
.@IEEE TRANSAcrroNs oN

KF{OWIEDGE ANI)
DATA EI{GII{EERING

A publication of the IEEE Computer SocieQ

qr"Fe'

MAY/JUNE 1998 VOLUME 1O NUMBER 3 ITKEEH (rssN 1041-4347)

REGULAR PAPERS

Active and Deductive Databases

Compile-Time and Runtime Analysis of Active Behaviors

Object-Oriented Databases

Path Dictionary: A Nerv Access fuleihodfor Ottery Processing in Object-Oriented Databases

Temporal Databases

Temporal Association Algebra: .-l ,\[athematical Founc{ationfor Processing Object-Orientecl .

Temporal Databases

Spatial Databases

Hierarchical Encodeci Path L'iews Jbr Path Quen Processing: .1n Optitnul .\lodel,.

and Its PerJ'ormance Evaluation
N. Jing, Y.-W. Huang, and E.A. Rundensterner

Multimedia lnformation

CoIlaborative fufuItimedia Sus/enr.' S.v'nthesis of ,\tedia Ob1ects
K.S. Candan, P.V. Rangan, and V.S. Subrahmanran

Database Updates

Techniques Jbr L'pdate Handling in /he Enhancecl Client-Ser,,'er DBLIS

Query Processing

Performance Analvsis of Three Text-Join ,llgoritltms
W. Meng, C. Yu, W. Wang, and N Rish-e

CONCISE PAPERS
Common Subexpression Processing in fufu /tiple-Quen, Processing

Dependabilitv and Performance lvleasttres Jot' the Database Practitioner

O9l-,Slriirg.' A Geometry-Basecl Representation /br Efficient and ELfective Retrieval
of Images bv Spatial Similarin

V.N. Gudivada

109

JJJ

Jt I

493

499

389

Aaa

458

477

Naphtali Rishe

Florida lnternational University

School of ComPuter Science

UniversitY Park

Miami. FL 33199

CoupurER
SOCIETY

,,rto://compu!er.orq o tkde@computer.orq

IEEETRANSACTIONSONKNOWLEDGEANDDATAENGINEERING, VOL, 10, NO.3, MAY/JUNE'1998

Performance Analysis of Three
Text-Join Algorithms

Weiyi Meng, Member, IEEE, Clement Yu, Senior Member, IEEE,
Wei Wang, and Naphtali Rishe, Member, IEEE Computer Society

Abstract-When a multidatabase system contains textual database systems (i.e., information retrieval systems), queries against
the global schema of the multidatabase system may contain a new type of joins-joins between attributes ol textual type. Three
algorithms for processing such a type of joins are presented and their l/O costs are analyzed in this paper. Since such a type of joins
often involves document collections of very large size, it is very important to find etficrent algorithms to process them. The three
algorithms differ on whether the documents themselves or the inverted files on the documents are used to process the join. Our
analysis and the simulation results indicate that the relative performance of these algorithms depends on the input document
collections, system characteristics, and the input query. For each algorithm, the type of input document collections with which the
algorithm is likely to perform well is identified. An integrated algorithm that automatically selects the best algorithm to use is also
proposed.

lndexTerms-Query processing, textual database, iniormation retrieval, join algorithm, multidatabase.

+

t hrrRooucloN

T) ESEARCHaS in tnultidntabase systern have been intensified
I\i" recent years t4l, Isl, I9l, i131, t121,1161, [19]. rn this
papet we consider a multidatabase system that contains
both local systems thai manage siruclured data (e.g., reia-
tionai DBSs) and local systems that manage unstructured
data (e.g., information retrieval (IR) sysiems for handling
text).

The global schema of a multidatabase svstem, integrated
from local database schemas, provides an overall picture of
al1 sharable data in the local systems. The global query lan-
guage can be used to specify queries against the global
schema, which will be referred to as global queries herea{ter,
and to retrieve data represented by the global schema. For
example, if the global scirema is in relaiional data model,
then SQL can be used as the giobal query language. Since
the multidatabase system considered in this paper contains
IR components and relational components, the global query
language must be capabie of accommodating both struc-
tured data and unstructured data. An SQl-based query
Ianguage that can serve such a purpose iras been proposed
in [i]. In this paper, we extend the features of this language
to specify our queries.

c W. Meng is with the Department of Computer Science, State Uniaersity ot'
New York at Binghamton, Binghnmton, Ny 13902-6000.
E- mail : men g@ cs.b in ghamton. e du.

. C. Yu is with the Department of Electrical Engineering and Computer
Science, Uniaersity of lllinois at Chicago, Chicago, IL 60607 .

E-mail : y u@ eecs.uic. e du.
c W. Wang is with the Computer Science Department, Uniuersity of Califor-

nia at Los Angeles, Los Angeles, CA 90024.
E-mail : weiwang@cs.ucla.edu.

' N. Rlshe is with the School of Computer Science, Florida International
Unizt er s ity, Miami, F L 3 3 1 9 9. E -m ail : r ishen@t'iu. edu.

Mnnuscripl rcceiued 2'l Apr.1996.
F,o" iniormation on obtaining teprints of this article, please send e-mail to:
tk)@ro^puttr.or|, and ret'erence IEEECS Log Number 104471.

Because we have a database front-end, global users may
submit queries that contain joins between attributes of tex-
tual type. A motivating exan'rple is presented in Section 2. A
likeiy join comparator for textual attributes is SIMILAR_TO
that matches objects with similar textuai contents based on
some similarity function. Since each textual object is essen-
tially a document, the join is to pair similar documents
among the two document collections corresponding to the
two textual attributes. Although other types of comparators
between textual attribuies may exist, the SIMILAR_TO op-
erator is a key operator for textual data and, therefore, we
concentrate on this operator in this paper.

Whiie processing joins between nontextuai attributes has
been studied extensively, not much research has been re-
poried on processing joins between textual attributes in the
iiterature. In [6], the authors reported a case study on
automating the assignment of submitted papers to review-
ers. The reported study requires matching the abstract of
each submitted paper with a number of profiles of potential
reviewers. The problem is essentially to process a join be-
tween two textual attributes. Since the document collections
involved were small, efficient processing strate$y of the join
was not their concern. Instead, the emphasis of that work
was on the accuracy of the automated match. A somewhat
related problem is the consecutiae retrieaal problem l7l, [77],
which is to determine, for a given set of queries Q against a

set of records R, whether there exists an organization of the
records such that, for each query in Q, ali relevant records
(loosely, similar records) can be stored in consecutive stor-
age iocations. If we interpret Q and R as two document
colieciions, then the consecutive retrieval problem deals
with the storage aspect of efficient retrieval of relevant
documents from one collection for each document from
another collection. However, a major difference between
consecutive retrieval probiem and the join processing

1041-4347/98/$1 0.00 @ 1 998 |EEE

IEEETRANSACTIONSONKNOWLEDGEANDDATAENGINEERING, VOL. 10, NO.3, MAY/JUNE 1998

problem is that the former assumes the knowledge of which
documents from R are relevant to each document in Q,
while ihe latter needs io find which documents from one
collection are most similar to each document from another
collection. Another related problem is the processing of a
set of queries against a document collection in batch. There
are several differences between this batch query problem
and the join problem:

1) For the former, many statistics about the queries
which are important for query processing and opti-
mization such as the frequency of each term in the
queries are not avaiiable unless they are collected ex-
plicitly, which is unlikely since the batch may only
need to be processed once and it is unlikely to be cost
effective to collect these statistics.

2) Special data structures commonly associated with a

document collection, such as an inverted file, are un-
likeiy to be available for the batch for the same reason
given above.

As we will see in this paper, the avaiiability of inverted files
means the applicability of certain algorithms. The ciuster-
ing problem in IR systems [14] requires finding, for each
document d, those documents similar to d in the same
document collection. This can be considered as a special
case of the join problem, as described here, when the two
document colleclions involving the join are identical.

A straightforward rvay exists for processhg joins between
textual attributes in a multidatabase environment. This
method can be described as foilows: Treat each document in
one colleclion as a query and process each such query against
the other collection independentiy to find the most simi.lar
documents. Howevet this method is extremely expensive
since either all documents in one of the two coileclions are
searched or ihe inverted file of that collection is ulilized once
for processing each document in the other collection. As an
example, consider lhe Smart system [3] developed at Cornell
University. Tlre Smart system uses inverted fiie to process user
queries. lf the coliecrion whose documents are used as queries
has a large number of documents, then usiag the inverted file
of the other collection to process each query independently can
easily incur a cost which is several orders of magnirude higher
than that of a belter join atgorithm (see Seclion 6). Therefore, it
is very important to develop efficient algorithms for process-
ing joins between textual attributes. This paper has the fol-
lowing conlributions:

1) We preseni and anaiyze three aigorithms for process-
ing joins between attributes of textual type.

2) Cost functions based on the I/O cost for each of the
algorithms are provided.

3) Simulation is done to compare the performance of the
proposed algorithms. Our investigation indicates that
no one algorithm is definitelv better than all other al-
gorithms in all circumstances. in other words, each
algorithm has its unique value in different situations.

4) We provide insight on the type of input document
collections with which each aigorithm is likely to per-
form well. We further give an algorithm which de-
termines which one of the three algorithms should be
used for processing a text-join.

We are not aware of any similar study that has been re-
ported before.

The rest of this paper is organized as follows: A moti-
vating example is presented in Section 2. In Section 3, we
include the assumptions and notations that we need in this
paper. The three join algorithms are introduced in Section 4.

Cost analyses and comparisons of the three algorithms are
presented in Section 5. In Section 6, simulation is carried
out to further compare the proposed algorithms and to
suggesi which algorithm to use for a particular situation.
An integrated algorithm that automatically selects the best
algorithm to use is also included in this section. We con-
clude our discussion in Section 7.

2 A MorvmNG ExAMPLE

Assume that the following two global relations have been
obtained after schema integration: Appiicants(SSN, Name,
Resume) and Positions(P#, Title, Job_descr), where relation
Applicants contains information of applicants for job posi-
tions in relation Positions, and Resume and Job_descr are of
type text. Consider the query to find, for each position, 2
applicanis whose resumes are most similar to the position's
description. This query can be expressed in extended SQL
as follows:

select P.P#, P.Title, A.SSN, A.Name
from Positions P, Applicants A
where A. Resume SIIVIILAR_TO(2) P.Job_descr

The where-clause of the above query contains a join
on attributes of textual type. This tvpe of joins does not
appear in traditional database systems. Note that "A.Resume
SINIILAR_TO(,I) P.Job_descr" and "P.Job_descr SIlvllLAR_
TO(2) A.Resume" have different semantics. The former is to
find 2 resumes for each job description, while tire latter is to
find 2 job descriptions for each resume. All job descriptions
wiil be listed as output by the former. However, a job de-
scription may not be listed in ihe output by the latter if it is
not among the 2 most simiiar job descriptions to anv resume.
Latet we will see that the asvmmetry of the operator
SIMILAR_TO has some impact on the evaluation strategy.

There are some important differences between joins in
relational database systems and the join between two tex-
tual attributes. Consider the relational join Ri.A e R2.A,
where I is a comparator such as = and >. Given a tuple t1

of R1 and a tuple t2 of R2, if t1[A] e Q[A] is true, then we
immediateiy know that t1 and t2 satisfy the join. However,
for a given resume r and a given job description i, there is
no way for us to know immediateiy whether or not r
SIMILAR_TOU) j is true, since, to be sure that r is among
the 2 resumes most similar to j, aIl resumes have to be con-
sidered. If we process the join by comparing each job de-
scription with all resumes, then, after a job description d is
compared with ail resumes, the 2 resumes most similar to d
can be identified and a partial result is produced. However,
if we process the ;'oin by comparing each resume with ail
job descriptions, then, after a resume is compared witir all
job descriptions, no partial result can be generated. In this
case, manv intermediate results (i.e., similarity values be-
tween resumes and job descriptions) need to be maintained

'.-; - -

MENG

in the
parin;
ral w.

Du
iation
a sub:
ticipai
find, .

applic
descr,

sei

frc
wh

:

ifs
then o
tains "

In'
that c;

sel,
fro:
wh

where
ment
tively).
SIMIL,,]
addres

3A:
Using
rePreSr

OCCUfTL

r,veight

ment.
sPace.

cells o

where
rence-c

ment a

each d'
bytes t
ficient.
may be

system:
be use,
actual '
that th,

larger,
the cc,

Such a

umns/ .

degrad'
proxim,
mappir
Since il
iMB, it
the me:
mappin

IEEETFANSACTIONSONKNOWLEDGEANDDATAENGINEERING, VOL. 10, NO.3, MAY/JUNE 1998

- !,gdd

MI

problem is that the former assumes the knowiedge of which
documents from R are relevant to each document in Q,
while the latter needs to find which documents from one
collection are most similar to each document from another
coilection. Another related problem is the processing of a
set of queries against a document collection in batch. There
are several differences between this baich query problem
and the join problem:

1) For the formet many statistics about the queries
which are important for query processing and opti-
mization such as the frequency of each term in the
queries are not available unless ihey are collected ex-
plicitly, which is. unlikely since the batch may only
need to be processed once and i.t is unlikely to be cost
effective to colleci these statistics.

2) Special data structures commonlv associated wj.th a
document coilection, such as an inverted file, are un-
likely to be avaiiable for the batch for the same reason
given above.

As we wiil see in ihis paper, the availability of inverted files
means the applicability of certain algorithms. The cluster-
ing problem in IR systems [14] requires finding, for each
document d, those documents similar to d in the same
document collection. This can be considered as a speciai
case of the join problem, as described here, when the two
document collections involving the join are identical.

A straightlorward way exists for processing joins belween
texlual altributes in a multidatabase environment. This
method can be described as follows: Tieat each document in
one collection as a query and process each such query against
the other collection independently to find the most similar
documents. However, this method is exlremely expensive
since either all documents il one of the two colleclions are
searched or the inveried file of that collection is utilized once
for processing each document in the other collection. As an
example, consider the Smart system [3] deveioped at Cornell
University. The Smart system uses inverted file to process user
queri.es. If the coilection whose documents are used as queries
has a large number of documents, then using the inveried file
of the other collection to process each query independently can
easily incur a cost which is several orders of magnitude higher
than that of a better join algorithm (see Section 6). Therefore, it
is very important to develop efficient algorithms for process-
ing joins between textual attributes. This paper has the fol-
lowing contributions:

1) We present and anaiyze three algorithms for process-
ing joins between attributes of textual type.

2) Cost functions based on the I/O cost for each of the
algorithms are provided.

3) Simulation is done to compare the performance of the
proposed algorithms. Our investigation indicates that
no one algorithm is definitely beiter than all other ai-
goriihms in all circumstances. In other words, each
algoriihm has its unique value in differeni sifuations.

4) We provide insight on the type of input document
collections with which each algorithm is likely to per-
form well. We further give an algorithm which de-

termines which one of the three algorithms should be

used for processing a text-join.

We are not aware of any similar study that has been re-
ported before.

The rest of this paper is organized as foilows: A moti,
vating example is presented in Section 2. In Section 3, we
include the assumptions and notations that we need in this
paper. The three join algorithms are introduced in Section 4.

Cost analyses and comparisons of the three algorithms are
presented in Section 5. In Section 6, simulation is carried
out to further compare the proposed algorithms and to
suggest which algorithm to use for a parti.cular situation.
An integrated algorithm that automatically selects the best
algorithm to use is also inciuded in this section. We con-
ciude our discussion in Section 7.

2 A MolvalNc ExAMpLE

Assume that the following two global relations have been
obtained after schema integration: Applicants(SSN, Name,
Resume) and Positions(P#, Title, Job*descr), where reiation
Applicants contains informati.on of applicants for job posi-
tions in relation Positions, and Resume and Job_descr are of
type text. Consider the query to find, for each position, 2
applicants whose resumes are most similar to the position's
description. This query can be expressed in extended SQL
as follows:

select P.P#, P.Title, A.SSN, A.Name
from Positions P, Applicants A
where A.Resume SIMILAR_TO(2) P.Job_descr

ln
p.
ra

The where-ciause of the above query contains a join
on attributes of textual type. This tvpe of joins does not
appear in traditional database systems. Noie that "A.Resume
SIMILAR_TO(2) P.Job_descl' and "P.Job_descr SIMILAR_
TO(2) A.Resume" have different semantics. The former is to
find 2 resumes for each job description, whiie the latter is to
find ,1 job descriptions for each resume. AII job descriptions
will be listed as output by the former. However, a job de-
scription may not be listed in ihe output by the latter if it is
not among the 2 most similar job descriptions to anv resume.
Later, we will see that the asvmmetrv of the operator
SIMILAR_TO has some impact on the evaluation strategy.

There are some important differences between joins in
relational database systems and the join between two tex-
tual attributes. Consider the relational join Ri.A 0IQ.A, .

where I is a comparator such as = and >. Given a tuple ti
of R1 and a tuple t2 of M, if tl [A] e i2tAl is true, then we ,

immediately know that t1 and t2 satisfy the join. However,..
for a given resume r and a given job description i, there is
no way for us to know immediateiy whether or not r:li
SIMILAR_TO(2) 7 is true, since, to be sure that r is among
the 2 resumes most similar to i, all resumes have to be con-
sidered. If we process the join by comparing each job de-,i{

Such ascription with all resumes, then, after a job description d is!
umns/
degrad
proxim
nappir,
Since ti
iMs, it
lhe mer

compared with all resumes, the 2 resumes most similar to

case/ many intermediate results (i.e., similarity values

can be identified and a partial result is produced. However'
if

-we
process the join by comparing eich resume with all,

job descriptions, then, after a resume is compared with
job descriptions, no partial result can be generated. In

lat
as
tic
fir
ap
de

'l

I
ther
tain

I
t

thai

s

f:
u

whe
menr
tiveh
SIMi
addr

e,

Usin;
repre
occul
weigi
ment.
space
cells
wherr
r€flC€:

ment
each c
bytes
ficient
may bt
systerr

, be use
actual
that tl^

, llirger.
. tire cc

tween resumes and job descriptions) need to be maintai rnappin:

j

j
)

t
I.

MENG ET AL,: PERFORMANCE ANALYSIS OF THREE TEXT.JOIN ALGORITHMS

in the main memory. This observation indicates that com-
paring each job description with all resumes is a more natu-
ral way to process the above textual join.

Due to selection conditions on other attributes of the re-
lations that contain textual attributes, it is possibie that oniy
a subset of the set of documents in a collection need to par-
ticipate in a join. For example, consider the query that is to
find, for each position whose title contains "Engineer," .
applicants wirose resumes are most similar to the position's
description.

select P.P#, P.Title, A.SSN, A.Name
from Posiiions P, Applicants A
where P.Title iike "ToEngtneer%" and A.Resume

SIMILAR-TO(2) P.Job_descr

If selection P.Title like "%Engineer7o" is evaluated first,
tiren only those job descriptions whose position titie con-
tains "Engineer" need to participate in the join.

In this paper, we are interested in studying algorithms
that can be used io process the following query:

select R1.X1, R2.Y2
from Rl, R2
where Rl.C1 SIMILAR-TO(2) R2.C2

n'here Cl and C2 are attributes representing two docu-
ment collections (collection 1 and collection 2, respec-
tively). Clearly, the join to be evaluated is of the form: "C1
SIMILAR_TO(1) C2" . The impact of seiections n'ill also be
addressed.

3 AssuuproNs AND Noralorus
Using tl-re vector representation [14], each document can be
represented as a list of ierms together r,r'ith their number of
occurrences in the document. Each term is associated with a
weight indicating the importance of tire term in the docu-
ment. Usualiy, terms are identified by numbers to save
space. We assume that each document consists of a iist of
cells of the form (t#, w;, called document-cell or d-cell,
where t# is a term number and w is the number of occur-
rences of the term t in the document. All d-cells in a docu-
ment are ordered in ascending term numbers. The size of
each d-cellis I f#l + lzrrl bytes, where lXl is ihenumberof
bytestocontainX. Inpractice, lf#l =3and lwl =Zissuf-
ficient. In a muitidatabase environment, different numbers
may be used to represent the same term in different local IR
systems due to the local autonomy. Several methods may
be used to overcome this problem. One method is to use
aclual terms rather than term numbers. The disadvantage is

that the size of the document collection will become much
Iarger. Another method is to establish a mapping between
the corresponding numbers identifying the same term.
Such a mapping structure, usually a table with two col-
umns, if not stored in the main memory can substantialiy
degrade the performance. Assuming I t# I = 3, then ap-

proximately 150 pages, each of size 4KB, are needed for the
mapping structure to accommodate 100,000 distinct terms.

Since the total size of the mapping structure is less than
iMB, it is likeiy thai the mapping structure can be held in
the memory. An attractive method is to have a standard

mapping from terms to term numbers and have all locai IR

systems use the same mapping. Such a standard can be
very beneficial in improving the performance of the multi-
database system. It can save on communication costs (no

actual terms need to be transferred) and processing costs (it
is more efficient to compare numbers than to compare ac-

tual terms or no need to search the mapping table). To sim-
piify our presentation, we assume that the same number is
always used to represent the same term in all local IR sys-
tems. Note that this assumption can be simulated by always
keeping the mapping structure in the memory when differ-
ent numbers are used to represent the same term in differ-
ent local systems. In the remaining discussion, terms and
term numbers will be used interchangeabiy.

Let t1, t2, ..., t,,be all the common terms between docu-

ments D1 and D2. Let u1, 112, ..., ttn and u1, Lt2, ...r 7)n be the

numbers of occurrences of these terms in D1 and D2, re-
spectively. The similarity between D1 and D2 can be de-

fined as F " - ,, * r).. A more realistic simiiarity function is
.Lti=1 t t

to divide the similaritv by the nonns of the documents and
to incorporate the use of the inverse document frequency
weight [14], n'hich assigns higher weights to terms which
occur in fewer documents. The normalization can be car-
ried out by precomputing the norms of the documents,
storing them and performi.ng the divisions during the proc-
essing of the documents. The inverse document frequency
r,r'eight can be precomputed for each term and stored as

parts of the Iist heads in the inverted files. For tire sake of
simpiicity of presentation, we use the number of occur-
rences instead of weights.

For a given term f in a given document collection C, the
inverted file entry consists of a list of i-celis (sirort {or in-
verted-file-ceil) of the form (d#, w), where d# is a document
number and w is the number of occurrences of f in the
document vr'ith number d#. We assume that i-cells in each
inverted fiie entry are ordered in ascending document
numbers. The size of each i-cell is ld#l + l-a' l. i-cells and
d-cells have approximately the same size.

We use the foilou.'ing notations in our discussion:

N,-the number of documents in collection i, i = 1 or 2
B-the size of the avaiiabie memory buffer in pages
T,-the number of terrns in collection i
Bf,-the size of the B+tree for collection i in pages (assume

tightly packed, i.e., no space is left unused in each
page except possibly the last page)

p-the probability that a term in collection C1 also aPPears
in collection C2

q-the probability that a term in coliection C2 also aPPears
in collection C1

a-the cost ratio of a random I/O over a sequential I/O
P-page size in bytes (4KB)
K, the average nr:mber of terms in a document in collection i
/,-the average size of an inverted file entry on collection i

in pages (5 * (Kt* N)/(Ti. P))
I,-the size of the irrveried fiie on collection i in pages (li* Ti,

assume tightly packed)
S, the average size of a document in collection i in pages

(5 . KilP)

n

i1

t-
rf
2
S

L

n
Jt
ne
t{_
to
fo
1S

e-
is

Ie.

or

in
ix-
A,
t1

\'e

is
r

rlg
)n-

le-
is

.td

ail
ail
iris
be-
red

480

D,-the size of collection i in pages (Si * Ni, assume tightiy
packed)

lj -the inverted file entry of term / on colleciion i
2-operator SIMILAR-TO(2) is used
6-the fraction of the similarities that are nonzero

We assume that documents in each collection are stored
in consecutive storage locations. Therefore, when all docu-
ments in collection i are scanned in storage order, the total
number of pages read in will be D;, which is also the total
I/O cost. On the other hand, if documents in collection i are
read in one at a time in random order, and a document is

not kept in the memory after it is processed, then the total
number of pages read in 1vill approximately,be l4 * [Sil and
the total coit *itt approximatety Ue l,t, * [Srl " 4 where [X]
denotes the ceiling of X and a is the cost ratio of a random
I/O over a sequential I/O due to the additional seek and
roiational delay of a random read. Similarly, we assume
thai inverted file entries on each collection are stored in
consecutive storage locations in ascending term nttmbers
and typicaliy [7,T pug"r will be read in when an inverted file
entry is brought in the memory in random order.

Note that, for a given document collection, if document
numbers and term numbers have the same size, then its
total size is tire same as the totai size of its corresponding
inverted fiie.

In this papet ontl7 I/O cost will be used to anaiyze and
compare different algorithms, as if we have a centralized
environment where I/O cost dorninates CPU cosi. Cost
analysis and comparisons for a distributed environment
will be conducted in the future.

4 AlcoRrrnns
In this section, we present three algorithms for processing
joins on textulal attributes. These algorithms will be analvzed
and compared in the next two sections. We assume the exis-
tence of the inverted file on all document colleclions.

Depending on how documents and,/or inverted files are
used to evaluate a join, three basic algorithms can be con-
stmcted. The first algorithm is to use only documents to
process the join, the second aigorithm is to use documents
from one collection and the inverted file from another col-
lection to evaiuate the join, and the third algorithm uses

inverted files from both coliections to do the same job. A
collection of documents can be represented by a document-
term matrix where the rows are the c'iocuments and the col-
umns are the terms or the inverted file entries of the terms.
Therefore, we name the first algorithm, the Horizontal-
Horizontal Nested Loop (HHNL); the second algorithm,
the Horizontal-Vertical Nested Loop (HVNL); and the
third, algorithm the Vertical-Vertical Merge (VVM).

4.1 Algorithm HHNL
A straightforward way for evaluating the join is to compare
each document in one coilection with every document in the
gther collection. Although simpie, this method has several
dttractive properties. First, if one or two of the collections can

" be reduced by some selection conditions, only the remaining
documents need to be considered. Seconcl, documents can
generally be read in sequentially resulting in sequential I/Os.

IEEETRANSACTIONSONKNOWLEDGEANDDATAENGINEERING, VOL. 10, NO.3, MAYiJUNE 1998

From the discussion in Section 2, we know that it is more
natural to process ihe join by comparing each document in
C2 with a1l documents in C1. That is, it is more natural to
use C2 as the outer collection and C1 as the inner collection
in the join evaluation. We call this order the forzuard order

and the reverse order the backward order. The backward or-
der can be more efficient if C1 is much smaller than C2. We

consider the forward order first.
We adopt the policy of letting the outer collection use as

much memory space as possibie. Tire case that lets the inner
collection use as much memory space as possible is

equivalent to the backward order, which wiil be discussed
later. With this memory allocation policy, the algorithm
HHNL can be described as follows: After reading in the

next X documents of C2 into the main memory, for some
integer X to be determined, scan the documents in C1 and,
while a document in C1 is in the memory, compute the
simiiarity between this document and every document in
C2 that is currently in the memory. For each document d2 in
C2, keep track of only those documents in C1 which have
been processed against tl2 and have the 2 largest similarities
witl'r rJ2.

More rigorouslv, with Ct as the outer collection, we need
to reserve the space to accommodate at least one clocttmeui
in C1. That is, [SrT pages of the memory need to be reserved
for C1. We also neec-l to reserve the space lo save tl.re 2
similarities for each document in C2 currentlv iir the mem-
orv. Assume that eacl'r similarity vah"te occttpies .1 bvtes.
Then, the number oi documents in C2 that can be helcl in
the memorv buffer of size B cau be esiimatecl .rs: X = (B

- [Sr'll/tS, + U,/ P), where P is the size of a page in bvlt's.
We now present the algoriihrn HHNL:

Wirile (there are documents in C2 to be read in)
{lf there are X1 = min{N:, X} or more unprocessecl cloct-t-

ments in C2 left
inpui the next X1 unprocessed documents in C2 intct

the main memory;
Else input the remaining ullprocessecl documents in C2

into the main memorv;
For eacir unprocessed tl2inC2 in the memory

For each clocument d1 in C1

{compute tire similaritv between d2 and tll;
if it is greater than the smallest of the 2 largest

similarities compuied so far for d2

{replace the smallest of the ,1. largest similarities
by the new similarity;

update the list of the documents in C1 to keep
track of those documents with the 2 largest
similarities with d2;

l

)

l

If 2 is large, then a heap structllre can be used to fincl the
smallest of the 2largest simi.larities in the above algorithm.

We now consider the backward order. When C1 is usecl

as the outer coilection to evaluate the join, C2 will be
scanned for each set of documents in C1 currently in tl-re

memory. Let d1 be the first document in C1 read irr the
memory. After C2 is scanned, the N2 similarities between cl'l

MENG E

and er
docun'
that a:

docun
docun
the 2
tion. l
42*N
forwa;
of the
save :

an ad
der. A
than t
tions Ir

smalie
form i
held ir

needr
matte

4.2 A
This i
the ir
simila
user q

find t1'

to the
comp
requi
lnatrl
verte
This i

of thi
entric
corre:
terms
numL
verte,
oi ti
strai:
wirei
one c

T1-'

simil,
can b
be co

toft
nunt'
dcc'-:

u; i:
cons
of tir,
r/ are
ment
whic

\,
termr
need

Purp

e

{
J

le
te

il

MENG ET AL.: PEFTFORMANCE ANALYSIS OF THREE TEXT-JOIN ALGORITHMS

and every document in C2 are computed. Since, for each

document in C2, we need to find the 2 documents in C1

that are most similar to it, we need to keep track of the 2
documents in Ci that have the largest 2 similarities for each
document in C2. This means that we need to keep track of
tire ,1. * N2 similarities during the backward order evalua-
tion. In other words, we need a memory space of size
4)*Nz/P to keep ihese similarities. Compared witir the
forward order which requires 41* X\ / P pages to keep track
of the needed similarities, more memory space is needed to
save the similarities for the backward order. This wiil have
an adverse impact on the performance of the backward or-
der. As a result, the forward order is iikeiy to perform better
than the backward order when tire two documeni collec-
tions irave about the same size. Howet'et u'hen C1 is much
smaller than C2, then tl're backward order can still outper-
form tl.re foru'ard order. For example, if C1 can be entirely
held in the memory, then only one scan of each collection is
needed to process the join with the backu'ard order no
matter horr' large C2 is.

4.2 Algorithm HVNL
This algoriihm uses the documents in one collection and
the inve.ried file for the other collection to compute the
similarities. In an information retrieval system, processing a

user query, u'irich can be considered as a document, is to
find tire 2 documents in tire system which are most similar
to the user queryr One way to process such a query is to
compare it lvith each document in the system. Thj.s method
requires alnost all nonzero entries in the document-term
matrix be accessed. A more efficient r,r'ay is to use tire in-
verted file on the document collection to process the querv.
This method is used in the Sriurf system [3]. The advantage
of this method is that it only needs to access those nonzero
entries in the columns of the document-term matrix which
correspond to the terms in the query. Since the number of
terms in a query is usually a very smali fraction of the total
number of terms in all documents in the system, the in-
verted file based method accesses only a very small portion
of the docurnent-terrn matrix. Algorithm HVNL is a

straightforr,r'ard extension of this method to the situation
u'here we need to find the 2 most similar documents from
one coliection for every document in another collection.

The process of using the inverted file to compute the
similarities between a document d inC2 to documents in C1

can be described as follows. Let (t, w) be tire next d-cell to
be considered in d. Let the inverted file entry corresponding
to f on C1 be {(d1, ut1), ..., (d,,, w,,)1, where dis are document
numbers. After f is processed, the similarity betrt'een d and
document d; as accumulated so far will be Ur + 7t) * wi, tt'here
U, is tlre accumulaied similarity between d and dibefore f is
considered, and ar * zo; is the contribution due to the sharing
of the term f between d and di, i = 7, ..., n. After ail terms in
d are processed, the similarities between d and all docu-
ments in C1 will be computed, and the 2 documents in C1

which are most similar to d can be identified.
Note that before the last d-cell in d is processed, all in-

termediate similarities between d and ail documents in C1

need to be saved. The amount of memory needed for such
purpose is proportional to N1. Further analysis can reveal

481

that using the inverted file on C2 to process the join needs

more memory space to store intermediate simiiarities (the

amount is proportional to)" * N2). In praciice, only nonzero
similarities need to be saved. We use t to denote the frac-
tion of the similarities that are nonzero, 0 < d< 1.

A straightforrvard way to process the join is to go
through the above process for each document in C2 inde-
pendently. That is, read in each document d in C2 in turn
and, while d is in the memory, read in all inverted file en-
tries on C1 corresponding to terms in d to process d (note

that not all terms in d will necessarily appear in C1). The
probiem u'ith this straightforward method is its lack of co-
ordination between the processing of different documents
in C2. As a result, if a term appears in K documents in C2,
then the inverted file entry of the term (assume tirat it also
appears in C1) on C1 wili be read in K times. Aigorithm
HVNL is designed to reuse tire inverted file entries that are
read in the memory for processing eariier documents to
process later documents to save I/O cost. Due to space
limitation, usualiy not ali inverted file entries read in earlier
can be kept in the memory. Tirerefore, the algorithm also
needs a policy for repiacing an inverted fiie entrv in the
memory by a new inverted file entry. Let the frequency of a

term in a collection be the number of documents containing
tlre ternr. Tiris is known as document frequency. Document
frequencies are stored for similarity computation in IR svs-
tems and no extra effort is needed to get them. Our re-
placement policy chooses the inverted file entrv whose cor-
responding term has the lowest frequency in C2 to replace.
This reduces the possibility of tire replaced inverted file
entry to be reused in the fufure. To make iire best use of the
inverted file entries currently in the memory', tvhen a ne\^/

document d1 in C2 is processed, terms in d1 whose corre-
sponding inverted file eniries are alreadv in the memorv
are considered first. This means that each newly read in
document r,r'iil be scanned twice in the memory. The first
scan is to find the terms whose corresponding inverted fiie
entries are aiready in the memory and the second scan is to
process other terms. A list that contains the terms whose
corresponding inverted file entries are in the memory wili
be maintained. Note that, when noi all inverted file entries
that are read in earlier can be kept in the memory, it is still
possible to read in an inverted file entry more than one
time. Note also that the worst case scenario for algoritl-rm
HVNL is that for each document in C2 under consideration,
none of its corresponding inverted file entries is currently
in the memory. In this case, algorithnl HVNL deteriorates
into the straightforward method.

We now present the algorithm HVNL:

For each document d inC2
{For each term f in d

If f also appears in Cl
If the inverted file entry of f on C1 (Ij) is in ttre

memory
accumulate si.milarities;

For each term f in d
If f also appears in C1

{if the inverted file entry of f on C1 (1{) is not in ihe
memory

:-;1t€q_-:i i-'{-r '

If the available memory sPace can accommodate 1{

read in Il;
Else

find the inverted file entry in the memory
with the lowest document frequency and

replace it with I{;
accumulate similarities;
)

find the documents in C1 which have the 2largest simi-
larities with d;

)

For each inverted file, there is a B+tree which is used to
find whether a ternt is in the collection and if present where

the corresponding inverted file entry is located.
One possible way to improve the above algorithm is to

improve the selection of the next document to process' In-
tuitively, if we always choose an unProcessed document in
C2 whose terms' corresponding inverted file entries on C1

have the largest iniersection with those inverted file entries

already in the memory as the next document to process,

then the likelihood of an inverted file entry already in the

memory to be reused can be increased. For example, con-

sider three documents each with three terms: ;t1 = {tr, t2, t3},

D2 = {tz, t3, ta}, and D3 = {t:, ta, t5}. Suppose terms with
smaller subscripts have lower document frequencies. Sup-

pose ihe memory buffer is only large enough to hold three

inverted file entries. If D7, D2, and D3 are Processed in the

given order, ihen each inverted file entrv needs to be read

in exactly once. However, if the processing order is DL, D3,
and D2, then the inverted file entry corresponding to t2

will be read in trvice and all other inverted fiie eniries will
be read in exactly once. Clearly, for this exampie, order

{D7,D2, D3} is better than order {D1, D3, D2}.

An order is optimnl if it incurs the minimum IIO cost.

The question is can an optimal order be found efficiently.

Unfortunately, as shown bv the proposition below, the

problem of finding an optimal order is NP-hard.

Pnoposrrtoi.t. The problem of t'inding ttn optimal order of dout-

ments in C2 so that the best pert'ormnnce can be achieued is

NP-httrd.

PRooF. It was shown in [11] that the following problem,
known as the Optirnal Batch Integrity Assertion Verit'ica-

flon (OBIAV), which is to find an optimal order for
verifying a set of integrity constraiirts and verifying
each such constraint requires a set of pages be

brought in from secondary storage to the memory, is
an NP-hard problem. It can be seen that the optimal
order problem in our case is essentially the same as

the opiimal order probiem in OBIAV because the fol-
lowing correspondences between the two problems

can be easily established: Processing a document in
C2 corresponds to verifying an integrity constraint;

the need to read in a set of inverted file entries for
processing each document in C2 corresponds to the

need to bring in a set of pages for verifying each in-

tegrity constraint; that an inverted file entry read in
for processing one document may be used for proc-

essing another document corresponds to that a page

IEEETRANSACTIONSONKNOWLEDGEANDDATAENGINEERING, VOL. 10, NO.3, MAY/JUNE 1998

brought in for verifying one integrity constraint may
be used for veri-fying another integrity constraint.

Therefore, the optimal order problem in our case is

also NP-hard. tr

We decided not to Pursue the issue of finding an optimal

order further because in addition io its NP-hard nature,

there is another problem associated with any optimal order,

that is, by reading in documents in any order rather than

their storage order, more expensive random I/Os will be

incurred.

4.3 Algorithm VVM

Algorithm VVM uses inverted files on both collections to

compute the similarities. The strength of this algorithm is

that it only needs to scan each inverted file once to compute
similarities between every pair of documents in the two
collections regardless of the sizes of the two collections

provided thai the memory space is large enough to accom-

modate intermediate similarity values. In this case, algo-

rithm WM can be at least as good as aigoriihm HHNL be-

cause aigorithm HHNL needs to scan each document col-

lection at least once and the size of the inverted file on a

collection is about the same as the size of the coliection it-
se1f. Atgoriihm VVM lries to compute similarities between

every pair of documents in the two collections simultane-

ouslv as a result, it needs to save the intermediate similari-
iies. Thus, the memory requirement for saving ihese simi-
larities is proportional to N1 * |,/" (independent of the num-

ber of terms in each document), which can be so large such

that algorithm V\M cannot be run at all. In summary, algo-

rithm V\&l is likely to perform well for document collec-

tions that are large in size (such that none can be eniirely
heid in the memory) but small in number of documents.

This is possible if each document has a large size. Another

situation that algorithm VVM may do well is when the vo-

cabularies of the two document collections are very differ-
ent. For example, one collection is on medicine and the

other is on computer science. In this case, the number o{

nonzero similarities between documents in the two collec-

tions is likeiv to be small.
Algorithm WM can be described as follows: We scan

both irverted fiies on the two collections. During the parallel

scan, if fwo inverted file enlries correspond to the same term,

then invoke the simiiarity accumulating Process.
Recall that we assumed that inverted file entries are

stored in ascending ierm numbers. Therefore, one scan of

each inverted file is sufficient (very much like the merge

phase of merge sort). The similarity accumulating Process

can be described as follows. Let I{ = l1r,ur), ..',(r*,u)l

pa
pa
tht
for
co

pLl

tio
for
filr
u,'i

mr
Fo.

5

Int
alg,

5.1

Ler
the
for
the

whr
ond
nurT

j
que
in).
is rr
fror:
the
con:
r/o
docr
reac
larit
doir
othc
C1 r

docr
docr
ever'
num
C1 o
tima
othe
the .

folloand If = {(s,or), ...,(sn,un)} be two inverted file eniries fo{

the same term f on the two collections, respectiveiy' After

the two inverted file entries are Processed, the similantl

between documents ro and. s, as accumulated so far wiil be

tJr, + u, * 00, where Uo, is the accumulated similarity be-

tween r, and. srbefore I is considere d,p = 1, ..., ffi, 4 - 1, "''fl'
We can extend the above algorithm WM as foilows-t!

tackle the problem of insufficient memory space for a[in'

w
scanl
rema

:,docu
t tvrl

termediate similarities. Suppose SM is the totlt *t"'tr"t bt
tially

v
.s.

:r
l-

e

)f
:-

n
et

11,

re
of

SS

)I

.)r

ty

be

)e-

11.

to
in-
of

T-i.{Fjifi.3]Fs-gry iEl1tri::r._ix5g:5!.F:i: ::i

MENG ET AL.: PERFORMANCE ANALYSIS OF THREE TEXT-JOIN ALGORITHMS

pages needed to store the intermediate similarities when al]
pairs of documents in the two collections are considered at
the same time. Suppose M is the available memory space
for storing tire intermediate similarities. If SM > M, divide
collection C2 into lStvtttW] subcollections and then com-
pute the sin'rilarities between documents in each subcollec-
tion and documents in C1, one subcollection at a time. Since,
for each such subcollection, one scan of the original inverted
files on both collections is needed, tl'Lis extension incurs a cost
wlriclr u.'ill Uelstvt/tvtl times higher than that when the
memory is large enough to hold all intermediate similarities.
For a more detailed cost analvsis, see Section 5.3.

5 l/O Cosr Axarysrs
In ihis section, we provide analysis of the I/O cost of each
algorithm presented in Section 4.

5.1 Algorithm HHNL
Let X be the number of documents in C2 that can be held in
the memory buffer of size B, as defined in Section 4.1. Since,
for each X documents in C2, Cl needs to be scanned once,
ihe total I/O cost of HHNL can be estimated as below:

hlts = Dz+ [ru./x] . o, (HHSl),

5.2 Algorithm HVNL
Recali that a B+tree is maintained for each document col-
lection for quickly locating the inverted file entry of any
given term. The size of the B+tree can be estimated as fol-
lows: Tvpically, each cell in the B+tree occupies 9 bytes (3

for each term number, 4 for address, and 2 for document
frequency). If a document collection has N terms, then the
size of the B+tree is approximately 9 * N/P (only the leaf
nodes are considered). The size is not terribly large. For
example, for a document collection with 100,000 distinct
terms, the B+tree takes about 220 pages of size 4KB. We

assume that the entire B+tree will be read in the memory
when the inverted file needs to be accessed and it incurs a

one-time cost of reading in the B+tree.
Let X be the number of inverted file eniries on C1 that

can be held in the memory when the memory buffer is fully
used. In addition to X inverted file entries, the memory
(size B) also needs to contain a document in C2 of size [S21,

a B+tree of size Bf1, the nonzero simiiarities values between
the document in C2 currentiy under processing and all
documents in Cl and the list containing the terms whose
corresponding inverted file entries are in the main memory
(size X I t# I / P). Therefore, X can be estimated as follor.r's:

*'here the first term is the cost of scanning C2 and the sec-
oncl term is the cost of scanning C1, and lrur/X-l ir tit.
number of times Cl needs io be scanned.

lr-l-s"l-Bt._ 4x
V_l I :l I^-l--r.+rtil?

L",|

N,4P

The aborte cost formula assumes that all I/Os are se-

quential I/Os (i.e., both Cl and C2 are sequentiallv scanned
in). This is reasonable only 'n'hen each document collection
is read bv a dedicated drive rvith no or little interference
from other I/O requests. If this is not the case, then some of
the I/Os may become more costly random I/Os. We first
consider the case when N2 > X. The following interleaved
I/O and CPU patterns can be observed. After each X
documents in C2 are read ir.r, for each document d in C1
read in, the CPU r,r'ill take some time to compute the simi-
iarities between the X documents and d. When the CPU is
doing the computation, I/O resources may be allocated to
other jobs. If this is the case, then the next document from
Cl will use a random I/O, so does the read-in of the next X
documents in C2. In other words, in the worst case, all
documents in C1 wiii be read in using random I/O and for
every X documents in C2, there will be a random I/O. The
number of achral random I/Os for scanning documents in
Cl once also depends on the document size and can be es-
iimated as min{Dt, Nr} (if Sr S 1, then D1 should be used;
otherwise, Ni should be used). Therefore, when N2 > X, in
the worst scenario, the total I/O cost can be estimated as

follows:

hhr = hhs +lff r/x1* (1 + min{Dr, Nr}) * (o- 1).

When N2 < X, then the entire coilection C2 can be
scanned in sequentially and held in the memory, and the
remaining memory space ((X - N2) . 52) can be used to hold
documents in C1. Therefore, C1 can be read ln [OrlitX
- N2) - 5z)-l biocks and each block can be read in sequen-
tially. ln this case, we have

hW =hhs +for/((x- M) " S,)l * (a- 1).

If rn'e assume that the read-in of the documents in C2 in-
curs sequential I/Os, then the I/O cost of HVNL can be
estimated as follort's:

l't:.,s =

min{D. + /, + Bf,, D,+T, * ,7 * Ull *

a + Btr]1

Dr+Tr,,q*[/,T *q+B\,
Dr+ X * [/,1', a+(N, - s - X1 +1) x

Y. [/1l x ct+Btt
(Hvs1)

where the first case corresponds to the case when X is
greater than or equal to the total number of inverted file
entries on C1 (i.e., T1). In this case, we can either read in the
entire inverted file on Cl in sequential order (this corre-
sponds to the first expression in minll) or read in all in-
verted file entries needed to process the query (the number
is T2* q) in random order. (This corresponds to the second
expression in minll. The memory is larg€ enough to do this,
since X t Tr > Tr* q.) The second case corresponds to the
case when the memory is not large enough to hold aII in-
verted file entries on C1 but is large enough to hold all of
the necessary inverted fiie entries; the last expression is for
the case when the memory is not large enough to hold ail
needed inverted file entries on C1. In ihis case, the second
term is the cost of finding and reading in the inverted file
entries on C1 which correspond to the terms in documents
in C2 until the memory is fully occupied. Suppose the
memory is just large enough to hold all the inverted file
entries on Cl corresponding to the terms in the first (s - 1)

documents in C2 and a fraction (X1) of the inverted file en-
tries corresponding to the terms in the sth document in C2

,f X >7,

ifTrrX2Tr*q

otherwise

IEEETRANSACTIONSON KNOWLEDGEANDDATAENGINEERING, VOL. 10, NO. 3, MAY/JUNE 1998

(i.e., the inverted file entries on C1 corresponding to the
terms in the first s + X1 - 1 documents in C2 can be held in
the memory). Let Y be the number of new inverted file en-
tries that need to be read in when a new document in C2 is
processed after the memory is fully occupied. Then, the
third term is the total cost of reading in new inverted file
entries for processing the remaining documents in C2. We
now discuss how s, X1, and Y can be estimated. First, the
number of distinct terms in la documents in C2 can be esti-
mated by f(m) =Tz- Q - Kz/Tz)^ * Tz. Therefore, s is the
smallest nz satisfying q " t'(m) > X. Note that (X -q * t'G -1))
is the number of inverted file entries that can still be held in
the memory after all the inverted file entries on C1 corre-
sponding to the ter;ns in the first (s - 1) documents in C2
have been read in and (q

" f(s) - , " f(s - 1)) is the number of
new inverted file enlries that need to be read in when the sth
document in C2 is processed, X1 can be estimated by (X - q

. t'G -1))/(q.fls) - , * f(s - 1)). Finaily, Y can be estimated
by (q

" f(s + X1) - X).
As discussed in Section 5.1, it is possible that some or all

of the I/Os of reading in the documents in C2 are random
I/Os due to other obligations of the I/O device. If, after
inverted fiie entries are accommodated, there is still more
memory space left, then the remaining memory space can
be used to sequentially scan in multiple documents in C2 at
a time. Based on this observation, lvhen random I/Os are
considered, the total I/O cost of HVNL can be estimated as:

lrcr =

if x >7,

ifTrrX2T-*q
othcnuise.

it would be easier to understand the above formuia
when compared with the formula for computing ftas. in the
first expression in min{}, (X - T1) * /r is the remaining mem-
ory space after all inverted file entries are accommodated.

With slight modification on similaritv accumulation, C1

can be used as the outer collection to process the quer,v. In
this case, the memory space needed to store intermediate
similarities will be 416N2/P. The cost of the backward or-
der can be estimated in the same way as in the case of the
forward order.

5.3 Algorithm VVM
To avoi.d the much higher cost of random I/Os, we can
simpiy scan both inverted files on the two collections.
During the parallel scan, if two inverted file entries corre-
spond to ihe same term, then invoke the similarity accu-
mulating process. Recail that we assumed the inverted fiie
entries are stored in ascending term numbers. Therefore,
one scan of each inverted file is sufficient to compute ali
simiiarities if the memory is large enough to accommodate
all intermediate similarities. Therefore, if ail the I/Os are

sequential I/Os, the total I/O cost of the aigorithm VVM is:

Again, some or all of ihe I/Os could actually be random
i/Os due to other obligations of the I/O device. In the
worst case scenario, i.e., all I/Os are random I/Os, ihe total
I,/O cost of the aigorithm WM can be estimated as:

1ry1 = (min{I1, T1} + min{Ir,T2l) * a.

Algorithm WM usually requires a very large memory
space to save the intermediate similarity values. If only
nonzero similarities are stored, then the memory space for
storing intermediate simiiarity values for the algorithm
WM is 4d* Nt * Nz/P. When the memory space is not large
enough to accommodate all intermediate similarity values,
a simple extension to the algorithm WM can be made (see

Secti.on 4.3). In this case, the total cost can be estimated bv
multiplying uos (or uor) by I Stvtt l,t], where 514 = 45 . p, .
N2/P is the total number of pages needed to store the in-
termediate similarities when ail pairs of documents in the
two collections are considered at the same time and M = B -
[/rl - [/rl is the available memory space for storing the in-
termediate similarities. Therefore, a more general formula
for estimating the total I/O cost when ail the I/Os are se-
quential I/Os can be given below:

uus = (It + 12) *[sM/Mf VVS)

and a more general formula for estimating the iotal I/O
cost when all the I/Os are random I/Os is:

c'z'r = (min{Ir, T,} + min{I2,T2D * q*lSU/lrtf.

5.4 Comparisons
Aigorithm HHNL uses two document coilections as the
input. Eacir of the trvo document collections needs to be
scanned at least once, which constitutes the lower bound of
the I/O cost of this aigorithm. Algorithm HHNL does not
use any special data structures, such as inverted files and
B+trees. Thus, it is more easily appiicable and easier to im-
plement. Since algorithm HHNL uses documents directly
for simiiarity computation, it benefits quite naturallv from
any possible reductions to the number of documents in ei-
ther one or both coilections resulted from the evaluation of
selection conditions on nontextual attributes of the relevani
relations. The memorv space requirement of this algorithm
for storing intermediate similarity values is generally small
compared with those of other algorithms.

Algorithm H\ lL uses one document collection, one in-
verted file, and the B+tree corresponding to the inner collec-
tion as the input. Wirile the document collection is always
scanned once, the access to inverted file enlries is more com-
plex. On the one hand, not ali inverted fiie entries need to be
read in. In fact, only those inverted file entries whose corre-
sponding terms also appear in the other document coliection
need to be accessed. On the other hand, some inverted file
entries may be read in many times due to their appearances
in multiple documents in C2, although effori is made by the
aigorithm to reuse inverted file entries currently in the mem-
ory. It is expected that this aigorithm can be very compelitive
in the following two situations:

1) One of the document collection, say C2, is much
smailer than the other coliection. In this case, it is
likely that onlv a small fraction of ali inverted fiie en-

min{o, + I, + Br, +lorl($ - q) - /,)l
,r (a-1),Dr+Tr* q *ll11x a-t Btt

+lo,l(g-t . {) - r,) - t"-r)l}
nas+ln,f ((x-r, * 4). /,)l - @-1),
hus + min{Dr, Nr} x (a - 1)

aus=It+Iz.

dt
cc

qr
enl

co'

tlr

if
il
()r

al
(ll

tl-

SI

ti,
ti,
T
SI

r:

P'
to

c(l

tc,

nl
si

a:

jo
m
trt

SI,

th,
di
n('
tit

lom
the

.otal

-rory
cniy
: for
thm
arge
iues,
(see

dby
Nr*

e in-
r the
=B-
e in-
-nula
e se-

'/v5)

vo

; the
:o be

.nd of
ls not
; and
o im-
::ect1y

from
in ei-
on of
evant
rithm
small

ne in-
:ollec-
lways
com-
to be

aorre-
ection
:d file
rances
ry the
mem-
etitive

much
:, it is
'ile en-

MENG ET AL.: PERFORMANCE ANALYSIS OF THFIEE TEXT.JOIN ALGORITHMS

tries in the inverted file needs to be accessed' This

means that oniy a small portion of the document-term
matrix corresponding to C1 will be accessed in this

case. In contrast, if algorithm HHNL is used, then the

entire matrix needs to be accessed at least once/ even

when C2 can be held entirely in ihe memory.
Wiren C2 contains only one document, this situation

becomes an extreme case of processing a single query

against a document coliection' As we have mentioned

before, using the inverted file to process a single query

has been shown in IR to be superior to using docu-

ments directiy. Note that an originally large document

collection may become small after conditions on attrib-
utes of the relevant reiation are evaluated.

2) For the coliection where documents are used, close

documents in storage order share many terms and

nonclose documents share few terms' This increases

the possibility of reusing inverted file entries in the

memory and reduces the possibility of rereading in
inverted file entries. This could happen 'when the

documents in the collection are clustered.

Algorithm HVNL accesses inverted file entries in ran-

dom order. As such, it has two negative effects on the I,/O
cosi. One is that random I/Os are more expensive than se-

quentiai I/Os. The other is that, even when an inverted file
entry occupies a small fraction of a page, the whole page

containing the entry has to be read in. In other words, if e is

tire size oi an inveried file eniry, we need to read in lel even

if e is very smal1, say 0.1. Therefore, when the size of each

inverted file entry is ciose to an integel the competitiveness

of algorithm HVNL will be increased. Algorithm HVI'JL
uses primariiy two data structures, one is the inverted file
and the other is the B+tree for the terms' One disadvantage

of using the inverted file is that the size of the file remains

the same even if the number of documents in the corre-

sponding document coilection can be reduced by a selec-

tion unless we construct another inverted file for the re-

duced set, which is highly unlikely due to the cost involved.
The memory space requirement of algorithm HVNL for

storing intermediate simiiarities is higher than that of aigo-

rithm HHIJL but lower than that of algorithm WM.
Algoriihm WM uses two inverted files as the input. As

we discussed before, ihis algorithm has a very nice one-scan

property, nameiy, it only needs to scan each inverted file once

to compute the similarities regardless of the sizes of the two

collections provided that the memory space is large enough

to accommodate interrnediate similarity values. When the

memory space is large enough to accommodate intermediate

simiiarity values, algorithm V\M can be at least as efficient

as algorithm HHNL as far as I/O cost is concerned' The ma-

jor drawback of aigorithm WM is that it needs a very large

memory space to save the intermediate similarities' There are

two situations in which aigorithm WM is likely to perform
well. The first is when the document collections are iarge in
size but small in number of documents. The second is when

the vocabularies of the two document collections are very

different. In both of ihe two situations, the number of

nonzero similarities between documents in the two collec-

tions is iikely io be small. Another disadvantage of algorithm

V\M is that the sizes of the inverted files will remain the

TABLE 1

SrnrtsttcRl I Nronuelot't
OF SEVERAL DOCUMENT COITTCTIOruS

WSJ FR DOE

#documents

#terms per doc

total # of dtstinct terms

collection size in pages

avg. size of a document

avq. size of an inv. fi. en

98,736

329
156,298

40,605

0.41

o.26

26,207
1,017

126,258

33,315

1.27

o.264

226,087

B9

186,225

25,152
0.111

0.135

same even if the number of documents in the corresponding

document co[ections can be reduced.

6 Srrvtumrtoru Resurs
Due to the large number of parameters in the cost formulas

of the algorithms presented, it is very difficult to comPare

the performance of these algorithms based on these formu-
las directly. In ihis section, the aigorithms are compared

based on simulation results computed from the cost for-
mulas derived in Section 5- Our objective is to identify the

impact of the variations of the parameters on the algo-

rithms. ln other words, we would iike to find out in what
situation an algorithm performs ihe best'

The stati.stics of three document collections which were

coilecied by ARPA/NIST [8], namely, WSJ (the Wall Street

lotnnal), FR (Federai Register), and DOE (Department of
Energy), are used in our simulation' The statistics of these

coilections are shown in Table 1 (the last three rows are es-

timated by us based on I f# I = 3).

Among the three document collections, FR has fewet but
iarger, documents and DOE has more, but smaller, docu-

*".ttr. The number of documents in WSJ lies between those

of FR and DOE. So is the average size of documents in WSJ'

For all simulations, the page size P is fixed at 4KB, the

fraction of the similarities that are nonzero dis fixed at 0'1,

and 2 is fixed at 20 (note that only algorithm HHNL and the

backward order of algorithm HVNL involve 2 and none is

reaily sensitive to 2 if it is not very large, say in the hun-

dreds). The probability g is computed as follows:

loe * rr1r, it' T1<T2

,=lo.a, if rr.Tr<5*7,
lt-rr1r,, ifI>s*4.

The formula says that, given the number of distinct terms in
C2 (t.e., Tr), ttte smaller the number'of distinct terms in C1,

71, is, the smaller the probability that a term in C2 also ap-

pears in Ci will be; and, when T1 becomes much larger than

i, then q will become closer to 1; otherwise, q is 0'8' Prob-

ability p can be computed in a similar manner.

For parameters B (memory size) and tx, we assign a base

vaiue for each: B = 10,000 (pages) and a = 5. When the im-
pact of a parameter is studied, we vary the vaiues of the

parameteiwhile let the other parameter use its base value'

We present the following five groups of simulation results'

Group 1: In this grouP, a real collection will be used as both
coflection C1 ind iollection C2. Since there are three real

coilections (WSJ, FR, and DOE) and two parameters (B

and a), six simulation results will be collected'

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING. VOL. 1 O, NO 3, [/'IAY/JUNE 199e MENG E

1)t
r

2)1
fr

tr

p

S

I,
a

e

tr
S1

fi
3)T

P
ir
g
b

S(

ti-

l)}
n

c,

o
F
ft
ei

rii
ir
c

Sir:-

tior.r 1

Simulr
formar
impro'
numb(
for str

pages)
and at

Proce:
of .rlg,

due it
docttn

T1.r,

of Sin-

1) .

2)

'1

li

Group 2: In this group, different real collections wili be

used as C1 and C2. B will vary while a will use its base

value. From the three real collections, six simulations can

be designed.

Group 3: In this grouP, while C1 and C2 will continue to

use real collections, oniy a small number of documents
in C2 wiil be used to participate in the join. These ex-

periments are used to investigate the impact of local se-

Iections. All simulations in this grouP use only the base

values of the two Parameters. Since there are three real

collections, three simulation results will be collected in
this group.

Group 4: In this group, C1 again wili continue to use real
collections, but C2 will be collections with only a small
number of documents. The difference between Group 3
and Group 4 is that the former uses a small number of
documents (in C2) from an originally large coliection C2

and the laiter uses an originally small colleciion C2. This
difference has the following impacts on the cost:

1) documents in C2 need to be read in randomly by the
former but can still be read in sequentially by the lat-
ter; and

2) ihe size of the inverted fiie and the size of the B+tree
on collection C2 for the former are computed based

on the originai collection, not just the documents
used.

This will have an impact on the cost of algorithm Wlvl.
In our experiments, after a real collection is chosen to be

Cl, CZ will be derived from Cl. Again, all simulations in
this group use only the base values of the iwo Parame-
ters. Since there are three real collections, three simula-
tion results will be collected in this group.

Group 5: In this group, both collection C1 and colleclion C2

will use new colections but they will remain to be idenfical.
Each new collection is derived from a real coileclion by re-

ducing the number of documents in the reai collection and
increasing the number of terms in each document in the

real coilection by the same thctor such that the colleclion
size remains to be the same. The simulations in this group
are especialiv aimed at observing the behavior of algorithm
WM. Again, oniy the base values of the t\^/o parameters
will be used and three simulalion results will be collected in
this group since there are three real collecLions.

For space consideralion, the simulation results for the

backward order approach will not be presented. Notice that
the backward order approach makes a difference only when
HHNL and H\hIL are used (see the discussions in Seclion 4.1

and Section 5.2). Compared with the forward ordet the

backward order requires more memory sPace to store in-
termediate similarities. As a resuit, the backward order
with outer collection A1 and inner collection A2 incurs a

somewhat higher cost than the forward order with outer
collection 81 and inner collection 82 when A1 and 81 are

the same collection and A2 and 82 are the same collection.

For all the figures in this section, a value k on y-axis is

equivalent to 10k sequential Page I/Os. For Figs. 1, 3, and' 4,

each unit on x-axis is equivalent to 10,000 pages.

hhs #-
hhr -f-
hvs €-
hvr -N-
vvs A-
VVf --F-

1i.5 2 2.5 3

B

Fig. 1. Result of Simulation 1.

3.5 4 1.5 5

lihs €-
hhr -l--
hvs €-
hvr -x--
vvs 4-
VVI' *

Fig. 2. Result of Simulation 4.

Simulation Fesu/fs in Group 1

The foliowing simuiations are conducted in this group:

Simulation 1: C1 = C2 = WSI, a = 5, B changes ftom 10,000 to

50,000 with an inuement of 5,000
Sirnulatiott 2: C7 = C2 = FR, a = 5, B changes from L0,000 to

50,000 with an increment ot' 5 ,000
Simtilation 3: C1 = C2 = DOE, q = 5, B changes t'rom 10,000 to

50,000 with an increment ot' 5,000
Simulation 1: C1 = C2 = WSI, B = 70,000, a changes t'rom 3 to

10 zuith an inuement ot' 1

Simulation 5: C1 = C2 = FR, B = 10,000, a changes from 3 to 10
with an increment of 1

Simulation 6: C'L = C2 = DOE, B = 70,000, a changes t'rom 3 to
1,0 zoith an increment ot' 7

The following observations can be made from the result
of simulation i (see Fig. 1).

Sil
Simr.r,

Simu
In ihi
ancl (
vary.
simul

I/O Cost
9 r----r-

I/O Cost
9 r-------r-

. r..:-...j::r :-r=:-{:srfT*E!r:i's$-=-.+-.s:i!i5:1r:1:-:i- -.- -..,:ffi=

)to

Ito

1, to

,70

3to

sult

N4ENG ET AL.: PERFORMANCE ANALYSIS OF THBEE TEXT.JOIN ALGORITHMS

1) Algoritirm HHNL outperforms the other two algo-
rithms, especially when B is small.

2) There are several reasons that algorithm HVNL per-
fornls poorly. First, the outer document coilection has
too many documents (N, = 99,736) which causes re-
peated read-ins of many inverted file entries on C1.
Second, algorithm HVNL requires more random
I/Os. Tirird, both S, and /, are not close to integers
and, as a resuit, for each document or inverted file
entrv read in, algorithm HVNL incurs more than
tn'ice as much cost as that by aigorithm HHNL (1 ver-
sus 0.41 for document and 1 versus 0.26 for inverted
fiie entrv).

3) The main reason that algorithm VVM performs very
poorly is because tire memory requirement for storing
intermediate similarities (952,031 pages) is much
greater tiran the avaiiable memorv. As a resuit, many
scans of ihe trvo inverted files are needed to process
tlie join.

4) Ali algoritl-rms perform better lvith larger avaiiable
memorv. Wiren B = 45,000 or larger, one document
collection or an inverted file can be held in the mem-
ory in its eniirety. When this happens, algorithm
HHNL and algorithm HVNL have verv similar per-
formances since, in this case, aigorithm HHNL scans
each of the trt'o document coliections once and algo-
rithm H\/NL scans one document collection and one
irrverted file n'hich has the same size as a document
collection.

Similar obsen,ations as made from the result of simula-
tion 1 can also be made from the results of Simulation 2 and
Simulatiorr 3 (not shown). Reiatively speaking, the per-
fonnance of algorithm WM in Simulation 2 has the largest
improvement due to the iarger size of documents and fewer
number of documents. However, the memory requirement
for storing intermediate similarities in this case (67,077
pages) is stili too large for the available memory to handle
and at least two scans of the two inverted files are used to
process the join. Not surprisingiy, the relative performance
of algorithm VVM in Simulation 3 has become much worse
due to the smaller size of documents and larger number of
documents.

The following observations can be made from the result
of Simulation 4.

1) Algorithm HHNL is the best performer among the
three algorithms.

2) irhs and vvs are independent of a because they in-
volve no random I/Os.

3) Otirers become worse when aincreases.
4) Algoriihm HVNL is more sensitive to larger a.

Similar observations can be made from the results of
Simulations 5 and 5.

Simulation Results in Group 2
In this group, different real coliections r,r'ill be used as Cl
and C2 and the base vaiue for awill be used r.ryhile B will
varv. From the three reai collections, the following six
simulations can be designed.

Sintulation 7 : C7 = WSI, C2 = FR, a = 5, B changes fi'orn 10,000
to 50,000 zttith an increment of 5,000

Simulation S: Cl = FR, C2 = WSl, a= 5, B changes from 70,000
to 50,000 znith an increment of 5,000

Simulation 9: C7 = FR, C2 = DOE, a= 5, B cllanges fi'om 70,000
to 50,000 zttith an increment of 5 ,000

Sintulation 70: C7 = DOE, C2 = FR, a = 5, B changes f'om
10,000 to 50,00A wiilt art inuentent of 5,000

Simtilation 11: Cl = WSI , C2 = DOE, a = 5, B clnnges from
10,000 to 50,000 utith an increment of 5,000

Simulation 72: C7 = DOE, C2 = WSI, a = 5, B changes t'rom
1.0 ,000 to 50 ,000 zoith an increment ot' 5,000

Comparing the resuit of Simulation 7 with the result of
Simulation 8 (see Figs. 3 and 4), the follor.t'ing observations
can be made.

1) While algorithm HHNL is the best performer in
Simulation 7, algorithm HVNL sometimes beats
HHNL in Simulation 8. The reason is that, wi'rile algo-
rithm HHNL lets the outer collection use as much
memorv space as possibie, algorithm HVNL lets the
inner coliection use as much memory space as possi-
ble. For example, consider Fig. 4 r.t4ren B = 35,000 (i.e.,

B = 3.5 in the figure). In ihis case, the entire inverted
file on FR can be held in the memorv. As a result,
rn'hen algoritlim HVNL is used, only one scan of WSJ
and the inverted file on FR is needed to process the
join. Hou'ever, \^'hen algorithm HHNL is used, the
memory is not large enough to hold the entire outer
collection \\/SJ. As a result, one scan of WSJ and tr,r,o

scans of the inverted file on FR are needed to process
the join n'hen algorithm HHNL is used.

2) There is no change on the cost of algorithm WM be-
cause it is con-ipietely symmetric to the two document
collections.

3) When none of the two collections can be entirely held
in the memory we get mixed results for aigorithm
HHNL, that is, sometimes, it i'ras a better result in
Simulation 7 than that in Simuiation 8, but sometimes
the opposite is true. When oniy the smaller collection
can be held in the memory, better performance can be
achieved using the smaller collection as the outer
collection. This is the reason tl'rat aigorithm HHNL
has a better result in Simulation 7 than that in Simu-
lation 8 when B becomes 35,000 or larger. This obser-
vation aiso supports our earlier argument in Section
4.1 that the backward order can outperforrn the for-
u'ard order if the backward order implies a much
smaller outer collection.

4) The situation for algorithm HHNL is reversed for a1-

gorithm HVNL. The reason is that while algorithm
HHNL lets the outer collection use as much memory
space as possible, algorithm HVNL lets the inner col-
lection use as much memory space as possible.

Simiiar observations made above between the result of
Simulation 7 and the result of Simulation 8 can aiso be
made between the result of Simulation 9 and the result of
Simulation 10, as well as between the resuit o{ Simuiaiion 1L

and the result of Simulation i2 (the results of Simulations 9-
12 are not shown).

d*j
,s

$

:J

.:{
:.;l

:i
1i

.fl

-il
j

l,
:i
'1

I
j

t'j

l
.l

488 IEEETRANSACTIONSONKNOWLEDGEANDDATAENGINEERING, VOL.1O, NO.3, MAY/JUNE 1998

1 i.5 2 2.-,t 3 3.5 4
B

Fig. 3. Result of Simulation 7.

To compute has and hur, we need to estimate the number
of distinct terms in the M documents. This number can be
estimated by i(M) = Tz_ (\ - K2/72)M * 72. The cost formula
for has is the same as that in Section 5.2 except D2 is re-
placed by M *lsr1. a and. T2 is replaced Ay {M iet this
new formula be denoted by (HVS2). Since all I/Os in has
have become random I/Os, har = has.

The cost formulas for aas and aztr remain the same.
However, the memory requirement for storing the interme-
diate similarities is now reduced to 4 *l{r * M* 6/p.Other
quantities such as the size of inverted file entries and the
size of the B+tree on collection C2 remain as before.

The foliowing three simulations are carried out:

Simulation 13: C1 = C2 = WSI, B = 70,000, a = S, M changes

from 5 to 50 with an increment ot' 5
Simulation 14: C1 = C2 = FR, B = 10,000, a = 5, M changes

t'rom 5 to 50 with an increment of 5
Simulntion 75: C1 = C2 = DOE, B = 10,000, a = 5, M changes

hhs
hhr
hvs
hvr
VVS

VYT

+-
+-
€-
-)f-
A_
-tc-

5..

.1..

5.:,

4.5

from 5 to 50 iuith an increment of 5
Fis

I/O Costd-

Simulatian Results in Group 3
In tl'ris group, C1 and C2 witl continue to be real collections
but only a smail number of documents in C2 will be used to
participate in the join. Let M be the number of such docu-
ments in C2. Since M << Nz, we should read each of the M
documents individually in random order. As a result, the
cost of reading in the IvI documents wilt be M "f Sz]" a.
Based on this, we have the following new formula for hls:

hhs = M*[s.l * a +l(M/x) " D7f (HHS2)

Since M is small, it is likely that all of the M documents
in C2 can be held in the memory. In addition, the remaining
memory space ((X - M) * 52) can be used to read in as many
documents in C1 as possible. As a result, we have the fol-
lowing formula for lthr:

hhr = hhs+ [Drl((x - M) * sz)l * (a - 1)

The foilowine observations can be obtained from the re-
sult of Simulation 13 (see Fig. 5).

1) When M is very small (< 30), algorithm HVNL out-
performs others as expected. Algorithm HHNL be-
comes the best performer when M becomes larger.

2) Since M is so smaii, the M documents can easily fit
into the memorv. As a result, algorithm HHNL re-
quires onlv one scan of the inner clocurnent coliection
ln addition to reading in the lvl documents from ihe
outer collection.

3) In this case, the memory is able to accommodate all
intermediate similarities for algorithm VVM. The rea-
son that aigorithm VVlvl incurs much higirer cost than
algorithm HHNIL is because the size of the inverted
fiie on collection C2 did not change although only a
small number of documents in C2 is used.

Comparing the resuit of Simuiation 14 (not shown) with
the result of Simulation 13, a noticeable difference is that
the relative performance of algorithm HVNL deteriorated-
aigorithm HVNL becomes worse than algorithm HHNL be-
fore M reaches 10. This is because each documeni in FR
contains much more terms than each document in WSJ and,
therefore, more inverted file entries need to be read in by
algorithm HVNL for processing a document in FR.

Comparing the resuit of Simulation 15 (not sirown) with
the result of Simulation 13, a noticeable dil{erence is that
the relative performance of aj.gorithm HVNL is improved-
algorithm HVNL outperforms algorithm HHNL even after
M reaches 50. This is because each document in DOE con-
tains much fewer terms than each document in WSJ and,
therefore, fewer inverted file entries need to be read in by'
algorithm HVNL for processing a documeni in DOE.

For space considerations, we do not present simuiation
results for situations when the numbers of documents in
both collections are reduced by selections. Howevet it is
not difficuit to see that comparing the situation when only
one collection is reduced, aigorithm HHNL wili benefit the
most when both collections are reduced.

hirs
hhr
hvs
hvr
VVS

vVr

-s7-
+-
€-
-x-
A-

1

Fig. 4,

1.5 2 n.l-ttr-'l J.',) + +.D i)

B

Result of Simulation 8
Fig

Sin
Int
C2
mef
sma
fror
ag
si;ri
thc
disi

f(M
ava:
can

l
grol

Shn:

'tJ
'j

r'l
; !:ti

-e-
+-
€-
-x--
A-

l) .;l

MENG ET AL.: PERFoRMANCE ANALYSIS OF THREE TEXT.JOIN ALGORITHMS

6

l/O Cost
I I il

l.,t

.)

5 1t) 1 5 20 25 30 35 -10 -15 50
]\I

Fig. 5. Result of Simulation 13.

489

Sintulation L7: C7 = C2 = FR, B = 70,000, a = 5, M clwtges

fi'om 5 to 50 with an increment af 5

Simulation 18: C1. = C2 = DOE, B = 10,000, a = 5, M clwnges

fi'om 5 to 40 with an increment of 5

Comparing the result of Simulation l6 (see Fig.6) with
thai of Simulation 13 (see Fig. 5), the following observations
can be made.

1) Tliere is iittle change for algorithm HHNL. Since M is
so smail, reading in the M documents sequentially or
randomly makes little difference.

2) Algorithm HVNL degraded somewhat. This is the ef-
fect of q-the probability that a term in collection C2

also appears in collection C1. In Simulation 13, q is
computed based on the original T1 and T2' Since Tr =
Tz, ct = 0.8 is computed. In Simulation 16, q is com-
puied based on the original T1 and the new flM).
Since flM) is much smaller tiran i"1, 4 beti.t'een 0.92 to
0.99 are computed using the formula. Higher q values
impiy that more int'erted file entries on collection C1

need to be read in and as a result, the performance of
algorithm HVNL is down.

3) The cost of algorithm WM is reduced substaniially.
The main reason beirind the reduction is the reduction
of the size of the inverted file on C2. in Simuiaiion 13,

the size is compuied based on the original C2, but, in
Simulation i6, the size is computed based on the re-
duced collection.

Simiiar obserrrations as above can be made for Simula-
tion 17 and Simulation 18.

Simulation Results in Group 5
In this group, both Cl and C2 n'ill use neu' collections but
they will remain to be identical. Each new collection is de-

rived from a real collection by reducing the number of
documents and increasing the number of terms in each

document in the real coilection by the same factor F to en-

sure tirat the coilection size remains to be the same.

The following three simulations are carried out:

Simulation 79: C7 = C2 are deriaed from WSI , B = 10,000, a = 5,

the decreasing 1ncreashrg) t'actor changes ft'ortt 7 to 13 zoith an

increment of 2

Simulation 20: Cl, = C2 are deriued from FR, B = 10,000, a = 5,

tlrc decreasing Gncreasing) t'actor changes fi'ont 1 to 5 utith an

increment of 1

Simulation 21: Cl = C2 are deriaed from DOE, B = 10,000, a = 5,

the decreasing (incrensing) factor changes f'oftt 1 to 28 toith art

hrcrement of 3

The following observations can be made from the resuit
of Simulation 19 (see Fig. 7).

1) When factor F is small ((5), algorithm HHNL outPer-
forms other aigorithms. However, r.ntheu F is 7 or
larger, the sequential version of algorithm WM (i.e.,

rros) becomes the best performer.
2) uus decreases rapidly as F increases as expected.

When F reaches 11, all intermediaie similarities can be

held in the memory. As a result, ozrs reaches its Iower
bound-each inverted file is scanned once' When F =
11, the number of documents in the collection is

hhs
irhr
hvs
hvr
\.\I S

hhs
hhl
hr.'s

hvr
\-\,s

,).i)

-o-

€-
-x-
4-

2A 25 30 35 .10 45 50

Fig. 6. Result of Simulation 16.

Simulation Results in Group 4

In tl'ris group, C1 will continue to use real collections, but
C2 will be coilections with only a small number of docu-
nents. Since we do not have real collections that contain a

small number of documents, we derive such a coilection
from a real colleciion. Tiris turns out to be quite easy. From
a girren document collection, we first keep its document
size and then decide the number of documents we want in
tire ner.t'collection. From this number, say M, the number of
distinct terms in the new collection can be computed bv

flM). Now, all key statistics of the new coilection become

available. With these statistics, the cost formulas in Section 5

can be used to find the cost of each algorithm.
The following three simulations are conducted in the

group:

Simulation 76: Cl = C2 = WSI, B = 70,000, G = 5, M changes

from 5 to 50 with an increment of 5

l/O ('ost

I/O Cost

IEEETRANSACTIONSONKNOWLEDGEANDDATAENGINEERING, VOL. 10, NO.3, MAY/JUNE 1998

hhs €-
hhr -F
hvs €l-
hvr -x-
vvs A-
vvr -*-

F

Fig. 7. Result of Simulation 19.

reduced to 8,976 and ihe number of terms in each
document becomes 3,619.

3) has andhar are insensitive to the changes.
4) hhr decreases as F increases. This is because as F in-

creases, the number of documents in C1 decreases.
Since the number of random I/Os is bounded b;r the
number of documents in C1, lzlzr decreases as a result.

Similar observations as for Simulation 19 can be made
for Simulation 20 with the only difference that ous reaches
its minimum faster for the latter. The reason is that the
number of documents in FR is originally much smaller than
that in WSj. Again, similar observations as for Simulation 19
can be made for Simuiation 21 with the only difference that
zrcs reaches its minimum slower for the latter. The reason is
that the number of documents in DOE is originally much
larger than lhat in WSJ.

6.1 Summary of the Simulation Results
The foliowing main points can be summarized from the
above extensive simulations.

1) The cost of one algorithm under one situation can dif-
fer drastically from that of another algorithm under
the same situation. For example, in Simulation 1, Al-
gorithm HVNL incurs a cost which is about 4,000
times higher than that of Algorithm HHNL when the
memory buffer is small (B = 10,000); but, in Simula-
tion 13, the cost incurred by Algorithm HHNL is more
than five times higher than that by Algorithm HVNL.
As a result, it is important to choose an appropriate
algorithm for a given situation.

2) If the number of documents in one of the two docu-
ment collections, say M, is originally very small or be-
comes very small after a selection, then algorithm
HVNL has a very good chance to outperform other
algorithms. Although how small M needs to be to be
small enough mainly depends on the number of
terms in each document in the outer collection, M is
likely to be limited by 100 (it is 70 for Simulation 15).

3) If the number of documents in each of the two collec-
tions is not very large (roughly N, . N2 < 10,000 * B)

:

and both document collections are large such that
none can be entirely held in the memory, then algo- l

rithm VVM (the sequential version) can outperform
,

other aigorithms.
4) For most other cases, the simple algorithm HHNL

;

performs very well.
5) The costs of the random versions of these algorithms

depict the worst case scenario when the I/O devices :

are busy satisfying different obligations at the same ,,

time. Except for algorithm WM, these costs have no
impact in ranking these algorithms.

Overail, the simulation results match well with our
analysis in Section 5.4.

6.2 An lntegrated Algorithm
Since no one aigorithm is definitely better than all other
algorithms in all circumstances, it is desirable to construct
an integrated algorithm that can automatically determine
which algorithm to use given the statistics of the two col-
lections (Nr, N:, Kr, Kz, Tt, Tz, p, ct, E, system parameters
(8, P, a) and query parameters (1, seiectivities of predicates
on nontextual attributes). This integrated algorithm can be
sketched as follows:

If none of the two colleciions has inverted ,itle /* in this
case, only HHNL can be used */

{compute /llls usine formula (HHS1);
compute bhhs; /* the counterpart of hhs when tl.re back-

ward order is used (formula noi shown) *,/

If hls < bfths, use the forward order of HHNL;
Else use the backward order of HHNL;
i

if only one collection has inverted file /* only HHNL and
HVNL can be used in this case *,/

{If there is no selection
{compute ft/zs using formula (HHS1);
compute bftfts;

compute ftus using formula (HVS1);
compute bhas; /" the counterpart of ftzrs when the

backward order is used (formuia not shown) */
)

Else

{estimate the number of documents that can partici-
pate in the join using the selectivities;

compute hfts using formula (HHS2);
compute bftlzs;

compute /zzrs using formula (HVS2);
compute &lzas;

I

use the algorithm with the lowest estimated cost;
l

If both collections have inverted fiie
{If there is no selection

{compute /zfts using formula (HHS1);
compute bkfts;
compute hzrs using formula (HVSl); l

compute bhas; /i the counterpart of hus when the

backward order is used (formula not shown) */

I2r0

7

In
for
af
!l-!1i

rit
th.
thr
lec
pel
ofl
colr
the

tht
ter
5Li

ai:
ifi
sta
m'l

Ac
We
ge!

Par
lar
i--or

ana

MENG ET AL.: FERFORMANCE ANALYSIS OF THREE TEXT-JOIN ALGOBITHMS

compute ?,tls using formula (VVS);
l

Else

{estimate the number of documents that can partici-
pate in the join using the selectivities;

compute ftft-s using formula (HHS2);
compute blllts;
compute /rz's using formula (HVS2);
compute blizts;

compute i,z,.s using formula (\lVS);

l

use. tire- algorithm u'ith the lou'est estimated cost;
]

7 Cor.rcr-uolrucREMARKS

ln this Pclper, n'e preserrted and aualyzed three algolthms
frrr pr-1ri1,55i11* joins betrt'een attribr-rtes of tertual tvpe. From
analvsis ar.rd simuiatioll, \^/e identifiecl, for each aigorithm,
ti're tvpr' of irrpr-ri document collections u'ith rr'l'rich the alco-
ritl'rm rs likch, to perform n'ell. More specificallr, u'c iound
that algorititnr H\INL can be verv competitive oniv n'herr
the nunrbcr of documcnts in c>rre of tire tn,o clocument col-
lections is.''becon-res ve'rv small, ancl algoritirm \'\tlr.4 can
pcrt()rnl r'erl u'ell u'herr the numL.er of clocuments in eacir
of the trlir coilt'ctions is rrot ven' large and hoth tiocumcni
collt'ctions arc large sucir tirat lt()ne can be entrrell helcl rn
thc nttrlon" ln otirer cases, algorithm FlH\L is likelv to be
thc toF |erl()rnler. Since no otrc algoriihnr is defirriteiv bc-t-
ter than ;rl1 other aigttritirms, rve proposed the idea of con-
structirrs an intr'grated alcorithm consistirrs of ilie basic
algoritirms -cucir ihat a particr,riar b.rsic algorithnt is invoked
if it iras tirc lort'est estimated cost. \Vc also irrdicated tirat the
siandardization of term numbers n'ill be verr. useful in
nru iiid a taLrase environments.

Fr:rther str,rdic-s in this area irrclude.

1) investigate. the impact of the availabilitv of clusters on
tire performance of each aigoriti.rm;

2) deveiop cost forrnulas that include CPU cost and
communication cost;

3) develop algorithms that process textual joins in par-
ailel; and

4) conduct more detailed simuiation and experiment.

AcxI.IoWTTDGMENTS

\4,'e tirank the anonvmous reviewers for their valuable sug-
cestiolls to improve the paper. This research is supported in
pari bv the follou'ing grants: U.S. National Science Foun,
datior.r grants under IRI-9309225 and iRi-9509253, U.S. Air
Force under AFOSR 93-1-0059, NASA under NAGW-4080,
and ARO under BMDO grant DAAH04-0024.

Rer=Rrrucrs
ill D. Beech, P._C]._.lg"q,and C. Ellis, "An ADT Approach to Fuli

Text," ISO/IEC JTC1 /SC21 /WG3 DBL CBR-57, 1992.

I2l P Bernstein, E. Wong, C. Reeve, and J. Rothnie, "euerv Process-
irrs irr a Svstem for Distributed Databases (SDD-I)," AtM T'nns.
Dttnbnsc Svstems, r,oi. 6, no. 4,pp.602-625, Dec. l9li1.

l3l C. Buckley, C. Saltorr, and J. Allan, "Automatic Retricval with
Locaiitv lnformation Using Smart," Proc. Ftrst Tcxt Retricaal Conf .,
pp.5a-ll. (,aitlrersburg. Md.. Mar. laq3.

I4l U. Daval, and H-\'. Hwang, "Vien' Defir-rition ancl Ceneraiization
fcrr Database lntecratlon in a Multidatabase svstem," IEEE Trarrs.
$pftionrc Erg., r'ol. 10, no. o, pp. b16-rr+.1, Nor,. lqE:1.

t5l \\/. Du, R. Krishnamurthl,, and M. Shan, "Query Optimization in
lJeterogeneous Databases," Proc. VLDB Corr.i., pp. 277-291, Yan-
couver, 8.C,, Carrada, Aug. 1992.

16l S. Dumais, and J. Nielson, "Automating the Assignment of SuLr-
nritted Manuscripts to Reviewers," Proc. ACM SIGIR Con/., Coperr-
haren, lunc 1992.

17) S. Chose, "File Organizatiorr: The Consecutive Retriel'al Prop-
erty," Conrnt. ACM, vctl.15, no. 9, pp. E02-606, Sept. 1972.

t8l D. Harman, "Overview of ihe First Text Retrieval Conference," D.
Harman, ed., Computer Systems Technologt', U.S. Dept. of Com-
merce, National lnstitute of Staiistics & Techrrologr, 1993.

l9l \\/. Lrtn'in, L. lv{ark, and N. Roussopoulis, "lnteroperabilitv oi
Multiple Autonomous Databases," ACM Contyttitt! Srrnrcvs, voi. 22,
n(). 3, pp. 267-293, Scpt. 1 990.

ll()l C.. Liu, ltttrodttctiott to Cottlbin0t0rirtl MotitLttntics. McGrau,-Hill,
I 968.

ll ll L. Lilian ancl B. Bhargava, "A Sciremt for Batcir \/erifrcation of
Intcgritv Assertions in a Database Svstem," IEEE Trdtts. -Srrfiilrir-r'
i rrr. r.,l itr. lt(). b. pp. nr'{-nri0. \,,r j.}n.1.

llll \\'. ,\4eng and C. \u, "Query Processing rn N,lultidatabase Svs-
tenrs," A4or?ci'u Dalnbast Sr/-;icnr-s: Tltc Obttt:i l,lodel , Inttroptrnl:ilitry,
ntttl Bcltryrl , \AI. Kin-r, ed., chapter l-. pl. r51-572. Addison-
\!esler',i ACI\,l I'ress, I 995.

ll3l \\'. ltltns, C. \u, ar.rcl \\I. Kim, "A Theon of Transl.rtiorr from Re-
Iational Queries to Hjerarchicrl Quene','' IEEE Trnts. Knoa,lcritc
.r,r,l l',rr.r Lr... r.'1. I nr'. L Ff lll.-l{i .{nr. lu.,i

IlJl C. Saltorr ancl Nl. \lcCill, lnlr-orlirilirrr fu, Ilarlrrn ltrfonnLlllon Rr'-
|'ir'i,rr/. I\4cC,ratr'-FIill, I 9E3.

ll5] L. Sarton ar.rcl \'. Rachavan, "Desigrr ol ar1 lntesratetl Iniormation
Ilt-tri tval r D,r tabasc N4 ana gemen t St'stc.m," I E E E Tr n t r s. Kiroa'1ragc
tutd DLtlti E;rr., r'ol. l, no. l, pp. 2'l0-21q, luuo

,1q90.

llOl A. Shtth and J. Larson, "Federatecl Dartabast Svstems for Manag-
rrq Disiriirutccl, Hetenrgcneous, anti Aulonomous Databases,"
ACNl ConrlttLttttg.Sirrt,r'vs, tol. 22, no.3, ppr. 1E3-236, Sept. 1990.

[.17] R. Sx'aminathan and D. \\;agner, "On tire Consecuiive-Retrieval
Problem," Sl.4M]. Conr\tttthrr, vol. 23, no. 2, pp. 39E-4i4, Apr. 199,1.

[1E] A. Tonrasic, H. Carcia-Moiina, and K. Siroens, "lncremental Up-
dates of lnverted Lists for Text Document Retrreval," Proc. ACM
S/CMOII Conl., pp. 289-300, Minneapolis, Mar, 1994.

[19] C. Yu, \'. Zhane. \{'. N4eng, trAI. Kim, G. Wang, T. Piram, and S. Dao,
"Translatior.r of Object-Oriented Queries to Relaiional Queries,"
Proc. IEEE Cotl.. DLttn Errg., pp. 90-97, Taipei, Taiu'an, Mar. 1995.

Weiyi Meng (M'93) received the BS degree in
mathematics from Sichuan University, Chengdu,
People's Republic of China, in 1982, and the MS
and PhD degrees in electrical engineering and
computer science from the University of lllinois at
Chicago in 1988 and 1992, respectively. He is

currently an assistant profeGsor in the Depad-
ment of Computer Science at the State Univer
sity of New York at Binghamton. Hrs research
interests include Internet-based information re-
trieval. multidatabase systems. query processing.
and optimrzatron. He is a member of the IEEE.

IEEETRANSACTIONSONKNOWLEDGEANDDATAENGINEERING. VOL..]0, NO,3. [,4AY/JUNE 1998]EEE TRI

Clement Yu obtained his BSc degree from Co-
lumbia University in 1970 and his PhD degree
from Cornell University in 1973. Currently, he is a
professor in the Department of Electrical Engi-
neering and Computer Science at the University
of Illinois at Chicago. His research areas are
database and information (multimedia) retrieval.
He has served as an advtsory committee mem-
ber for the U.S- National Scrence Foundation
and as program chair and general chair for sev-
eral national and international conierences and

workshops. He is currently an editorial member/associate editor for /EEE
Transactions on Knowledge and Data Engineering, Distributed and par-
allel Databases, and the lnternational Journal of Software Engineering
and Knawledge Engineering. His publications appear in leading ACM
and iEEE journals/transactions, as well as in major conference proceed-
ings. He is a senior member of the IEEE.

Wei Wang received her MS degree in system
science in 1995 from the State University of New
York at Binghamton. She is currently a PhD stu-
dent in computer science at the University of
California, Los Angeles. She has coauthored 12
papers in the area of database and imprecise
reasoning. Her current research areas include
spatial database systems and data mining.

Naphtali Rishe completed his phD degree at Tel
Aviv University in 1984. His expertise is rn data-
base management. His methodoiogy for the design
of database applications and his work on the
Semantic Binary Database Model were pub-
lished as a book by Prentice Hall in 1988. Dr.
Rrshe's Semantic Modeling theory was published
as a book by McGraw-Hill in 1992. His current re-
search focuses on efficiency and flexibility of dala-
base systems (particularly of object-oriented, se-
mantlc, decision-support, and spatial/geographic

DBMS), distributed DBMS, high-performance systems, database de-
srgn tools, and lnternet access to databases. He is the editor of three
books and author of 23 papers in journals, seven chapters in books
and serials (including three in Springer-Verlag's Lecture Notes in Com-
puter Science), and more than 50 papers in proceedings. Dr. Rishe
has been awarded mrllions of doilars in research grants by government
and industry. His research is currenily sponsored by NASA, NATO.
BMDO, ARO, DoD, Dol, and otheragencies. Dr. Rishe also has exten-
sive experience in database applications and database systems in the
industry. This includes eight years of employment as head of software
and database projects (1976-1984) and, later, consulting for compa-
nies such as Hewlett-Packard and the telecommunications industrv.
Since receiving his PhD, he has worked as an assistant professor,-,
the University of California, Santa Barbara (1984-1987), and associate
professor (1987-1S92) and professor (19g2-present) at Florida lnterna-
tional University (FIU). Dr. Rishe is the founder and director of the Higr
Pertormance Database Research Center at FlU, which now employs
85 researchers. Dr. Rishe chaired the program and steering commil
tees of the PARBASE conference and is on the steering committee of
the PDIS conference series. He is a member of the IEEE Computer
Society.

Co:

Abstrac.
critical ti
we deve
process
query pi
identicat
also cov
of this te

lndex Te
processi
databas

1 ltt'
THe m,
set oi .
Sellis sr

sittgie-,i

commLr,

cution :
ihere i:
the g1'
,1, :

,, i.,:-,:: :

n.,uiil'r
rn.itioi
operat

t ''--

' t "')

1)

t'

multiL
rizes t

In Se,

comil
nalli-.

.t,.
I ()-'

E-tt
.I{

Et:.
E-:i

Far it;
iA,/,",i

c

