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Abstract—This work addresses the problem of energy efficient
management of mobile resource distribution in Wireless Sensor
Networks (WSN), subject to particular Quality of Service (QoS)
constraints. In practice, when phenomena over large geographical
regions are being monitored, certain events (e.g., fast grow-
ing temperature exceeding a given threshold) may require an
increased coverage within a particular area. In this paper
we present novel methodologies for optimizing the ”bargaining
stage” when deciding how to select the mobile resources within
the sensing field which will be re-located in response to a QoS
request for an increased coverage. Our proposed techniques
are capable of incorporating constraints – i.e., certain desirable
properties, such as not overly-depleting any regions (i.e., drop the
coverage QoS below certain threshold) when relocating mobile
sensors. In addition to the energy-efficiency, we also tackle the
aspect of finishing the ”bargaining” and the transition in a
manner that attempts to reduce the overall latency between sig-
naling and completion of catering to a request. Our experimental
results demonstrate that, when compared to the naive method
of centralized decision-making about relocations of mobile units,
our methodology offers significant energy savings, both in terms
of communication overheads and maintenance of the hierarchical
routing structures, as well as the quality assurances in terms of
the turnaround time for servicing a given request.

I. I NTRODUCTION

The advancement in development of wireless sensor net-
works (WSN) have revolutionized many application domains
and generated a large body of research works over the past
decade [1], [2]. Typically, a WSN – a collection of individual
nodes equipped with sensing, computation and communication
capabilities – monitors one or more physical phenomena in a
given field, and provides a ”map” of the values’ variations in
that field, which can be used for answering various queries,
as well as detecting occurrences of events of interest. The
two extreme-points along the spectrum of WSN-based data
management are: (1) transmitting the raw data to a dedicated
sink, possibly via multi-hop connections, and perform all the
processing centrally; and (2) in-network distributed storing of
the data and extracting the information relevant for processing
the queries/events [3], [4]. The latter is often a preferred
choice from the perspective of energy-efficiency (conversely,
network’s lifetime) [5] .

A common method used in managing the data gathering
and aggregation in WSN is to construct a kind of a spa-

tial indexing structure [6], which is maintained/updated in a
distributed manner, subject to particular Quality of Service
(QoS) constraints [7]. Contrary to the centralized settings, in-
network coupling of data/information management and index-
ing structure maintenance involves not only the spatial regions
”covered” by a particular node, but also roles/responsibilities
of the nodes along the hierarchy of the particular index. Within
a given region, the residing group of sensor nodes is assigned
the task of monitoring and reporting the sensed values of the
phenomena of interest. A particular problem that has been
identified and addressed in the literature is how to ensure
certain coverage criteria with a given deployment of a set of
sensor nodes so that the spatial distribution of the monitored
phenomena is matched with a satisfactory accuracy [8], [9].
A simple to define instance of this problem is how to ensure
connectivity and coverage without having any ”holes” in the
network [10].

Figure 1. Relocation of sensors in response to an event.

Availability of mobile sensor nodes offers an immense
flexibility to WSN, in the sense that the location of the sensors
can change in order to adapt to certain changes of the values
of the sensed phenomenon [11], [12], [13]. If a pre-defined
event of interest is detected during the monitoring of the
sensed field – e.g., a sudden increase in temperature and CO-
concentration, indicating a possibility of a forest fire – then
increasing the coverage in that locale may be needed, in order
to provide denser coverage and more accurate measurements.
However, that process cannot be executed ”in isolation” –
meaning, completely ignoring the quality of coverage in the
rest of the region(s) monitored by the (static and mobile)



nodes [14]. The left part of Figure 1 depicts a stable scenario
of sensor nodes distribution in a given field. The right portion
illustrates how some of the sensor nodes (indicated as blank
disks with red circular boundary) are selected to-be-moved in
new locations inside the region in which an event of interest
has been detected, requiring increased coverage.

In this paper, we propose efficient distributed algorithms
for managing the relocation of mobile sensors upon detection
of event of interest in a particular geographic location. The
methodology also caters to the constraint of satisfying the
minimum number of nodes required by each of the regions
not co-located with events of interest, in order to meet connec-
tivity, coverage, or any other application-dependent demands.
Our methodology is able to handle multiple simultaneous
requests, and provide the resources for them from the nearest
region capable of supplying. The proposed methodologies aim
at minimizing the communication cost for the ”bargaining”
process, and seek to supply the resources in a manner that
minimizes the total motion, as well as the response time. The
algorithm proceeds in a ”cascading manner” – meaning, if the
regions neighboring the one in which request-generating event
is located are not able to satisfy fully the demand, then they
provide a partial supply and recursively propagate the request
to their (other) neighbors. We assume that the maximum
number of nodes required by simultaneous of events in the
field is no more than the total number of existing sensor nodes
in the field, after satisfying the other regional constraints, i.e,
coverage, connectivity, ..etc. Specifically, in this work we also
consider the management of such request when a hierarchical
structure is present and maintained in a distributed manner (cf.
partitions in Figure 1).

In the rest of this paper, Section II introduces some prelim-
inary background and notations/assumptions used for present-
ing our algorithms. In section III we present the techniques for
efficient dissemination of the requests for increased coverage,
and the methods of supplying resources are proposed in section
IV. The experimental results are discussed in section V,
followed by a related work discussion in section VI. The paper
is concluded and avenues for future work are presented in
section VII.

II. PRELIMINARIES

We assume a sensor network consisting ofN nodesSN =
{sn1, sn2, . . . , snN}, grouped into geographically collocated
K clusters (C1, C2, . . . , CK). We also assume that under
normal initial conditions, each clusterCi contains≈ N/K
motes, which may be of two basic kinds:static – SCi , and
mobile – MCi where SCi ⊆ SN and MCi ⊆ SN , and
SN = ∪(i)(SCi

∪ MCi
). We assume that the location of

the individual nodes are known, either via GPS or via some
collaborative trillateration technique [1].

In order to ensure some ”desirable” properties – both from
the pure networking aspect (e.g., connectivity, coverage), as
well as application Quality of Service (QoS) requirements
(e.g., density of coverage) – we assume that each cluster
has a predefined lower-bound thresholdΘCi ≤ (N/K) so

that |MCi | + |SCi | ≥ ΘCi . With this in mind, we note that
part of the mobile nodes in each cluster may be ”free” to
move outside that cluster, without violating theΘCi

constraint.
Hence,MCi

= M b
Ci
∪ Mf

Ci
, whereM b

Ci
denotes the mobile

nodesboundto Ci andMf
Ci

denotes thefreenodes which can
cross the boundaries between neighboring clusters. While the
membership of a particular mobile nodesnj may vary – i.e.,
its state may transfer frombound to free and vice-versa, we
assume that at any time-instantMf

Ci
∩M b

Ci
= ∅.

Each cluster is assumed to have one designated sensor
node that will act like alocal cluster-head, and we use
H(Ci) to denote the local cluster-head of the clusterCi.
H(Ci) is in charge of tasks such as gathering and maintaining
the information about the status (e.g., locations, expected-
lifetime) of cluster’s population of nodes; coordinate the
operation of the nodes (e.g., increase the sampling frequency);
perform analysis/aggregation and information extraction of
the measurements from the nodes in the cluster; ..etc. Based
on the spatial partitions used, we assume a hierarchy which
is constructed from the local cluster-heads, and rooted at a
designatedsink.

For this work, the important responsibilities of a local
cluster-head are:

1) Event detection– event denotes an occurrence of some-
thing of interest [15] and, based on the reported val-
ues from the sensors in the cluster, the local cluster-
head is in charge of detecting them1. We assume
an application-dependent specification of “interesting”
events, for which the location of the sensors detecting
them is known, along with two values:

• The bounding rectangle – which is, some safety or
quality based boundary around the location of an
event, approximated by the perimeter of a rectangle.

• The number of sensors needed to be placed around
the perimeter of the bounding rectangle – again,
an application-dependent parameter. We assume that
the sensors will be located at a uniform distance
around the boundary.

Hence, we useECi,j(L,B, ne) to denote that thej-th
eventE has been detected at locationL in the cluster
Ci, for whichne nodes are needed around the perimeter
of the rectangleB.

2) Mobility coordination– in order to ensure a desired QoS,
the local cluster-head may need to direct the mobile
sensors toward the location of a given event. We as-
sume the existence of efficient techniques to orchestrate
the trajectories of the mobile sensor for the purpose
of positioning them at the respective locations around
the perimeter of the bounding rectangle which can be
viewed as a simplified instance of the techniques in [16]
(cf. Sec. IV).

There are various spatial partitioning methods [17] and
although throughout this work we use rectangular regions, the

1In this work, we do not consider any composite events.



results can be directly extended to the cases when the field
of interest is convex polygon (subsequently split into a set
of non-overlapping regions). A hierarchical spanning tree data
structure (indexing tree) is constructed to manage the WSN,
which is rooted at the sink node, and has the local-cluster-
heads as the leaf nodes. The intermediate nodes are called
global-cluster-heads, and we use the term cluster-heads to refer
to both local and global-cluster-heads. Various widely used
data structures conform to the aforementioned description, and
have been used in the existing state-of-the-art indexing systems
– e.g., K-D Trees, Octrees [18], [6], and Voronoi Treemaps
[19]. We note that optimizing the energy consumption due to
altering the indexing structure is not considered in this work
(i.e., no local cluster-head will ever drop the number of actual
sensors in its region belowΘCi).

III. R ESOURCEREQUESTING

We now proceed with the details of handling the requests
for additional mobile nodes, to be made available in a cluster
in which an event of interest has been detected.

When a local cluster-headH(Ci) detects an event
ECi,j(L,B, ne) within its region, it firstly checks whether the
mobile nodes fromMCi

are sufficient to cover the require-
ments – i.e., whether|MCi

|≥ne. If so, the QoS requirements
can be satisfied locally. Otherwise,H(Ci) may need to request
additional resources.

In the rest of this section, we focus on two basic techniques
for handling the request from the local cluster-head that needs
more resources to cover an event within its region to the other
cluster-heads in the field. First, we present the centralized
protocol, followed by two variants of a distributed protocol.

A. Centralized Requesting

Under the centralized requesting scheme, once a local
cluster-head recognizes the need of resources because of the
detection of an event in its region, following is the protocol
that is executed:

1) H(Ci) sends a request to its parent node in the indexing
tree by generating the messageRequest(H(Ci), r, j), the
semantics of which is:The local cluster-head ofCi is
requestingr, j nodes to satisfy the request of servicing
the detection of itsj-th event. See Figure 2(a).

2) Once the sink node has received a particular request,
it broadcasts the messageRequestSink(mid,H(Ci), r, j)
to its children, which recursively propagate it down
the hierarchy, until it has reached the leaves (recall
that leaves are actually the local cluster-heads). The
parametermid is a unique message-ID, in case the sink
needs to process multiple requests from the same local
cluster-head. See Figure 2(b).

3) Upon receiving theRequestSink(mid,H(Ci), r, j) mes-
sage, each local cluster-head responds with a message
containing an information about its free mobile nodes,
which could be used to cater the given request. Thus,
the local cluster-head of thel-th cluster,H(Cl) will

send the messageRequestCater(mid, (H(Cl), Al)), in-
dicating that it hasAl available nodes. We note that
Al ≤ |Mf

Cl
)| (the number of the ”free” mobile nodes)

since H(Cl) may be processing multiple request (in-
cluding some due to events in its own geographical
region). TheRequestCater(mid,H(Cl), Al) message is
sent to the parent node in the hierarchy, and each parent
aggregates the(H(Cl), Al) pairs for a corresponding
mid before propagating it further up the hierarchy. See
Figure 2(c).

4) Once the sink has received the availabilities of
individual clusters, it calculates the best manner to
move resources in response toRequest(H(Ci), r, j),
and individual messages are sent down the hierarchy,
notifying individual local cluster-heads how many of
their available nodes should be forwarded towards
Ci. Each local cluster-headH(Cl)) whose resources
will need to be moved, will receive the message
Allocate(mid,H(Ci), L(H(Ci)),H(Cl), al), where
al ≤ Al is the number of nodes to be moved towards
H(Ci), located atL(Ci). See Figure 2(d).

Figure 2 depicts the steps of the centralized requesting
protocol. The hierarchical index in this figure is based on a K-
D Tree structure (orthogonal bisections). It shows an example
scenario prior to the event. We note that the criterion for
selecting the resources to be forwarded is discussed in section
IV.

Assuming ann nodes K-D Tree as an example indexing
structure, the complexity of executing the centralized protocol
can be characterized as follows:

• log n messages are needed to propagate the request from
the H(Ci) to the sink node.

• n/2 = (O(n)) messages to send the information request
from the sink back to all the local cluster-heads. However,
since some of them may be transmitted in parallel in
different sub-trees. , the time, in terms of hops, is bounded
by O(log n).

• O(n) messages which are from the local cluster-heads
towards the sink – again, bounded byO(log n) in terms
of time (although two children will need sequential trans-
mission towards their parent, the bound is stillO(log n)).

• Let k denote the number of local cluster-heads selected
to participate in sharing their resources withH(Ci) (k ≤
n/2).

Thus, the overall communication complexity (message cost)
is bounded byO(n), in terms of number of messages, and
O(log n) in terms of time.

B. Distributed Request Management

The distributed structural requesting protocol aims at min-
imizing the overall communication cost via exploiting spatial
locality. We now present two approaches for handling a request
for additional resources. The first one, calledstructure-based
is relying solely on an existing hierarchical index structure,
whereas the second one proposes a coupling between the
indexing structure and geographical proximity.



(a) Step 1: The local-cluster-head (Green) detecting the event sends a request
to its parent node (Blue), which is forwarded to the sink node (Yellow).

(b) Step 2: The sink node (Yellow) requests information about available
resources from all the local-cluster-heads (Green) through the data struc-
ture hierarchy.

(c) Step 3: Available resources information is sent to the sink node (Yellow)
through the data structure hierarchy.

(d) Step 4: Sink node (Yellow) sends out the decision about resource
forwarding to the involved local-cluster-head (Green) nodes throughout the
data structure hierarchy.

Figure 2. The centralized requesting process in a sensed field spatially split
with orthogonal bisection, with a K-D Tree indexing structure. The middle
large yellow node represent the sink node, the four blue medium nodes are
the global-cluster-heads, the sixteen green small nodes are the local-cluster-
heads, and the tiny red nodes represent the sensor nodes distributed in the
field

1) Structure-Based Distributed Request (SBDR) Manage-
ment: Assuming a Binary Space Partitioning (BSP) structure
which has recursively divided a given space into contiguous
non-overlapping regions, each border/hyperplane correspond-
ing to node in the indexing BSP tree, has a uniquelevel (i.e.,
distance from the root).

When ECi,j(L,B, ne) is detected andH(Ci) determines
that additional sensors are needed to satisfy the QoS criteria,
the SBDR protocol proceeds as follows:

1) H(Ci) sends the messageRequest(H(Ci), r, j) request-
ing additional mobile nodes toits sibling node(s) in the
indexing treewhich is sharing a common border and
parent. See Figure 3(a).

2) In the case thatH(Cs,i), the sibling ofH(Ci), can cater
to the request, it responds withGranted(H(Ci), j, rs).
Clearly, for this we need thatrs > r, and the nodes are
selected fromMf

Csi
which is properly updated.

3) In the case thatH(Cs,i) cannot cater to the request, it
will send the messageDeny(H(Ci), j, rs). The meaning
is that, although it cannot fully grant the request, the
sibling is still able to providers ≥ 0 nodes. In this
case,H(Ci) will forward Request(H(Ci), r − rs, j) to
its parent.

4) The parent-node ofH(Ci), in turn, instead of propagat-
ing the request towards the sink, will actually forward
the Request(H(Ci), r − rs, j) to its own sibling at the
same level and sharing a common border whether it can
cater toH(Ci)’s request. See Figure 3(b).

5) The procedure is repeated recursively until, in the worst
case, the request has reached the root.

The SBDR protocol is illustrated in Figure 3. It depicts the
chaining of the messages at two levels from the root, since the
request cannot be satisfied at the first level – i.e, by sibling
local cluster-heads.

Clearly, both the communication cost and the time for
detecting the fulfilment of a particular request will vary for
the SBDR protocol. We note that, in the worst-case scenario,
the request needs to be propagated all the way to the sink
node. Worse yet, the attempts to resolve it locally constitute
additional overhead in terms of the time needed to determine
the servicing of the request. However, as our experiments
demonstrate, SBDR protocol does provide improvements over
the centralized protocol.

2) Structure and Proximity based Distributed Request
(SPDR) Management:The objective of the SPDR variant
is to decrease the overhead induced by the sibling-to-parent
communication in the SBDR protocol. We observe that some
local cluster-heads which are not siblings may still share a
common border. To capitalize on this, in addition to the sensor
nodes physically belonging to its cluster, each local cluster-
head will maintain a list of its “cousins” – which is, the sibling
node and the nodes sharing common border.

Upon detecting an eventECi,j(L, B, ne), the local cluster-
headH(Ci) executing CPDR protocol initiates the following:

1) H(Ci) sends the messageRequest(H(Ci), r, j) request-
ing additional mobile nodes toits geographically neigh-



(a) Local-cluster-head A detects an event, and sends a resource
request to its sibling local-cluster-heads B, C and D, which send
back the response.

(b) When the request is not satisfied at the local-cluster-heads
level, global-cluster-head C’ checks the resource availability with
its sibling nodes (A’, B’ & D’)

Figure 3. SBDP with a K-D Tree indexing structure. The middle large yellow
node represents the sink node, the four blue medium nodes are the global-
cluster-heads, the sixteen green small nodes are the local-cluster-heads, and
the tiny red nodes represent the sensor nodes distributed in the field

boring nodes with which it is sharing a border. See
Figure 4(a).

2) The sibling nodeH(Cs,i) and each of the Boarder-
Neighbors (BN(H(Ci)) who can cater to the request,
responds withGranted(H(Ci), j, rs). In this case, the
request is no longer propagated.H(Ci) notifies its
sibling and its neighbors how many mobile nodes each
of them should dispatch.

3) If the sibling node and some of theBN(H(Ci))
cannot cater to the request, they will each send
Deny(H(Ci), j, rs). Note, however that, unlike the
SBDR protocol, now the sum of thers values from the
sibling and the neighbors combined, may actually satisfy
the request.

4) If not, the messageRequest(H(Ci), r−Σ(rs), j) is prop-
agated to the parent ofH(Ci), and parent recursively
repeats the procedure. See Figure 4(b).

Figure 4 shows the messaging at two different levels in the
hierarchy, where the request cannot be satisfied at the first
level, i.e, through sibling local-cluster-heads communication.

Again, we note that the worst-case scenario in terms of
the upper-bound is the same as the centralized protocol –
and, once again, in the worst case scenario we have the
additional overheads of the attempts to resolve the request
locally. However, in practice, one can obtain improvements –
as demonstrated by our experiments.

(a) Local-cluster-head A detects an event, and sends a resource
request to its neighboring local-cluster-heads (B, C, D, K & L),
which send back the responses.

(b) When the request is not satisfied at the local-cluster-heads level,
global-cluster-head C’ checks the resource availability with the
neighboing global-cluster-heads (A’ & D’)

Figure 4. SPDR with a K-D Tree indexing structure. The middle large yellow
node represent the sink node, the four blue medium nodes are the global-
cluster-heads, the sixteen green small nodes are the local-cluster-heads, and
the tiny red nodes represent the sensor nodes distributed in the field

IV. RESOURCESUPPLYING

In this section we present the methodology of fulfilling a
resource request, starting with the process of acceptance of
requests, selection of the nodes to be moved and moving them
towards the cluster which has signaled a request.

A. Strategy of Acceptance

Upon receiving a resourcerequest, a cluster-head node
compares the number of requested sensor nodesRi to the
number of available resources within its regionVi. If the
available resources are sufficient to cater for the request, i.e,
Vi > Ri, an acceptance message is sent to the requesting node,
and the process of selecting the sensor nodes to be moved and
moving them starts immediately.

Contrarily, if the available resources are less than the
required resource, i.e,Vi < Ri, the request cannot be re-
jected. The reason for this, is that in a global view of the
field, sometimes no single cluster might be able to suffice
the needs for one request. However, a set of clusters can
provide a number of the needed resources, which make them
collectively able to suffice the new event needs. Therefore,
in such scenario, the cluster-head receiving the request sends
back a partialacceptance message, indicating that it will be
able to provideVi resources. Accordingly, when the requesting
node receives this message, it forwards the request to another
cluster-head node –according to the requesting strategy– with
the required number of resources updated, i.e,Ri = Ri − Vi.
Simultaneously, the partially accepting cluster-head node will



start forwarding theVi sensor nodes, which will create “some”
sufficiency for the requesting cluster until further resources
arrive. In other words, because of the partial acceptance
feature, each request is –most likely– going to add some help
to the requesting node, unless the whole region is starving.

B. Nodes Selection (Which nodes to move?)

Once a local-cluster-head sends the requested resources –or
some of them– to the requesting local-cluster-head, a criterion
is needed to determine which specific sensor nodes are the
ones to be forwarded. The selection criterion may involve the
following metrics:

• Speed of Arrival/Travel Distance: The cluster-head node
selects the sensor nodes to be moved such that they would
arrive to the destination in the fastest way (or travel the
shortest distance). This selection would vary according
to the motion path (i.e, Manhattan, direct straight path,
...etc.).

• Local Configuration Balance: Maintaining the balance of
the sensor nodes distribution inside the accepting cluster.
Accordingly, the cluster-head selects the nodes to move
in a way that minimizes –or better eliminates– the need of
moving the remaining nodes inside the cluster to maintain
its internal constraints (i.e, connectivity, coverage, ..etc).

• Global Configuration Balance: Maintaining balance of the
sensor nodes distribution in the whole field. The goal of
this balance is to keep the available of theMC mobile
sensor nodes distributed across the field, which helps
having resources available near to possible future events.
This also balances the load on the indexing tree, which
keeps –relatively– equal load of network information
updates on the tree branches. We note that this option is
possible in a straight forward fashion in the centralized
solution. However, including this metric in distributed
techniques would incur added overhead.

• Energy Consumption: The cluster-head node selects the
sensor nodes to be moved according to an optimization
function which minimizes the consumed energy. The
optimization can focus on the energy consumed for
communication, or the energy consumed in motion, or
a weighted factor of each of them.

C. Movement strategy (How to move the nodes?)

The sensor nodes selected to be moved towards the re-
questing cluster are informed by their local-cluster-head. The
supply of sensor nodes to the requesting cluster can follow
different methods. In this subsection, we present two methods
to supply the requested resources from the –partially or fully–
accepting local-cluster-head(s) towards the requesting cluster,
then we follow with a discussion on handling the request inside
local-cluster-heads. In the scope of this work, we assume an
obstacle-free field, or that obstacle avoidance is implicitly
taken care of.

1) Direct Forwarding: In direct forwarding, the sensor
nodes move directly towards the requesting cluster. The motion
can be in a straight path or Manhattan, depending on the

application setup. Once the nodes are decided to move, they
are informed by their local-cluster-head, and given the location
of the cluster of destination. The nodes leave their cluster
towards the destination cluster. On their way to the destination,
the sensor nodes can turn off their sensing devices and radio
transceivers until they arrive, where, when the sensor nodes
pass through intermediate clusters, they do not need to report
information. For some data intensive applications, the passing
sensor nodes can turn on the sensing and reporting, depending
on the speed of motion and the distance traversed inside the
cluster. Figure 5 shows the direct forwarding of sensor nodes
towards the cluster containing the event.

Figure 5. Six sensor nodes moved towards the cluster containing the event
coming from three different supplying clusters.

2) Relayed Motion:The relayed motion depend on set-
ting up the path of motion of the senor nodes through the
intermediate clusters before starting the real motion. The goal
of this type of motion is to minimize the traveled distance
by each sensor node, and provide faster supply to the new
events, especially when the available resources for supply
are more than one cluster away, i.e, not direct neighboring.
The method starts once resources are decided to be moved
from clusterCsource to clusterCdest passing, in sequence,
through clustersCi, where i = 1, 2, .., k. In the path setup,
each local-cluster-head is informed with the local-cluster-head
before it in the sequence, the one after it, and the number
of resources to be supplied. After all the local-cluster-heads
in the path are informed –and possibly requested to confirm,
for some applications– the real motion starts. Each cluster-
head sends the required amount of resources to the next
cluster in the sequence, starting fromCsource throughCi to
Cdest. This method gives the advantage of faster delivery of
the sensor nodes to the destination, regardless of the travel
distance. However, it is at the cost of more unbalance during
the transient period, where some intermediate clusters may
have less number of nodes than its minimum requirements.
Also, all the cluster head nodes along the path need to know
that they are participating in this scenario. Figure 6 shows the
relayed motion of sensor nodes towards the cluster containing
the event, passing through intermediate clusters.

3) Intra-Cluster Motion:Once the sensor nodes from other
clusters have reached the one who has requested resources,
the local cluster-head will need to execute a re-allocation
algorithm. As mentioned in Section II, in this work we assume
that an event is associated with a bonding rectangle, and each



Figure 6. Six sensor nodes moved towards the cluster containing the event
coming from two supplying clusters, where one of them (the bottom cluster)
relays two more sensor nodes from its population for the cluster beneath it.
It accordingly receives other two sensor nodes, which it can place at the
appropriate positions inside the cluster.

type of an event has distribution of locations for the sensors
around the boundary.

With this in mind, the re-location inside a given cluster
can be readily accomplished using the heuristics from [16].
We note that there are different variants of the re-location
problem – e.g.: minimize the latest arrival time; determine
locations that will maximize the reachability/coverage, and
with a given time-budget, ..etc. [9]. In our work, we assume the
simplest variant – minimizing the latest arrival time, with the
known destinations’ location. This is illustrated in Figure 7 –
showing a zoomed-version of the cluster in which an event
has been detected in Figure 6. As can be seen, some of
the previously available sensors, along with the newly-arrived
ones, are routed towards the predetermined locations along the
perimeter of the rectangle bounding the event.

Figure 7. An example of intra-cluster movement of nodes.

V. EXPERIMENTAL RESULTS

We now discuss the simulation results illustrating the perfor-
mance of the proposed methodologies. The proposed methods
were implemented on top of SIDnet-SWANS [20] WSN sim-
ulator, based on Jist-SWANS discrete event simulation engine
[21]. The data structure used for data indexing is an orthogonal
bisection based K-D Tree implementation [17], [6]. The WSN
has 500 nodes deployed in a square field of 300x300 meters
square, using MAC802.15.4, and Shortest Geographic Path for
routing. The power consumption characteristics are based on
Mica2 Motes specifications, MPR500CA.

Figure 8. Average Request Service Time against Number of Requested
Resources.

The number static sensor nodes in the field was set to
SC = 80 (also used as cluster-heads for the purpose of the K-
D tree), which leftMC = 420 mobile nodes. The experiments
were run for the proposed requesting techniques (Centralized,
SBDR and SPDR). The number of requested nodes per event
was varied from 40 to 200 nodes. We tested scenarios with
1, 4, 8 and 12 simulated events, simultaneously occurring in
different clusters, and we report the averaged measurements
over the parameters set. In our experiments, we compare
the three proposed requesting methods according to several
metrics, which we define as:

• Request Service Time:The time elapsed between the
issuing of the initial request, till the request is accepted
and the nodes are forwarded to the requesting cluster.

• Average Travel Distance Per Sensor Node:The average
distance each resource (i.e, sensor node) needs to travel
across the field to reach the requesting cluster.

• Communication Cost: The total number of messages
transmitted during the requesting process, including the
request messages, response messages and decision mes-
sages.

• Resolution Level: The leaf-based level in the K-D Tree
hierarchy at which the request got accepted. We denote
the local-cluster-heads as level 1, global-cluster-heads as
level 2, and the sink node as level 3.

In Figure 8, the average request service time for the two
distributed methods start lower than the centralized requesting
method. However, with the increase in the number of requested
resources, their service time exceeds that of the centralized
method. This happens because the amount of resources avail-
abel in the clusters neighboring (spatially or structurally) to
the requesting cluster cannot suffice this large number of
requested resources. Accordingly, further requesting iterations
takes place to negotiate resources with more physically distant
cluster heads up in the hierarchy. On the other side, the
centralized requesting method provides a service time that is
mostly stable with the increase of the amount of requested
resources.

The average travel distance per sensor node is depicted
in Figure 9. The distributed spatial requesting achieves the



Figure 9. Average Travel Distance Per Sensor Node against Number of
Requested Resources.

least average travel distance per sensor node, followed by
the distributed structural method. However it seems counter-
intuitive that the centralized method does not achieve the most
optimal solution, this happens due to the less information
it has. The decision in the centralized method is taken at
the sink node, which has comprehensive information about
the field until the local-cluster-heads level. Thus, it centrally
calculates the most optimal distance based on the providing
local-cluster-heads locations, which might have the available
nodes within their clusters further from the border. On the
contrary, the decentralized methods negotiate the resource
supplying process first at the local-cluster-heads level, which
makes them able to optimize based on the real location of
the sensor nodes rather than the local-cluster-heads locations.
If the centralized solution needed to be optimal, which is
doable in terms of the logical capability, this would require
the requesting information process to include the locations of
the potential sensor nodes, which we consider as a significant
communication overhead.

The communication cost of the centralized method is higher
than the distributed methods, as shown in Figure 10, because
of the information gathering rounds. In order to compare
the communication cost of the two distributed methods, the
resolution level depicted in Figure 11 gives us more clarity
about the behavior inside the indexing hierarchy. The dis-
tributed methods were able to handle the requests below 160
sensor nodes without the need of propagating the request
to the sink node. In this case, the communication cost of
the distributed spatial method is hgiher than the distributed
structural method, because of its need to communicate with
the neighbors list, which is more than the sibling nodes in the
K-D Tree. After this threshold, the communication cost of the
distributed structural method slightly exceeds the distributed
spatial method, because the number of decision messages is
more likely to be higher for the structural method. This is
because the partial acceptance across the hierarchy eliminates
all the neighboring list clusters from being included in any
further decision announcements, as they have already sent out
their available resources to the requesting cluster.

Figures 12 and 13 compare the three requesting strategies

Figure 10. Number of Messages Communicated against Number of Re-
quested Resources.

Figure 11. Resolution Level in the Indexing Hierarchy against Number of
Requested Resources.

when multiple simultaneous events are detected in different
regions of the field, each requesting 30 sensor nodes. Thus,
multiple requests are issued to the indexing structures from
different leaf nodes (i.e, local-cluster-heads). The centralized
method comes to be of the highest request service time
and average travel distance, while the other two distributed
methods achieve comparable results. The distributed methods
outperform the centralized method because of their capability
of handling the requests within their locality by providing re-
source supplies from the (spatially or structurally) neighboring
clusters.

VI. RELATED WORK

In the recent years, mobility has contributed to the variety
of application domains for WSNs and has brought a unique
set of challenges and research results[11], [13]. From the
basic setup-aspect, mobility facilitates deployment [22], [23],
augments the monitoring [24], [18] and data gathering [25],
[26] capabilities.

But one example of a formalism for relocation of sensor
nodes in the deployment phase is using a virtual force based
algorithms, proposed in [27], [22], [23]. Wang et. at. [23]
propose an iterative algorithm in which coverage holes are de-
tected by sensors using Voronoi diagrams [28]. The sensors are
then moved from high density zones to low density zones in-
crease coverage. Many sensor relocation algorithms have been



Figure 12. Average Request Service Time against Number of Simultaneous
Requests.

Figure 13. Average Travel Distance Per Sensor Node against Number of
Simultaneous Requests.

proposed [29], [14], [30], [27], [24], [31], [32], presenting
distributed algorithms in which the sensor nodes coordinate
the relocation process themselves. While these approaches are
useful for low density and small scale WSN, in this work we
tried to capitalize on a hierarchical structure for settings in
which WSNs have larger node population in relatively small
spatial regions. The main benefit of our approaches is the
separation of the bargaining process (requesting and supplying
sensors) from the individual sensor nodes, and elevating is
to clusters’ level – thus savings in the communication and
energy-expenditures.

In [29], [14], Cao et. al. proposed an algorithm, with
physical implementation, of a Grid-Quorum solution for sensor
relocation in WSN. The sensed field is split into cells arranged
in a grid. Each cell has a cluster-head, which known the
number of redundant nodes in its area. The information about
redundant nodes are shared between cluster heads in the same
row and column of the grid. When coverage is required in a
specific region, the request is communicated in the row and
column of its cell, where the supplier cells are identified using
the intersection of the request with the previously advertised
redundant nodes. The movement of nodes then follows a cas-
caded (relayed) path, which is negotiated between the sensor
nodes along the path. The single level clustering decreases the
scalable performance of the algorithm. If the network size is

increased, the advertising and requesting processes will incur
high communication cost and latency. The arrangement of
cascaded movement in long paths will also be energy intensive,
in terms of communication, as it will involve many sensor
nodes. Our proposed approach, which operates via hierarchical
scheme alleviates some of these drawbacks.

Several fully distributed algorithms were proposed for sen-
sor nodes relocation, for which communication cost would
highly increase for large scale and high density WSN. A
vector algebra based algorithm to find the locations of poten-
tial redundant nodes for coverage compensation is proposed
in[30]. The selection of the best redundant nodes is performed
opportunistically by jointly considering the hole boundaries
and the remaining energy of nodes. [27] proposed a distributed
algorithm for node deployment and event-based relocation,
where sensor nodes are moved by virtual forces. The algorithm
requires knowledge of relative positions between neighboring
nodes, by which they coordinate their movements. In [24], an
iterative distributed relocation algorithm is presented, where
each mobile sensor only requires local information in order to
optimally relocate itself. The mobile sensors are assumed to
be able to move only once over a short distance. Relocation
of hopping sensors was investigated in rugged terrains in [31],
[32]. The mobility model assumes that the sensor nodes move
in fixed distance hops, and the algorithms are designed to fill
sensing holes by optimizing the required number of hops using
direct or relayed motion. Once again, the aspect of our work
which complements the contexts addressed in these works is
the scalability-benefits.

VII. C ONCLUSION AND FUTURE WORK

In this paper, we proposed efficient methodologies for
scalable management of relocation of mobile sensors in WSNs,
in response to a detection of event of interest. The proposed
work takes into consideration the minimum nodes count
needed in each spatial region for guaranteeing certain QoS
criteria. Capitalizing on a hierarchical structure, we distributed
protocols which improve both the response time and the energy
consumption due to communication, along with the choices
of nodes to move seeking the optimization of the traveled
distance. We presented three different requesting methods
(centralized, SBDR and SPDR) and showed the difference
in performance between them. The proposed approaches are
capable of handling simultaneous detection of multiple events.
The displacement of the mobile sensor nodes is performed
using direct forwarding or relayed motion, which is handled
between the cluster heads for large scale management.

Our future work is centered around two extensions. Firstly,
we would like to investigate what are the costs involved
in adjusting different hierarchical structures (e.g., Voronoi
Treemaps [19]) when nodes move in response to an event,
and develop efficient algorithms for optimizing those costs and
identify the trade-offs involved. Secondly, we will investigate
the problem of optimizing the motion plans of the nodes
when the budget of available nodes across the network is not
sufficient to cater to all the detected events.
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