then the global

maximal p∗c needs no update. Otherwise, it processes C-MaxRS on

the snapshot (lines 13-14).

Algorithm 3: SolveCMaxRS
+ (e+ (oe),a,b,p

∗
c)

Input : An e+ (oe) event, query size a × b, and current

maximal point p∗c
Output : Updated maximal point p∗c

1 re ← the a × b rectangle centered at oe ;

2 QTree .insert (new Node(re));

3 Se ← set of slices intersecting re ;

4 Slazy ← set of slices marked lazy;

5 isPrunable ← true;

6 for each si ∈ Se do
7 if after the addition R ∪ re conforms to X then
8 si .lazy ← true;

9 isPrunable ← f alse;

10 Slazy ← Slazy ∪ {si };

11 if isPrunable = true then
12 return p∗c

13 PrepareSlices(Slazy);

14 pc ← SliceSearchMR(p∗c);

15 return p∗c

6 EXPERIMENTAL STUDY
In this section, we evaluate the performance of our algorithms.

To show the effectiveness of our approach we compare it with

the baseline. Since there are no existing solutions, to evaluate our

solutions to the C-MaxRS-DS problem, we extended the best known

MaxRS solution to cater to C-MaxRS-DS (see Section 5.2 – i.e.,

processing the C-MaxRS at each event without any pruning) and

used it as a baseline.

Dataset: Due to user privacy concerns and data sharing restrictions,
very few (if any) authentic large categorical streaming data (with

accurate time information) is publicly available. Thus, we used syn-

thetic datasets in our experiments to simulate spatial data streams.

Data points are generated by using both Uniform and Gaussian

distributions in a two-dimensional data space of size 1000m×1000m
= 1km2

. To simulate the behavior of spatial data streams from these

static data points, we use exponential distribution with mean inter-

arrival time of 10s and mean service time of 10s . Initially, we assume

that 60% of all data points have already arrived in the system, and

use this dataset for static part of evaluation. The remaining 40%

of the data points arrive in the system by following exponential

distribution as stated earlier. Any data point that is currently in the

system, can depart after being served by the system.

Parameters: The list of parameters with their ranges, default values

and symbols are shown in Table 1.

Parameter Name & Symbol Possible Values Default Value

Object distribution Uniform, Gaussian Gaussian

No. of objects, N 10k, 20k, 30k, 40k, 50k, 60k, 70k, 80k, 90k, 100k 50k

No. of POIClass, β 3, 4, 5, 6, 7 5

Min count (per class), µ 1, 2, 3, 4, 5 3

Query area, λ (in m
2
) 100, 225, 400, 625, 900 400

Theta, (θ) 1, 2, 3, 4, 5 3

Table 1: Parameters

Settings: We have used Python 3.5 programming language to im-

plement our algorithms. All the experiments were conducted in a

PC equipped with intel core i5 6500 processor and 16 GB of RAM.

We measure the average processing time of monitoring C-MaxRS.

Note that we exclude the processing time for static C-MaxRS com-

putation as this part is similar for both baseline and our approach.

The datasets and the code used in the experiments are publicly

available at: http://www.cs.northwestern.edu/∼mmh683/project-

works/cmaxrs-ds.html.

6.1 Performance Evaluation
We now present our detailed observations over different combina-

tions of the parameters.

6.1.1 Varying Number of Objects, N . In this set of experiments,

we vary number of objects, N , from 10K to 100K, and compare our

algorithm with the baseline for different N using both Gaussian

and Uniform distributions. Figure 7(i) shows that for Gaussian

distribution, the average processing time for our approach (in msec)

increases quadratically (semi-linearly) with the number of objects,

whereas the processing time of baseline increases exponentially

with the increase of N . For Gaussian distribution, on average our

approach runs 3.08 times faster than the baseline algorithm. For

Uniform distribution, on an average our approach runs 3.23 times

faster than the baseline algorithm (Figure 7(ii)). We also observe

that our approach outperforms the baseline in a greater margin

for a large number of objects as processing time of our approach

increases linearly with N for Uniform distribution.

Class-based Conditional MaxRSQuery in Spatial Data Streams SSDBM ’17, June 27-29, 2017, Chicago, IL, USA

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 1 2 3 4 5 6 7 8 9 10
No. of objects, N

Time (msec)

Baseline
Our Approach

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 1 2 3 4 5 6 7 8 9 10
No. of objects, N

Time (msec)

Baseline
Our Approach

(i) (ii)

Figure 7: Varying N (i) Gaussian (ii) Uniform.

 0

 0.15

 0.3

 0.45

 0.6

 0.75

 0.9

 1.05

 1.2

 1.35

 1.5

 1 2 3 4 5

θ

Time (msec)

Baseline
Our Approach

 0

 0.03

 0.06

 0.09

 0.12

 0.15

 0.18

 0.21

 0.24

 0.27

 1 2 3 4 5

Time (msec)

θ

Baseline
Our Approach

(i) (ii)

Figure 8: Varying θ (i) Gaussian (ii) Uniform.

6.1.2 Varying Theta (θ). Figure 8 compares the performance of

our approach with the baseline by varying theta (θ) for Gaussian
and Uniform distributions. We observe that for both distributions

the processing time of baseline algorithm increases at a higher rate

than our algorithm, with the increase of θ . Moreover, in all the cases,

our approach significantly outperforms the baseline algorithm in

the absolute scale/sense. On the average, our approach runs 3.37

and 3.31 times faster than the baseline in Gaussian and Uniform

distributions, respectively.

 0

 0.35

 0.7

 1.05

 1.4

 1.75

 2.1

 2.45

 2.8

 3.15

 3.5

Query area, λ

Time (msec)

Baseline
Our Approach

100 225 400 625 900
 0

 0.025

 0.050

 0.075

 0.100

 0.125

 0.150

 0.175

 0.200

 0.225

 0.250

 0.275

100 225 400 625 900
Query area, λ

Time (msec)

Baseline
Our Approach

(i) (ii)

Figure 9: Varying λ (i) Gaussian (ii) Uniform.

6.1.3 Varying λ - the Area of theQuery Rectangle . The impact of

varying the area of the query rectangle on the average processing

times (in msec) of our approach and baseline algorithm, is shown in

Figure 9(i) and Figure 9(ii). For Gaussian distribution, on an average

our approach shows 2.22 times better performance than the baseline

approach. Similarly, in Uniform distribution, our approach runs 2.25

times (on average) faster than the baseline. Additionally, note that,

as the area of query rectangle increases, corresponding processing

time increases as well – due to the possibility of a dual rectangle

intersecting with more slices (and other dual rectangles).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 3 4 5 6 7
No. of POIClass, β

Time (msec)

Baseline
Our Approach

 0
 0.015
 0.030
 0.045
 0.060
 0.075
 0.090
 0.105
 0.120
 0.135
 0.150
 0.165
 0.180

 3 4 5 6 7
No. of POIClass, β

Time (msec)

Baseline
Our Approach

(i) (ii)

Figure 10: Varying β (i) Gaussian (ii) Uniform.

6.1.4 Varying POIClass Count, β . The average processing time

of our approach and the baseline for varying POIClass Count, β
is shown in Figure 10 (Gaussian (i) and Uniform (ii)). We observe

that the processing time is maximum for the initial case where

POIClass Count, β is minimum. Also, we can see that for the both

distributions, the processing time decreases with increasing value

of β – i.e., handling larger number of classes is faster. On an average

our approach runs 3.45 times faster than the baseline algorithm for

Gaussian distribution of dataset. In case of Uniform distribution of

data, our approach runs 3.06 times faster than the baseline.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5
Min Count (per class), µ

Time (msec)

Baseline
Our Approach

 0
 0.015
 0.030
 0.045
 0.060
 0.075
 0.090
 0.105
 0.120
 0.135
 0.150
 0.165
 0.180

 1 2 3 4 5
Min Count (per class), µ

Time (msec)

Baseline
Our Approach

(i) (ii)

Figure 11: Varying µ (i) Gaussian (ii) Uniform.

6.1.5 Varying Min Class Count, µ. Figure 11 shows the average
processing time of our approach and the baseline by varying Min

Class Count, µ. Figures show that for both Gaussian and Uniform

distributions, our approach outperforms the baseline significantly.

We observe that on an average our approach runs 3.09 and 3.21

times faster than the baseline for Gaussian and Uniform distribu-

tions of dataset, respectively. We also note that, the processing time

for our approach is largely unaffected by the varying µ values.

6.1.6 Comparing Pruning Rules. In this set of experiments, we

compare the performance of the different components of our ap-

proach. First, we have extended the static C-MaxRS algorithm to

handle spatial data stream, which we call the baseline. Then we

introduce two pruning rules, one for the appearance event, e+-
Pruning and the other for disappearance event, e−-Pruning. Finally,
we combine both pruning rules to design our approach.

SSDBM ’17, June 27-29, 2017, Chicago, IL, USA M. I. Mostafiz et al.

 0

 0.08

 0.16

 0.24

 0.32

 0.40

 0.48

 0.56

 0.64

 0.72

 0.80

Baseline e
+
-Pruning e

-
-Pruning Our Approach

Algorithm

Time (msec)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

Baseline e
+
-Pruning e

-
-Pruning Our Approach

Algorithm

Time (msec)

(i) (ii)

Figure 12: Comparing pruning rules (i) Gaussian (ii) Uni-
form.

From the figure we can see that e+-Pruning scheme gives 8.25%

performance gain from the baseline algorithm for Gaussian distribu-

tion and gives 8.56% performance gain from the baseline algorithm

for Uniform distribution of data. The e−-Pruning scheme provides

almost 62.49% performance gain from the baseline for Uniform dis-

tribution and 63.01% performance gain from the baseline algorithm

for Gaussian distribution.

7 CONCLUDING REMARKS AND FUTURE
WORK

In this paper, we have proposed a new variant of MaxRS query,

namely Conditional Maximizing Range-Sum (C-MaxRS) query in

spatial data streams. Initially, we simply adapted the traditional

MaxRS settings to incorporate conditional constraints of different

class of objects. However, to handle data streams (i.e., appearance

and disappearance of objects) with class-awareness, we needed

additional spatial data structures, quadtree and a variant of self-

balancing binary tree (e.g., we used AVL-tree), which enabled our

algorithm to efficiently compute the changes in the result for dif-

ferent partitions (or slices) of the dataspace. To further improve

the overall time-efficiency, we developed two pruning rules: one

to handle the appearance of an object and the other to handle

disappearance of an object while updating C-MaxRS results. We

considered a large parameters space and conducted extensive set of

experiments, which demonstrated that our approach yields three

to four times improvements (on average) in terms of processing

time, when compared to the baseline algorithm.

There are several immediate extensions to our work. Firstly, we

are planning to address the scalability aspect – namely, although

our experimental results were conducted with a dataset of 100,000

objects, one can foresee scenarios (e.g., obtaining readings in partic-

ipatory sensing settings at a continent-wide scale) where one may

want to distribute the computation among multiple geo-regional

servers. Another extension is to incorporate the findings from the

recent work for monitoring MaxRS over mobile objects [9] so that

we can optimize mixed-tracking of objects belonging to different

categories (e.g., pedestrians, cars, and public transportation users).

Besides, we plan to extend our solution to include 3-D spatial ob-

jects. Lastly, we note that many of the recent works dealing with the

variants of the MaxRS problem have not considered the case where

spatial objects may have an extent – and this is an avenue that we

plan to pursue, as it may be useful in various practical scenarios –

e.g., monitoring the agricultural regions with highest areas of soil

salinity that can be covered within a limited time-interval.

REFERENCES
[1] 2016. Google X Loon Project. https://x.company/loon/. (2016). Accessed: 2017-

01-31.

[2] Daichi Amagata and Takahiro Hara. 2016. Monitoring MaxRS in Spatial Data

Streams. In 19th International Conference on Extending Database Technology.
[3] Zitong Chen, Yubao Liu, Raymond Chi-Wing Wong, Jiamin Xiong, Xiuyuan

Cheng, and Peihuan Chen. 2015. Rotating MaxRS queries. Information Sciences
305 (2015).

[4] Hyung-Ju Cho and Chin-Wan Chung. 2007. Indexing range sum queries in

spatio-temporal databases. Information and Software Technology 49, 4 (2007).

[5] D. W. Choi, C. W. Chung, and Y. Tao. 2014. Maximizing Range Sum in External

Memory. ACM Trans. Database Syst. 39, 3 (Oct. 2014), 21:1–21:44.
[6] Kaiyu Feng, Gao Cong, Sourav S. Bhowmick, Wen-Chih Peng, and Chunyan

Miao. 2016. Towards Best Region Search for Data Exploration. In ACM SIGMOD
International Conference on Management of Data.

[7] Ching-Tien Ho, Rakesh Agrawal, Nimrod Megiddo, and Ramakrishnan Srikant.

1997. Range queries in OLAP data cubes. Vol. 26. ACM.

[8] Muhammed Masud Hussain, Panitan Wongse-ammat, and Goce Trajcevski. 2015.

Demo: Distributed MaxRS in Wireless Sensor Networks. In ACM Conference on
Embedded Networked Sensor Systems (SenSys). ACM.

[9] Muhammed Mas-ud Hussain, Kazi Ashik Islam, Goce Trajcevski, and Mo-

hammed Eunus Ali. 2017. Towards Efficient Maintenance of Continuous MaxRS

Query for Trajectories. In 20th International Conference on Extending Database
Technology, EDBT.

[10] Hiroshi Imai and Takao Asano. 1983. Finding the connected components and a

maximum clique of an intersection graph of rectangles in the plane. Journal of
algorithms 4, 4 (1983).

[11] Iosif Lazaridis and Sharad Mehrotra. 2001. Progressive approximate aggregate

queries with a multi-resolution tree structure. In ACM SIGMOD Record, Vol. 30.
[12] James Manyika, Michael Chui, Brad Brown, Jacques Bughin, Richard Dobbs,

Charles Roxburgh, and Angela H Byers. 2011. Big data: The next frontier for

innovation, competition, and productivity. (2011).

[13] Subhas C Nandy and Bhargab B Bhattacharya. 1995. A unified algorithm for find-

ing maximum and minimum object enclosing rectangles and cuboids. Computers
& Mathematics with Applications 29, 8 (1995).

[14] Patrenahalli M. Narendra and Keinosuke Fukunaga. 1977. A branch and bound

algorithm for feature subset selection. IEEE Trans. Comput. 26, 9 (1977), 917–922.
[15] Jürg Nievergelt and Edward M Reingold. 1973. Binary search trees of bounded

balance. SIAM journal on Computing 2, 1 (1973), 33–43.

[16] Dimitris Papadias, Panos Kalnis, Jun Zhang, and Yufei Tao. 2001. Efficient OLAP

operations in spatial data warehouses. In International Symposium on Spatial and
Temporal Databases. Springer, 443–459.

[17] Tien-Khoi Phan, HaRim Jung, and Ung-Mo Kim. 2014. An Efficient Algorithm for

Maximizing Range Sum Queries in a Road Network. The Scientific World Journal
2014 (2014).

[18] Hanan Samet. 1990. Applications of spatial data structures. (1990).

[19] Cheng Sheng and Yufei Tao. 2011. New results on two-dimensional orthogo-

nal range aggregation in external memory. In Proceedings of the thirtieth ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems.

[20] Yufei Tao, Xiaocheng Hu, Dong-Wan Choi, and Chin-Wan Chung. 2013. Ap-

proximate MaxRS in spatial databases. Proceedings of the VLDB Endowment 6, 13
(2013), 1546–1557.

[21] Yufei Tao and Dimitris Papadias. 2004. Range aggregate processing in spatial

databases. IEEE Transactions on Knowledge and Data Engineering 16, 12 (2004).

[22] Yufei Tao, Cheng Sheng, Chin-Wan Chung, and Jong-Ryul Lee. 2014. Range ag-

gregation with set selection. IEEE transactions on knowledge and data engineering
26, 5 (2014), 1240–1252.

[23] Panitan Wongse-ammat, Muhammed Mas-ud Hussain, Goce Trajcevski, Besim

Avci, and Ashfaq Khokhar. 2017. Distributed In-Network Processing of k-MaxRS

in Wireless Sensor Networks. In 7th International Conference on Sensor Networks,
SENSORNETS.

[24] Jun Zhang, Manli Zhu, Dimitris Papadias, Yufei Tao, and Dik Lun Lee. 2003.

Location-based spatial queries. In Proceedings of the 2003 ACM SIGMOD.
[25] Xiaoling Zhou and Wei Wang. 2016. An Index-Based Method for Efficient Maxi-

mizing Range SumQueries in Road Network. InAustralasian Database Conference.
Springer, 95–109.

[26] Zenan Zhou, Wei Wu, Xiaohui Li, Mong Li Lee, and Wynne Hsu. 2011. MaxFirst

for MaxBRkNN. In Proceedings of the 27th IEEE ICDE 2011. 828–839.

https://x.company/loon/

	Abstract
	1 Introduction
	2 Related Works
	3 Preliminaries
	4 Basic bold0mu mumu CCCCCC-MaxRS
	4.1 bold0mu mumu CCCCCC-MaxRS Dual Problem
	4.2 Properties of f and g
	4.3 Processing C-MaxRS

	5 C-MaxRS in Data Streams
	5.1 Data Structures
	5.2 Base Method
	5.3 Event-based Pruning
	5.4 Algorithmic Details

	6 EXPERIMENTAL STUDY
	6.1 Performance Evaluation

	7 Concluding Remarks and Future Work
	References

