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Abstract

Text data in the Internet can be partitioned
into many databases naturally. Efficient re-
trievai of desired data can be achieved if we

can accurately predict the usefulness of each
database, because with such information, we
only need to retrieve potentiaily useful docu-
ments from useful databases. In this paper,
we propose two new methods for estimating
the usefulness of text databases. For a given
query, the usefulness of a text database in this
paper is defined to be the number of doc-
uments in the database that are sufficiently
similar to the query. Such a usefulness mea-
sure enabies naive-users to make informed de-
cision about which databases to search. We
also consider the collection fusion problem.
Because local databases may employ similar-
ity functions that are different from that used
by the global database, the threshold used by
a local database to determine whether a doc-
ument is potentially useful may be different
from that used by the global database. We
provide techniques that determine the best
threshold for a given local database.
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Introduction

How to find desired data in the Internet in a tirrely
manner is a problem with wide interest. In this paper,
we focus on the retrieval of text data. One popular
way to find desired information in the Internet is to
query a search engine. To support qaerying, an in-
verted file index is usually created for all documents.
Elowever, since the amount of data accessible through
the Internet is huge and is increasing at a very high
rate, it is not realistic to usd a single index for all data
in the Internet. r

Data in the Internet are often organized into
databases naturally. For example, all posts associated
with a newsgroup can be considered as a database,
so are all html files associated with an organization.
Larger (global) databases can be constructed from
many smaller (local) databases. Typically, a global
database does not maintain its own index. A global
database is actually an interface (we will use the
phrase giobat interface in this paper) created to pro-
vide uniform and integrated access to underiying local
databases. When a global interface receives a user
query, it first passes the query to its local databases,
then merges the results from loial databases and fi-
nally presents the merged result to the user.

Many global interfacdi have been built but most of I
them pass each query tg all underlying databases indis-
criminately (e.g., MetaCrawler [SeEt95, SeEt97] and
NCSTRL [NCS]). If a local dababase contains no use-

ful documents to a query, then passing the query to the
database causes unnecessary network traffic and iocai
resource waste. A better approach is to first ideniify
those local databases that are most likely to provide
usefui tes'-riis io ihe qucl',' anC tlren search onlv the
identified local databases for desired documents. Ex-
amples of systems that employ this approach are WAIS

[KaMe9l], ALIWEB [Kost94], gGIOSS [GtGil{95a],
SavvySearch [HoDr97] and D-WISE [YuLe97]. With
such an approach, the problem of processing a user
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query consists of the following two subproblems:

1. Select local databases that need to be searched
and estimate the number of globally most similar
documents in each local database.

2. Decide which documents from each selected lo-
cai database to retrieve. Even when the num-
ber of globally most similar documents in a local
database with respect to a query can be estimated
correctly, the documents to be retrieved have yet
to be determined, due to possibly different simi-
larity functions or term weights used by the global
interface and by the local database. The problem
of deciding which documents should be retrieved
from local databises is known as the collection

fusion problem.

In this paper, we attack both of the above two sub-
problems, namely, the database selection problem and
the collection fusion problem.

The current solutions to the database selection
problem is to rank all underlying databases for each
query using some metadata that describe the contents
of each database. Often, the ranking is based on some
measure which ordinary users may not be able to uti-
lize to fit their needs. In other words, for a given query,

'''the current approach can teil the user to some degree
of accuracy which database is likely to be the most
useful, the second most useful, etc. While such a rank
can.be helpful, it cannot tell the user iour useful any
particuiar database is. In this paper, the usefulness of
a database to a query is defined to be the number of
documents in the database that have high potentials
to be useful to the query, that is, the similarilies be-
trveen the query and the documents as measured by
a certain global similarity function are higher than a
specified ihresholdl. This usefulness can be defined
preciseiy as follows:

usefulness(T,q, D) = l{dld € D and sim(q,d) > 
"}l(1)

where T is a threshold, D is a database, sim(q,d) is
the similarity (closeness) between a query g and a doc-
ument d in D, and lXl denotes the cardinality of set X.
A query is simply a set of words submitted by a user.
It is transformed into a vector of terms by eliminating
non-lontent words, stemming, etc [SaMc83]. In prac-
tice, users may not know how to relate thresholds to

- .ioeaiiy, ior a given query, rhe useiuiness oi a dai,al^" "I,..i..ibe defined as the number of releuanl documents in the database.
However, the releva.nce of documents is highly subjective a it
can only be deterrnined by the issuer of the query. As a resu.lt,
this deffnition is not suitable for our problem in practice, i.e.,
the globai interface cannot determine whether a document is
relevant. Similaity-broed memue is also used in [GrGM95a].

the number of documents they like to retrieve. There.
fore, users are more likely to tell the system the num-
ber of most similar documents (to their query) they
Iike to retrieve directiy. Such a number can be trans-
lated into a threshold by computing the usefulnesses
of each database in decreasing thresholds.

For the collection fusion problem, most existing
global interfaces do not guarantee that all (or a high
percentage of all) globally most similar documents be
retrieved from each iocal database (see next section
for more discussion). In this paper, we also study the
problem of guaranteeing all globally most similar doc-
uments from each local database be retrieved. Such
a guarantee couid be important for legal and medi-
cai applicaiions. Suppose the giobal interface sets a
ihreshol<i T and uses a global similarity function G
such that any document d satisfying G(g, d) > T is
t,o be retrieved, where g is the user query. A local
database may use a different similarity function, say
L, The problem is to determine a proper threshold
T' used by the local database such that all globally
rnost similar documents which can be found in the
database can be retrieved using L, i.e., if G(q,d) > T,
t,hen L(g, d) > T' and T' is as large as possible.

The contributions of this paper are;

o We provide two new estimatioq methods to esti-
mate the usefulness of a database. The methods
have solid theoretical foundations. Experimental
results are obtained to demonstrate the superior-
ity of these methods over existing methods.

o We provide two techniques to obtain tire best local
threshold (i.e., the iargest T') whiie guaranteeing
all globally most simiiar documents be retrieved
from the local database. By an example used by
others, we show that the threshold computed by
one of our techniques is much better than the one
computed using an earlier methodology.

o We provide two techniques to retrieve documents
in a local database when the simiiarity func-
tions for boih the global interface and the local
database are the same popular Cosine function
[SaMc83] (aithough the functions are identical,
the weight of a term which depends on the num-
ber of documents having the term may change
from the locai database to the globai interface).
The first one modifies the query so that the local
database computes the giobal similarity for each
i.-,--:i :i:r:rrrr: T;^ ^^^^,,; ^n^ .^n,^r,i d< ar, ^nviL !v.:-r---- 

--- -f

timal local threshold.

The rest of the paper is organized as follows.
Section 2 reviews related work. Section 3 presents
our methods for estimating the usefulness of text
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databases as well as experimental results. The prob-
lem of how to find globally most similar documents lor
auy given query from multiple text databases will be

siudied in Section 4. Section 5 concludes the paper.

2 Related Work
To be able lo identify useful databases to a query, bhe

global interface must keep some characteristics infor-
mation about each database. We call such informalion
lhe representaliue of. a database. Different database
selection methods can be developed based on the rep-
resentatives used.

Database selection has been employed by several
systems. However, the database representatives used

in most systems cannot be used to estimate fhe num-
ber of globally most similar documents in each lo-
cal database [CLBC95, Kost94, KaMe91, NlaBi97,
YuLe97]. In gGIOSS [GrGM95a], each database is rep-
resented by the document frequency of each term and
the sum of the weights of each term over all docu-
ments in the database. The database usefulness used
in gGIOSS is different from the one defined in For-
mula (1). However, the representative of gGIOSS
can be used to estimate lhe number of useful docu-
ments in a database [GrGM95b]. The methods used
in gGIOSS are very different from ours. The estima-
tion methods employed in [GrGM95a, GrGNf9Sb] are
based on two very restriclive assumptions. One is the
high-correlation assumplion {for any given database, if
query term j appears in at least as many documents
as query term k, then every document containing term
k also contains term j) and the other is the disjoint
assumption.(for a given database, for all term j and
term k, the set of documents containing term j is dis-
joint wiih the set of documents containing term k).
Due to the restrictiveness of the above assumptions,
the estimates provided by these two methods are not
accurate.

[YuLS78] proposed a method to estimate the num-
ber of useful documents in a database for the binary
and independent case. In this case, each document d is
represented as a binary vector such that a 0 or 1 at the
ith position indicates the absence or presence of term
t; in d; and the occurrences of terms in different doc-
uments are assumed to be independent. This method
was later extended to the binary and dependenl case

in [LaYu82], where dependencies among terms are in-
corporated. A substantial amount of information will
be lost when documents are represented by binary vec-

a _ _. _----l! :r : - ...r : ---- ., - -:uvlD. nD o lsDqru, r! rD Dgtuulll uDcu lll Placurgv. \_,ruf

proposed solutions to the usefulness estimation prob-
lem are extensions of those in [YuLS78, LaYu82] by
permitting the use of arbitrary term weights in repre-
senting documents and by incorporating term depen-

dencies.

The colleclton fuszon problem has received a lot of
atteniion recently. For a given query, most existing
global inlerfaces, after the number of documents lo
retrieve from a local database is determined (let k
denote lhe number), the global interface lets the lo-
cal database retrieve the top k documents from'the
Iocal database, based on. the local similarity func-
tion. For example, NfetaCrawler [SeEtg5, SeEt97]
and SavvySearch [HoDr97] let the user specily the
maximum number of documents lo be retrieved from
each local database. D-WISE [YuLe97] and CORI
net [CLBC95] retrieve proportionally more documents
from databases that are ranked higher or have higher
ranking scores. [TVGJ95, VGJL95] provides several

learning based approaches. A problem common to
all the above approaches is that none of them guar-
antees that all globally most similar documents from
each database will be retrieved. The algorithm in

[GrGM97] while guaranteering that all globally most
similar documents wiil be retrieved may unnecessarily
retrieve many documents that are not globaliy most
similar. Our proposed solutions in this paper aim
at minimizing the number of documents that are not
globaily most similar to be retrieved while guarantee-
ing that all globaily most similar documents are re-
trieved. l

3 Two New Methods for IJsefulness
Estimation

In section 3.1, we consider a speciai.case - the lfon-
binary and Ind,ependent case, where non-6inary means
that term weights are not limited to 0 or 1 (can be any
real numbers) and independent means that the occur-
rences of different terms in each documenl are indepen-
dent. Under lwo assumptions, one is the "term inde-
pendence" and the other is thab all documents having a
term have the same weight for bhe term in a database,
our method can accurately estimate the usefulness of
a database. In section 3.2, wd relieve the former as-

sumption by incorporating telm dependence into the
basic solution. In section 3.3, *" relieve the latter
assumption by allowing dynamic adjustment to term
weights. As a result, our estimation becomes more
accurate. In summary, our first estimation method is
for the non-binary and independent case with dynamic
adjustment to term weights and other relevant infor-
mation, and our second method is for the non-binary
and tiepeutieut sase wir,ir dynauric tr,tijusi,urcuu i;u icrur
weights and other relevant information. Experimental
results are reported in section 3.4. The applicability.,. .. -.
of the two methods in practice i.s discussed in section
3.5.
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3.1 The Non-binary and Independent Case

Consider a database D with rn distinct terms. Each

document d in this dalabase can be represented as a

vector d = (dr, ...,d^), where d; is the weight (or

significance) of the rth term l; in representing the doc-
uments, 1 < i < rn. Each query can be similarly rep-
resented. Consider query g = (ur, u2,..., u-), where
ui is the weight of l; in the query, 1 < i < m. The
similarity between q and document d can be defined
as the dot product of iheir respective vectors, namely
sirn(q,d) = ul * dr * "'*um *d- (note that nor-
malization that yields similarities between 0 and 1, for
exampie using the Cosine function [SaMc83], can be

incorporated by re-defining the weights d's and u's.
Normalization is used in our experiments (see section
3.4)).

Database D is represented as rn pairs {(pi,rt)},
i = 1,...,rn, where p; is the probability that term t;
appears in a document in D and to;-is the average
weight of ihe weights of t; in the set of documents con-
taining l;. For a given query q = (ur, u2,...,um), the
database representative is used to estimate the useful-
ness of D. Without ioss of generality, we assume that
ouiy the first r ui's are non-zero, 0 < r ( rn. There-
fore, g becomes (u1, u2,...,ur) and sirn(q, d) becomes
u1 * d1 $ ' ' '* u, + d'. This implies that only the first
r terms in each document in D need to be considered.

Consider the following generating function:

[to,- Xu;.ui+(1-pr)]
i=1

(2)

where X is a dummy variable. The following proposi-
tion relates the coeficients of the terms in the above
function wiih the probabiliiies that documents in D
have certain simiiarities with q.

Proposition 12 Let q and D be defined as above. If
the terms are independent and the weight of term /;
whenever present in a document is tu;, which is given
in the databa^se representative (1 < i < r), then the
coefficient of X" in function (2) is the probability that
a document in D has similarity s with q.

Example 1 Let g = (1, 1, 1) be a query with three
terms with all weights equal to 1. Suppose database
D has five documents and their vector representations
are (only components corresponding to query terms
are given): (2,0,2), (0, 1, 1), (2, 0, 0), (0, 0, J) and
(0, 0, 0). Namely, the first document has query term.l e..l ^.'--" ;4-- '1 ^-.-i .L - .-l:--: -:- -i:--.i nsirri i, duu uusrr tvrrCspull,qlllg WelgO[S
(e.g., the numbers of occurrences of the terms in the
document) are both 2. Other document vectors can be
iuterpreted similarly. From the five documents in D,

(pr, n,r) = (0.4, 2), (pr,w2) = (0,2,1), and (ps, r:) =
(0.6, 2) can be computed. Therefore, the correspond-
ing generatipg function is:

(0.+*x2 + 0.6x0.2*x +0.s)(0.6+ x2+0.4) (3)

Consider the coefficient of X3 in the function.
Clearly, it is the sum of pt * pz * (1 - p3) and (i -
pr) * p, * p3. The former is the probabiiiiy that a doc-
ument in D has exactly the first lwo query terms and
the corresponding similarity with q is u1 * u,2 (=3).
The latter is the probability that a document in D has
exactly the last two query terms and the conesponding
similarity is uz*rp: (=3). Therefore, the coefficient of
X3, namely, p1'rp2*(t-ps)+(1 -pt)*pr*pa = 0.104,
is the estimated probability that a document in D has
similarity 3 with q. r

Suppose after generating function (2) has been ex-
panded and the terms with the same X" have been
combined, we obtain:

a1 *XbL *a2* Xb'+...*a"*Xb" (4)

where b1 ) 62 ) ... ) 6". By Proposition 1, a; is
the probability that a document in D has similarity 6;
with q. For a given similarity threshpl"d ?, let C be the
Iargest integer to satisfy bc > T. Let n be the num-
ber of documents in D. Then, the rrsefulness of D for
query q based on threshold ? (i.e., expected number
of documents in D whose simiiarities with query q are
greater than ?) can be estimated as:

CC
estimate(T,q,D) =I"* o;=nlo; (5)

t=1 i=1

Example 2 (Continue Example 1). When formula
(3) is expanded, we have:

0.048* Xb + 0.192 * Xa +0.104* X3 + 0.416* X2
+0.048*X*0.192 (6)

Using formula (5), the usefulness.of D with respect
to g and T = 2 canbe estimated as eitimate(2, q, D) -
5 + (0.0a8 + 0.192 + 0.104) = 1.72.;lt is interesting to
note that the true usefuiness usefulness(2,q,D) = )
since there are two documents having similarity higher
than 2 with g (the first and the fourth, and the simi-
larities are 4 and 3, respectively). r

3.2 The Non-binary and Depeudent Case
l- lL:- ---- :- - J J:r: r , !
iii LiliS C-Sa. iu -.tl(ill,llrll ii) i ilc t)- q 1ni1 t'r' c -c rh

i;" i;";-k","i 
"*a 

tnire*irnt';;", 
-;;"-l;;;;

representative also includes term dependency informa:.. ...,

tion. We use co-variances to measure the dependencies
among different terms. The co-variance between term
i and term j is denoted by o;i and the co-variance

2-All proofs in this paper cau be found in [MLyW98].
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among terms i, j, and,t is denoted by o;jr.This no'
tation can be generalized for co-variances among any
number of terms.

For query q = (ut, . . ., u.), let -f be a vector of
random variables (X r , Xz,. . . , X" ). ,t -upt each doc-

ument d in database D to a binary vector ,f1a; =
(Xr(d), Xz(d),...,X"(d)), rvhere X1(d) = 1, il docu-
ment d has term l;, and 0 otherwise (i = 1,...,r).
Denote by p; the expected value of Xi (i - 1, . . ., r).
For terms trr,tr",...,tj,, we measure their degree of
dependency by the co-variance of Xi, Xjr,...,Xj,,
which is the expected value of the product lli=, (Xi. -
P,r)-

Let P(i) be the probabiiity that X maps a docu-
ment in D to a given binary vector E = (r1,82,...,8r).
If the terms are mutually independent, this proba-
bility, denoted by P6(f), ir fii=rpi' * (1 - pt)t-",.
When terms are not independent, then the Bahadur-
Lazarsfeid Expansion [DuHa73] can be used to derive
the following expression for P(i) [LaYu82]:

/
P(r-) = P.(fl { 1 + t o" @; : p;)(x-i.-- pi)
- \'- / - "'-' 

\- ?'i " nini(l - Pi)(l - Pi)

*fo"*
i<j <k

* "'* op...,

(r;-p;)@i-pi)@*-pn)

where a;i is the co-variance of X; and Xi, a;ir is the
co-variance of. X;, Xi and Xr, etc. Expansion (7) can
be interpreted as follows. If the terms in D are more or
less independent, then P(c) can be approximated by
Po(i). Otherwise, dependencies between terms can be
added for a better approximation. Usually, the more
dependency information we add, the better the ap-
proximation wiil be. If all possible combinations of
term dependencies are taken into cor,rsideration, then
P(d) is accurately represented.

In Proposition 1, we have shown that function (2)
can be used to find the probability that a document in
D has simiiarity s with q when ierms are independent.
It can be shown (see Proposition 2 below) that when
terms are not independent, the following generating
function can be used for the P(f) as expressed in (7)
above.

ff [o' * xut*lt + (1 - p)]+D"ti II lpt * xut'ut
'=i .j<.i t*a.t+,

+(1-pt)](X''*"'- l)(Xur*ui - 1)

f

+...+ orz...,lI(X-,*'' - l)
r-1

P;PiPr(L - Pi)(1 - pi)1 - pr)

@t-Pr)"'(t,-P,) \ ,",ffi) ,"

Proposition 2. Let g and D be defined as above.
Based on expansion (7), if the weight of term l; when-
ever present in a document is tr; which is given in the
database representative (1 < i 1 r), then the coeffi-
cient of X' in function (8) is the probability that a
document in D has similarity s with q.

Note that the first subexpression in (8) is identical
to expression (2). In other words, expression (8) is
obtained by first assuming that all terms are indepen-
dent and then incorporating the dependencies among
terms into the expression. If term i and term j are in-
dependent, then ai; is zero. Similarly, if a set of terms
are independent, then the corresponding co-variance is
zero. Thus, in practice, it is usually sufficient to incor-
porate the O(r) most significant co-variances between
all term pairs for a query with r distinct terms; other
less significant ones can be ignored.

By expanding (8) and combining terms 'with the
same X', a function similar to (4) can be obtained.
After this, the process for deriving the formuia for es-
timating the usefulness of a database is identical to
that discussed in section 3.1.

3.3 Iucorporating More Accurate Weight Ia-
formation Dynamically

In the database representative for database D, .u.r; is
the average weight of the we'ights of term ti among
the documents that contain l;. Based on Propositions
1 and 2, generating functions (2) and (8) can accu-
rately estimate the usefulness of D under their respec-
tive assumptions on term dependence if the weight of
term l; whenevdr present in a document is ro1. This
assumption about the weight of a term being uniform
among documents containing the term may not be re-
alistic. As a result, the estimated usefulness may be
inaccurate.

The foilowing impact of using the average weight
of each term in the database representative on the es-

timation accuracy can be observed. Typicaily, docu-
ments whose simiiarities with a query exceed a large
threshold must have large wdights for the terms that
also appear in the query. However, when the aver-
age weights are used, docurhents having large weights
on query terms may faii to be recognized as the av-
erage operation brings down weights that are above
the average to compensate weights that are below the
average. To overcome the bad impact of using the
average weights on the estimation accuracy for large
thresholds, we also store, for each term f;, the slandard
deutaizon (cieuui".i or) oi thc ;r':ighrs ci:. i' ihe s'i r',f

- documents containing t;. With the deviation added,
the representative of each database will be a set of
triplets (r;,p;,a;). If dependence information .moog
terms are to be incorporated, then'some cevariances

18

(8)



among terms will also be in the database representa-

tive.
The idea is to use the standard deviation of each

teim to dynamically adjust (i.e', increase) the aver-

age weight of the term when large thresholcls are used.

For larger thresholds, iarger increases should be made.

The following formula for obtaining the new weight,

ul, from the original average weight, u;, and the stan-

dard deviation' di' can be used:

^,,r-^,,,r"*;--u;=roi+ 

^j*o; 

(9)

where T is the ihreshold used and T^o, is the maxi-
mum value that should be used as a threshold for the
query, i.e., if a threshold iarger than T^o' is used, then

no document in the database can be retrieved. There
are severai justifications for using formula (9). First,
it is a monotonically increasing function of T. As a re-
sult, a larger new average weight.can be obtained for a
larger threshold used. Second, when ? = 0, w'i = wi,
meaning that the original average weight is used when
T = 0. Third, when o; - 0, ,! is reduced to ur;.

Fourth, when ? = T^or, w! = w;{c*di, meaning that
the maximum term weight for term l, is t^ui I c* o;.
When normalized term weights for a term satisfies the
normal distribulion, then most term weights will fall
in the interval [tu; - 3 'r ci, wi * 3 * c1]. Consequently,
c shouid be chosen to be close to 3. Furthermore, for
a given query q = (ur , ..., u") and a threshoid T , T^o,
can be set to (u1 *3*a1)*ur+.'.*(u" *3*o,)+u,.

Intuitively, using a larger average weight for each

term can be considered as using the average of larger
term weighls (i.e., first discard smail weights and then
average the remaining larger weights). When more
small weights are discarded, the new average will be
larger. When some small weights are not used to com-
pute the new average weight ul, the probability that
term f; appears in those documents whose weights are
used to compute ul needs to be computed. This prob-
ability, pl, should be used to replace pi, just as toj is to
replace ut, in the generating functions for usefulness
estimation. p'; can be estimated by p;*pr, where [; is
the value such that when the weights for term l; that
are smaller than &1 are not used, the average of the
remaining positive weights will yield ul , and pr; is the
probability that a positive weighi of term li is greater
than or equal to &;. Similarly, for the dependent case,
aew co-variances should be estimated based on the un-
derstanding that term l; is considered to appear in a
;^-,,-,--- ^--i-.ir'rt-- -," I LL luocuiiicn! oiiiJ il liis wsr6ti! ut ,i llr tlle oocumen[ ls
greater than or equal to ,ti. The new co-variances are
used to replace the original co-variances in generating
function (8). See [MLYW98] for details about these
estimations.

3.4 Experimental Results

Three databases, Dl, D2, and D3, and a collection of
6,597 queries are used in the experiment. D1, con-
taining 761 documents, is the largest among the 53
databases that are collected at Stanford University for
testing the gGIOSS system. The 53 databases are
snapshots of 53 newsgroups at the Stanford CS De-
partment news host and the queries are real queries

- submitted by users to the SIFT Netrrews server

[GrGlvl95a]. D2, containing 1,466 documents, is ob-
tained by merging the two largest databases among
the 53 databases. D3, containing 1,014 documents, is
obtained by merging the 26 smallest databases among
the 53 databases. As a result, the documents in D3
are more diverse than those in D2 and the documents
in D2 are more diverse than those in D1.

For all documents and queries, non-content words
such as "the", ttof', etc. are removed. The similarity
function is the normalized doi product function. The
normalization guarantees that the similarity between
any query and document will be belween 0 and 1. As a
result, no threshold larger than 1 is needed. When the
dependent case is tested, 8,477, 12,482 and 13,658 co-
variances are collected for D1, D2 and D3, respectively,
for incorporating the dependencies among the terms.
More co-variances are used for'D2 and D3 because they
contain more distinct terms (25,846 for D2 and 29,780
for D3 versus 16,065 for D1).

Consider database Dl. For each query and each
threshold, five usefulnesses are obtained. The first L
the true usefulness obtained by comparing the query
with each document in the database. The other four
are estimated based on the database representatives
and estimation formulas for the following cases: (1)
The high-correlation case. (2) The disjoint ca^se. (3)
The non-binary and independent case with dynamic
adjustment to ?ri's and p;'s. (a) The non-binary and
dependent case with dynamic adjustment to ro;'s, p;'s
and co-variances. All estimated usefulnesses, if they
are not integers, are rounded to integers. The experi
mental results for Dl are sum{narized in Table 1.

Table 1: Comparison of Diffpient Methods Using Dl

U E/Err/ditt

I 65S 160t72t20 l{( ol2L 7 E62tt4ttl to77 /sf /ro.5
5r6 5ar6r2D.A L L / 9122.5 7\5lLlLA.A 245/1lrO.4

J

32 otot3.1 tt /o/3-5 t6t2I3-2
IJ

In Table 1, T is threshold and U is the number
of queries lhat icientrty Dr as usetul (the true use-

fulness of the database with these queries is at least
one). When T = 0.1, 1,655 out of 6,597 queries id'err- "'

tify D1 as useful. Now consider the column for the
high-correlation case. "m/mis/dif is a shorthand for
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"match/mismabch/average difference". "460 172 120"
means that out of the 1,655 queries that identily Dl
as useful based on the true usefulness, 460 queries also

identify D1 as useful based on the estimated useful-

ness by the high-correlation approach; there are 72

queries ihat identify D1 as uselul based on the high-
correlation approach but in reality, Dl is not useful

to these 72 queries; and 20 is the average difference
betvreen the true usefulness and estimated usefulness

over the 1,655 queries that identify Dl as useful based

on the true usefulness. Clearly, a good estimation
method shouid have its "match" close to "U" and
its "mismatch" and "average difference" close to zero
for any threshold. In other wotds, a better estirna-
iion should yield a }arger "match" value and smaller
"mismatch" and "average difference" values. In prac-

tice, correctly identifying a useful database is often
more significant than incorrectly identifying a useless

database as a useful database. This is because miss-
ing a useful database does Ynore harm than searching
a useless database. Therefore, if estimation method A
has a larger "match" component than method B while
A's "mismatch" component is not too much iarger
than B's "mismatch" component, then A should be
considered better than B.

The experimental results for D2 and D3 are sum-
marized in Tables 2 and 3, respectively.

Table 2: Comparison of Different Methods Using D2

1. Our methods are much more accurate in esti-
mating the database usefulness than the meth-
ods proposed in [GrGM95b] for all thresholds (see

values under the "diff' category in the above
tables). The emor is typically reduced by a
large percentage. Dramatic improvement for the
match/mismatch category is also obtained at ev-
^--- rL-^-L^ll
-! v (,!trcsrr(rr(r-

ft " a"p"oaent case is consistently better than
the independent case. This indicates the useful-
ness of using co-variance information in estimat-
ing database usefulness. Note that for queries

thab actually use co-variances, the improvements
are typically larger than those shown in the above

tabies. This is because the averages are computed
for ail queries that identify lhe dalabase as use-

ful based on the true usefulness, including those
queries that do not use co-variances (i.e', singie

term queries or queries for which no co-variances
are collected lor their terms; nearly 30% oi the

6,597 queries are single term queries).

3. While in all three databases, the two proposed es-

timation methods are more accurate than existing
melhods, the "mismatch" components are smailer
for database 1, larger for database 2 and largest
for database 3. This is likely due to the increased

degrees of inhomogeneity of these three databases
by their construction.

3.5 Discussion on Applicability

We now discuss severai issues concerning the applica-
bility of the two new methods in practice.

Scalability

If the representative of a database used by an esti-
mation method has a large size relative to that of the
database, then this estirndtion method will have a poor
scalability as such a method is difficult to scale to thou-
sands of text databases. Suppose each ternr occupies
four bytes. Suppose each number (probability, aver-
age weight, slandard deviation and co-variance) aiso

occupies 4 bytes. Consider a database with A differ-
ent terms. For the independent case, & probabilities, &

average weights, & standard derivations are stored ia
the database representalive, resulting in a total stor-
age overhead of 16 +.,t bytes. For the dependent case,

we aiso'need to store some co-variances. trVe intend to
use no more than k co-variances as obtaining and using
the information is expensive. Thus, for the dependent
case, the total storage overhead for the database rep-
resentative is 20*k bytes. The'follorving table shows,

for several document collections, the percentage of the
sizes of the database re$resentatives based on our ap-
proach for the independent case relative to the sizes of
the original documend collections.

coilection stze S dist. terms reD. srze %

WSJ
FR

DOE

40605

33315
25t52

156298

126258

186225

1250

1010

1490

J. 08

3.b3
5.92

in ihe above i,abie, aii sizes are irl p,irgco ur r
KB. The statistics of the first three columns of the
first three document collections, namely, .WSJ (.Wall

Street Journal), FR (Federal Register) and DOE (De-

partment of Energy), were collected bv ARPA/NIST

2.

T U
4724

t436/L46/23 r960/211/21
353 /43

542
2312/6.4 3r /4/6.O

o/o15.4 o/o/5.4
I

Tabie 3: Comparison of Different Methods Using D3'
hish-€or

.o aa6
147/63/22 r{4Elr6O/r 29ta/25911

124 5 r4/ts/13.3 260t39t4
3l

16/{ 25/ rr/5,J
5 {8 o/o/3.8 o/ot3.8 TttI3.O
6

The following can be observed from Tables 1, 2 and 3.
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[Harm93]. Clearly, the sizes of database representa-

tives based on our approaches are only a very small

fraction of those of original databases. Therefore, our

approaches are fairiy scalabie. Also, typically, the

percentage of space needed for a dalabase represen-

taiive relative to the database size will decrease as the

database grows. This is because when new documents

are added to a large database, the number of distinct
terms either remain unchanged or grows slowly' In
comparison, if a global inverted file index is built, the

size of the index is usually comparable to that of the

actual database. As a result, our proposed solution
requires much iess space.

Compiring to the database representative used in
gGlOSS, the size of the database representative for
the independent case is 33% larger (due to storing
the standard deviation for each term) and the size of
database representative for the dependent case is 67%
larger. Clearly, there is a tradeoff between space and
accuracy.

Easiness of Obtaining Representative

The representative of a database for the indepen-
dent case can be obtained easily and efficiently. This
is because the terms' probabiliiies appearing in a doc-
ument, the average weights and their standard devi-
ations can all be readily computed from the inverted
file entries maintained by the local system. As a result,
the local system can provide the information.

In contrast, obtaining the largest co-variances for
the dependent ca.se couid be time-consuming due to
typicaily a very large number of co-variances. How-
ever, the computation can be done off-line. Another
possibility is to obtain co-variances adaptively. Specif-
ically, initially, the database representative does not
contain any co-variance information. Whenever a
user query yieids substantially more or fewer similar
documents from a database than estimated, the co.
variances of the terms in the query are computed and
the significaut ones are incorporated into the database
representative. This method computes only significant
co-variances. The global interface may also request
those databases that barely missed the cutofffor being
considered useful for the query to supply the depen-
dency information. In any case, if a local database is
incapable or unwilling to supply the co-variance infor-
mation, the estimation will be performed based on the
indep.endence model as discussed in section 3.1.

Query Processing Overhead

It is known that a typical query submitted by a
user in the Internet environment contains two to three
terms only [ALSF97, Kowg7]. The average number
of terms in the queries used in our experiments and
collected from Stanford University is also slightly less

than 3. For such short queries, the computation cost of
the estimation process for a query against a dalabase
representative is negligible. It was already mentioned
previously that not too many database representatives
need to be compared against a given query since the
representatives could be arranged into a hierarchy.

4 Retrieval of Globally Most Similar
Documents

In this section, we focus on the collection fusion prob-
lern. Its challenge stems from the fact that local sys-
tems are often autonomous and heterogeneous units.
The problem arises in two forms: (1) The similarity
function in a locai database is diferent from that in
the global interface. (2) The similarity functions in
the Iocal database and the global interface are identi-
cal but the weights of terms are different in the locai
database and the global interface. Both forms of the
problem wiil be tackled in this section. Various ap-
proaches to soiving ihis problem have been attempted
(e.9., [CLBC95, GrGM97, VGJL95]). However, none
of them can minimize the number of documents that
are not globally most similar to be retrieved while
guarantee that all giobaliy most simiiar documents will
be retrieved. In a recent paBer lGrGMgT] , an algo-
rithm is provided io retrieve all globally most sirnilar
documents from a locai datab'ase. Ilowever, this alg+'
rithm has a shortcoming. For a given global threshold
of a query q, the local threshold of q computed by l,his
algorithm is often lower than necessary. As a result, a
Iarge number of documents that are not globally most
similar may be tetrieved. It is very desirable to get
a tight local threshold to reduce communication cost,
local processing cost and the cost of merging partiai re-
sults. In this section, we first describe lhe construction
of a tight local threshoid for a given global threshold
of a query. Next, we discuss how to retrieve all glob-
ally most similar documents in local databases when
both the local database and the giobai interface use

the same popular Cosine similarity function.

4.t Constructiou of TigCt Local Threshold

Let simr(q,d) be a function that computes the local
similarity between a query g and a document d in a
Iocal database -C and simo(q,d) be a function that
computes the global similarity between q and d. Let
? be a global threshold. A document d is considered
to be desired (or globally most similar) with respect
to a query q if sim-(q,d) > T. (In earlier sections, d
is desired ll simo(g,d) > .l'. 'I'hrs small change ln th.e

meaning of a desired document in this section is made
only for the ease ofpresentation and does not affect the
actual results.) Our objective is to determine a iocal
threshold I(") so that all desired documents in ,C will
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be retrieved locally. Clearly, I(T) is a non-decreasing

function of the global threshold T.
Consider a Cartesian plane. Let the c-axis and y-

axis of this plane represent the global and local sim-

ilarities, respectively. Then, the giobai similarity o
and the local similarity B of a document can be rep-

resented by a point (o,0). Suppose the giobal and

Iocal similarities of all documents in local database 
^C

are distributed as depicted in Figure 1. Each point

representing a document is marked with a'*'symbol.'
Then, all the documents in .C with globai similarities
greater than or equal to T are those represented in
the figure by points lying on or to the right of the line
x = T. Let A(T) be the set of the y-coordinates of
tirese points (or the local similarities of all these glob-

ally desired documents in f,). That is,

A(T)= {sim,(q,qV Ssimo(q,d),de L} (10)

In order not to miss any of the desired documents in .C,

the local threshold ,L(?) must not be larger than any

similarity vaiue in A("). At the same time, we want

the local threshold to be as large as possible so that
as few documents as possible in 4 with global similar-
ities less than T will be retrieved (those represented
by points to the ieft of x = ?). Hence, we choose the

minimum local similarity value in A(T) to be the local
threshold for ,C. That is,

L(T) = min{sirn" (c, d)lT I si.mok, d), d € f} (11)

As can be seen in f igure l, the local threshoid ,[(?)
is the minimum of the y-coordinates of those points

Iying on or to the right of the line e = T.

v
sim.(e, d)

ur)

x
simo(c, d)

Figure 1r Local and Global Similarities of Documents
in a Local Database .C

From 1ii) (aud Figurc i), iu i" "ieai i,hai ali ioc
uments in E with global similarities greater than or

equal to T also have local similarities greater than or
equal to .L(T). Thus, using I(T)' all desired docu-

ments in ,4 will be retrieved.

Proposition 3. For a given global threshold ? of
a query q, let Iocal threshold I(T) be defined as in
(11) for a local database ,C. Let H(T) be any local
threshoid that wiil retrieve all documenls with global
simiiarities greater than or equal lo T from f,, i.e., lor
any documents d in .C, whenever the global similar-
ity sirno(s,d) > T, the local simiiarity simr{q,d) >
Hg).Then rY(?) < LQ). That is, the local thresh-
old I(") is the tightest.

We now explain the difference between our ap-

proach and that used in [GrGM97] by means of Figure
1. In [GrGM97], a constant r is determined such thal
the following inequality

sim,(q,d)) simok,d)- e (12)

holds for every document d in a local system L. P"e-

ferring to Figure 1, this is equivalent to finding an e

such that aii the points are either on or above the line

V -- s - e. For a global threshold T, in [GrGM97], the
local threshoid is computed.as ? - e . In the situation
shown in the figure, d* is a document represented by a
point lying on the line y - c - e and no points are un-
der y = r-e. Thus, the value of e shown is admissible.

However, the e cannot be made smaller, otherwise the
point representing d* willfail below y = x-e. That is,

the local threshold T-e , sltown in Figure 1, is the best
(highest) that can be determined using the'method in

ictCl,tgzt. As can be seerl in the figure, the difference

between the two thresholds I(?) and ? - e can be

quite large; and the number of undesirable documents

retrieved from ,C is ihree using .L(T) versus ten using

_l - c.

For a given query g and a given global threshold ?,
the optimal local threshold is the minimum of A(T)
(see (10)). In a local system, we do not know before-

hand which documents have global similarities greater

than or equal to ?. As a result, it is not possible to
determine ,4(7). Ilence, instead of finding the mini-
mum of A(T), we seek as the iocal threshold I(") the

minimum possible local similariiy that can be attained
by a document d with global similarity greater than or

equal to ?. In effect, otr attempt to find the local

threshold ,L(?) becomes'that of solving the following
problem. :

(*) For a giuen query q' rninimize, ouer all possible

documents d in L, the function sim"(q,d) subjecl lo

si.mo(q,q>f .

Various techniques can be employed to solve prob-

lem (*). In the following, we give two methods that
!\ rr.at. Vaf ret v irr ..Jiltr4rr! t ru,rL!iUli-.

;;; 
";;;;;.,Ji,*'"*,',n,,""

Consider a common situation in which'lottiind to-

cal and global similarity functions are the dot product
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function. Let r be the number of terms in a given

query q. Let the local query vector I be (11,...,1")
and the global query vector g be (gr, . . . , g,), where l;

and g; are the local weight and global weight of the

l-ih term in q, respectively. Let document d be repre-

sented by the vector (.t,*r,...,u"), where tui is the

weight of the i-th term and a; ( tr.r; ( B; for some con-

stant ai and 0;. Then, sfrn. (q,d) = I o d, = Il=, /trt
and sirno &,d) = g o d = Il=r gir.ui, where r denotes

dot product. Our problem to find the locai threshold
l(?) becomes the foilowing minimization problem:

J-f
minimize I rr.r subject iioT.g;w; )-T and a; 1

i=1
u;19;,i=1,..',r.

This is a standard linear programming problem

[Gass69]. Note that the set of inequaliiies ai ( ur; (
0;, i = 1,. . .,r, defines the space of all possible d and
is probiem dependent.

In general, problem (*) will be amenable to linear
programming techniques if both the local and giobal
similarity functions are some linear functions of the
terms of a document.

Example 3 In the real-estate example of [GrGM97],
the local similarity function weighs price (0.9) much
more than location (0.1), while the global similar-
ity function weighs them equally. For both Iocation
and price, it is assumed that a similarity between two
houses can be computed. Specifically, the locai similar-
ity function is simr(q,d) = 0.1/ + 0.9p and the global
similarity function is sirno (S, d) = 0.5/+ 0.5p, where I
and p are the similarities due to the location and price
of a house, respectively. Given a giobal threshold ?,
to compute the local threshold I(7) is equivalent to

minirnizing 0.1/ + 0.9p subject lo 0.5/ * 0.5p > T
and 01.I,p 11.

Using linear programming techniques, we obtain

,,d\ f t.sr- o.a if o.b < ? < 1L\r )= | o.zr if T <1.b

In [GIGM97], the relationship between simr(q,d)
and sirno(q,d) is determined to be sirn.(g,d) Z
sirno(g,d) - 0.4. The best local threshold that can
be obtained based on this inequality is 7 - 0.4. For
a global threshoid ? = 0.8, the local threshold is
0.8 - 0.4 - 0.4, whereas .[(?), the local threshold ac-
cording to our computation, is 1.8 x 0.8 - 0.8 = 0.64.
ii c:n bc ca;ily siiow.i i,tot, .L(?') 2 T - 0.4 excepr for
?= 0.5 (when l= 0.5, L(T) =7- 0.4). r
(b). Lagrange's Multipliers

. The computation of I(") can be reformulated as the
following two-step process,

1. Find the function /(l), the minimum of the local
similarity function simr(q,d), over all documents
d in {,, subject to t = simo (q , d) .

2. Minimize /(t) in the range t > T.

Note that in step 1, I is fixed and d varies over all
possible documents in f , whereas in step 2, l varies
in the range I ) 7. It can be easily checkeci that
the minimum of f(t) obtained in step 2 is the desired
threshold L(T). Let {t;} be the set of terms specified
in the query q. If both simr(q,d) and simo(q,d) are
differentiable functions with respect to the weight u;
of each term l; of document d, then step 1 to find
f (t) can generally be achieved using the method of
Lagrange in calculus [Widd89]. Once f(l) is found, its
minimum value in the range I ) ? can be computed
using calculus method or other aigebraic techniques.
If /(t) is non-decreasing, tr(7) is simply J(7). Since
many simiiarity functions are differentiable, the above
technique can be used to find the local threshold I(")
for many different combinations of local and global
similarity functions.

Example 4 Let d = (ror, ...,wr).be a document and
g = (ur,...,u") be a query. Let the global similarity
function sirno(q,d) = Dl=, u;u[ and a local similar-
ity function sim,(qd) = (Il=, "!4)i (known as

p-norm in [SaMc83]) (p 2 t).
Step 1 to find /(t) requires us to minimize

(Il=, u!w!)i subject to Dl=r ulw; - t.
Using the Lagrange method, /(l) is found to be

t .n(i-l). As this function is an increasing function of
t, for a global threshold ?, the local threshold I(") is

then T . n(i-1)..t

4.2 Retrieval of Globally Most Similar Docu-
ments Using the Cosine function

In this subsection, we provide a technique to re-
trieve all globally most similar documents from a lo-
cal database when both the loLal and global simi-
larity functions are the widely, rised Cosine function
lSaMcSS]. Let q - (rr,...,r,) b" a query, ui being
the weight of the j-th query term. Let d be a docu-
ment having weight wi for the j-th query term. The
similarity between g and document d, computed us-
ing the Cosine function, it (I?=, u;tui)/(qd), where
q and d are the norTns of g and d, respectively.

A common term weiohting scherne is er::pleyed. In
this scheme [BuSA93, VGJL95], for the j-th query
term ti, its weight in the query, ?rj, is computed as

ui x Ii, where zi is the weight of li specified by'thC
user (if the user does not specify the weight, then the
weight is the number of times that term occurs in the
query) and Ii is the inverse document frequency weighi
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(IDF) of the term. Recall that the IDF of a term t in a

database of N documents is defined as log fr, where n;

is the number of documents in the database containing

the term t. The IDF oi a term in a local database {
depends on all bhe documents in .C whereas the global

IDF of the same term depends on all the documents

in all databases. Thus, for a query term, its local

and global IDFs, and hence its locai and global query

weights, are usuaily different' As for a ierm in a docu-

ment, the weight of the term is determined using only

document-dependenl information; thus, a document

has the same representation both locally and globally'

Let qu = (ui,...,ur) be a query, where ui is

the user-specified weight of the j-th query term.

For the j-tli query term, let /i and { be its IDF
in a local database .C and its global IDF, respec-

tively. Thus, for query qur the local query vector

for L, g., is (u111 ,..',unlo), and the global query

vector go is (u1l'1 ,...,un|'n). Let q. and qo be

the norms of q. and qc, respectively. Using the

Cosine function, for query qr, the local similarity for
a document d = twr,...,to') in .C is simr(q,d) =
(I?=, u1t1,u1)l(q d); while the global simiiaritv for d

is iimoko,d) = (Il=r u1t"w1)l(qod).

Below, we present two methods to retrieve docu-

menbs from a iocal database ,C. The first computes

the exact giobal similarity for each document in ,C

through query modification. The second determines a

local threshold to obtain all the giobally desired doc-

uments in .C.

("). Local Docurnent Retrieval Using Query
Modification

In this approach, the global interface, upon receiving
the user query gu = (ur, ...,un), modifies the query

as foilows. The weight of the j-th query term is first
multiplied by (l'1lli). Let mj = ui x (l'illi) be the

product obtained for the j-th query term. Then, the

modified query ql = (rnr ,...,ffin) is submitted to f
instead of gr.

Upon receiving the modified user query ql, local
database ,C computes the local query weight for the
j-th term in ql as the product mi x Ii' which equals

to ui x Ul/\) x I or uilj. The resulting local query

vector is g'. = (urll,...,unl',), which is the same as

the global query vector qo for the original user query

{,. f,s mentioned above, in the term weighting scheme

're are using, the loca.l and olobal weieht of a term in a
document d are identical. In effect' the local similarity
computed between g', and a document d, sim.(Q'.,d),
is the same as simo(qo,d), the global similarity be-

tween go and d. Thus, all the globally desired docu-

ments in f, can be determined and only these need to
be retrieved.

(b). Local Document Retrieval by Determining
a Local Threshold

An aiternalive approach is to construct a Iocal thresh-

old for local database f, to retrieve all the globally
desired documents. As described in the previous sub-

section, for a given globai threshold ?, to find the local

threshold tr(T), rve

(**) rninimize the local
l1-, ull' r-u;

stmzlarzly function 
LJ=L r-J J orer all posstble d.

Q.d
5-i-, u'i1u'

subiect ,u "J=t '.J ' ) T." god

The above minimization problem (**) can be solved

using the method of Lagrange. In [li{LYW98], we soive

this problem with no restriction on the document term

weights. (The usual situation is that ail document
term weights are non-negative.) The local threshold

tr(T) obtained is C?- t/tt - T2)0 - C2), where C =
0^ao^t:" -:o' 

, and qo . Qc =Li=r"jli{ is lhe dot product
Qc 9c

beiwiln go and q.. This threshold is opbimal if ihe
vaiues of wi, i - 1,.. .,n, at which the minimum is

attained are non-negative.,

5 Conclusions !

In this paper, we proposed two new methods for esti-

mating the number of potentially useful documents in
a database. Our estimation methods are based upon

established statistical theory and general database rep-
resentation framework. Our experimental results indi-
cate that these methods can yield substantial improve-

ments over existing techniques. We aiso provided solu-

tions to the coilection fusion problem. Specifically, we

reformulated the probiem so that optimal local thresh-

olds can be determined. Two techniques, the first in-
voiving linear programming and the second using La-

grange's method, are suggested to yield optimal locai

thresholds. By applying the techniques to three ex-

ampies (the reai-estate'dxample, the p-norm, and the

popular Cosine funciidn), optimal solutions are ob-

tained in each case. 'When both the global and lo-

cal databases use the Cosine function, we also gave

a query modification technique to compute the global

similariiy for a document in the local database-
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