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Abstract 

Three algorithms for processing joins on attributes 
of textual type are presented and analyzed in this pa
per. Since such joins often involve document collec
tions of very large size, it is very important to find effi
cient algorithms to process them. The three algorithms 
differ on whether the documents themselves or the in
verted files on the documents are used to process the 
join. Our analysis and the simulation results indicate 
that the relative performance of these algorithms de
pends on the input document collections, system char
acteristics and the input query. For each algorithm, 
the type of input document collections with which the 
algorithm is likely to perform well is identified. 
Keywords: Query processing, textual database, join, 
multidatabase 

1. Introduction 

Researches in multidatabase system have been in
tensified in recent years (1,2,6,7,9,10,13,15]. In this 
paper, we consider a multidatabase system that con
tains both local systems that manage structured data 
(e.g., relational DBSs) and local systems that manage 
unstructured data (e.g., information retrieval (IR) sys
tems for handling text). 

Because we have a database fr01..t-end, global users 
may submit queries that contain joins between at
tributes of textual type. A motivating example is pre
sented in Section 2. A likely join comparator for tex
tual attributes is SIMILAR-TO that matches objects 
with similar textual contents based on some similar
ity function . Since each textual object is essentially a 
document, the join is to pair similar documents among 
the two document collections corresponding to the two 
textual attributes. 

While processing joins between non-textual at
tributes have been studied extensively, not much re
search has been reported on processin~joins between 
textual attributes in the literature. In 3], the authors 
reported a case study on automating t e assignment 
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of submitted papers to reviewers. The reported study 
requires to match the abstract of each submitted pa
per with a number of profiles of potential reviewers. 
The problem is essentially to process a join between 
two textual attributes. Since the document collections 
involved in that study is small, efficient processing 
strategy of the join is not their concern. Instead, the 
emphasis of that work is on accuracy. A somewhat 
related problem is the consecutive retrieval problem 
[4,14] which is to determine, for a given set of queries 
Q against a set of records R, whether there exists an 
organization of the records such that for each query 
in Q, all relevant records (loosely, similar records) can 
be stored in consecutive storage locations. If we in
terpret Q and R as two document collections, then 
the consecutive retrieval problem deals the storage as
pect of efficient retrieval of relevant documents from 
one collection for each document from another collec
tion. However, a major difference between consecu
tive retrieval problem and the join processing prob
lem is that the former assumes the knowledge that 
which documents from R are relevant to each docu
ment in Q while the latter needs to find which doc
uments from one collection are most similar to each 
document from another collection. Another related 
problem is the processing of a set of queries against a 
document collection in batch. There are several differ
ences between this batch query problem and the join 
problem: (1) For the former, many statistics about 
the queries which are important for query processing 
and optimization such as the frequency of each term 
in the queries are not available unless they are col
lected explicitly, which is unlikely since the batch may 
only be used once and it is unlikely to be cost effective 
to collect these statistics; (2) Special data structures 
commonly associated with a document collection such 
as an inverted file is unlikely to be available for the 
batch for the same reason. As we will see in the paper 
that the availability of inverted files means the appli
cability of certain algorithms. The clustering problem 
in IR systems (12] requires to find, for each document 
d, those documents similar to din the same document 
collection. This can be considered as a special case of 
the join problem when the two document collections 
involving the join are identical. 

This paper has the following contributions: (1) We 
present and analyze three algorithms for processing 



JOms between attributes of textual type. (2) Cost 
functions based on the number of I/O's for each of 
the algorithms are provided. (3) Simulation is done to 
compare the performance of the proposed algorithms. 
Our investigation indicates that no one algorithm is 
definitely better than all other algorithms in all cir
cumstances. In other words, each algorithm has its 
unique value in difference situations. ( 4) We provide 
insight on the type of input document collections with 
which each algorithm is tikely to perform well. We 
further give an algorithm which determines which one 
of the three algorithms should be used for processing a 
text-join. We are not aware of any similar study that 
has been reported before. 

The rest of this paper is organized as follows. A mo
tivating example is presented in Section 2. In Section 
3, we include the assumptions and notations that we 
need in this paper. The three join algorithms are in
troduced in Section 4. Cost analyses and comparisons 
of the three algorithms are presented in Section 5. In 
Section 6, simulation is carried out to further com
pare the proposed algorithms and to suggest which 
algorithm to use for a particular situation. We con
clude our discussion in Section 7. 

2. A motivating example 

Assume that the following two global relations 
have been obtained after schema integration: Appli
cants(SSN, Name, Resume) and Positions(P# , Title, 
Job_descr), where Resume and Job_descr are of type 
text. Consider the query to find , for each position, 
.A applicants whose resumes are most similar to the 
position's description. This query can be expressed in 
extended SQL as follows: 

Select P.P#, P.Title, A.SSN, A.Name 
From Positions P, Applicants A 
Where A.Resume SIMILAR..TO(.A) P.Job_descr 

The where-clause of the above query contains a 
join on attributes of textual type. This type of joins 
do not appear in traditional database systems. Note 
that "A.Resume SIMILAR_TO(.A) P.Job_descr" and 
"P.Job_descr SIMILAR..TO(.A) A.Resume" have dif
ferent semantics. The former is to find .A resumes for 
each job description while the latter is to find .A job 
descriptions for each resume. The asymmetry of the 
operator SIMILAR_TO has some impact on the eval
uation strategy [11]. 

For a given resume r and a given job description j, 
to be sure that r is among the .A resumes most similar 
to j, all resumes have to be considered. If we process 
the join by comparing each job description with all re
sumes, then after a job description d is compared with 
all resumes, the A resumes most similar to d can be 
identified and a partial result is produced. However, if 
we process the join by comparing each resume with all 
job descriptions, then after a resume is compared with 
all job descriptions, no partial result can be generated. 
In this case, many intermediate results (i.e., similarity 
values between resumes and job descriptions) need to 
be maintained in the main memory. This observation 
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indicates that comparing each job description with all 
resumes is a more natural way to process the above 
textual join. 

Due to selection conditions on other attributes of 
the relations that have textual attributes, it is pos
sible that only part of the documents in a collection 
need to participate in a join. For example, consider 
the query that is to find , for each position whose title 
contains "Engineer", .A applicants whose resumes are 
most similar to the position's description. 

Select P.P#, P.Title, A.SSN, A.Name 
From Positions P, Applicants A 
Where P.Title like "%Engineer%" and A.Resume 
SIMILAR_TO(A) P.Job_descr 

If selection P. Title like "%Engineer%" is evaluated 
first, then only those job descriptions whose position 
title contains "Engineer" need to participate in the 
join. 

In this paper, we are interested in studying algo
rithms that can be used to process the following query: 

Select Rl.Xl , R2.Y2 
From Rl, R2 
Where Rl.Cl SIMILAR_TO(A) R2.C2 

where Cl and C2 are attributes representing two doc
ument collections (collection 1 and collection 2, re
spectively). Clearly, the join to be evaluated is of the 
form: "Cl SIMILAR_TO(.A) C2". 

3. Assumptions and notations 

Using the vector representation [12], each document 
can be represented as a list of terms together with their 
number of occurrences in the document. Each term is 
associated with a weight indicating the importance of 
the term in the document. Usually, terms are identi
fied by numbers to save space. We assume that each 
document consists of a list of cells of the form (t# , 
w), called document-cell or d-cell, where t# is a term 
number and w is the number of occurrences of the 
term t in the document. All d-cells in a document are 
ordered in increasin~ order of the term number. The 
size of each d-cell is It# I+ lwl bytes, where lXI is the 
number of bytes to contain X. In practice, lt#l = 3 
and lwl = 2 is sufficient. In a multidatabase envi
ronment, different numbers may be used to represent 
the same term in different local IR systems due to the 
local autonomy. Several methods may be used to over
come this problem. One method is to use actual terms 
rather than term numbers. The disadvantage is that 
the size of the document collection will become much 
larger (5 or more times larger). Another method is to 
establish a mapping between the corresponding num
bers identifying the same term. An attractive method 
is to have a standard mapping from terms to term 
numbers and have all local IR systems use the same 
mapping. Such a standard can be very beneficial in 
improving the performance of the multidatabase sys
tem. It can save on communication costs (no actual 
terms needs to be transferred) and processing costs (it 
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is more efficient to compare numbers than to compare 
actual terms or no need to search the mapping table). 
To simplify our presentation, we assume that the same 
number is always used to represent the same term in 
all local IR systems. Note that this assumption can be 
simulated by always keeping the mapping structure in 
the memory when different numbers are used to rep
resent the same term in different local systems. In the 
remaining discussion, terms and term numbers will be 
used interchangeably. 

Let t 1, t2, ... , tn be all the common terms be
tween documents Dl and D2. Let u1, u2, ... , Un and 
v1, v2, ... , Vn be the numbers of occurrences of these 
terms in Dl and D2, respectively. The similarity be
tween Dl and D2 can be defined as ">-~-1. Ui *Vi . A 
more realistic similarity function is to divide the simi
larity by the norms of the documents and to incorpo
rate the use of the inverse document frequency weight 
[121, which assigns higher weights to terms which occur 
m fewer documents. The normalization can be carried 
out by pre-computing the norms of the documents, 
storing them and performing the divisions during the 
processing of the documents. The inverse document 
frequency weight can be pre-computed for each term 
and storing them as parts of the list heads in the in
verted files . For the sake of simplicity of presentation, 
we use the number of occurrences instead of weights. 

For a given term t in a given document collection 
C, the inverted file entry consists of a list of i-cells 
(short for inverted-file-cell) of the form (d#, w), where 
d# is a document number and w is the number of 
occurrences oft in the document with number d#. 
We assume that i-cells in each inverted file entry are 
ordered in increasing order of the document number. 
The size of each i-cell is ld#l + lwl. i-cells and d-cells 
have approximately the same size. 

We use the following notations in our discussion: 

N; -the number of documents in collection i, i=l or 2 
B - the size of the available memory buffer in pages 
T; - the number of terms in collection i 
Bt; -the size of the B+tree for collection i in pages (as
sume tightly packed) 
p - the probability that a term in collection Cl also ap
pears in collection C2 
q- the probability that a term in C2 also appears in Cl 
a - the cost ratio of a random I/0 over a sequential I/0 
P - page size in bytes ( 4k) 
K; - the average number of terms in a document in col
lection i 
]; - the average size of an inverted file entry on collection 
i in pages (5 * (K; * N;)f(T; * P)) 
I; - the size of the inverted file on collection i in pages 
( ]; * T;, assume tightly packed) 
S; - the average size of a document in collection i in pages 
(5 * K;/P) 
D; - the size of collection i in pages (S; * N;, assume 
tightly packed) 
Jl - the inverted file entry of term t on collection i 
,\-operator SIMILAR_TO(.\) is used 
6 - the fraction of the similarities that are non-zero 

We assume that documents in each collection are 
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stored in consecutive storage locations. Therefore, 
when all documents in collection i are scanned in stor
age order, the total number of pages read in will be 
D;, which is also the total 1/0 cost. On the other 
hand, if documents in collection i are read in one at a 
time in random order, and a document is not kept in 
the memory after it is processed, then the total num
ber of pages read in will approximately be Ni * fSil, 
where 1 A 1 denotes the ceiling of A, and the total cost 
will approximately beN;* rs;l *a, where a is the cost 
ratio of a random 1/0 over a sequential 1/0 due to the 
additional seek and rotation delay of a random read. 
Similarly, we assume that inverted file entries on each 
collection are stored in consecutive storage locations 
in ascending order of the term numbers and typically r J; l pages will be read in when an inverted file entry 
is brought in the memory in random order. 

Note that for a given document collection, if docu
ment numbers and term numbers have the same size, 
its total size is the same as the total size of its corre
sponding inverted file. 

In this paper, only 1/0 cost will be used to analyze 
and compare different algorithms as if we have a cen
tralized environment where 1/0 cost dominates CPU 
cost . 

4. Algorithms 

In this section, we present three algorithms for pro
cessing joins on textual attributes. We assume that 
the existence of the inverted file on all document col
lections. 

Depending on how documents and/or inverted files 
are used to evaluate a join, three basic algorithms can 
be constructed. The first algorithm is to use only doc
uments to process the join, the second algorithm is to 
use documents from one collection and the inverted 
file from another collection to evaluate the join, and 
the third algorithm uses inverted files from both col
lections to do the same job. A collection of documents 
can be represented by a document-term matrix where 
the rows are the documents and the columns are the · 
terms or the inverted file entries of the terms. There
fore , we name the first algorithm the Horizontal
Horizontal Nested Loop (HHNL), the second 
algorithm the Horizontal-Vertical Nested Loop 
(HVNL), and the third algorithm the Vertical
Vertical Merge (VVM). 

4.1 Algorithm HHNL 

A straightforward way for evaluating the join is to 
compare each document in one collection with every 
document in the other collection. Although simple, 
this method has several attractive properties. First, if 
one or two of the collections can be reduced by some 
selection conditions, only the remaining documents 
need to be considered. Second, documents can be 
read in mostly sequentially resulting in mostly cheap 
sequential 1/0s. 

From the discussion in Section 2, we know that it 
is more natural to process the join by comparing each 
document in C2 with all documents in Cl. That is, 
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it is more natural to use C2 as the outer collection 
and Cl as the inner collection in the join evaluation. 
We call this order the forward order and the reverse 
order the backward order. The backward order can 
be more efficient if Cl is much smaller than C2. Due 
to space limitation, the backward order will not be 
studied further in this paper. Interested readers are 
referred to [11] . 

We adopt the policy of letting the outer collection 
use as much memory space as possible. The case that 
lets the inner collection use as much memory space 
as possible is equivalent to the backward order. With 
this memory allocation policy, the algorithm HHNL 
can be described as follows : After reading in the next 
X documents of C2 into the main memory, for some 
integer X to be determined, scan the documents in Cl 
and while a document in Cl is in the memory, com
pute the similarity between this document and every 
document in C2 that is currently in the memory. For 
each document d2 in C2, keep track of only those doc
uments in Cl which have been processed against d2 
and have the ). largest similarities with d2. 

More rigorously, with C2 as the outer collection, 
we need to reserve the space to accommodate at least 
one document in Cl. That is, rs1l pages need to be 
reserved for Cl. We also need to reserve the space to 
save ). similarities for each document in C2 currently 
in the memory. Assume that each similarity value 
occupies 4 bytes. Then the number of documents in 
C2 that can be held in the memory buffer of size B 
can be estimated as: X = (B- rs11 )j(S2 + 4>./ P) 

We now present the algorithm HHNL: 

While (there are documents in C2 to be read in) 
If there are Xl = min{N2 , X} or more unprocessed 

documents in C2 left 
input the next Xl unprocessed documents in C2 

into the main memory; 
Else input the remaining unprocessed documents in 

C2 into the main memory; 
For each unprocessed d2 of D2 in the memory 

{For each document dl in Cl 
{Compute the similarity between d2 and dl; 

If it is greater tha.n the sma.llest of the .A 
largest similarities computed so far for d2 

{replace the sma.llest of the .A largest sim
ilarities by the new similarity; 
update the list of the documents in Cl 
to keep track of those documents 
with the .A largest similarities with d2; 

} } } 

4.2 Algorithm HVNL 

HVNL uses documents in one collection and the in
verted file on the other collection to compute the sim
ilarities. In an IR system, processing a user query, 
which can be considered as a document, is to find 
the >. documents in the system which are most sim
ilar to the user query. One way to process such a 
query is to compare it with each document in the sys
tem. This method requires almost all entries in the 
document-term matrix be accessed. A more efficient 
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way is to use the inverted file on the document collec
tion . This method only needs to access those inverted 
file entries corresponding to t he terms in the query. 
Since the number of terms in a query is usually a very 
small fraction of the total number of terms in all doc
uments in the system, the inverted file based method 
accesses only a very small portion of the document
term matrix. HVNL is a straightforward extension of 
this method to the situation where we need to find 
the >. most similar documents from one collection for 
every document in another collection. 

The process of using the inverted file to compute the 
similarities between a document din C2 to documents 
in Cl can be described as follows. Let (t , w) be the 
next d-cell to be considered in d. Let the inverted file 
entr1 corresponding tot on Cl be {(d1 , w!), .. . , (dn, 
wn)J, where d; 's are document numbers. After t is 
processed , the similarity between d and document d; 
as accumulated so far will be U; + w * w; , where U; is 
the accumulated similarity between d and d; before t 
is considered, and W*W; is the contribution due to the 
sharing of the term t between d and d; , i=l, ... ,n. After 
all terms in d are processed, the similarities between 
d and all documents in Cl will be computed, and the 
). documents in Cl which are most similar to d can be 
identified. 

Note that before the last d-cell in d is processed, 
all intermediate similarities between d and all docu
ments in Cl need to be saved. The amount of memory 
needed for such purpose is proportional to N1. Fur
ther analysis can reveal that using the inverted file on 
C2 to process the join needs more memory space to 
store intermediate similarities (the amount is propor
tional to .X*N2) . In practice, on)y non-zero similarities 
need to be saved. We use 6 to denote the fraction of 
the similarities that are non-zero, 0 < 6 < 1. 

HVNL will read in each document d in C2 in turn 
and while d is in the memory, all inverted file entries 
on Cl corresponding to terms in d will be read in to 
process d. Note that not all terms in d will necessar
ily appear in Cl. To reduce the I/0 cost, inverted 
file entries that are read in for processin ~ earlier doc
uments are kept in the memory to proc· ~ later doc
uments. Due to space limitation, usually not all in
verted file entries read in earlier can be kept in the 
memory. Therefore, a policy for replacing an inverted 
file entry in the memory by a new inverted file entry is 
needed. Let the frequency of a term in a collection be 
the number of documents containing the term. This is 
known as document frequency. Document frequencies 
are stored for similarity computation in IR systems 
and no extra effort is needed to get them. Our re
placement policy chooses the inverted file entry whose 
corresponding term has the lowest frequency in C2 to 
replace. This reduces the possibility of the replaced 
inverted file entry to be reused in the future. To make 
the best use of the inverted file entries currently in the 
memory, when a new document dl in C2 is processed, 
terms in dl whose corresponding inverted file entries 
are already in the memory are considered first. A list 
that contains the terms whose corresponding inverted 
file entries are in the memory will be maintained. 

We now present the algorithm HVNL: 

.. ~----------------------------------



For each document d in C2 
{For each term t in d 

} 

If t also appears in C 1 
{Read in the inverted file entry oft on Cl 

(It) if it is not already in; 
Accumulate similarities; 

} 
Find the documents in Cl which have the A largest 

similarities with d;-

For each inverted file , there is a B+tree which is 
used to find whether a term is in the collection and if 
present where the corresponding inverted file entry is 
located. 

One possible way to improve the above algorithm is 
to improve the selection of the next document to pro
cess. Intuitively, if we always choose an un-processed 
document in C2 whose terms' corresponding inverted 
file entries on C1 have the largest intersection with 
those inverted file entries already in the memory as 
the next document to be processed, then the likeli
hood of an inverted file entry already in the memory 
to be reused can be increased. This seemingly attrac
tive alternative has two potential problems. First, by 
not reading in documents in their storage order, more 
expensive random I/Os will be incurred. Second, we 
have the following proposition: 
Proposition: The problem of finding an optimal or
der of documents in C2 so that the best performance 
can be achieved is NP-hard. 
Sketch of Proof: It was shown in (8) that the follow
ing problem known as the Optimal Batch Integrity As
sertion Verification (OBIAV), which is to find an op
timal order for verifying a set of integrity constraints 
and verifying each such constraint requires a set of 
pages be brought in from secondary storage to the 
memory, is an NP-hard problem. This problem can 
be reduced to the optimal order problem in our case 
and vice versa. Therefore, the optimal order problem 
in our case is also NP-hard. • 

4.3 Algorithm VVM 

Algorithm VVM uses inverted files on both collec
tions to compute the similarities. The strength of this 
algorithm is that it only needs to scan each inverted 
file once to compute similarities between every pair 
of documents in the two collections regardless of the 
sizes of the two collections provided that the memory 
space is large enough to accommodate intermediate 
similarity values. In this case, VVM can be at least 
as good as HHNL because HHNL needs to scan each 
document collection at least once and the size of the 
inverted file on a collection is about the same as the 
size of the collection itself. VVM tries to compute sim
ilarities between every pair of documents in the two 
collections simultaneously, as a result, it needs to save 
the intermediate similarities. Thus, the memory re
quirement for saving these similarities is proportional 
to N1 * N2, which can be so large such that VVM 
can not be run at all. In summary, VVM is likely to 
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perform well for document collections that are large 
in size (such that none can be entirely held in the 
memory) but small in number of documents. This is 
possible if each document has a large size. 

Algorithm VVM can be described as follows: we 
scan both inverted files on the two collections. During 
the parallel scan, if two inverted file entries correspond 
to the same term, then invoke the similarity accumu
lating process. 

Recall that we assumed that inverted file entries 
are stored in increasing order of the term numbers. 
Therefore, one scan of each inverted file is sufficient 
(very much like the merge phase of sort merge) . The 
similarity accumulating process can be described as 
follows . Let It= {(rl, ut) , .. . , (rm, um)} and I~= 
{(sl,vt) , ... ,(sn , vn)} be two inverted file entries for 
the same term t on the two collections, respectively. 
After the two inverted file entries are processed , the 
similarity between documents rp and Sq as accumu
lated so far will be Up + Up * Vq, where Up is the 
accumulated similarity between rp and sq belore t is 
considered, p = 1, .. . , m, q = 1, .. . , n . 

We can extend the above algorithm VVM as follows 
to tackle the problem of insufficient memory space for 
all intermediate similarit ies. Suppose SM is the to
tal number of pages needed to store the intermediate 
similarities when all pairs of documents in the two col
lections are considered at the same time. Suppose M 
is the available memory space for storing the interme
diate similarities. If SM > M, divide collection C2 into 
rSM/Ml subcollections and then compute the simi
iarities between documents in each subcollection and 
documents in C1 , one subcollection at a time. Since 
for each such subcollection, one scan of the original 
inverted files on both collections is needed, this exten
sion incurs a cost which will be rsMJMl times higher 
than that when the memory is large enough to hold 
all intermediate similarities. For a more detailed cost 
analysis , see Section 5.3. 

5. 1/0 cost analysis 

5.1 Algc·rithm HHNL 

Let X be the number of documents in C2 that can 
be held in the memory buffer of size B as defined in 
Section 4.1. Since for each X documents in C2, C1 
needs to be scanned once, the total I/0 cost of HHNL 
can be estimated as below: 

hhs = D2 + rN2/.Xl * Dt (HHS1) 
where the first term is the cost of scanning C2 and the 
second term is the cost of scanning C1, and rN2/Xl 
is the number of times C1 needs to be scanned. 

The above cost formula assumes that all I/Os are 
sequential 1/0s (i.e., both C1 and C2 are sequentially 
scanned in). This is reasonable only when each doc
ument collection is read by a dedicated drive with no 
or little interference from other I/0 requests. If this is 
not the case, then some of the I/Os may become more 
costly random 1/0s. We first consider the case when 
N2 > X. The following interleaved 1/0 and CPU 
patterns can be observed. After each X documents 
in C2 are read in, for each document d in C1 read 



in, CPU will take some time to compute the similari
ties between the X documents and d. When the CPU 
is doing the computation, 1/0 resources may be allo
cated to other jobs. If this is the case, then the next 
document from C1 will use a random I/0, so does 
the read-in of the next X documents in C2. In other 
words , in the worst case, all documents in C1 will be 
read in using random I/0 and for every X documents 
in C2, there will be a random I/0. The number of ac
tual random 1/0s for scanning documents in C1 once · 
also depends on the document size and can be esti
mated as min{D1 , Nl} (if S1 ~ 1, then D 1 should be 
used; otherwise, N1 should be used). Therefore, when 
N2 ~ X, in the worst scenario, the total 1/0 cost can 
be estimated as follows: 

hhr = hhs + fN2/Xl * (1 + min{D1, Nl}) * (o -1) 
When N2 < X, then the entire collection C2 can be 

scanned in sequentially and held in the memory, and 
the remaining memory space ((X- N2) * S2) can be 
used to hold documents in Cl. Therefore, C1 can be 
read in in f Dtf((X- N2) * S2)l blocks and each block 
can be read in sequentially. In this case, we have 

hhr = hhs + fDtf((X- N2) * S2)l * (o- 1) 

5.2 Algorithm HVNL 

Recall that a B+tree is maintained for each doc
ument collection for quickly locating the inverted file 
entry of any given term. The size of the B+tree can 
be estimated as follows. Typically, each cell in the 
B+tree occupies 9 bytes (3 for each term number, 4 
for address and 2 for document frequency). If a doc
ument collection has N terms, then the size of the 
B+tree is approximately 9*N /P (only the leaf nodes 
are considered). The size is not terribly large. For ex
ample, for a document collection with 100,000 distinct 
terms, the B+tree takes about 220 pages of size 4KB. 
We assume that the entire B+tree will be read in the 
memory when the inverted file needs to be accessed 
and it incurs a one-time cost of reading in the B+tree. 

Let X be the number of inverted file entries on C1 
that can be held in the memory when the memory 
buffer is fully used. In addition to X inverted file 
entries, the memory (size B) also need to contain a 
document in C2 of size fS2l , a B+tree of size Bt1 , 

the non-zero similarities values between the document 
in C2 currently under processing and all documents 
in C1 and the list containing the terms whose corre
sponding inverted file entries are in the main memory 
(size X It# I/ P) . Therefore, X can be estimated as fol
lows: 

X_ fl.oor(B-[S2]-Bt,-4•N,6/P) 
- J,+lt#I/P 

If we assume that the read-in of the documents in 
C2 incurs sequential I/Os, then the I/0 cost of HVNL 
can be estimated as follows: 
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is greater than or equal to the total number of in
verted file entries on C1 (i.e., .Td. In this case, we can 
either read in the entire inverted file on C1 in sequen
tial order (this corresponds to the first expression in 
min{}) or read in all inverted file entries needed to 
process the query · (the number is T2 * q) in random 
order (this corresponds to the second expression in 
min{} . The memory is large enough to do this since 
X ~ T1 ~ T2 * q.); the second case corresponds to 
the case when the memory is not large enough to hold 
all inverted file entries on C1 but is large enough to 
hold all needed inverted file entries; the last expression 
is for the case when the memory is not large enough 
to hold all needed inverted file entries on Cl. In this 
case, the second term is the cost of finding and read
ing in the inverted file entries on C1 which correspond 
to the terms in documents in C2 until the memory 
is fully occupied. Suppose the memory is just large 
enough to hold all the inverted file entries on C1 cor
responding to the terms in the first (s- 1) documents 
in C2 and a fraction (X1) of the inverted file entries 
corresponding to the terms in the s-th document in 
C2 (i .e. , the inverted file entries on C1 corresponding 
to the terms in the first s + X1 - 1 documents in C2 
can be held in the memory). Let Y be the number of 
new inverted file entries that need to be read in when 
a new document in C2 is processed after the memory 
is fully occupied. Then the third term is the total cost 
of reading in new inverted file entries for processing 
the remaining documents in C2. We now discuss how 
s, X1 and Y can be estimated. First , the number of 
distinct terms in m documents in C2 can be estimated 
by /(m) = T2 - (1 - K2/T2)m * T2. Therefore, s is 
the smallest m satisfying q * f(m) > X. Note that 
(X - q * f(s - 1)) is the number of inverted file en
tries that can still be held in the memory after all the 
inverted file entries on C1 corresponding to the terms 
in the first ( s - 1) documents in C2 have been read 
in and {q * f(s) - q * f(s- 1)) is the number of new 
inverted file entries that need to be read in when the 
s-th document in C2 is processed, X1 can be estimated 
by {X- q * f(s- 1))/(q * f(s)- q * f(s- 1)) . Finally, 
Y can be estimated by (q * f(s + X1)- X). 

As discussed in Section 5.1 , it is possible that some 
or all of the I/Os of reading in the documents in C2 
are random I/Os due to other obligations of the I/0 
device. If after inverted file entries are accommodated, 
there is still more memory space left , then the remain
ing memory space can be used to sequentially scan in 
multiple documents in C2 at a time. Based on this ob
servation, when random I/Os are considered, the total 
I/0 cost of HVNL can be estimated as: 
hvr 

min{D2 +It+ Bt, + rD2/((X -Tt) • J,)l 
• (a- 1) , D2 + T2 • q • Ptl • a+ Btt 

= 

+ rD2/((X- T2 • q) • Jt)l• (a -1)}, i/ X~ Tt 
hv" + r D2/((X - T2 • q) * Jt)l 

• (a- 1), i/ Tt >X~ T2 • q 
hv, + min{D2, N2} • (a- 1}, otherwi.5e 

It would be easier to understand the above formula 
when compared with the formula for computin~ hvs. 
In the first expression in min{}, (X - T1) * J1 1s the 



remaining memory space after all inverted file entries 
are accommodated. 

5.3 Algorithm VVM 

To avoid the much higher cost of random 1/0, we 
can simply scan both inverted files on the two collec
tions. During the parallel scan, if two inverted file 
entries correspond to the same term, then invoke the 
similarity accumulating process. Recall that we as
sumed that inverted file entries are stored in increas
ing order of the term num.bers. Therefore, one ~ca? of 
each inverted file is suffictent to compute all stmtlar
ities if the memory is large enough to accommodate 
all intermediate similarities. Therefore, in this case, if 
all the I/Os are sequential I/Os, the total I/0 cost of 
VVM is: 

VVS = h + /2 
Again, some or all of the I/Os could actually be ran

dom I/Os due to other obligations of the I/0 device. 
In the worst case scenario, i.e., all 1/0s are random 
1/0s, the total I/0 cost of VVM can be estimated as: 

vvr = (min{lt,Tt}+min{hT2})•o 
VVM usually requires a very large memory space to 

save the intermediate similarity values. If only non
zero similarities are stored, then the memory space 
for storing intermediate similarity values for VVM 
is 46 * N1 * N2/ P . When the memory space is not 
large enough to accommodate all intermediate similar
ity values, a simple extension to the algorithm VVM 
can be made (see Section 4.3) . In this case, the to
tal cost can be estimated by multiplying vvs (or vvr) 
by fSM/Ml, where SM = 46 * Nt * N2fP is the to
tal number of pages needed to store the intermediate 
similarities when all pairs of documents in the two 
collections are considered at the same time and M = 
B- f J tl- f h 1 is the available memory space for stor
ing the intermediate similarities. Therefore, a more 
general formula for estimatin~ the total 1/0 cost when 
all the I/Os are sequential IjOs can be given below: 

VVS =(It+ h)* fSM/Ml (VVS) 
and a more general formula for estimating the total 
1/0 cost when all the I/Os are random I/Os is: 

vvr =(min{ It, Tt} + min{h T2}) * o * fSM/Ml 

5.4 Comparisons 

Algorithm HHNL uses two document collections as 
the input. It does not use any special data structures 
such as inverted files and B+trees. Thus, it is more 
easily applicable. It is also easier to implement. Since 
HHNL uses documents directly for similarity compu
tation, it benefits quite naturally from any possible 
reductions to the number of documents in either or 
both collections resulted from the evaluation of selec
tion conditions on non-textual attributes of the rele
vant relations. The memory space requirement of this 
algorithm for storing intermediate similarity values is 
generally small comparing with those of other algo
rithms. 

Algorithm HVNL uses one document collection, one 
inverted file and the B+tree corresponding to the in
ner collection as the input. While the document col-
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lection is always scanned once, the access to inverted 
file entries is more complex. On the one hand , not all 
inverted file entries need to be read in. In fact, only 
those inverted file entries whose corresponding terms 
also appear in the other document collection need to 
be accessed. On the other hand, some inverted file 
entries may be read in many times due to their ap
pearance in multiple documents in C2 although effort 
is made by the algorithm to reuse inverted file entries 
currently in the memory. It is expected that this algo
rithm can be very competitive in one of the following 
two situations: (1) One of the document collection, say 
C2, is much smaller than the other collection because 
in this case, it is possible that only a small fraction 
of all inverted file entries in the inverted file needs to 
be accessed. When C2 contains only one document, it 
becomes an extreme case of processing a single query 
against a document collection. Note that an origi
nally lar~e document collection may become small af
ter condttions on attributes of the relevant relation 
are evaluated. (2) For the collection where documents 
are used, close documents in storage order share many 
terms and non-close documents share few terms. This 
increases the possibility of reuse of inverted file entries 
in the memory and reduces the possibility of re-read 
in of inverted file entries. This could happen when the 
documents in the collection are clustered. 

Algorithm HVNL accesses inverted file entries in 
random order. As such, it has two negative effects on 
the I/0 cost . One is that random I/Os are more ex
pensive than sequential I/Os. The other is that even 
when an inverted file entry occupies a small fraction 
of a page, the whole page containing the entry has to 
be read in. Therefore, when the size of each inverted 
file entry is close to an integer, the competitiveness 
of HVNL will be increased. One thing bad about us
ing the inverted file is that the size of the file remains 
the same even if the number of documents in the cor
responding document collection can be reduced by a 
selection. The memory space requirement of HVNL 
for storing intermediate similarities is generally higher 
than that of HHNL but lower than that of VVM. 

Algorithm VVM uses two inverted files as the in
put. As we discussed before, this algorithm has a very 
nice one-scan property, namely, it only needs to scan 
each inverted file once to compute the similarities re
gardless of the sizes of the two collections provided 
that the memory space is large enough to accommo
date intermediate similarity values. Since the size of 
the inverted file on a collection is about the same as 
the size of the collection (when the collection is not 
reduced by other selections), VVM can be at least 
as efficient as HHNL as far as I/0 cost is concerned. 
The major drawback of VVM is that it needs a very 
large space to save the intermediate similarities. Since 
the memory requirement for saving these similarities 
is proportional to N1 * N2, VVM is likely to perform 
well for document collections that are large in size but 
small in number of documents. Another disadvantage 
of VVM is that the sizes of the inverted files will re
main the same even if the number of documents in the 
corresponding document collections can be reduced. 



6. Simulation results 

Due to the large number of paramet.er~ in the c.ost 
formulas of the algorithms presented, 1t 1s very diffi
cult to compare the performance of th~se alg.orith~s 
based on these formulas directly. In this sectiOn, dif
ferent algorithms are compared based on s.imulation 
results. Our objective is to find out the lJ?pact ?f 
the variations of the parameters on the algonthms, m 
other words, we would like to find out in what situa
tion an algorithm performs the best. 

Three document collections which were collected by 
ARPA/NIST [5], namely, WSJ (Wall Street Journal), 
FR (Federal Register) a~d DO~ (Departmen~ o.f En
ergy), are used in our s1m.ulat10n. The statistics of 
these collections are shown m the table below (the last 
three rows are estimated by us based on it#l = 3). 

WSJ FR DOE 
#documents 98736 26207 226087 
#terms per doc 329 1017 89 
total # of distinct terms 156298 126258 186225 
collection size in pages 40605 33315 25152 
avg. size of a document 0.41 1.27 0.111 
avg. size of an inv. fi. en. 0.26 0.264 0.135 

Among the three document collections, FR has 
fewer but larger documents and DOE has more but 
smaller documents. The number of documents in WSJ 
lies between those of FR and DOE. So is the average 
size of documents in WSJ. 

For all simulations, the page size P is fixed at 4KB, 
the fraction of the similarities that are non-zero 6 is 
fixed at 0.1 and~ is fixed at 20 (note that only HHNL 
involves ~ and it is not really sensitive to ~). The 
probability q is computed as follows: 

{ 

0.8 * TI/T2, if T1 ~ T2 
q = 0.8, if T2 < T1 < 5 * T2 

1 - T2/T1, if T1 ~ 5 * T2 
The formula says that, given the number of distiD;ct 
terms in C2 (i.e., T2), ~he smaller the number of .d!s
tinct terms in C1, T1 , 1s, the smaller the probab1hty 
that a term in C2 also appears in C1 will be; and when 
T1 becomes much larger than T2, then q will become 
closer to 1; otherwise, q is 0.8. Probability p can be 
computed in a similar manner. 

For parameters B (memory size) and a, we assign 
a base value for each: B = 10,000 (pages) and a = 
5. When the impact of a parameter is studied, we 
vary the values of the parameter while let the other 
parameter use its base value. 

We conducted the following five groups of simula
tions. 
Group 1: A real collection is used as both collection 

C1 and collection C2. Since there are three real 
collections (WSJ , FR and DOE) and two param
eters (B and a), six simulations are conducted. 

Group 2: Different real collections will be used as 
C1 and C2. B varies while a uses its base value. 
From the three real collections, six simulations 
are designed. 
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Group 3: While C1 and C2 continue to use real col
lections, only a small number of documents in C2 
are used to participate the join. These experi
ments are used to investigate the impact of local 
selections. All simulations in this group use only 
the base values of the two parameters. Since there 
are three real collections, three simulation results 
are collected for this group. 

Group 4: Cl again uses real collections but C2 uses 
collections with only a small number of docu
ments. The difference between Group 3 and 
Group 4 is that the former uses a small num
ber of documents (in C2) from an ORIGINALLY 
large collection C2 and the latter uses an ORIG
INALLY small collection C2. This difference has 
the following impacts on the cost: (1) documents 
in C2 need to be read in randomly by the former 
but can be read in sequentially by the latter; and 
(2) the size of the inverted file and the size of the 
B+tree on collection C2 for the former are com
puted based on the original collection, not just 
the documents used. This will have an impact on 
the cost of VVM. In our experiments, after a real 
collection is chosen to be C1, C2 will be derived 
from Cl. Again, all simulations in this group use 
only the base values of the two parameters and 
three simulations are conducted for this group. 

Group 5: Both collection C1 and collection C2 use 
new collections but they remain to be identical. 
Each new collection is derived from a real col
lection by reducing the number of documents in 
the real collection and increasing the number of 
terms in each document in the real collection by 
the same factor such that the collection size re
mains unchanged. The simulations in this group 
are especially aimed at observing the behavior of 
Algorithm VVM. Again, only the base values of 
the two parameters are used and three simulation 
results are collected for this group. 

Due to space limitation, the actual and detailed 
simulation results will not be presented here, and in
terested readers are referred to [111 . The summary of 
the simulation results are presented below. 

6.1 Summary of simulation results 

The following main points can be summarized from 
our extensive simulations. 

1. The cost of one algorithm under one situation can 
differ drastically from that of another algorithm 
under the same situation. As a result, it is es
sential to choose an appropriate algorithm for a 
given situation. 

2. If the number of documents in one of the two 
collections, say M, is originally very small or be
comes very small after a selection, then HVNL 
has a very good chance to outperform other al
gorithms. Although how small for M to be small 
enough mainly depends on the number of terms in 
each document in the outer collection, M is likely 
to be limited by 100. 



3. If the number of documents in each of the two 
collections is not very large (roughly N1 * N2 < 
10000 • B) and both document collections are 
large such that none can be entirely held in the 
memory, then VVM (the sequential version) can 
outperform other algorithms. 

4. For most other cases, the simple algorithm HHNL 
performs very well . 

5. The costs of the random versions of these algo
rithms depict the worst case scenario when the 
I/0 devices are busy satisfying different obliga~ 
tions at the same time. Except for VVM, these 
costs have no impact in ranking these algorithms. 

Overall, the simulation results match well with our 
analysis in Section 5.4. 

Since no one algorithm is definitely better 
than all other algorithms in all circumstances, it 
is desirable to construct an integrated algorithm 
that can automatically determine which algorithm 
to use given the statistics of the two collec
tions (Nl , N2,K1 , K2 ,Tl>T2 , p, q, 6) , system parame
ters (B , P, a) and query parameters ~A , selectivities of 
predicates on non-textual attributes . The sketch of 
an integrated algorithm can be foun in [11] . 

7. Concluding remarks 

. In this paper, w~ pr~s~nted and analyzed three algo
nthms for processmg Joms between attributes of tex
tual type. From analysis and simulation we identi
fied , for each algorithm, the type of input document 
collections with which the algorithm is likely to per
form well. More specifically, we found that HVNL can 
be very competitive when the number of documents 
in one of the two document collections is/becomes 
very small , and VVM can perform very well when 
the number of documents in each of the two collec
tions is not very large and both document collections 
are large such that none can be entirely held in the 
memory. In o~her cases, HHNL is likely to be the top 
performer. Smce no one algorithm is definitely bet
ter than ~11 othe~ algorithms, we proposed the idea of 
con~tructu~g an mtegrated algorithm consisting of the 
~~1c algor~t~ms such that a particular basic algorithm 
1s mvoked 1f 1t has the lowest estimated cost. We also 
indicated that the standardizat ion of term numbers 
will be very useful in multidatabase environments. 

F~uther studies in this area include (1) investigate 
the 1mpact of the availability of clusters on the per
form~nce of each algorithm; (2) develop cost formulas 
that mclude 9PU cost and communication cost ; (3) 
develop al~or1thms th~t pr~cess t~xtual joins in paral
lel; and ( 4) more detatled s1mulat10n and experiment. 
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