

~b-Pfr

Performance Analysis of Several Algorithms
for Processing Joins between Textual Attributes*

Weiyi Meng1 , Clement Yu2
, Wei Wang\ Naphtali Rishe3

1 Dept . of Computer Science, SUNY - Binghamton, Binghamton, NY 13902
2 Dept. of EECS, University of Illinois at Chicago, Chicago, IL 60607

3 School of Computer Science, Florida International University, Miami, FL 33199

Abstract

Three algorithms for processing joins on attributes
of textual type are presented and analyzed in this pa
per. Since such joins often involve document collec
tions of very large size, it is very important to find effi
cient algorithms to process them. The three algorithms
differ on whether the documents themselves or the in
verted files on the documents are used to process the
join. Our analysis and the simulation results indicate
that the relative performance of these algorithms de
pends on the input document collections, system char
acteristics and the input query. For each algorithm,
the type of input document collections with which the
algorithm is likely to perform well is identified.
Keywords: Query processing, textual database, join,
multidatabase

1. Introduction

Researches in multidatabase system have been in
tensified in recent years (1,2,6,7,9,10,13,15]. In this
paper, we consider a multidatabase system that con
tains both local systems that manage structured data
(e.g., relational DBSs) and local systems that manage
unstructured data (e.g., information retrieval (IR) sys
tems for handling text).

Because we have a database fr01..t-end, global users
may submit queries that contain joins between at
tributes of textual type. A motivating example is pre
sented in Section 2. A likely join comparator for tex
tual attributes is SIMILAR-TO that matches objects
with similar textual contents based on some similar
ity function . Since each textual object is essentially a
document, the join is to pair similar documents among
the two document collections corresponding to the two
textual attributes.

While processing joins between non-textual at
tributes have been studied extensively, not much re
search has been reported on processin~joins between
textual attributes in the literature. In 3], the authors
reported a case study on automating t e assignment

•This work is supported in part by the following grants:
NSF grants under IRI- 9309225 and IRI-9509253 Air
Force under AFOSR 93-1-0059, NASA under NAGW~4080
and ARO under BMDO grant DAAH04-0024.

1063-6382196 $5.00 C 1996 IEEF
636

of submitted papers to reviewers. The reported study
requires to match the abstract of each submitted pa
per with a number of profiles of potential reviewers.
The problem is essentially to process a join between
two textual attributes. Since the document collections
involved in that study is small, efficient processing
strategy of the join is not their concern. Instead, the
emphasis of that work is on accuracy. A somewhat
related problem is the consecutive retrieval problem
[4,14] which is to determine, for a given set of queries
Q against a set of records R, whether there exists an
organization of the records such that for each query
in Q, all relevant records (loosely, similar records) can
be stored in consecutive storage locations. If we in
terpret Q and R as two document collections, then
the consecutive retrieval problem deals the storage as
pect of efficient retrieval of relevant documents from
one collection for each document from another collec
tion. However, a major difference between consecu
tive retrieval problem and the join processing prob
lem is that the former assumes the knowledge that
which documents from R are relevant to each docu
ment in Q while the latter needs to find which doc
uments from one collection are most similar to each
document from another collection. Another related
problem is the processing of a set of queries against a
document collection in batch. There are several differ
ences between this batch query problem and the join
problem: (1) For the former, many statistics about
the queries which are important for query processing
and optimization such as the frequency of each term
in the queries are not available unless they are col
lected explicitly, which is unlikely since the batch may
only be used once and it is unlikely to be cost effective
to collect these statistics; (2) Special data structures
commonly associated with a document collection such
as an inverted file is unlikely to be available for the
batch for the same reason. As we will see in the paper
that the availability of inverted files means the appli
cability of certain algorithms. The clustering problem
in IR systems (12] requires to find, for each document
d, those documents similar to din the same document
collection. This can be considered as a special case of
the join problem when the two document collections
involving the join are identical.

This paper has the following contributions: (1) We
present and analyze three algorithms for processing

JOms between attributes of textual type. (2) Cost
functions based on the number of I/O's for each of
the algorithms are provided. (3) Simulation is done to
compare the performance of the proposed algorithms.
Our investigation indicates that no one algorithm is
definitely better than all other algorithms in all cir
cumstances. In other words, each algorithm has its
unique value in difference situations. (4) We provide
insight on the type of input document collections with
which each algorithm is tikely to perform well. We
further give an algorithm which determines which one
of the three algorithms should be used for processing a
text-join. We are not aware of any similar study that
has been reported before.

The rest of this paper is organized as follows. A mo
tivating example is presented in Section 2. In Section
3, we include the assumptions and notations that we
need in this paper. The three join algorithms are in
troduced in Section 4. Cost analyses and comparisons
of the three algorithms are presented in Section 5. In
Section 6, simulation is carried out to further com
pare the proposed algorithms and to suggest which
algorithm to use for a particular situation. We con
clude our discussion in Section 7.

2. A motivating example

Assume that the following two global relations
have been obtained after schema integration: Appli
cants(SSN, Name, Resume) and Positions(P# , Title,
Job_descr), where Resume and Job_descr are of type
text. Consider the query to find , for each position,
.A applicants whose resumes are most similar to the
position's description. This query can be expressed in
extended SQL as follows:

Select P.P#, P.Title, A.SSN, A.Name
From Positions P, Applicants A
Where A.Resume SIMILAR..TO(.A) P.Job_descr

The where-clause of the above query contains a
join on attributes of textual type. This type of joins
do not appear in traditional database systems. Note
that "A.Resume SIMILAR_TO(.A) P.Job_descr" and
"P.Job_descr SIMILAR..TO(.A) A.Resume" have dif
ferent semantics. The former is to find .A resumes for
each job description while the latter is to find .A job
descriptions for each resume. The asymmetry of the
operator SIMILAR_TO has some impact on the eval
uation strategy [11].

For a given resume r and a given job description j,
to be sure that r is among the .A resumes most similar
to j, all resumes have to be considered. If we process
the join by comparing each job description with all re
sumes, then after a job description d is compared with
all resumes, the A resumes most similar to d can be
identified and a partial result is produced. However, if
we process the join by comparing each resume with all
job descriptions, then after a resume is compared with
all job descriptions, no partial result can be generated.
In this case, many intermediate results (i.e., similarity
values between resumes and job descriptions) need to
be maintained in the main memory. This observation

637

indicates that comparing each job description with all
resumes is a more natural way to process the above
textual join.

Due to selection conditions on other attributes of
the relations that have textual attributes, it is pos
sible that only part of the documents in a collection
need to participate in a join. For example, consider
the query that is to find , for each position whose title
contains "Engineer", .A applicants whose resumes are
most similar to the position's description.

Select P.P#, P.Title, A.SSN, A.Name
From Positions P, Applicants A
Where P.Title like "%Engineer%" and A.Resume
SIMILAR_TO(A) P.Job_descr

If selection P. Title like "%Engineer%" is evaluated
first, then only those job descriptions whose position
title contains "Engineer" need to participate in the
join.

In this paper, we are interested in studying algo
rithms that can be used to process the following query:

Select Rl.Xl , R2.Y2
From Rl, R2
Where Rl.Cl SIMILAR_TO(A) R2.C2

where Cl and C2 are attributes representing two doc
ument collections (collection 1 and collection 2, re
spectively). Clearly, the join to be evaluated is of the
form: "Cl SIMILAR_TO(.A) C2".

3. Assumptions and notations

Using the vector representation [12], each document
can be represented as a list of terms together with their
number of occurrences in the document. Each term is
associated with a weight indicating the importance of
the term in the document. Usually, terms are identi
fied by numbers to save space. We assume that each
document consists of a list of cells of the form (t# ,
w), called document-cell or d-cell, where t# is a term
number and w is the number of occurrences of the
term t in the document. All d-cells in a document are
ordered in increasin~ order of the term number. The
size of each d-cell is It# I+ lwl bytes, where lXI is the
number of bytes to contain X. In practice, lt#l = 3
and lwl = 2 is sufficient. In a multidatabase envi
ronment, different numbers may be used to represent
the same term in different local IR systems due to the
local autonomy. Several methods may be used to over
come this problem. One method is to use actual terms
rather than term numbers. The disadvantage is that
the size of the document collection will become much
larger (5 or more times larger). Another method is to
establish a mapping between the corresponding num
bers identifying the same term. An attractive method
is to have a standard mapping from terms to term
numbers and have all local IR systems use the same
mapping. Such a standard can be very beneficial in
improving the performance of the multidatabase sys
tem. It can save on communication costs (no actual
terms needs to be transferred) and processing costs (it

,.

is more efficient to compare numbers than to compare
actual terms or no need to search the mapping table).
To simplify our presentation, we assume that the same
number is always used to represent the same term in
all local IR systems. Note that this assumption can be
simulated by always keeping the mapping structure in
the memory when different numbers are used to rep
resent the same term in different local systems. In the
remaining discussion, terms and term numbers will be
used interchangeably.

Let t 1, t2, ... , tn be all the common terms be
tween documents Dl and D2. Let u1, u2, ... , Un and
v1, v2, ... , Vn be the numbers of occurrences of these
terms in Dl and D2, respectively. The similarity be
tween Dl and D2 can be defined as ">-~-1. Ui *Vi . A
more realistic similarity function is to divide the simi
larity by the norms of the documents and to incorpo
rate the use of the inverse document frequency weight
[121, which assigns higher weights to terms which occur
m fewer documents. The normalization can be carried
out by pre-computing the norms of the documents,
storing them and performing the divisions during the
processing of the documents. The inverse document
frequency weight can be pre-computed for each term
and storing them as parts of the list heads in the in
verted files . For the sake of simplicity of presentation,
we use the number of occurrences instead of weights.

For a given term t in a given document collection
C, the inverted file entry consists of a list of i-cells
(short for inverted-file-cell) of the form (d#, w), where
d# is a document number and w is the number of
occurrences oft in the document with number d#.
We assume that i-cells in each inverted file entry are
ordered in increasing order of the document number.
The size of each i-cell is ld#l + lwl. i-cells and d-cells
have approximately the same size.

We use the following notations in our discussion:

N; -the number of documents in collection i, i=l or 2
B - the size of the available memory buffer in pages
T; - the number of terms in collection i
Bt; -the size of the B+tree for collection i in pages (as
sume tightly packed)
p - the probability that a term in collection Cl also ap
pears in collection C2
q- the probability that a term in C2 also appears in Cl
a - the cost ratio of a random I/0 over a sequential I/0
P - page size in bytes (4k)
K; - the average number of terms in a document in col
lection i
]; - the average size of an inverted file entry on collection
i in pages (5 * (K; * N;)f(T; * P))
I; - the size of the inverted file on collection i in pages
(]; * T;, assume tightly packed)
S; - the average size of a document in collection i in pages
(5 * K;/P)
D; - the size of collection i in pages (S; * N;, assume
tightly packed)
Jl - the inverted file entry of term t on collection i
,\-operator SIMILAR_TO(.\) is used
6 - the fraction of the similarities that are non-zero

We assume that documents in each collection are

638

stored in consecutive storage locations. Therefore,
when all documents in collection i are scanned in stor
age order, the total number of pages read in will be
D;, which is also the total 1/0 cost. On the other
hand, if documents in collection i are read in one at a
time in random order, and a document is not kept in
the memory after it is processed, then the total num
ber of pages read in will approximately be Ni * fSil,
where 1 A 1 denotes the ceiling of A, and the total cost
will approximately beN;* rs;l *a, where a is the cost
ratio of a random 1/0 over a sequential 1/0 due to the
additional seek and rotation delay of a random read.
Similarly, we assume that inverted file entries on each
collection are stored in consecutive storage locations
in ascending order of the term numbers and typically r J; l pages will be read in when an inverted file entry
is brought in the memory in random order.

Note that for a given document collection, if docu
ment numbers and term numbers have the same size,
its total size is the same as the total size of its corre
sponding inverted file.

In this paper, only 1/0 cost will be used to analyze
and compare different algorithms as if we have a cen
tralized environment where 1/0 cost dominates CPU
cost .

4. Algorithms

In this section, we present three algorithms for pro
cessing joins on textual attributes. We assume that
the existence of the inverted file on all document col
lections.

Depending on how documents and/or inverted files
are used to evaluate a join, three basic algorithms can
be constructed. The first algorithm is to use only doc
uments to process the join, the second algorithm is to
use documents from one collection and the inverted
file from another collection to evaluate the join, and
the third algorithm uses inverted files from both col
lections to do the same job. A collection of documents
can be represented by a document-term matrix where
the rows are the documents and the columns are the ·
terms or the inverted file entries of the terms. There
fore , we name the first algorithm the Horizontal
Horizontal Nested Loop (HHNL), the second
algorithm the Horizontal-Vertical Nested Loop
(HVNL), and the third algorithm the Vertical
Vertical Merge (VVM).

4.1 Algorithm HHNL

A straightforward way for evaluating the join is to
compare each document in one collection with every
document in the other collection. Although simple,
this method has several attractive properties. First, if
one or two of the collections can be reduced by some
selection conditions, only the remaining documents
need to be considered. Second, documents can be
read in mostly sequentially resulting in mostly cheap
sequential 1/0s.

From the discussion in Section 2, we know that it
is more natural to process the join by comparing each
document in C2 with all documents in Cl. That is,

--------------------------------------....
it is more natural to use C2 as the outer collection
and Cl as the inner collection in the join evaluation.
We call this order the forward order and the reverse
order the backward order. The backward order can
be more efficient if Cl is much smaller than C2. Due
to space limitation, the backward order will not be
studied further in this paper. Interested readers are
referred to [11] .

We adopt the policy of letting the outer collection
use as much memory space as possible. The case that
lets the inner collection use as much memory space
as possible is equivalent to the backward order. With
this memory allocation policy, the algorithm HHNL
can be described as follows : After reading in the next
X documents of C2 into the main memory, for some
integer X to be determined, scan the documents in Cl
and while a document in Cl is in the memory, com
pute the similarity between this document and every
document in C2 that is currently in the memory. For
each document d2 in C2, keep track of only those doc
uments in Cl which have been processed against d2
and have the). largest similarities with d2.

More rigorously, with C2 as the outer collection,
we need to reserve the space to accommodate at least
one document in Cl. That is, rs1l pages need to be
reserved for Cl. We also need to reserve the space to
save). similarities for each document in C2 currently
in the memory. Assume that each similarity value
occupies 4 bytes. Then the number of documents in
C2 that can be held in the memory buffer of size B
can be estimated as: X = (B- rs11)j(S2 + 4>./ P)

We now present the algorithm HHNL:

While (there are documents in C2 to be read in)
If there are Xl = min{N2 , X} or more unprocessed

documents in C2 left
input the next Xl unprocessed documents in C2

into the main memory;
Else input the remaining unprocessed documents in

C2 into the main memory;
For each unprocessed d2 of D2 in the memory

{For each document dl in Cl
{Compute the similarity between d2 and dl;

If it is greater tha.n the sma.llest of the .A
largest similarities computed so far for d2

{replace the sma.llest of the .A largest sim
ilarities by the new similarity;
update the list of the documents in Cl
to keep track of those documents
with the .A largest similarities with d2;

} } }

4.2 Algorithm HVNL

HVNL uses documents in one collection and the in
verted file on the other collection to compute the sim
ilarities. In an IR system, processing a user query,
which can be considered as a document, is to find
the >. documents in the system which are most sim
ilar to the user query. One way to process such a
query is to compare it with each document in the sys
tem. This method requires almost all entries in the
document-term matrix be accessed. A more efficient

639

way is to use the inverted file on the document collec
tion . This method only needs to access those inverted
file entries corresponding to t he terms in the query.
Since the number of terms in a query is usually a very
small fraction of the total number of terms in all doc
uments in the system, the inverted file based method
accesses only a very small portion of the document
term matrix. HVNL is a straightforward extension of
this method to the situation where we need to find
the >. most similar documents from one collection for
every document in another collection.

The process of using the inverted file to compute the
similarities between a document din C2 to documents
in Cl can be described as follows. Let (t , w) be the
next d-cell to be considered in d. Let the inverted file
entr1 corresponding tot on Cl be {(d1 , w!), .. . , (dn,
wn)J, where d; 's are document numbers. After t is
processed , the similarity between d and document d;
as accumulated so far will be U; + w * w; , where U; is
the accumulated similarity between d and d; before t
is considered, and W*W; is the contribution due to the
sharing of the term t between d and d; , i=l, ... ,n. After
all terms in d are processed, the similarities between
d and all documents in Cl will be computed, and the
). documents in Cl which are most similar to d can be
identified.

Note that before the last d-cell in d is processed,
all intermediate similarities between d and all docu
ments in Cl need to be saved. The amount of memory
needed for such purpose is proportional to N1. Fur
ther analysis can reveal that using the inverted file on
C2 to process the join needs more memory space to
store intermediate similarities (the amount is propor
tional to .X*N2) . In practice, on)y non-zero similarities
need to be saved. We use 6 to denote the fraction of
the similarities that are non-zero, 0 < 6 < 1.

HVNL will read in each document d in C2 in turn
and while d is in the memory, all inverted file entries
on Cl corresponding to terms in d will be read in to
process d. Note that not all terms in d will necessar
ily appear in Cl. To reduce the I/0 cost, inverted
file entries that are read in for processin ~ earlier doc
uments are kept in the memory to proc· ~ later doc
uments. Due to space limitation, usually not all in
verted file entries read in earlier can be kept in the
memory. Therefore, a policy for replacing an inverted
file entry in the memory by a new inverted file entry is
needed. Let the frequency of a term in a collection be
the number of documents containing the term. This is
known as document frequency. Document frequencies
are stored for similarity computation in IR systems
and no extra effort is needed to get them. Our re
placement policy chooses the inverted file entry whose
corresponding term has the lowest frequency in C2 to
replace. This reduces the possibility of the replaced
inverted file entry to be reused in the future. To make
the best use of the inverted file entries currently in the
memory, when a new document dl in C2 is processed,
terms in dl whose corresponding inverted file entries
are already in the memory are considered first. A list
that contains the terms whose corresponding inverted
file entries are in the memory will be maintained.

We now present the algorithm HVNL:

.. ~----------------------------------

For each document d in C2
{For each term t in d

}

If t also appears in C 1
{Read in the inverted file entry oft on Cl

(It) if it is not already in;
Accumulate similarities;

}
Find the documents in Cl which have the A largest

similarities with d;-

For each inverted file , there is a B+tree which is
used to find whether a term is in the collection and if
present where the corresponding inverted file entry is
located.

One possible way to improve the above algorithm is
to improve the selection of the next document to pro
cess. Intuitively, if we always choose an un-processed
document in C2 whose terms' corresponding inverted
file entries on C1 have the largest intersection with
those inverted file entries already in the memory as
the next document to be processed, then the likeli
hood of an inverted file entry already in the memory
to be reused can be increased. This seemingly attrac
tive alternative has two potential problems. First, by
not reading in documents in their storage order, more
expensive random I/Os will be incurred. Second, we
have the following proposition:
Proposition: The problem of finding an optimal or
der of documents in C2 so that the best performance
can be achieved is NP-hard.
Sketch of Proof: It was shown in (8) that the follow
ing problem known as the Optimal Batch Integrity As
sertion Verification (OBIAV), which is to find an op
timal order for verifying a set of integrity constraints
and verifying each such constraint requires a set of
pages be brought in from secondary storage to the
memory, is an NP-hard problem. This problem can
be reduced to the optimal order problem in our case
and vice versa. Therefore, the optimal order problem
in our case is also NP-hard. •

4.3 Algorithm VVM

Algorithm VVM uses inverted files on both collec
tions to compute the similarities. The strength of this
algorithm is that it only needs to scan each inverted
file once to compute similarities between every pair
of documents in the two collections regardless of the
sizes of the two collections provided that the memory
space is large enough to accommodate intermediate
similarity values. In this case, VVM can be at least
as good as HHNL because HHNL needs to scan each
document collection at least once and the size of the
inverted file on a collection is about the same as the
size of the collection itself. VVM tries to compute sim
ilarities between every pair of documents in the two
collections simultaneously, as a result, it needs to save
the intermediate similarities. Thus, the memory re
quirement for saving these similarities is proportional
to N1 * N2, which can be so large such that VVM
can not be run at all. In summary, VVM is likely to

640

perform well for document collections that are large
in size (such that none can be entirely held in the
memory) but small in number of documents. This is
possible if each document has a large size.

Algorithm VVM can be described as follows: we
scan both inverted files on the two collections. During
the parallel scan, if two inverted file entries correspond
to the same term, then invoke the similarity accumu
lating process.

Recall that we assumed that inverted file entries
are stored in increasing order of the term numbers.
Therefore, one scan of each inverted file is sufficient
(very much like the merge phase of sort merge) . The
similarity accumulating process can be described as
follows . Let It= {(rl, ut) , .. . , (rm, um)} and I~=
{(sl,vt) , ... ,(sn , vn)} be two inverted file entries for
the same term t on the two collections, respectively.
After the two inverted file entries are processed , the
similarity between documents rp and Sq as accumu
lated so far will be Up + Up * Vq, where Up is the
accumulated similarity between rp and sq belore t is
considered, p = 1, .. . , m, q = 1, .. . , n .

We can extend the above algorithm VVM as follows
to tackle the problem of insufficient memory space for
all intermediate similarit ies. Suppose SM is the to
tal number of pages needed to store the intermediate
similarities when all pairs of documents in the two col
lections are considered at the same time. Suppose M
is the available memory space for storing the interme
diate similarities. If SM > M, divide collection C2 into
rSM/Ml subcollections and then compute the simi
iarities between documents in each subcollection and
documents in C1 , one subcollection at a time. Since
for each such subcollection, one scan of the original
inverted files on both collections is needed, this exten
sion incurs a cost which will be rsMJMl times higher
than that when the memory is large enough to hold
all intermediate similarities. For a more detailed cost
analysis , see Section 5.3.

5. 1/0 cost analysis

5.1 Algc·rithm HHNL

Let X be the number of documents in C2 that can
be held in the memory buffer of size B as defined in
Section 4.1. Since for each X documents in C2, C1
needs to be scanned once, the total I/0 cost of HHNL
can be estimated as below:

hhs = D2 + rN2/.Xl * Dt (HHS1)
where the first term is the cost of scanning C2 and the
second term is the cost of scanning C1, and rN2/Xl
is the number of times C1 needs to be scanned.

The above cost formula assumes that all I/Os are
sequential 1/0s (i.e., both C1 and C2 are sequentially
scanned in). This is reasonable only when each doc
ument collection is read by a dedicated drive with no
or little interference from other I/0 requests. If this is
not the case, then some of the I/Os may become more
costly random 1/0s. We first consider the case when
N2 > X. The following interleaved 1/0 and CPU
patterns can be observed. After each X documents
in C2 are read in, for each document d in C1 read

in, CPU will take some time to compute the similari
ties between the X documents and d. When the CPU
is doing the computation, 1/0 resources may be allo
cated to other jobs. If this is the case, then the next
document from C1 will use a random I/0, so does
the read-in of the next X documents in C2. In other
words , in the worst case, all documents in C1 will be
read in using random I/0 and for every X documents
in C2, there will be a random I/0. The number of ac
tual random 1/0s for scanning documents in C1 once ·
also depends on the document size and can be esti
mated as min{D1 , Nl} (if S1 ~ 1, then D 1 should be
used; otherwise, N1 should be used). Therefore, when
N2 ~ X, in the worst scenario, the total 1/0 cost can
be estimated as follows:

hhr = hhs + fN2/Xl * (1 + min{D1, Nl}) * (o -1)
When N2 < X, then the entire collection C2 can be

scanned in sequentially and held in the memory, and
the remaining memory space ((X- N2) * S2) can be
used to hold documents in Cl. Therefore, C1 can be
read in in f Dtf((X- N2) * S2)l blocks and each block
can be read in sequentially. In this case, we have

hhr = hhs + fDtf((X- N2) * S2)l * (o- 1)

5.2 Algorithm HVNL

Recall that a B+tree is maintained for each doc
ument collection for quickly locating the inverted file
entry of any given term. The size of the B+tree can
be estimated as follows. Typically, each cell in the
B+tree occupies 9 bytes (3 for each term number, 4
for address and 2 for document frequency). If a doc
ument collection has N terms, then the size of the
B+tree is approximately 9*N /P (only the leaf nodes
are considered). The size is not terribly large. For ex
ample, for a document collection with 100,000 distinct
terms, the B+tree takes about 220 pages of size 4KB.
We assume that the entire B+tree will be read in the
memory when the inverted file needs to be accessed
and it incurs a one-time cost of reading in the B+tree.

Let X be the number of inverted file entries on C1
that can be held in the memory when the memory
buffer is fully used. In addition to X inverted file
entries, the memory (size B) also need to contain a
document in C2 of size fS2l , a B+tree of size Bt1 ,

the non-zero similarities values between the document
in C2 currently under processing and all documents
in C1 and the list containing the terms whose corre
sponding inverted file entries are in the main memory
(size X It# I/ P) . Therefore, X can be estimated as fol
lows:

X_ fl.oor(B-[S2]-Bt,-4•N,6/P)
- J,+lt#I/P

If we assume that the read-in of the documents in
C2 incurs sequential I/Os, then the I/0 cost of HVNL
can be estimated as follows:

641

is greater than or equal to the total number of in
verted file entries on C1 (i.e., .Td. In this case, we can
either read in the entire inverted file on C1 in sequen
tial order (this corresponds to the first expression in
min{}) or read in all inverted file entries needed to
process the query · (the number is T2 * q) in random
order (this corresponds to the second expression in
min{} . The memory is large enough to do this since
X ~ T1 ~ T2 * q.); the second case corresponds to
the case when the memory is not large enough to hold
all inverted file entries on C1 but is large enough to
hold all needed inverted file entries; the last expression
is for the case when the memory is not large enough
to hold all needed inverted file entries on Cl. In this
case, the second term is the cost of finding and read
ing in the inverted file entries on C1 which correspond
to the terms in documents in C2 until the memory
is fully occupied. Suppose the memory is just large
enough to hold all the inverted file entries on C1 cor
responding to the terms in the first (s- 1) documents
in C2 and a fraction (X1) of the inverted file entries
corresponding to the terms in the s-th document in
C2 (i .e. , the inverted file entries on C1 corresponding
to the terms in the first s + X1 - 1 documents in C2
can be held in the memory). Let Y be the number of
new inverted file entries that need to be read in when
a new document in C2 is processed after the memory
is fully occupied. Then the third term is the total cost
of reading in new inverted file entries for processing
the remaining documents in C2. We now discuss how
s, X1 and Y can be estimated. First , the number of
distinct terms in m documents in C2 can be estimated
by /(m) = T2 - (1 - K2/T2)m * T2. Therefore, s is
the smallest m satisfying q * f(m) > X. Note that
(X - q * f(s - 1)) is the number of inverted file en
tries that can still be held in the memory after all the
inverted file entries on C1 corresponding to the terms
in the first (s - 1) documents in C2 have been read
in and {q * f(s) - q * f(s- 1)) is the number of new
inverted file entries that need to be read in when the
s-th document in C2 is processed, X1 can be estimated
by {X- q * f(s- 1))/(q * f(s)- q * f(s- 1)) . Finally,
Y can be estimated by (q * f(s + X1)- X).

As discussed in Section 5.1 , it is possible that some
or all of the I/Os of reading in the documents in C2
are random I/Os due to other obligations of the I/0
device. If after inverted file entries are accommodated,
there is still more memory space left , then the remain
ing memory space can be used to sequentially scan in
multiple documents in C2 at a time. Based on this ob
servation, when random I/Os are considered, the total
I/0 cost of HVNL can be estimated as:
hvr

min{D2 +It+ Bt, + rD2/((X -Tt) • J,)l
• (a- 1) , D2 + T2 • q • Ptl • a+ Btt

=

+ rD2/((X- T2 • q) • Jt)l• (a -1)}, i/ X~ Tt
hv" + r D2/((X - T2 • q) * Jt)l

• (a- 1), i/ Tt >X~ T2 • q
hv, + min{D2, N2} • (a- 1}, otherwi.5e

It would be easier to understand the above formula
when compared with the formula for computin~ hvs.
In the first expression in min{}, (X - T1) * J1 1s the

remaining memory space after all inverted file entries
are accommodated.

5.3 Algorithm VVM

To avoid the much higher cost of random 1/0, we
can simply scan both inverted files on the two collec
tions. During the parallel scan, if two inverted file
entries correspond to the same term, then invoke the
similarity accumulating process. Recall that we as
sumed that inverted file entries are stored in increas
ing order of the term num.bers. Therefore, one ~ca? of
each inverted file is suffictent to compute all stmtlar
ities if the memory is large enough to accommodate
all intermediate similarities. Therefore, in this case, if
all the I/Os are sequential I/Os, the total I/0 cost of
VVM is:

VVS = h + /2
Again, some or all of the I/Os could actually be ran

dom I/Os due to other obligations of the I/0 device.
In the worst case scenario, i.e., all 1/0s are random
1/0s, the total I/0 cost of VVM can be estimated as:

vvr = (min{lt,Tt}+min{hT2})•o
VVM usually requires a very large memory space to

save the intermediate similarity values. If only non
zero similarities are stored, then the memory space
for storing intermediate similarity values for VVM
is 46 * N1 * N2/ P . When the memory space is not
large enough to accommodate all intermediate similar
ity values, a simple extension to the algorithm VVM
can be made (see Section 4.3) . In this case, the to
tal cost can be estimated by multiplying vvs (or vvr)
by fSM/Ml, where SM = 46 * Nt * N2fP is the to
tal number of pages needed to store the intermediate
similarities when all pairs of documents in the two
collections are considered at the same time and M =
B- f J tl- f h 1 is the available memory space for stor
ing the intermediate similarities. Therefore, a more
general formula for estimatin~ the total 1/0 cost when
all the I/Os are sequential IjOs can be given below:

VVS =(It+ h)* fSM/Ml (VVS)
and a more general formula for estimating the total
1/0 cost when all the I/Os are random I/Os is:

vvr =(min{ It, Tt} + min{h T2}) * o * fSM/Ml

5.4 Comparisons

Algorithm HHNL uses two document collections as
the input. It does not use any special data structures
such as inverted files and B+trees. Thus, it is more
easily applicable. It is also easier to implement. Since
HHNL uses documents directly for similarity compu
tation, it benefits quite naturally from any possible
reductions to the number of documents in either or
both collections resulted from the evaluation of selec
tion conditions on non-textual attributes of the rele
vant relations. The memory space requirement of this
algorithm for storing intermediate similarity values is
generally small comparing with those of other algo
rithms.

Algorithm HVNL uses one document collection, one
inverted file and the B+tree corresponding to the in
ner collection as the input. While the document col-

642

lection is always scanned once, the access to inverted
file entries is more complex. On the one hand , not all
inverted file entries need to be read in. In fact, only
those inverted file entries whose corresponding terms
also appear in the other document collection need to
be accessed. On the other hand, some inverted file
entries may be read in many times due to their ap
pearance in multiple documents in C2 although effort
is made by the algorithm to reuse inverted file entries
currently in the memory. It is expected that this algo
rithm can be very competitive in one of the following
two situations: (1) One of the document collection, say
C2, is much smaller than the other collection because
in this case, it is possible that only a small fraction
of all inverted file entries in the inverted file needs to
be accessed. When C2 contains only one document, it
becomes an extreme case of processing a single query
against a document collection. Note that an origi
nally lar~e document collection may become small af
ter condttions on attributes of the relevant relation
are evaluated. (2) For the collection where documents
are used, close documents in storage order share many
terms and non-close documents share few terms. This
increases the possibility of reuse of inverted file entries
in the memory and reduces the possibility of re-read
in of inverted file entries. This could happen when the
documents in the collection are clustered.

Algorithm HVNL accesses inverted file entries in
random order. As such, it has two negative effects on
the I/0 cost . One is that random I/Os are more ex
pensive than sequential I/Os. The other is that even
when an inverted file entry occupies a small fraction
of a page, the whole page containing the entry has to
be read in. Therefore, when the size of each inverted
file entry is close to an integer, the competitiveness
of HVNL will be increased. One thing bad about us
ing the inverted file is that the size of the file remains
the same even if the number of documents in the cor
responding document collection can be reduced by a
selection. The memory space requirement of HVNL
for storing intermediate similarities is generally higher
than that of HHNL but lower than that of VVM.

Algorithm VVM uses two inverted files as the in
put. As we discussed before, this algorithm has a very
nice one-scan property, namely, it only needs to scan
each inverted file once to compute the similarities re
gardless of the sizes of the two collections provided
that the memory space is large enough to accommo
date intermediate similarity values. Since the size of
the inverted file on a collection is about the same as
the size of the collection (when the collection is not
reduced by other selections), VVM can be at least
as efficient as HHNL as far as I/0 cost is concerned.
The major drawback of VVM is that it needs a very
large space to save the intermediate similarities. Since
the memory requirement for saving these similarities
is proportional to N1 * N2, VVM is likely to perform
well for document collections that are large in size but
small in number of documents. Another disadvantage
of VVM is that the sizes of the inverted files will re
main the same even if the number of documents in the
corresponding document collections can be reduced.

6. Simulation results

Due to the large number of paramet.er~ in the c.ost
formulas of the algorithms presented, 1t 1s very diffi
cult to compare the performance of th~se alg.orith~s
based on these formulas directly. In this sectiOn, dif
ferent algorithms are compared based on s.imulation
results. Our objective is to find out the lJ?pact ?f
the variations of the parameters on the algonthms, m
other words, we would like to find out in what situa
tion an algorithm performs the best.

Three document collections which were collected by
ARPA/NIST [5], namely, WSJ (Wall Street Journal),
FR (Federal Register) a~d DO~ (Departmen~ o.f En
ergy), are used in our s1m.ulat10n. The statistics of
these collections are shown m the table below (the last
three rows are estimated by us based on it#l = 3).

WSJ FR DOE
#documents 98736 26207 226087
#terms per doc 329 1017 89
total # of distinct terms 156298 126258 186225
collection size in pages 40605 33315 25152
avg. size of a document 0.41 1.27 0.111
avg. size of an inv. fi. en. 0.26 0.264 0.135

Among the three document collections, FR has
fewer but larger documents and DOE has more but
smaller documents. The number of documents in WSJ
lies between those of FR and DOE. So is the average
size of documents in WSJ.

For all simulations, the page size P is fixed at 4KB,
the fraction of the similarities that are non-zero 6 is
fixed at 0.1 and~ is fixed at 20 (note that only HHNL
involves ~ and it is not really sensitive to ~). The
probability q is computed as follows:

{

0.8 * TI/T2, if T1 ~ T2
q = 0.8, if T2 < T1 < 5 * T2

1 - T2/T1, if T1 ~ 5 * T2
The formula says that, given the number of distiD;ct
terms in C2 (i.e., T2), ~he smaller the number of .d!s
tinct terms in C1, T1 , 1s, the smaller the probab1hty
that a term in C2 also appears in C1 will be; and when
T1 becomes much larger than T2, then q will become
closer to 1; otherwise, q is 0.8. Probability p can be
computed in a similar manner.

For parameters B (memory size) and a, we assign
a base value for each: B = 10,000 (pages) and a =
5. When the impact of a parameter is studied, we
vary the values of the parameter while let the other
parameter use its base value.

We conducted the following five groups of simula
tions.
Group 1: A real collection is used as both collection

C1 and collection C2. Since there are three real
collections (WSJ , FR and DOE) and two param
eters (B and a), six simulations are conducted.

Group 2: Different real collections will be used as
C1 and C2. B varies while a uses its base value.
From the three real collections, six simulations
are designed.

643

Group 3: While C1 and C2 continue to use real col
lections, only a small number of documents in C2
are used to participate the join. These experi
ments are used to investigate the impact of local
selections. All simulations in this group use only
the base values of the two parameters. Since there
are three real collections, three simulation results
are collected for this group.

Group 4: Cl again uses real collections but C2 uses
collections with only a small number of docu
ments. The difference between Group 3 and
Group 4 is that the former uses a small num
ber of documents (in C2) from an ORIGINALLY
large collection C2 and the latter uses an ORIG
INALLY small collection C2. This difference has
the following impacts on the cost: (1) documents
in C2 need to be read in randomly by the former
but can be read in sequentially by the latter; and
(2) the size of the inverted file and the size of the
B+tree on collection C2 for the former are com
puted based on the original collection, not just
the documents used. This will have an impact on
the cost of VVM. In our experiments, after a real
collection is chosen to be C1, C2 will be derived
from Cl. Again, all simulations in this group use
only the base values of the two parameters and
three simulations are conducted for this group.

Group 5: Both collection C1 and collection C2 use
new collections but they remain to be identical.
Each new collection is derived from a real col
lection by reducing the number of documents in
the real collection and increasing the number of
terms in each document in the real collection by
the same factor such that the collection size re
mains unchanged. The simulations in this group
are especially aimed at observing the behavior of
Algorithm VVM. Again, only the base values of
the two parameters are used and three simulation
results are collected for this group.

Due to space limitation, the actual and detailed
simulation results will not be presented here, and in
terested readers are referred to [111 . The summary of
the simulation results are presented below.

6.1 Summary of simulation results

The following main points can be summarized from
our extensive simulations.

1. The cost of one algorithm under one situation can
differ drastically from that of another algorithm
under the same situation. As a result, it is es
sential to choose an appropriate algorithm for a
given situation.

2. If the number of documents in one of the two
collections, say M, is originally very small or be
comes very small after a selection, then HVNL
has a very good chance to outperform other al
gorithms. Although how small for M to be small
enough mainly depends on the number of terms in
each document in the outer collection, M is likely
to be limited by 100.

3. If the number of documents in each of the two
collections is not very large (roughly N1 * N2 <
10000 • B) and both document collections are
large such that none can be entirely held in the
memory, then VVM (the sequential version) can
outperform other algorithms.

4. For most other cases, the simple algorithm HHNL
performs very well .

5. The costs of the random versions of these algo
rithms depict the worst case scenario when the
I/0 devices are busy satisfying different obliga~
tions at the same time. Except for VVM, these
costs have no impact in ranking these algorithms.

Overall, the simulation results match well with our
analysis in Section 5.4.

Since no one algorithm is definitely better
than all other algorithms in all circumstances, it
is desirable to construct an integrated algorithm
that can automatically determine which algorithm
to use given the statistics of the two collec
tions (Nl , N2,K1 , K2 ,Tl>T2 , p, q, 6) , system parame
ters (B , P, a) and query parameters ~A , selectivities of
predicates on non-textual attributes . The sketch of
an integrated algorithm can be foun in [11] .

7. Concluding remarks

. In this paper, w~ pr~s~nted and analyzed three algo
nthms for processmg Joms between attributes of tex
tual type. From analysis and simulation we identi
fied , for each algorithm, the type of input document
collections with which the algorithm is likely to per
form well. More specifically, we found that HVNL can
be very competitive when the number of documents
in one of the two document collections is/becomes
very small , and VVM can perform very well when
the number of documents in each of the two collec
tions is not very large and both document collections
are large such that none can be entirely held in the
memory. In o~her cases, HHNL is likely to be the top
performer. Smce no one algorithm is definitely bet
ter than ~11 othe~ algorithms, we proposed the idea of
con~tructu~g an mtegrated algorithm consisting of the
~~1c algor~t~ms such that a particular basic algorithm
1s mvoked 1f 1t has the lowest estimated cost. We also
indicated that the standardizat ion of term numbers
will be very useful in multidatabase environments.

F~uther studies in this area include (1) investigate
the 1mpact of the availability of clusters on the per
form~nce of each algorithm; (2) develop cost formulas
that mclude 9PU cost and communication cost ; (3)
develop al~or1thms th~t pr~cess t~xtual joins in paral
lel; and (4) more detatled s1mulat10n and experiment.

644

References

[11 U. Dayal and H-Y Hwang, View Definition and
deneralization for Database Integration in a Multi
database system. IEEE TSE, 1984.
[2] W. Du, R. Krishnamurthy, and M. C. Shan, Query
Optimization in Hete rogeneous Databases. VLDB
Conference, 1992:
[3) S. Dumais and J . Nielson, Automating the Assign
ment of Submitted Manuscripts to Reviewers. ACM
SIGIR, 1992.
[4] S. Ghose, File Organization: The Consecutive Re
trieval Property. Comm. of ACM, 1972.
[5] D. Harman, Overview of the first text retrieval
conference edited by D. Harman, Computer Systems
Technology, U.S. Department of Commerce NIST
1993. ' '
[6] W. Litwin, L. Mark, N. Roussopoulis, Interop
erability of Multiple Autonomous Databases. ACM
Computing Surveys, September 1990.
[7) H. Lu, B. Ooi and C. Goh, On Global Multidatabase
Query Optimization. SIGMOD Record December
1992. '
[8) L. Lilian, and B. Bhargava, A Scheme for Batch
Verification of Integrity Assertions in a Database Sys
tem. IEEE TSE, Nov. 1984.
[9] W . Meng, C. Yu, W. Kim, G. Wang, T . Pham
and S. Dao, Construction of Relational Front-end for
Object-Oriented Database Systems. The 9-th IEEE
Conference on Data Engineering, April1993.
[10] W: Meng, A .. Kamada, Y-H. Chang, Trans
formation of Relatzonal Schemas to Object-Oriented
Schemas. Compsac'95 , August 1995.
[11) W. Meng ~ C. Yu, W. Wang, N. Rishe, Perfor
ma.nce Analysis of Several Algorithms for Processing
]oms between Textual Attributes. CS-TR-95-07 De-

~
artment of CS, SUNY at Binghamton, 1995. '

12] G . Salton and M. McGill, Introduction to Modern
nformation Retrieval. McGraw-Hill, 1983.

[13) A. Sheth, and J . Larson, Federated Database Sys
tems for Managing Distributed, Heterogeneous, and
Autonomous Databases. ACM Computing Surveys
September 1990. '
[14] R. Swaminathan, and D. Wagner ·Jn the
Consecutive-Retrieval Problem. SIAM J .' (om put.
April1994.
[15) C. Yu, Y. Zhang, W. Meng, W. Kim, G. Wang,
T . Pham, and S. Dao: Translation of Object-Oriented
Queries to Relational Queries. 11-th IEEE Conf. on
Data Engineering, March 1995.

