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Abstract
Alzheimer’s disease (AD) is a neurogenerative condition characterized by sharp cognitive decline with no confirmed effective 
treatment or cure. This makes it critically important to identify the symptoms of Alzheimer’s disease in its early stages before 
significant cognitive deterioration has taken hold and even before any brain morphology and neuropathology are noticeable. 
In this study, five different multimodal deep neural networks (MDNN), with different architectures, in search of an optimal 
model for predicting the cognitive test scores for the Mini-Mental State Examination (MMSE) and the modified Alzheimer’s 
Disease Assessment Scale (ADAS-CoG13) over a span of 60 months (5 years). The multimodal data utilized to train and test 
the proposed models were obtained from the Alzheimer’s Disease Neuroimaging Initiative study and includes cerebrospinal 
fluid (CSF) levels of tau and beta-amyloid, structural measures from magnetic resonance imaging (MRI), functional and 
metabolic measures from positron emission tomography (PET), and cognitive scores from the neuropsychological tests (Cog). 
The models developed herein delve into two main issues: (1) application merits of single-task vs. multitask for predicting 
future cognitive scores and (2) whether time-varying input data are better suited than specific timepoints for optimizing 
prediction results. This model yields a high of 90.27% (SD = 1.36) prediction accuracy (correlation) at 6 months after the 
initial visit to a lower 79.91% (SD = 8.84) prediction accuracy at 60 months. The analysis provided is comprehensive as it 
determines the predictions at all other timepoints and all MDNN models include converters in the CN and MCI groups (CNc, 
MCIc) and all the unstable groups in the CN and MCI groups (CNun and MCIun) that reverted to CN from MCI and to MCI 
from AD, so as not to bias the results. The results show that the best performance is achieved by a multimodal combined 
single-task long short-term memory (LSTM) regressor with an input sequence length of 2 data points (2 visits, 6 months 
apart) augmented with a pretrained Neural Network Estimator to fill in for the missing values.
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Introduction

There is a hypothesized biological and phenotypical tran-
sition in which a person who is cognitively normal (CN) 
and most likely asymptomatic could have subtle changes 
in brain structure and neurochemistry years before Alz-
heimer’s disease (AD) develops [1–4]. This stage can last 
as long as 20 years for some and with little or no symp-
toms to warrant a doctor’s attention and with the pros-
pects for identifying someone in this preclinical stage 
being extremely difficult. Once symptoms emerge, the 
disease progresses from a preclinical phase (with under-
lying biomarker abnormalities) to a prodromal mild cog-
nitive impairment (MCI), and ultimately several stages of 
dementia. The ability to predict with some accuracy the 
rate of progression has enormous significance for patients 
and their families (who must make plans for the future), 
selection of potential treatments, and for identifying sub-
types of slow and fast progressors in observational studies 
and clinical treatment trials.

Various factors have been identified which may assist 
in the prediction of the rate of progression, including 
cognitive measures, different imaging modalities of the 
brain, such as a magnetic resonance imaging (MRI), which 
provides structural information, and positron emission 
tomography (PET), which provides brain metabolic and 
functional measurements, and both can help detect signs of 
brain atrophy and the presence of amyloid plaques in the 
brain triggered by the buildup of Amyloid-β (αβ) peptides, 
and cerebral spinal fluid (CSF) measures, including levels 
of amyloid beta protein and tau [5–13]. Commonly used 
measures to identify cognitive and functional impairment 
and to measure progression in these domains include the 
Mini-Mental State Examination (MMSE), along with the 
Alzheimer’s Disease Assessment Scale (ADAS-Cog) test, 
a comprehensive assessment tool that detects decline in 
several cognitive domains, the Rey Auditory Verbal Learn-
ing Test (RAVLT), the Functional Activities Questionnaire 
(FAQ), the Everyday Cognition scale (Ecog), and finally, 
the Clinical Dementia Rating (CDR), a cognitive and func-
tional scaled sensitive to the severity stages of dementia 
[14–17]. These four different assessment modalities—
MRI, PET, CSF, and cognitive scores—are available in 
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
database and have been key for the development of imag-
ing and machine learning algorithms in the AD field.

A lot of the recent machine learning and deep learning 
work has been involved in either the classification [18, 19] 
or prediction of AD. In prior work [20], the authors devel-
oped a method to predict the MMSE scores of patients 
24 months after the baseline score was recorded. The 
data used originated from the ADNI database and was 

pruned to 489 patients that possessed the chosen features: 
genetic biomarkers, ADNI-based neuropsychological tests 
memory (ADNI-MEM) and executive function (ADNI-
EF), the baseline MMSE score, as well as general demo-
graphic data such as gender, age, and education level. The 
method is based on the use of Support Vector Machines 
(SVMs) with linear and Radial Basis Function (RBF) ker-
nels. The study proved the potential predictive ability of 
their selected genetic biomarker. Uniquely, the authors 
[21] designed a study to leverage the efficacy of the PET 
modality through image analysis to extract and combine 
features such as low glucose metabolism paired with a 
high amyloid deposit as a telling sign of decline in cogni-
tive scores. The dataset used was composed of a subset of 
the ADNI dataset, with 492 subjects, whose scores were 
assessed after 12 and up to 72 months from baseline.

MRI features were the focus of studies used to predict 
future cognitive test scores [22–26]. In [23], the authors 
utilized two key structural MRI biomarkers—segmentation 
of the hippocampal region and cortical thickness—to pre-
dict the MMSE and ADAS scores of 1359 patients from 
the ADNI database 12 months after their baseline scores. 
They employed an anatomically partitioned artificial neu-
ral network (APANN) composed of multiple hidden layers 
to encode the latent features of the input data. While the 
results only show a decent accuracy, it is most likely due to 
the limited number of features chosen and should instead 
be interpreted as having selected a good set of biomarkers. 
The authors [24] focused on what they termed as 2.5D patch 
extraction method from 3D MRI to reach moderately high 
accuracy. With 818 patients from the ADNI data, the study 
used a convolutional neural network (CNN) for feature selec-
tion with an extreme learning machine classifier to predict 
the disease state 3 years after baseline. An improvement on 
the SVM is reported by incorporating a switching delayed 
particle swarm optimization to select the SVM parameters 
[25]. The implementation involved 361 patients from the 
ADNI database to predict their AD state 36 months from 
baseline. The authors in [26] used a CNN to select the spatial 
features from MRI and a recurrent neural network (RNN) 
to select the longitudinal features with a method that jointly 
learns and extracts both of these sets of features. Using 830 
patients from the ADNI database, the study reports a high 
classification accuracy between even progressive MCI and 
stable MCI, which is extremely challenging. The authors 
of [27] focused their efforts on the use of 3D deep learning 
algorithms on resting-state functional MRI scans to predict 
the MMSE scores of 331 participants, who have taken both 
the MMSE and the CDR tests. They utilized a 3D CNN for 
classification purposes and achieved high accuracy as well. 
A recent study [28] implemented a weakly supervised learn-
ing framework to counteract the effects that the small sample 
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sizes can have on typical machine learning algorithms, to 
demonstrate the effectiveness of this approach with a CNN-
based single-input-multi-output architecture that works on 
extracting features from MRI scans and predicts the stage 
for 6,932 MRI scans from multiple databases.

Multimodal approaches, where multiple input modalities 
are simultaneously used, have been used [29–35] to pre-
dict the progression of AD. The authors of [29] set out to 
predict two variables, MMSE and ADAS scores, as well 
as classify the AD stage of 186 patients from the ADNI 
database in a 24-month time interval. The study used three 
modalities: CSF, from which they manually selected Aβ42, 
tTau, and pTau features, MRI, and PET, whose features were 
selected by using multimodal multitask (M3T) learning for 
the feature selection process. The AD stages were classified 
by an SVM. The single modality feature selection methods 
were compared to the M3T method, which yielded the high-
est accuracy. The multimodal study from [30] included a 
48-month running MMSE prediction with steps of 6 months 
in addition to the previous biomarkers. The multimodal 
study from [30] included a 48-month running MMSE pre-
diction with steps of 6 months in addition to the previous 
biomarkers. A distributed M3T learning approach is used 
over a dataset of 1620 patients for each modality to find the 
most prevalent features, which are then passed through a 
gradient boosting technique. The authors achieved a strong 
correlation overall; as expected, the accuracy went down the 
further into the future the prediction was. The study could 
have benefited from making use of the baseline cognitive 
exam data. In study [31], the authors explored the prediction 
of future neuropsychological scores of 5 different exams of 
1141 patients 24 months from the baseline measurements. 
Their method of choice was a stochastic gradient boosting 
of decision trees of multimodal data available on ADNI 
over an 18-month period. The method used in this study 
resulted in the highest correlation when compared to other 
common algorithms such as perceptron or SVMs. The case 
study [32] made use of measurements from a combination 
of MRI and PET scans, CSF, and plasma-related biomarkers 
from 818 patients in the ADNI database. They permutated 
the different modalities in a multi-source multitask learning 
architecture to reach moderately high accuracy. The authors 
of [33] selected 617 patients with MRIs, PETs, CSF meas-
urements, and MMSE scores whose features were fused via 
their extreme learning machine method. These were then 
classified to predict the future states of the patients within 
3 years of their baseline measurements. The authors in study 
[34] took a different approach. They chose to produce an 
extensive multimodal study that harnesses the advantages 
of artificial intelligent (AI) AD predictors while making the 
results accessible to doctors and other medical experts with 
no knowledge of AI and machine learning. Their study takes 
the following 11 modalities: cognitive scores, MRI, PET, 

genetics, lab tests, medical history, neuro exams, neuropsy-
chological battery, physical exams, symptoms, and vital 
signs of 1048 patients from the ADNI database. This is then 
passed through their two-layer model, which implements the 
SHapley Additive exPlanations (SHAP) feature attribution 
framework that turns the black box that machine learning 
can be into an easily understood in a step-by-step manner.

While these prior studies yielded good results, the use 
of progressive data can prove to be valuable in terms of 
the financial cost it would otherwise take to acquire such 
data. Using numerous and regular time points can certainly 
improve the performance of algorithms. Studies such as 
[36–41] have investigated the potential benefits of using long 
short-term memory (LSTM) neural networks, a type of arti-
ficial recurrent neural network popularly used for sequence 
labeling and prediction, to analyze and forecast AD progres-
sion. LSTMs themselves would seem best fitted for trying to 
predict AD prognosis due to their ability to handle tempo-
rally correlated data alongside their clever way of handling 
the vanishing gradient problem inherent in its predecessors. 
The authors of [36] set out to investigate LSTM’s long-term 
learning capabilities combined with five biomarkers relating 
to MRI measurements to predict the course of the disease for 
2700 patients taken from the ADNI database for a 30-month 
duration in time steps of 6 months. Their results were tabu-
lated and compared to previous studies using more prevalent 
AD prediction algorithms and reported a higher accuracy 
rate than others, except for the case between MCI and CN, 
which could be one of the more crucial and challenging pre-
dictions to make. The study from [37] chose to use a multi-
modal amalgamation of CNN, SVM, and LSTM for its tem-
poral and longitudinal advantages to reach a high accuracy 
rate. Their dataset was made up of the general demographic 
information, MMSE scores, structural MRI measurements, 
and the CDR of 416 patients from the Open Access Series of 
Imaging Studies (OASIS). The method from [38] leverages 
the LSTM algorithm through a linear discriminant analy-
sis classifier to predict the state of the disease. The study 
uses the ADNI TADPOLE dataset from which they selected 
742 patients with MRI biomarkers to yield a high accuracy 
rate in addition to showing its consistent capabilities with 
varying time intervals. The authors from [40] employed a 
dataset of 1677 from the ADNI TADPOLE challenge cov-
ering a period of up to 72 months and used a typical set of 
biomarkers to be inputted directly into their RNN model. 
The resulting predictions were compared to those of LSTM, 
SVM, Linear State Space baseline, and a constant prediction 
method where their proposed RNN model was reported to 
have outperformed the other in most cases when predicting 
ADAS13 cognitive scores. The authors of [41] selected 1526 
patients from the ADNI database and implemented a CNN 
followed by a bidirectional LSTM. They use the patient’s 
cognitive scores as well as additional features from brain 
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scans and CSF samples as inputs to their model and reached 
a strong accuracy at predicting the AD stage as far out as 
84 months from baseline. Other studies [42, 43] use graph 
convolution networks (GCNs) for early AD diagnosis and 
a novel sparse regression method to fuse the auxiliary data 
into the predictor data for the pMCI/sMCI classification.

The aim of this study is to improve upon this founda-
tion with its use of deep learning regression models in an 
improved time increment of 6 months between nodes over a 
period of 5 years in addition to limiting the feature selection 
which would ideally reduce the amount of data needed to 
be collected in a practical setting. This study develops five 
different multimodal deep neural networks with different 
architectures and underlying characteristics, to predict the 
cognitive test scores of MMSE and ADAS-CoG13 over a 
span of 60 months (5 years). To the best of our knowledge, 
no prior study has had predictions every 6 months for up 
to 5 years using deep learning. Similar to many prior stud-
ies, however, we have obtained multimodal biomarker data 
from Alzheimer’s Disease Neuroimaging Initiative. How-
ever, in our case, we use longitudinal multimodal data from 
CSF levels, structural measures from MRI, functional and 
metabolic measures from PET, and cognitive scores from 
neuropsychological tests. We present a data augmentation 
technique and a Bidirectional LSTM Neural Estimator to 
generate more training and testing samples from the avail-
able data and to handle the missing data problem, respec-
tively. The models developed herein delve into two main 
questions as to ascertain the merits of (1) using single-task 
learning method that combines 10 individual prediction into 
1 output (experiments 2 and 3A) vs. multitask (experiments 
1 and 3B) prediction that take advantage of the correlations 
between modalities from the start through a single deep 
regressor; and (2) using time-varying input data (Experiment 
3A and 3B) vs. the use of a single snapshot of time (Experi-
ments 1 and 2) in order to achieve the highest prediction 
accuracy of future time points. In this study, single task is 
used for predicting one time point, while multitask is used 
for predicting multiple time points simultaneously.

In designing the proposed MDNN models, the follow-
ing biological features are used as input in the training and 
testing phases of these models: (1) the apolipoprotein E 
(APOE) ε4 status at the baseline examination in terms of 
APOE ε4 positivity, (2) CSF to gauge the measurements of 
amyloid-β 1–42 peptide (Aβ1-42), total tau (tTau), and tau 
phosphorylated at the threonine 181 (pTau), and (3) the use 
of FDG (18-Fluoro-DeoxyGlucose), Pittsburgh Compound-
B (PIB), and AV45 in PET imaging so as to assess amyloid 
positivity when these PET images are registered with the 
MRI modality.

It is emphasized that (a) the distinct and non-overlapping 
nature of the testing sets ensures that no data from subjects 
seen during the training of the model is seen in the testing 

phase, ensuring a completely independent test set; and (b) 
the input features of the training and testing sets are stand-
ardized (ensuring zero mean and unit standard deviation) 
using the statistics of the training set, since under practical 
circumstances, the statistics of the testing set are not known. 
Furthermore, a grid search approach was used for hyperpa-
rameter tunning.

Methods

Study Cohorts

All participating subjects in this study come from the Alz-
heimer’s Diseases Neuroimaging Initiative. ADNI aims to 
obtain and maintain MRI, PET, CSF, biochemical biomark-
ers, and neuropsychological tests for the early detection and 
study of the progression of Alzheimer’s disease. All data 
are publicly available from http://​adni.​loni.​usc.​edu/. In all, 
1843 ADNI patients between the ages of 55 and 90 were cat-
egorized into the following groups with their corresponding 
sample sizes on the individual clinical diagnosis at baseline 
and follow-up visits:

(a)	 485 CN: are cognitively normal at baseline and remain 
so thereafter

(b)	 71 CNc: progressed from a cognitively normal state to 
mild impairment

(c)	 496 MCI: presented (at baseline) and remained mild 
cognitively impaired

(d)	 338 MCIc: presented as MCI and progressed to AD at 
some point during the study

(e)	 331 AD: subjects diagnosed with Alzheimer's disease
(f)	 26 individuals who progressed all the way from CN to AD

The differentiation clinical diagnosis categories are 
defined by the ADNI protocols and depend on MMSE and 
CDR cutoffs established by them along with other criteria. 
Due to the inherent variability of some subjects’ perfor-
mance on the MMSE test at different examinations, some 
of them demonstrate regression in clinical groups (i.e., from 
MCI to CN or AD to MCI). Cleaning the dataset of these 
extraneous points, or outliers, could yield better performance 
metrics than what could be reasonably expected from the 
population at large. Therefore, to avoid possibly skewing 
the test, we also include the unstable CNun (78) and MCIun 
(18) subjects present therein.

Demographic information includes age, gender, years of 
education, and APOE ε4 status at the baseline examination. 
These relevant data are presented in Table 1 to show the var-
iation among the different clinical subgroups along with the 
relevant statistical tests. The participants’ mean age ranged 
between 69.27 and 76.96 years; the percentage of males 

http://adni.loni.usc.edu/
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was statistically larger in MCIc (58.58%) and AD (56.19%) 
groups than in the CN group. On the other hand, APOE ε4 
positivity was more prevalent in the MCIc (64.20%) and 
AD (68.28%) groups than in any others. The number of edu-
cation years ranged from 4 to 20, with a mean of 15(± 2) 
years. The mean baseline MMSE and ADAS13 scores are 
also identified for each of the groups, showing the expected 
significant changes from CN to AD.

The proposed longitudinal models covered in this study 
use the four main modalities of the ADNI dataset:

•	 Neuroimaging measurements from MRIs: ventricular 
volume, hippocampus volume, whole brain volume, 
entorhinal cortical thickness, fusiform volume, and the 
middle temporal gyrus volume. The volumetric measure-
ments are normalized by the intracranial volume (ICV).

•	 CSF measurements: Aβ1-42, tTau, and pTau.
•	 PET measurements: FDG, PIB, and AV45.
•	 Cognitive scores from the: RAVLT, FAQ, Everyday Cog-

nition scales, ADAS13, CDR, and MMSE.

Furthermore, as we are conducting longitudinal stud-
ies, we can only include subjects who have at least two 
separate visits, with at least one more time visit after 
the initial admission, to validate the predictions. Figure 1 

depicts the percentage of available samples for neuroim-
aging, cognitive, CSF and PET modalities for the differ-
ent visits at 6 months intervals (∆t = 6). Understandably, 
as CSF measurements require a complex and delicate 
lumbar puncture (spinal tap), the total available samples 
for it are the least available of all modalities for month 30 
(0.1%), month 42 (0.3%), and month 54 (1.1%), while in 
contrast, MRI data are the most available over the dura-
tion of the study.

Data Preparation

Deep learning models like the ones presented in this study 
require large amounts of data. However, we demonstrate 
in the next sections that it is still possible to achieve high-
performance metrics with a smaller-than-desired number of 
samples. Recent literature on the longitudinal prognosis of 
AD tends to only consider baseline biomarker measurements 
to predict future MMSE scores. This approach does not take 
advantage of all the other data points available from follow-
up visits, greatly reducing the available data for training. In 
our previous study [44], we implemented a dataset augmen-
tation technique that makes use of the data collected from 
all available follow-up visits, which go as far as 168 months 
after the baseline at the time of this study, to generate 8071 

Table 1   Study demographics

Significant significance is at least P < 0.05
Significance difference between groups were assessed using one-way analysis of variance and post hoc 
Tukey tests for continuous variables (age, education, MMSE) and chi-squared test for the gender and 
APOE ε4 variables
AD Alzheimer disease, CN normal control, CNc converter CN, MCI mild cognitive impairment, MCIc con-
verter MCI, CN to AD converter from CN to AD, CNun CN unstable, MCIun MCI unstable, MMSE Mini-
Mental Examination Test, APOE ε4 apolipoprotein E
a Significantly different from CN
b Significantly different from CNc
c Significantly different from MCI
d Significantly different from MCIc
e Significantly different from AD

CN CNc MCI MCIc AD CN to AD CNun MCIun

# of subjects 485 71 496 338 331 26 78 18
Age Mean 73.16 76.96a 73.08b 74.01b 74.62a,c 74.98 69.27 72.19

SD (6.07) (5.70) (7.50) (7.11) (7.87) (4.31) (8.01) (8.14)
Education Mean 16.49 16.30 15.90a 15.91a 15.19a,b,c,d 15.92 16.65 15.83

SD (2.64) (2.76) (2.88) (2.80) (2.94) (2.53) (2.38) (2.18)
MMSE Mean 29.10 28.89 27.86a,b 26.99a,b,c 23.27a,b,c,d 29.42c,d,e 28.65 27.22

SD (1.10) (1.33) (1.82) (1.77) (2.11) (0.81) (1.27) (2.37)
ADAS13 Mean 9.35 11.61a 15.14a,b 20.74a,b,c 29.85a,b,c,d 10.83c,d,e 10.45 15.06

SD (4.33) (4.68) (5.91) (6.47) (8.01) (4.31) (4.57) (7.68)
Gender (M/F) % 44.12/

55.88
61.97/
38.03

61.09/
38.91

58.58/
41.42a

56.19/
43.81a

46.15/
53.85

52.56/
47.44

72.22/
27.78

APOE ε4 (0/1,2) % 71.55/
28.45

57.75/
42.25a

57.86/
42.14a

35.80/
64.20a,b,c

31.72/
68.28a,b,c

53.85/
46.15

62.82/
37.18

44.44/
55.56
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distinct samples from the original 1843 patients. This aug-
mentation technique is described in general terms by (1), and 
an example of its usage is displayed in Fig. 2, as introduced 
initially in [44].

where Xi stands for the input features and Yi stands for the 
target or predicted values at the ith visit; Δt is the time visit 
increment (or the minimum discrete time between visits). In 
our particular case, we link a set of features X at any given 
time with a corresponding set of targets Y at times ranging 
from six (6) to sixty (60) months after X is collected.

Through Eq. (1), we generate the set of all possible 
[Xi] → [Yi+∆t, Yi+2∆t, …, Yi+10∆t] for every available follow-
up visit from month 0 (baseline) to month 108 (i.e., 18 × 6 
with i = 1, 2, …18 as in (1)) of every available patient, 

(1)
⋃18

i= 1
[XiΔt]; [Y(i+ 1)Δt, Y(i+ 2)Δt,… , Y(i+ n)Δt]

Δt = 6, n = 10

thereby generating a rich dataset sample from which to 
train and test the proposed network. Figure 2 shows in 
practical detail how data from a single subject can gener-
ate 18 different samples when using this augmentation 
technique.

Once the dataset has been augmented using Eq. (1), the 
full dataset is stratified and randomly divided into training 
(90%) and testing (10%) sets that are deployed to evaluate 
and compare the general characteristics of the proposed 
models. We repeat these steps ten times in accordance with 
the tenfold cross-validation technique to generate ten distinct 
and non-overlapping testing sets along with their associated 
training ensembles.

Data and Code Availability Statement

The clinical data used in this study was obtained from 
ADNI database. All details pertaining to collection proto-
cols, imaging modalities, and other collected parameters 

Fig. 1   Percent of samples 
with available data for MRI, 
CSF, PET, and Cognitive Tests 
biomarkers for the different time 
points

Fig. 2   Dataset augmentation example
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can be found at their institutional website (adni.​loni.​usc.​
edu). The datasets generated during and/or analyzed dur-
ing the current study are available from the corresponding 

author on reasonable request. The software developed for 
this study can be made available upon request to the cor-
responding author of this manuscript.

Fig. 3   Combined multitask single-mode regressors (Experiment 1): Neural Network Architecture

https://adni.loni.usc.edu/
https://adni.loni.usc.edu/
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Experiments

Combined Multitask Single‑Mode Regressors 
(Experiment 1)

In the previous study [44], we combined the four modalities 
(MRI, CSF, PET, and Cognitive test scores, covered in the 
“Study Cohorts” section) into a single-input matrix, thereby 
forcing the regression model to learn their interdependencies 
and relations to MMSE scores. In contrast, in this experiment, 
we explored how each of the modalities could separately con-
tribute to the MMSE and how their individual errors can be 
further decreased by combining their respective single-mode 
regressor’s prediction into the input of a separate regression 
model. By doing so, as shown in Fig. 3, the new model learns 
how to optimally reduce the MMSE prediction error of the 
individual single-mode regressors.

This experiment as illustrated in Fig. 3 consists of two 
separate phases:

1.	 Train a deep and fully connected neural network for each 
modality separately. Similar to the previous experiment, a 
five-layer network is used with similar training conditions. 
The first and fourth layers are composed of 50 neurons, 
the second and third consist of 100, and the last has 10 
(one for each of the predicted timepoints). Each layer has 
Rectified Linear Units (ReLU) activations, L2 regulariza-
tion of 0.02, and Glorot’s weights initialization [45]. The 
weights are updated using the RMSprop [46] algorithm 
with a learning rate of 0.01 and 0.8 weight decay.

2.	 The combined output predictions of Phase 1 of the regres-
sors (predicted MMSE scores from the individual modali-
ties) are combined into a matrix and used as the input 
for the current stage. These are used to train a new fully 
connected deep neural network with a total of 6 stand-
ard perceptron layers. The first, third, and fifth layers are 
composed of 50 neurons, the second and fourth of 100, 
while the last (or output layer) has ten neurons (one for 
each of the predicted timepoints). Once more, each layer 
has ReLU activations, L2 regularization of 0.01, and Glo-
rot’s weights initialization [45]. RMSprop is again used 
as the weigh update method, but this time with a learning 
rate of 0.005 and 0.7 weight decay.

The results of combining the multitask single-mode 
regressors are shown in Table 2 with the corresponding per-
formance metrics (Correlation, Root-Mean-Squared Error 
(RMSE), and the Coefficient of Determination (R2)).

Multimodal LSTM Regressor (Experiment 2)

To take advantage of the longitudinal time-varying nature of 
the predicted data, we set forth to build a multimodal LSTM 
regressor. LSTMs are an evolution of RNN that take care 
of the vanishing gradient problem present in the latter by 
learning what to remember and what to forget and with the 
ability to learn and process arbitrarily long sequences. Like 
RNNs, they are also much better at handling time-varying 
data than the standard perceptron. LSTMs see and learn the 
temporal correlations of their neuron’s output and inputs. 

Table 2   Experimental results 
for combined multitask 
single-mode regressors model 
(Experiment 1)

Time (months): M06 M12 M18 M24 M30 M36 M42 M48 M54 M60

Correlation, %
(SD)

85.2
(1.61)

87.58
(1.28)

85.1
(2.13)

85.29
(1.85)

82.02
(5.21)

81.54
(4.2)

78.95
(4.92)

80.06
(5.18)

79.34
(6.09)

76.98
(6.82)

RMSE
(SD)

2.09
(0.17)

2.24
(0.13)

2.48
(0.27)

2.46
(0.2)

2.68
(0.38)

2.66
(0.27)

2.93
(0.39)

2.75
(0.24)

3.28
(0.45)

2.96
(0.34)

R2, %
(SD)

67.66
(4.52)

72.67
(3.42)

68.61
(4.29)

68.57
(2.98)

63.68
(8.91)

62.18
(7.49)

55.23
(11.34)

59.08
(10.2)

54.77
(9.63)

53.02
(14.22)

Fig. 4   LSTM unit structure
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Their general principle of operation is described in Fig. 4, 
along with supporting Eqs. 2 through 8.

Equation (2) describes the neuron’s Forget Gate’s behav-
ior, which allows the neuron to choose whether to remember 

(2)ft = S
(

Wf xt + Rf yt−1 + bf
)

(3)it = S
(

Wixt + Riyt−1 + bi
)

(4)ot = S
(

Woxt + Royt−1 + bo
)

(5)at = tanh
(

Wcxt + Rcyt−1 + bc
)

(6)st = ft ◦ st−1 + it◦ at

(7)yt = ot ◦ tanh (st)

(8)S(x) =
1

1 + e−x

or forget its past internal state when computing its current 
one. Equation (3) defines the neuron’s Input Gate; it uses the 
current input and the neuron’s last output to decide whether 
the current activation should be used in the internal state 
update. Equation (4) describes whether the neuron will use 
its current internal state to generate a new output, its Out-
put Gate. Equation (5) is the activation function, and Eq. (6) 
describes how the activation function and the input gate com-
bine with the prior internal state and the forget gate to gener-
ate the new internal state. Finally, the output of the independ-
ent neurons is expressed by Eq. (7), where its internal state is 
passed to an activation function (i.e., tanh, ReLU, or others), 
and the result is allowed to exit the neuron or not based on the 
Output Gate’s state. Equation (8) is the sigmoid activation 
function. The key advantage of LSTMs over RNNs is in the 
implementation of these “gates” as they control the informa-
tion flow through the individual units and their weights and 
can learn to behave in different ways according to the experi-
ences gained from the training set.

In this experiment, we use the ability of LSTMs to better 
understand time-varying signals to achieve better MMSE pre-
dictions by leveraging the inherent correlation of the scores 
and the learned features over successive prediction timesteps. 
The proposed model, as in previous experiments, uses four 
input modalities (MRI, CSF, PET, and Cognitive test scores) to 
generate derived time-varying features and produce time-var-
ying MMSE scores. This is a one-to-many model, as it takes 
a single-input timestep and generates many in return. Figure 5 
depicts the general form of these type of models:

Here, X defines the input features, Y is the predicted out-
put, t is time, dS is the number of timesteps elapsed between 
the input features and the first output prediction (in our case 
one step or six months), dT is the length in months of a 
single timestep (6 months for our experiment), and N is the 

Fig. 5   General one-to-many sequence prediction example for RNNs/
LSTMs

Fig. 6   Multimodal LSTM regressor (Experiment 2). Note: The graphs in front of each layer depict the mean activations of the neuron for each 
diagnostic group (CN, CNc, MCI, MCIc, AD)
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number of prediction steps defining how far into the future 
predictions are made.

The network proposed herein, shown in Fig. 6, consists 
of six layers of LSTM neurons. The first, second, and fifth 
layers have 40 LSTM units, the third and fourth have 100, 
and the last has one neuron that produces a different MMSE 
score prediction for each timestep. Layers 1 through 5 have 
hyperbolic tangent activations, and the output layer imple-
ments a rectified linear activation function. L2 regulariza-
tion is employed to keep the weights small and avoid weight 
saturation. The model's weights are randomly initialized, as 
mentioned earlier, while RMSprop is used to update them 
at training with a learning rate of 0.01 and 0.8 weight decay.

Table 3 summarizes the main performance metrics (Cor-
relation, RMSE, and the Coefficient of Determination) for 
the proposed model.

Introduction to Variable Input Length Multimodal 
LSTM Regressor

In this section, we will explore how the previously proposed 
LSTM regressor could benefit from an input signal of vari-
able length.

Using a Variable Length Input Sequence

There is an inherent difficulty in trying to estimate or predict 
a change in a variable from a single set of initial conditions 
without understanding the model that drives the interrelation 
between the collected variables. This was the approach tried 
in the previous section. By contrast, in this section, we take 
advantage of the temporal correlation of the features in this 
study and try to produce a model that can learn the inherent 
correlations between variables over time. The problem at 
hand can be described visually by the many-to-one model 
of a single LSTM unit, as shown in Fig. 7.

In this figure, X represents the input feature space, Y is 
the output prediction, t is time, dT is the time between suc-
cessive data points, M is the maximum number of collected 
input points, dS defines the number of timepoints between 
the last collected X and the predicted Y, and time flows from 
left to right (i.e., the events on the left happened before the 
events on the right). The blue circles in this figure repre-
sent the same LSTM neuron at different timepoints, and the 

arrows between them are information (the neuron's internal 
state) flow over time.

This generalization shows how we can predict any given fea-
ture/value from the data collected from multiple prior feature 
collections. In this section, we will explore how different input 
sequences—from one to four timepoints in length—can affect 
the accuracy of the predictions. However, predicting values from 
input series also has its challenges. In the particular case of the 
ADNI data, although the visits are discretized in time (i.e., every 
6 months), not all patients show up to all the visits. Furthermore, 
follow-up visits might not be scheduled in the same intervals for 
every patient and every biomarker modality. Therefore, we must 
decide not only at which intervals to sample the input sequence 
but also the length of the sequence to process.

In this experiment, we will consider input sequences with 
lengths ranging from 1 to 4 visits. Figure 8 provides the 
number of samples available for the different length input 
sequences and for the different prediction points. Figure 8a 
clearly shows that the number of samples is inversely propor-
tional to the length of the input sequence; that is, the longer 
the sequence, the fewer samples are available; and such is the 
nature of any longitudinal study, especially of long duration. 
Figure 8b breaks down the data provided in 8a and displays 
the number of available samples for each prediction target 
for different input sequence lengths. For example, the num-
ber of samples for input sequences of length 2 (Len2) (that 
is two consecutive visits 6 months apart, for 6-month win-
dow) and length 4 (Len4) (four consecutive visits 6 months 
apart, or 18-month window) is higher than those of length 1 
(Len1, single visit) and length 3 (Len3, 12-month window) 
for a prediction goal of 6 months in the future (M-06). This 

Table 3   Experimental results 
for multimodal LSTM regressor 
(Experiment 2)

Time (months): M06 M12 M18 M24 M30 M36 M42 M48 M54 M60

Correlation, %
(SD)

84.52
(1.66)

87.27
(1.28)

84.9
(2.4)

85.02
(1.99)

81.58
(4.29)

81.15
(4.92)

78.81
(4.82)

79.96
(5.9)

76.22
(6.95)

75.03
(8.77)

RMSE
(SD)

2.0
(0.09)

2.12
(0.1)

2.37
(0.28)

2.33
(0.2)

2.61
(0.33)

2.53
(0.28)

2.74
(0.4)

2.59
(0.32)

3.2
(0.5)

2.87
(0.34)

R2, %
(SD)

70.39
(2.68)

75.58
(1.95)

71.3
(3.93)

71.77
(3.32)

65.66
(7.09)

65.62
(7.85)

61.05
(7.93)

63.75
(9.41)

57.15
(9.82)

55.61
(13.63)

Fig. 7   General many-to-one sequence prediction example for RNNs/
LSTMs
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is the case because visits are much more frequent in the 
early phases of the collection and more sparse towards the 
end or over longer collection windows. In the case of Len1 
for M-06, the visit ends up occurring 6 months prior to truth 
data collection and only cases where two consecutive visits 
are recorded can be used. However, for Len2, the three visits 
make up the sequence, baseline (truth collection), 6 month 
prior to baseline, and 12 month prior to baseline, but only 
baseline and 2 month prior are required to be valid. This 
arrangement of Len2 for M-06 is much more common given 
the 1-year reevaluation period that most patients adhere to 
as the study progresses.

Handling Missing Values

To overcome the missing value problem, we explore three 
possible approaches:

(a)	 Mean Value Imputation (MV): Using the mean value 
of the feature to fill in any missing values. This is the 
default procedure after standardization, where miss-
ing values (not-a-number (NaN)/null) are replaced by 

zeros, as zero is the mean of any given standardized 
vector.

(b)	 Last Known Value (LKV): Using the last know value 
for the missing elements of a feature at any given time 
step is also possible. By using such a method, we cre-
ate less of a discontinuity between adjacent time points 
than by using the mean value. However, this creates a 
stairstep effect.

	   X(t) = X(t-m), where m > 0 and m is the last know 
time for which X(t) was not null.

(c)	 Neural Network Estimator (NNE): Using a neural net-
work is akin to using an enhanced or reinforced interpo-
lation method. This procedure trains a neural network 
(in our case, a bidirectional LSTM) to predict the miss-
ing values of a given feature by using other non-missing 
ones and prior values of the same and other features.

Neural Network Estimator

We train a bidirectional long short-term memory (BD-
LSTM) neural network to predict missing values from the 
input feature matrix for each of several subgroups of the 

Fig. 8   Number of available 
samples for different length 
input sequences: a combined; b 
for different prediction points. 
M – 06 to 60 is the prediction 
month in the future. Len1 to 4 is 
a length of the input sequence
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input features. Each subgroup contains a set of features that 
are always collected at the same time (i.e., CSF biomark-
ers: if one is collected, all CSF biomarkers are present). 
The different subgroups are broken down as follows:

MRI	� ventricular, hippocampus, whole brain, fusiform, 
and middle temporal gyrus volumes; entorhinal 
cortical thickness

CSF	� amyloid-β 1–42 peptide (Aβ1-42), total tau (tTau), 
and tau phosphorylated at the threonine 181 
(pTau)

PET	� FDG (18-Fluoro-DeoxyGlucose), Pittsburgh Com-
pound-B (PIB), and AV45

COG1	� CDR, ADAS13, MMSE
COG2	� Rey Auditory Verbal Learning Tests
COG3	� Functional Activities Questionnaires
COG4	� Everyday Cognition (Ecog) scales

A separate prediction model is trained for each of the sub-
groups to generate predictions for its values based on the 
other available features/subgroups. This particular approach 
is helpful, as it estimates the value of the missing features by 
using the existing ones, and prior knowledge of the relation-
ship between them is acquired during training. These predic-
tion models are composed of four layers of BD-LSTM units, 
where layers 1 through 3 have hyperbolic tangent activations 
and with 30, 20, and 30 neurons, respectively. The fourth and 
last layers have as many neurons as there are features in the 
target subgroup and have rectified linear activations.

The separate models are trained using RSMProp with a 
learning rate of 0.0005 and a weight decay factor of 0.9. 
We further use L2 regularization of 0.02 to avoid weight 
saturation and mitigate overfitting, as in previous experi-
ments. Training can run for up to 1000 epochs, but early 
stopping with the patience of 100 is employed to avoid 
excessively long training runs. This process is repeated 
following the tenfold cross-validation approach.

To compare the three aforementioned methods, we 
use their respective RMSEs (Table S2, Supplementary 
Section) and show the results of multiple comparisons 
in Table 4. From Fig. 9, it is evident that the proposed 
Neural Network Estimator outperforms all other imputa-
tion methods. Therefore, in subsequent sections, we will 
be using the proposed Deep-NN estimator (expressed as 
NNE in Fig. 9) to impute the missing values.

Variable Input Length Multimodal LSTM Regressor 
(Experiment 3)

In this experiment, we attempt to predict the MMSE score of 
patients at multiple future timepoints given the multimodal 
features collected from anywhere between one and four vis-
its. As both the input and output values are time-dependent, 
and by the reasons previously given, we deem the use of 
LSTM neuron appropriate.

We also further explore how multitask learning com-
pares to single-task learning. As such, this experiment is 
broken down into two sub experiments A and B. Firstly, 
on experiment A, we combine multiple single-task regres-
sors and produce a Combined Single-Task regressor. In 
experiment B, we train a multitask regressor to take 
advantage of the existing interdependencies among bio-
marker modalities with the aim to achieve better perfor-
mance metrics.

Combined Multimodal Single‑Task LSTM Regressor 
(Experiment 3A)

The architecture of the proposed model is shown in Fig. 10. 
It is composed of ten distinct single-task multimodal regres-
sors which are trained to predict an MMSE score at a prede-
termined time in the future. The output of each regressor is 
combined into a single output feature vector containing the 
predictions for each of the ten timesteps in the future after 

Fig. 9   RMSE comparison of 
different methods, MV Mean 
Value, LKN Last Known 
Value, NNE Neural Network 
Estimator for MRI, CSF, PET, 
COG1, COG2, COG3, COG4 
modalities
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Fig. 10   Combined multimodal single-task LSTM regressor for Experiment 3A. a Model architecture. b Submodel architecture. Note: The graphs 
in front of each layer depict the mean activations of the neuron for each diagnostic group (CN, CNc, MCI, MCIc, AD)

Fig. 11   Performance for different length input sequences (Experiment 3A): a Correlation; b RMSE
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the last visit in the input sequence. The resulting prediction 
span covers 60 months.

Each of the individual regression models is composed 
of five layers of LSTM units, where the first, second, and 
fourth layers have hyperbolic tangent activations with thirty, 
twenty-five, and thirty neurons, respectively, while the third 
and fifth layers have ReLUs and with fifteen and ten neu-
rons, respectively.

The first step in the training process is to pass the input 
matrix, once standardized, through the Neural Network Esti-
mator proposed in the previous section to fill in for any miss-
ing values. Thereafter, the filled-in matrix can be passed on 
to the model. Training is performed using RSMProp with 
a learning rate of 0.001 and a weight decay factor of 0.9, 
while L2 regularization of 0.02 is used to avoid weight satu-
ration and to mitigate overfitting. Just as in the previous 
experiment, training can run for up to 1000 epochs, but early 
stopping, with the patience of 100 epochs, is used to avoid 
excessively long runs. This process is repeated following the 
tenfold cross-validation approach.

Figure 11 shows the resulting Pearson Correlation and 
Root-Mean-Squared Error of the trained regressor on the 
testing set for tenfold cross-validation. From this figure, 
it is evident that longer sequences do perform better than 

single-shot predictions (input sequence length of 1), but 
there is no statistical difference between sequences of length 
greater than two. Therefore, for the rest of these experi-
ments, we will be reporting the performance metrics asso-
ciated with input sequences of length two. The statistical 
comparison of the significance of these differences can be 
found in Table S1 of the supplementary material.

In Table 5, we summarize the main performance metrics 
(Correlation, RMSE, and the Coefficient of Determina-
tion) for the proposed model for a two-visit input sequence 
(Len2). The performance obtained for M-54 is viewed as 
an outlier due to the small sample size available at M-60, 
where an apparent spike in performance is produced. Table 5 
shows a downward slope in the trend of MMSE correla-
tion for M-06, M-18, M-30, M-42, and M-54, which are the 
months for which most data is available (Figs. 8b (Len2) and 
15) and for which we can extract most convincing patterns.

Multimodal Multitask LSTM Regressor (Experiment 3B)

The architecture of the proposed model is shown in Fig. 12. 
Unlike model in Experiment 3A, this model is composed of a 
single deep regressor that will try to take advantage of the simi-
larities among the predictive task to learn faster and attain better 

Table 5   Experimental results 
for combined multimodal 
single-task LSTM regressor 
(Experiment 3A)

Time (months): M06 M12 M18 M24 M30 M36 M42 M48 M54 M60

Correlation, %
(SD)

90.27
(1.36)

87.42
(3.42)

87.30
(1.94)

81.79
(7.78)

82.48
(3.21)

80.49
(5.87)

80.58
(3.95)

78.68
(6.66)

70.12
(15.05)

79.91
(8.84)

RMSE
(SD)

1.86
(0.11)

2.17
(0.29)

2.18
(0.24)

2.61
(0.57)

2.52
(0.30)

2.71
(0.57)

2.67
(0.45)

3.17
(0.78)

3.01
(0.76)

2.90
(0.87)

R2, %
(SD)

81.36
(2.44)

75.96
(6.49)

76.06
(3.37)

66.04
(12.93)

67.14
(5.50)

63.60
(10.17)

64.26
(6.18)

59.45
(9.75)

53.66
(20.18)

63.44
(13.25)

Fig. 12   Multimodal Multitask LSTM Regressor (Experiment 3B). Note: The graphs in front of each layer depict the mean activations of the neu-
ron for each diagnostic group (CN, CNc, MCI, MCIc, AD)
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results. The complete model is composed of five layers of LSTM 
units, where the first, second, and fourth layers have hyperbolic 
tangent activations and have thirty, twenty-five, and thirty neu-
rons, respectively, while the third and fifth layers have rectified 
linear activations and fifteen and ten neurons, respectively.

Similar to the previous model, the first step in training the 
model is to pass the input matrix, once standardized, through 
the Neural Network Estimator proposed in the previous section 
to fill in any missing values. Thereafter, the filled-in matrix 
can be used. Training is also performed using RSMProp with 
a learning rate of 0.001 and a weight decay factor of 0.9, while 
L2 regularization of 0.02 is also used to avoid weight satura-
tion and to mitigate overfitting. The process can run for up to 
1000 epochs, but, again, early stopping with the patience of 
100 epochs is used to avoid excessively long runs. This process 
is repeated following the tenfold cross-validation approach.

Figure 13 shows the resulting Pearson Correlation and 
Root-Mean-Squared Error of the trained regressor on the 
testing set for tenfold cross-validation. In Table 6, we sum-
marize the main performance metrics (Correlation, RMSE, 
and the Coefficient of Determination) for the proposed 
model for a two-visit input sequence (Len2).

Results

In this section, we present and compare the individual results 
of each of the previously described experiments. Starting 
with Table 7, we present the statistical comparison of each 

of them to the most encompassing one, the Multimodal 
Combined Single-Task LSTM regressor (Experiment 3A). 
Multiple comparisons were corrected with a false discovery 
rate (FDR) of q < 0.05. We provide comparisons in terms 
of the Pearson Correlation, RMSE, and the Coefficient of 
Determination. Figure 14 shows these same metrics in plot 
form for ease of visualization.

From this extensive analysis, it is evident that when pre-
dicting the MMSE score for the next 6 months, the model 
presented in Experiment 3A, using an input sequence of two 
visits 6 months apart, significantly outperforms all others. 
However, as the time between the last visit and the intended 
prediction date increases, the disparity between the models 
becomes less evident and with no statistical significance. 
For example, Experiment 3A’s correlation was statistically 
better than Experiment 3B’s (P-value 0.01), Experiment 
2’s (P-value 0.01), Experiment 1’s (P-value 0.01), and 
from the previous work [44] (P-value 0.01) when predict-
ing month 6. Furthermore, the RMSE of Experiment 3A is 
statistically smaller (when predicting the MMSE value for 
the next 6 months) than that of Experiment 3B (P-value 
0.01), Experiment 2 (P-value 0.049), Experiment 1 (P-value 
0.02), and [44] (P-value 0.001). The RMSE and Coefficient 
of Determination for the predictions of months 12, 18, and 
30 were also statistically better for Experiment 3A than for 
results from [44].

Furthermore, it is evident from Fig. 14 that, although the 
range uncertainty grows with time, the performance metrics 
for Experiment 3A are ahead of those from other experiments 

Fig. 13   Performance for different length input sequences (Experiment 3B): a Correlation; b RMSE

Table 6   Experimental results 
for multimodal multitask LSTM 
regressor (Experiment 3B) with 
two-visit input sequence

Time (months): M06 M12 M18 M24 M30 M36 M42 M48 M54 M60

Correlation, %
(SD)

87.22
(1.94)

85.81 
(2.51)

86.06 
(1.38)

82.47 
(4.33)

81.98 
(4.68)

79.73 
(4.55)

79.24 
(5.62)

76.66 
(7.47)

74.73 
(7.51)

78.72 
(7.33)

RMSE
(SD)

2.14
(0.19)

2.32
(0.23)

2.31
(0.23)

2.61
(0.34)

2.56
(0.37)

2.77
(0.39)

2.77
(0.40)

3.35
(0.71)

3.03
(0.47)

3.14
(0.76)

R2, %
(SD)

75.27
(3.37)

73.00
(4.23)

73.34
(2.69)

67.00
(6.75)

66.63
(7.58)

62.01
(6.51)

60.91
(8.50)

54.72
(8.28)

54.08
(10.46)

57.58
(9.17)
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most of the time. This once again shows that LSTMs can take 
advantage of the inherent correlation present in temporally cor-
related data to produce better predictions of future sequences 
and that by leveraging this fact, we are able to better forecast 
the future progression of MMSE scores.

Figure 15 displays the scatter plots representing the MMSE 
predictions against the true value along with their correspond-
ing best-fit line for the different diagnosis groups. The pre-
dicted values contained within this figure were obtained from 
the best-performing model (Experiment 3A with two input 
timesteps). It is evident that as the target time point moves 
further away from the last observation, the resulting prediction 
accuracy decreases, along with the number of samples avail-
able. This correlation between a decrease in performance and a 
decrease in the number of available samples is to be expected, 
as when the number of samples decreases, so does the model’s 
ability to extract and/or learn useful information and features 
from the limited training scenarios.

Figure 16 shows the evolution of the RMSE metric over the 
predicted time points for all the individual diagnosis groups, 
while Fig. 17 breaks down the sample availability of these 
groups at the different prediction points. From these figures, 
we can observe how the availability of samples influences the 
RMSE, and a few interesting patterns emerge: (1) For the CN 
stable and unstable subgroups, the model’s performance remains 
constant over time. This is to be expected as normal controls’ 
MMSE scores have little variability over time and unstable con-
trols are individuals who might have simply had a bad test day.

A similar pattern is also present in other non-converter sub-
groups, such as MCI, MCIun, but not in AD. (2) Converter 
groups’ predictive performance decreases over time. MCIc, the 
biggest converter subgroup, achieves good performance for six 
(6) and twelve (12) month predictions, but its RMSE rapidly 
increases afterward, perhaps due to the difficulty in estimating 
rapid AD progression. CNc also shows the same pattern but to a 
lesser extent, stabilizing and perhaps decreasing its RMSE after 
peaking at M30. (3) The number of AD samples available for 
future prediction rapidly decreases, yielding unstable RMSE 
scores. From Fig. 17, we can see how the number of AD sam-
ples rapidly decreases and becomes almost non-existent after 
the thirtieth (30th) month timepoint. This yields an unstable 
performance of the RMSE metric, where, in some instances, it 
is computed with only two data points.

To further explore the performance of the proposed model 
on the prediction of the cognitive test scores, we include the 
prediction metrics for ADAS13-Cog scores in Table 8.

Discussion

In this study, we set out to forecast factors associated with 
the progression of Alzheimer’s disease for a period of 
60 months (5 years). The task of prognosticating disease Ta
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progression has also been studied in the past by multiple 
researchers. However, we attempt to fill in the gaps of prior 
research and take better advantage of longitudinal data to 
generate improved estimates of future cognitive test scores 
of MMSE and ADAS13.

We start out by proposing a simple multitask multi-
modal deep regressor in previous study [44]. We use mul-
titask learning, as it has been shown to be beneficial for 
complex problems where the tasks performed share sig-
nificant relevant features [30, 31]. While the multimodal-
ity allows it to concurrently extract and learn useful infor-
mation present across the different biomarker modalities, 
one potential drawback of this approach is that it puts sig-
nificant pressure on the regressor to learn all the relevant 
features from the different modalities along with their 
intercorrelations from a limited set of samples (8071 in 
this case). Therefore, it might be beneficial to attempt to 
learn how each modality independently contributes to the 
cognitive scores of a given test and then build a different 
regressor to minimize the error of the individual predic-
tions by combining them. This is attempted in Experiment 
1, where we see improvements in the testing metrics over 
results in [44].

In retrospect, these experiments attempt to predict time-
dependent signals without using an element capable of 
truly handling sequential data. Experiment 2 takes on the 
concept of multitask multimodal learning with the addition 
of long short-term memory (LSTM) neural networks. This 
combination yielded a better prediction of RMSE scores 

than in prior experiments, although not statistically sig-
nificant. Moreover, Experiment 2, following in the steps of 
[44] and Experiment 1, attempted to forecast the progres-
sion of cognitive test scores from a single timepoint input 
feature set. Although this is an enticing prospect, we might 
have been missing out on significant insight that could be 
extrapolated from a time-varying input sequence.

Therefore, Experiment 3 introduces a variation of 
Experiment 2 that makes use of variable length input sig-
nals. We also cover the missing data problem inherently 
present in longitudinal studies with multiple input modali-
ties, such as ADNI, and propose a new bidirectional LSTM 
neural network to fill in for the missing values from prior 
knowledge of such (i.e., previous data point) and other 
modalities concurrently available.

Experiment 3 itself is divided into two sub experi-
ments: Experiment 3A combines a series of multimodal 
single-task regressors, where each regressor is indepen-
dently tasked to predict a single output timestep, into 
an output vector containing the ten discrete prediction 
timepoints; and Experiment 3B makes another pass 
at multitask learning and combines the regressors of 
Experiment 3A into a single model. However, similarly 
to [44] and Experiment 1, the multitask regressor under-
performs, and Experiment 3A is shown to yield better 
performance metrics.

Another significant insight from Experiment 3 is that 
the best-performing sequence length seems to be two sam-
ples long, that is, two visits, 6 months apart.

Fig. 14   Performance for different experiments: a Correlation; b RMSE; c Coefficient of Determination
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In the literature, other studies have also attempted to 
forecast cognitive test scores to varying degrees of suc-
cess. Tables  9 and 10 show an in-depth performance 
comparison between the best-performing model from 

the study, the Multimodal Combined Single-Task LSTM 
regressor (MCST-LSTM) in Experiment 3A, and the cur-
rent state-of-art prediction algorithms for MMSE, in terms 
of Correlation and Root-Mean-Squared Error.

Fig. 15   Scatter plots of predicted and actual MMSE for the different subgroups for Experiment 3A
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Fig. 16   RMSE evolution for different diagnosis groups for Experiment 3A

Fig. 17   Subgroup samples distribution for the different time points (Experiment 3A)

Table 8   Experimental results of 
the best model (Experiment 3A) 
for ADAS13-CoG

Time (months): M06 M12 M18 M24 M30 M36 M42 M48 M54 M60

Correlation, %
(SD)

92.15
(0.68)

91.58
(1.56)

88.95
(1.59)

87.86
(3.53)

85.09
(3.58)

86.51
(4.22)

82.60
(3.81)

81.53
(7.62)

79.32
(6.06)

81.35
(6.76)

RMSE
(SD)

4.74
(0.25)

5.00
(0.38)

5.61
(0.58)

5.84
(0.88)

6.35
(0.84)

6.58
(1.05)

6.93
(1.09)

8.09
(1.89)

7.45
(1.31)

7.27
(1.92)

R2, %
(SD)

84.80
(1.22)

83.30
(2.78)

78.78
(2.83)

76.56
(6.36)

72.28
(6.04)

74.02
(7.26)

67.49
(6.57)

64.99
(12.09)

61.74
(9.25)

64.96
(10.45)
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It is evident from Tables 9 and 10 that the proposed model 
outperforms the competition across the prediction span of 
60 months (represented in bold face font), with the exception 
of a few months where the performance is tied. For example, 
we achieved comparable correlation metrics when predict-
ing 6 months into the future, as in [30], but we only use two 
input time points, in contrast to the four required in [31]. 
Furthermore, we should point out that we use all the avail-
able data to generate the augmented dataset, consisting of 
8071 samples, without removing any outliers, which might 
contribute to the higher variability in our results. Lastly, in 
Table 10, we report very competitive RMSE scores to those 
reported in [30] and [31].

Due to the relatively small sample size of the subjects 
who converted to MCI or AD, we included all subjects in 
the study. Further investigation of AD progression including 
only converter groups is still needed to draw a conclusion and 
compare results with the present study. We did not include 
demographic variables such as age, sex, or APOE - 4 status 
in our current study; further studies are still needed to explore 
the combined effect of including demographics data.

Conclusion

In this study, we explored five different multimodal deep 
neural networks with different architectures and underlying 
characteristics, to predict the cognitive test scores of MMSE 
and ADAS-CoG13 over a span of 60 months (5 years).

The longitudinal multimodal data utilized to train and 
test the models were extracted from the ADNI study and 
include CSF levels of tau and beta-amyloid, structural meas-
ures from MRI, functional and metabolic measures from 
PET, and cognitive scores from neuropsychological tests.

We further presented a data augmentation technique to gen-
erate more training and testing samples from the available data. 
We delved into two main issues: (1) by contrasting single ([44], 
Experiment 2, and Experiment 3A) vs. multitask (Experiment 
1 and Experiment 3B) prediction; and (2) determining the suit-
ability of time-varying input data (Experiment 3A and 3B) 
vs. single snapshot of a time step ([44], Experiment 1, and 
Experiment 2) to see which of them achieves more accurate 
predictions of future cognitive scores.

The results show that the best performance is achieved by the 
Multimodal Combined Single-Task LSTM regressor (Experi-
ment 3A) with an input sequence length of two data points 
(2 visits, 6 months apart) and a pretrained Neural Network 
Estimator to fill in for the missing values. This model yields 
90.27% (SD = 1.36) correlations for 6 months after the last 
visit, 87.42% (SD = 3.42) for 12 months, 87.30% (SD = 1.94) 
for 18 months, 81.79% (SD = 7.78) for 24 months, 82.48% 
(SD = 3.21) for 30 months, 80.49% (SD = 5.87) for 36 months, 

80.58% (SD = 3.95) for 42 months, 78.68% (SD = 6.66) for 
48 months, 70.12% (SD = 15.05) for 54 months, and 79.91% 
(SD = 8.84) for 60 months. These are remarkable findings given 
the duration of the study and the relatively high accuracy in 
predicting MMSE and ADAS-CoG13, even for the last time 
point of 60 months. These results are quite an improvement over 
previous longitudinal studies, including those from our own 
research group which considered a 4-year longitudinal study in 
[30] and a 2-year longitudinal study in [31].
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