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Abstract—Searching desired data on the Internet is one of the most common ways the Internet is used. No single search engine is

capable of searching all data on the Internet. The approach that provides an interface for invoking multiple search engines for each

user query has the potential to satisfy more users. When the number of search engines under the interface is large, invoking all search

engines for each query is often not cost effective because it creates unnecessary network traffic by sending the query to a large

number of useless search engines and searching these useless search engines wastes local resources. The problem can be

overcome if the usefulness of every search engine with respect to each query can be predicted. In this paper, we present a statistical

method to estimate the usefulness of a search engine for any given query. For a given query, the usefulness of a search engine in this

paper is defined to be a combination of the number of documents in the search engine that are sufficiently similar to the query and the

average similarity of these documents. Experimental results indicate that our estimation method is much more accurate than existing

methods.

Index Terms—Metasearch, information resource discovery, information retrieval.
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1 INTRODUCTION

THE Internet has become a vast information source in
recent years. To help ordinary users find desired data

on the Internet, many search engines have been created. Each
search engine has a corresponding database that defines the
set of documents that can be searched by the search engine.
Usually, an index for all documents in the database is
created and stored in the search engine. For each term which
represents a content word or a combination of several
(usually adjacent) content words, this index can identify the
documents that contain the term quickly. The preexistence
of this index is critical for the search engine to answer user
queries efficiently.

Two types of search engines exist. General-purpose
search engines attempt to provide searching capabilities
for all documents on the Internet or on the Web.
WebCrawler, HotBot, Lycos, and Alta Vista are a few of
such well-known search engines. Special-purpose search
engines, on the other hand, focus on documents in confined
domains such as documents in an organization or of a
specific interest. Tens of thousands of special-purpose
search engines are currently running on the Internet.

The amount of data on the Internet is huge (it is believed
that by the end of 1997, there were more than 300 million

web pages [15]) and is increasing at a very high rate. Many
believe that employing a single general-purpose search
engine for all data on the Internet is unrealistic. First, its
processing power and storage capability may not scale to
the fast increasing and virtually unlimited amount of data.
Second, gathering all data on the Internet and keeping it
reasonably up-to-date is extremely difficult if not impos-
sible. Programs (i.e., Robots) used by search engines to
gather data automatically may slow down local servers and
are increasingly unpopular.

An alternative approach to providing search services to
the entire Internet is the following multilevel approach. At
the bottom level are the local search engines. These search
engines can be grouped, say based on the relatedness of
their databases, to form next level search engines (called
metasearch engines). Lower-level metasearch engines can
themselves be grouped to form higher-level metasearch
engines. This process can be repeated until there is only one
metasearch engine at the top. A metasearch engine is
essentially an interface and it does not maintain its own
index on documents. However, a sophisticated metasearch
engine may maintain information about the contents of the
(meta)search engines at a lower level to provide better
service. When a metasearch engine receives a user query, it
first passes the query to the appropriate (meta)search
engines at the next level recursively until real search
engines are encountered, and then collects (sometimes,
reorganizes) the results from real search engines, possibly
going through metasearch engines at lower levels. A two-
level search engine organization is illustrated in Fig. 1. The
advantages of this approach are

1. User queries can (eventually) be evaluated against
smaller databases in parallel, resulting in reduced
response time.
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2. Updates to indexes can be localized, i.e., the index of
a local search engine is updated only when docu-
ments in its database are modified. (Although local
updates may need to be propagated to upper-level
metadata that represent the contents of local
databases, the propagation can be done infrequently
as the metadata are typically statistical in nature and
can tolerate certain degree of inaccuracy.)

3. Local information can be gathered more easily and
in a more timely manner.

4. The demand on storage space and processing power
at each local search engine is more manageable.

In other words, many problems associated with employing
a single super search engine can be overcome or greatly
alleviated when this multilevel approach is used.

When the number of search engines invokable by a
metasearch engine is large, a serious inefficiency may arise.
Typically, for a given query, only a small fraction of all
search engines may contain useful documents to the query.
As a result, if every search engine is blindly invoked for
each user query, then substantial unnecessary network
traffic will be created when the query is sent to useless
search engines. In addition, local resources will be wasted
when useless databases are searched. A better approach is
to first identify those search engines that are most likely to
provide useful results to a given query and then pass the
query to only these search engines for the desired
documents. Examples of systems that employ this approach
include WAIS [12], ALIWEB [13], gGlOSS [6], SavvySearch
[9], and D-WISE [27]. A challenging problem with this
approach is how to identify potentially useful search
engines. The current solution to this problem is to rank all
underlying databases in decreasing order of usefulness for
each query using some metadata that describes the contents
of each database. Often, the ranking is based on some
measure which ordinary users may not be able to utilize to
fit their needs. For a given query, the current approach can
tell the user, to some degree of accuracy, which search
engine is likely to be the most useful, the second most
useful, etc. While such a ranking can be helpful, it cannot
tell the user how useful any particular search engine is.

In this paper, the usefulness of a search engine to a given
query is measured by a pair of numbers (NoDoc, AvgSim),
where NoDoc is the number of documents in the database of
the search engine that have high potentials to be useful to

the query, that is, the similarities between the query and the
documents as measured by a certain global similarity
function are higher than a specified threshold, and AvgSim
is the average similarity of these potentially useful docu-
ments. Note that the global similarity function may or may
not be the same as the local similarity function employed by
a local search engine. While the threshold provides the
minimum similarity for a document to be considered
potentially useful, AvgSim describes more precisely the
expected quality of each potentially useful document in a
database. The two numbers together characterize the
usefulness of each search engine very nicely. NoDoc and
AvgSim can be defined precisely as follows:

NoDocðT; q;DÞ ¼ cardinalityðfdjd 2 D and simðq; dÞ > TgÞ;
ð1Þ

AvgSimðT; q;DÞ ¼
P

d2D^simðq;dÞ>T simðq; dÞ
NoDocðT; q;DÞ ; ð2Þ

where T is a threshold, D is the database of a search engine,
and simðq; dÞ is the similarity (closeness) between a query q
and a document d in D.

A query is simply a set of words submitted by a user. It is
transformed into a vector of terms with weights [22], where a
term is essentially a content word and the dimension of the
vector is the number of all distinct terms. When a term
appears in a query, the component of the query vector
corresponding to the term, which is the term weight, is
positive; if it is absent, the corresponding term weight is
zero. The weight of a term usually depends on the number
of occurrences of the term in the query (relative to the total
number of occurrences of all terms in the query) [22], [26]. It
may also depend on the number of documents having the
term relative to the total number of documents in the
database. A document is similarly transformed into a vector
with weights. The similarity between a query and a
document can be measured by the dot product of their
respective vectors. Often, the dot product is divided by the
product of the norms of the two vectors, where the norm of a
vector (x1; x2; . . . ; xn) is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 x

2
i

p
. This is to normalize

similarities into values between 0 and 1. The similarity
function with such a normalization is known as the Cosine
function [22], [26]. Other similarity functions, see, for
example, [21], are also possible.

In practice, users may not know how to relate a threshold
to the number of documents they like to retrieve. Therefore,
users are more likely to tell a metasearch engine directly the
number of most similar documents (to their query) they like
to retrieve. Such a number can be translated into a threshold
by the metasearch engine. For example, suppose we have
three databases D1, D2, and D3 such that, for a user query q,
when T ¼ 0:4, NoDocðT; q;D1Þ ¼ 8, NoDocðT; q;D2Þ ¼ 3, and
NoDocðT; q;D3Þ ¼ 4; and when T ¼ 0:5, NoDocðT; q;D1Þ ¼ 3,
NoDocðT; q;D2Þ ¼ 0, and NoDocðT; q;D3Þ ¼ 2. In this case, if
a user wants five documents, then T ¼ 0:5 should be used. As
a result, three documents will be retrieved from D1 and two
documents from D3. In general, the appropriate threshold
can be determined by estimating the NoDoc of each search
engine in decreasing thresholds.
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Note that knowing how useful a search engine is can be
very important for a user to determine which search
engines to use and how many documents to retrieve from
each selected search engine. For example, if a user knows
that a highly-ranked search engine with a large database
has very few useful documents and searching such a large
database is costly, then the user may choose not to use the
search engine. Even if the user decides to use the search
engine, the cost of the search can still be reduced by limiting
the number of documents to be returned to the number of
useful documents in the search engine. Such an informed
decision is not possible if only ranking information is
provided.

This paper has several contributions. First, a new
measure is proposed to characterize the usefulness of (the
database of) a search engine with respect to a query. The
new measure is easy to understand and very informative.
As a result, it is likely to be more useful in practice. Second,
a new statistical method, namely, a subrange based
estimation method, is proposed to identify search engines
to use for a given query and to estimate the usefulness of a
search engine for the query. We will show that both NoDoc
and AvgSim can be obtained from the same process.
Therefore, little additional effort is required to compute
both of them in comparison to obtaining any one of them
only. The method yields very accurate estimates and is
substantially better than existing methods as demonstrated
by experimental results. It also guarantees the following
property. Let the largest similarity of a document with a
query among all documents in search engine i be
large simi. Suppose large simi > large simj for two search
engines i and j, and a threshold of retrieval T is set such that
large simi > T > large simj. Then, based on our method,
search engine i will be invoked while search engine j will
not if the query is a single term query. This is consistent to
the ideal situation where documents are examined in
descending order of similarity. Since a large portion of
Internet queries are single term queries [10], [11], the above
property of our approach means that a large percentage of
all Internet queries will be sent to the correct search engines
to be processed using our method. In addition, the new
method is quite robust as it can still yield good result even
when approximate statistical data are used by the method.
This method is further improved when adjacent terms in a
query are combined. Close to optimal performance is
obtained.

The rest of the paper is organized as follows: Section 2
reviews related work. Section 3 presents our basic method
for estimating the usefulness of search engines. Section 4
discusses several issues on how the proposed method may
be applied in practice. Experimental results will be
presented in Section 5. Section 6 describes how adjacent
query terms can be combined to yield better performance.
Section 7 concludes the paper.

2 RELATED WORK

To be able to identify useful search engines to a query, some
characteristic information about the database of each search
engine must be stored in the metasearch engine. We call
such information the representative of a search engine.

Different methods for identifying useful search engines
can be developed based on the representatives used.

Several metasearch engines have employed various
methods to identify potentially useful search engines [6],
[9], [12], [13], [17], [27]. However, the database representa-
tives used in most metasearch engines cannot be used to
estimate the number of globally most similar documents in
each search engine [3], [12], [13], [27]. In addition, the
measures that are used by these metasearch engines to rank
the search engines are difficult to understand. As a result,
separate methods have to be used to convert these measures
to the number of documents to retrieve from each search
engine. Another shortcoming of these measures is that they
are independent of the similarity threshold (or the number
of documents desired by the user). As a result, a search
engine will always be ranked the same regardless of how
many documents are desired, if the databases of these
search engines are fixed. This is in conflict with the
following situation. For a given query, a search engine
may contain many moderately similar documents but very
few or zero highly similar documents. In this case, a good
measure should rank the search engine high if a large
number of moderately similar documents are desired and
rank the search engine low if only highly similar documents
are desired.

A probabilistic model for distributed information retrie-
val is proposed in [2]. The method is more suitable in a
feedback environment, i.e., documents previously retrieved
have been identified to be either relevant or irrelevant.

In gGlOSS [6], a database of m distinct terms is
represented by m pairs (fi;Wi), where fi is the number of
documents in the database that contain the ith term and Wi

is the sum of the weights of the ith term over all documents
in the database, i ¼ 1; . . . ;m. The usefulness of a search
engine with respect to a given query in gGlOSS is defined to
be the sum of all document similarities with the query that
are greater than a threshold. This usefulness measure is less
informative than our measure. For example, from a given
sum of similarities of documents in a database, we cannot
tell how many documents are involved. On the other hand,
our measure can derive the measure used in gGlOSS. The
representative of gGlOSS can be used to estimate the
number of useful documents in a database [7] and,
consequently, it can be used to estimate our measure.
However, the estimation methods used in gGlOSS are very
different from ours. The estimation methods employed in
[6], [7] are based on two very restrictive assumptions. One is
the high-correlation assumption (for any given database, if
query term j appears in at least as many documents as
query term k, then every document containing term k also
contains term j) and the other is the disjoint assumption (for a
given database, for any query term j and query term k, the
set of documents containing term j and the set of documents
containing term k are disjoint). Due to the restrictiveness of
the above assumptions, the estimates produced by these
two methods are not accurate. Note that, when the measure
of similarity sum is used, the estimates produced by the
two methods in gGlOSS tend to form lower and upper
bounds to the true similarity sum. As a result, the two
methods are more useful when used together than when
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used separately. Unfortunately, when the measure is the
number of useful documents, the estimates produced by
the two methods in gGlOSS no longer form bounds to the
true number of useful documents.

A method is proposed in [25] to estimate the number of
useful documents in a database for the binary and
independent case. In this case, each document d is repre-
sented as a binary vector such that a 0 or 1 at the ith position
indicates the absence or presence of the ith term in d, and
the occurrences of terms in different documents are
assumed to be independent. This method was later
extended to the binary and dependent case in [16], where
dependencies among terms are incorporated. A substantial
amount of information will be lost when documents are
represented by binary vectors. As a result, these methods
are seldom used in practice. The estimation method in [18]
permits term weights to be nonbinary. However, it utilizes
the nonbinary information in a way that is very different
from our subrange-based statistical method to be described
in Section 3.2 of this paper.

3 A NEW METHOD FOR USEFULNESS ESTIMATION

We present our basic method for estimating the usefulness
of a search engine in Section 3.1. The basic method allows
the values of term weights to be any nonnegative real
numbers. Two assumptions are used by the basic method:
1) the distributions of the occurrences of the terms in the
documents are independent. In other words, the occur-
rences of term i in the documents have no effect on the
occurrences or nonoccurrences of another term, say term j,
in the documents, and 2) for a given database of a search
engine, all documents having a term have the same weight
for the term. Under the two assumptions, the basic method
can accurately estimate the usefulness of a search engine. In
Section 3.2, we apply a subrange-based statistical method to
remove the second assumption. The first assumption can
also be removed by incorporating term dependencies
(covariances) into the basic solution [18]. The problem of
incorporating term dependencies will be addressed in
Section 6. We will see in Section 5 that very accurate
usefulness estimates can be obtained even with the term
independence assumption.

3.1 The Basic Method

Consider a database D of a search engine with m distinct
terms. Each document d in this database can be represented
as a vector d ¼ ðd1; . . . ; dmÞ, where di is the weight (or
significance) of the ith term ti in representing the document,
1 � i � m. Each query can be similarly represented. Con-
sider query q ¼ ðu1; u2; . . . ; umÞ, where ui is the weight of ti
in the query, 1 � i � m. If a term does not appear in the
query, then its corresponding weight will be zero in the
query vector. The similarity between q and document d can
be defined as the dot product of their respective vectors,
namely, simðq; dÞ ¼ u1 � d1 þ � � � þ um � dm. Similarities are
often normalized between 0 and 1. One common normalized
similarity function is the Cosine function [22] although other
forms of normalization are possible, see, for example, [21].

With the basic method, database D is represented as m
pairs fðpi; wiÞg; i ¼ 1; . . . ;m, where pi is the probability that

term ti appears in a document in D and wi is the average of
the weights of ti in the set of documents containing ti. For a
given query q ¼ ðu1; u2; . . . ; umÞ, the database representative
is used to estimate the usefulness of D. Without loss of
generality, we assume that only the first r uis are nonzero,
0 < r � m. Therefore, q becomes ðu1; u2; . . . ; ur; 0; . . . ; 0Þ and
simðq; dÞ becomes u1 � d1 þ � � � þ ur � dr. This implies that
only the first r terms in each document in D need to be
considered.

Consider the following generating function:

ðp1 �Xw1�u1 þ ð1ÿ p1ÞÞ � ðp2 �Xw2u2 þ ð1ÿ p2ÞÞ � � � � �
ðpr �Xwr�ur þ ð1ÿ prÞÞ;

ð3Þ

where X is a dummy variable. The following proposition
relates the coefficients of the terms in the above function
with the probabilities that documents in D have certain
similarities with q.

Proposition 1. Let q and D be defined as above. If the terms are
independent and the weight of term ti whenever present in a
document is wi, which is given in the database representative
(1 � i � r), then the coefficient of Xs in function (3) is the
probability that a document in D has similarity s with q.

Proof. Clearly, s must be the sum of zero or more wi � uis
with each wi � ui being used at most once. Different
combinations of wi � ui’s may add up to s. Without loss
of generality, let us assume that there are two such
combinations. Suppose

s ¼ wi1 � ui1 þ � � � þ wik � uik ¼ wj1 � uj1 þ � � � þ wjl � ujl :

Then, the probability that q has similarity s with a
document d in D is the probability that d has either
exactly the query terms in fti1 ; . . . ; tikg or exactly the
query terms in ftj1 ; . . . ; tjlg. With the independence
assumption about terms, the probability that d has
exactly query terms in fti1 ; . . . ; tikg is

P ¼
Y

pv �
Y
ð1ÿ pyÞ;

where the first product is over all v in fi1; . . . ; ikg and the
second product is over all y in f1; 2; . . . ; rg ÿ fi1; . . . ; ikg.
Similarly, the probability that d has exactly query terms
in ftj1

; . . . ; tjlg is Q ¼
Q
pv �

Q
ð1ÿ pyÞ, where the first

product is over all v in fj1; . . . ; jlg and the second
product is over all y in f1; 2; . . . ; rg ÿ fj1; . . . ; jlg. There-
fore, the probability that d has either exactly the query
terms in fti1 ; . . . ; tikg or exactly the query terms in
ftj1 ; . . . ; tjlg is the sum of P and Q which is the same as
the coefficient of Xs in function (3). tu

Example 1. Let q be a query with three terms with all
weights equal to 1, i.e., q ¼ ð1; 1; 1Þ (for ease of under-
standing, the weights of terms in the query and
documents are not normalized). Suppose database D
has five documents and their vector representations are
(only components corresponding to query terms are
given): (3, 0, 0), (1, 1, 0), (0, 0, 2), (2, 0, 2), and (0, 0, 0).
Namely, the first document has query term 1 and the
corresponding weight is 3. Other document vectors can
be interpreted similarly. From the five documents in D,
we have ðp1; w1Þ ¼ ð0:6; 2Þ as three out of five documents
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have term 1 and the average weight of term 1 in such

documents is 2. Similarly, ðp2; w2Þ ¼ ð0:2; 1Þ and

ðp3; w3Þ ¼ ð0:4; 2Þ. Therefore, the corresponding generat-

ing function is:

ð0:6 �X2 þ 0:4Þð0:2 �X þ 0:8Þð0:4 �X2 þ 0:6Þ: ð4Þ

Consider the coefficient of X2 in the function.
Clearly, it is the sum of p1 � ð1ÿ p2Þ � ð1ÿ p3Þ and
ð1ÿ p1Þ � ð1ÿ p2Þ � p3. The former is the probability
that a document in D has exactly the first query term
and the corresponding similarity with q is w1 (=2). The
latter is the probability that a document in D has
exactly the last query term and the corresponding
similarity is w3 (=2). Therefore, the coefficient of X2,
namely,

p1 � ð1ÿ p2Þ � ð1ÿ p3Þ þ ð1ÿ p1Þ � ð1ÿ p2Þ � p3 ¼ 0:416;

is the estimated probability that a document in D has

similarity 2 with q.

After generating function (3) has been expanded and the

terms with the same Xs have been combined, we obtain

a1 �Xb1 þ a2 �Xb2 þ � � � þ ac �Xbc : ð5Þ

We assume that the terms in (5) are listed in descending

order of the exponents, i.e., b1 > b2 > . . . > bc. By Proposi-

tion 1, ai is the probability that a document in D has

similarity bi with q. In other words, if database D contains n

documents, then n � ai is the expected number of docu-

ments that have similarity bi with query q. For a given

similarity threshold T , let C be the largest integer to satisfy

bC > T . Then, the NoDoc measure of D for query q based on

threshold T , namely, the number of documents whose

similarities with query q are greater than T , can be

estimated as:

est NoDocðT; q;DÞ ¼
XC
i¼1

n � ai ¼ n
XC
i¼1

ai: ð6Þ

Note that n � ai � bi is the expected sum of all similarities

of those documents whose similarities with the query are bi.

Thus,
PC

i¼1ðn � ai � biÞ is the expected sum of all similarities

of those documents whose similarities with the query are

greater than T . Therefore, the AvgSim measure of D for

query q based on threshold T , namely, the average

similarity of those documents in database D whose

similarities with q are greater than T , can be estimated as:

est AvgSimðT; q;DÞ ¼ n
PC

i¼1 ai � bi
n
PC

i¼1 ai
¼
PC

i¼1 ai � biPC
i¼1 ai

: ð7Þ

Since both NoDoc and AvgSim can be estimated from the
same expanded expression (5), estimating both of them
requires little additional effort in comparison to estimating
only one of them.

Example 2 (Continue Example 1). When the generating
function (4) is expanded, we have:

0:048 �X5 þ 0:192 �X4 þ 0:104 �X3þ
0:416 �X2 þ 0:048 �X þ 0:192:

ð8Þ

From formula (6), we have est NoDocð3; q;DÞ ¼ 5 �
ð0:048þ 0:192Þ ¼ 1:2 and

est AvgSimð3; q;DÞ ¼ð0:048 � 5þ 0:192 � 4Þ=
ð0:048þ 0:192Þ ¼ 4:2:

It is interesting to note that the actual NoDoc is
NoDocð3; q;DÞ ¼ 1 since only the fourth document in D
has a similarity (the similarity is 4) higher than 3 with q

and the actual AvgSim is AvgSimð3; q;DÞ ¼ 4. The second
and the third columns of Table 1 list the true usefulness
of D with respect to q and different T ’s. Note that in
Table 1, the NoDoc and AvgSim values are obtained when
the estimated similarities are strictly greater than the
threshold T. When NoDoc ¼ 0, the value for AvgSim is
undefined. In this case, the corresponding entry under
AvgSim will be left blank. The remaining columns list the
estimated usefulness based on different methods. The
fourth and the fifth columns are for our basic method.
The sixth and the seventh columns are for the estimation
method based on the high-correlation case, and the
eighth and ninth columns are for the estimation method
for the disjoint case, which are proposed in [6], [7]. It can
be observed that the estimates produced by the basic
method approximate the true values better than those
given by the methods based on the high-correlation and
the disjoint assumptions.

Furthermore, the distribution of the exact similarities
between q and documents in D can be expressed by the
following function (analogous to expression (8)):

0 �X5 þ 0:2 �X4 þ 0:2 �X3 þ 0:4 �X2 þ 0 �X þ 0:2: ð9Þ

The first term 0 �X5 means that the probability that a
document having similarity 5 with q is zero and the second
term 0:2 �X4 means that the probability that a document
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having similarity 4 with q is 0.2 since no document in D has
similarity 5 with q and exactly one document in D has
similarity 4 with q. Other terms can be interpreted similarly.
Notice the good match between the corresponding coeffi-
cients in (8) and (9).

3.2 Subrange-Based Estimation for Nonuniform
Term Weights

One assumption used in the above basic solution is that all
documents having a term have the same weight for the term.
This is not realistic. In this section, we present a subrange-
based statistical method to overcome the problem.

Consider a term t. Let w and � be the average and the
standard deviation of the weights of t in the set of documents
containing t, respectively. Let p be the probability that term t
appears in a document in the database. Based on the basic
solution in Section 3.1, if term t is specified in a query, then
the following polynomial is included in the probability
generating function (see Expression (3)):

p �Xu�w þ ð1ÿ pÞ; ð10Þ

where u is the weight of the term in the user query. This
expression essentially assumes that the term t has a
uniform weight of w for all documents containing the
term. In reality, the term weights may have a nonuniform
distribution among the documents having the term. Let
these weights in nonascending order of magnitude be
w1; w2; . . . ; wk, where k ¼ p � n is the number of docu-
ments having the term and n is the total number of
documents in the database. Suppose we partition the
weight range of t into four subranges, each containing 25
percent of the term weights, as follows. The first subrange
contains the weights from w1 to ws, where s ¼ 25% � k; the
second subrange contains the weights from wsþ1 to wt,
where t ¼ 50% � k; the third subrange contains the weights
from wtþ1 to wv, where v ¼ 75% � k and the last subrange
contains weights from wvþ1 to wk. In the first subrange, the
median is the ð25% � k=2Þth weight of the term weights in
the subrange and is wm1, where m1 ¼ 12:5% � k; similarly,
the median weights in the second, the third, and the fourth
subranges have median weights wm2, wm3 and wm4,
respectively, where m2 ¼ 37:5% � k, m3 ¼ 62:5% � k, and
m4 ¼ 87:5% � k. This can be illustrated by Fig. 2.

Then, the distribution of the term weights of t may be
approximated by the following distribution: The term has a
uniform weight of wm1 for the first 25 percent of the
k documents having the term, another uniform weight of
wm2 for the next 25 percent of the k documents, another
uniform weight of wm3 for the next 25 percent of documents
and another uniform weight of wm4 for the last 25 percent of
documents.

With the above weight approximation, for a query
containing term t, polynomial (10) in the generating
function can be replaced by the following polynomial:

p1 �Xu�wm1 þ p2 �Xu�wm2þ
p3 �Xu�wm3 þ p4 �Xu�wm4 þ ð1ÿ pÞ;

ð11Þ

where pj is the probability that term t occurs in a document
and has a weight of wmj; j ¼ 1; 2; 3; 4. Since 25 percent of
those documents having term t are assumed to have a
weight of wmj for t, for each j, pj ¼ p=4. Essentially,
polynomial (11) is obtained from polynomial (10) by
decomposing the probability p that a document has the
term into four probabilities, p1, p2, p3, and p4, corresponding
to the four subranges. A weight of term t in the first
subrange, for instance, is assumed to be wm1 and the
corresponding exponent of X in polynomial (11) is the
similarity due to this term t, which equals u � wm1, taking
into consideration the query term weight u.

Since it is expensive to find and to store wm1, wm2, wm3

and wm4, they are approximated by assuming that the
weights of the term are normally distributed with mean w
and standard deviation �. Let c1, c2, c3, and c4 be the values
at which the standard normal distribution function equals
ð1ÿ 0:125Þ, ð1ÿ 0:375Þ, ð1ÿ 0:625Þ, and ð1ÿ 0:875Þ, respec-
tively. These values can be looked up from a standard
normal distribution table. Then, wmi ¼ wþ ci � �. (Note that
the term weights are arranged in nonincreasing order. For,
say wm1, 12.5 percent of term weights are greater than or
equal to wm1. Hence, the proportion of term weights less
than wm1 is ð1ÿ 0:125Þ.) It should be noted that these
constants (i.e., ci; i ¼ 1; . . . ; 4) are independent of individual
terms and, therefore, one set of such constants is sufficient
for all terms.

Example 3. Suppose the average weight of a term t is w ¼
2:8 (to ease presentation, assume that term weights are
not normalized) and the standard deviation of the
weights of the term is 1.3. From a table of the standard
normal distribution, c1 ¼ 1:15, c2 ¼ 0:318, c3 ¼ ÿ0:318,
and c4 ¼ ÿ1:15. Note that these constants are indepen-
dent of the term. Thus, wm1 ¼ wþ c1 � 1:3 ¼ 4:295;
wm2 ¼ wþ c2 � 1:3 ¼ 3:2134; wm3 ¼ wþ c3 � 1:3 ¼ 2:3866,
and wm4 ¼ wþ c4 � 1:3 ¼ 1:305.

Suppose the probability that a document in the
database has the term t is 0.32. Then, pi ¼ 0:08 for i = 1,
2, 3, and 4. Suppose the weight of the term t in the query
is 2. Then, the polynomial for the term t in the generating
function is

0:08 �X8:59 þ 0:08 �X6:4268 þ 0:08 �X4:7732

þ 0:08 �X2:61 þ 0:68:

In general, it is not necessary to divide the weights of the
term into four equal subranges. For example, we can divide
the weights into five subranges of different sizes, yielding a
polynomial of the form:

p1 �Xu�wm1 þ p2 �Xu�wm2 þ p3 �Xu�wm3þ
p4 �Xu�wm4 þ p5 �Xu�wm5 þ ð1ÿ pÞ;

where p1 þ p2 þ p3 þ p4 þ p5 ¼ p, pi represents the prob-
ability that the term has weight in the ith subrange, and wmi
is the median weight of the term in the ith subrange.

In the experiments we report in Section 5, a specific six-
subrange is used with a special subrange (the highest
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subrange) containing the maximum normalized weight
only (see Section 5). The normalized weight of a term t in a
document is the weight of the term in the document divided
by the norm of the document. The maximum normalized
weight of t in the database is the largest normalized weight
among all documents containing t in the database. The
probability for the highest subrange is set to be 1 divided by
the number of documents in the database. This probability
may be an underestimate. However, since different docu-
ments usually have different norms and therefore there is
usually only one document having the largest normalized
weight, the estimated probability is reasonable.

Example 4 (Continuing Example 3: Term weights are not
normalized to facilitate ease of reading). Suppose that
the number of documents in the database is n ¼ 100
and the maximum weight of the term t is mw ¼ 5:8.
Since the probability that the term occurs in the
documents is 0:32, the number of documents having
the term t ¼ 0:32 � 100 ¼ 32.

We use five subranges, which are obtained by
splitting the first subrange in Example 3 into two
subranges, and the first new subrange is covered by
the maximum weight. Since we assume that there is only
one document having the largest term weight, the
probability that a document has the largest term weight
is p1 ¼ 1=100 ¼ 0:01. Among the documents having the
term, the percentage of documents having the largest
term weight is 1=32 � 100% ¼ 3:125%. This document
occupies the first new subrange. The second new
subrange contains term weights from the 75 percentile
to the 100ÿ 3:125 ¼ 96:875 percentile. The probability
associated with the second new subrange is
ð25=100ÿ 1=32Þ � 0:32 ¼ 0:21875 � 0:32 ¼ 0:07. The med-
ian for the second new subrange is ð75þ 96:875Þ=2 ¼
85:9375 percentile. By looking up a standard normal
distribution table, c2 ¼ 1:08. Therefore,

wm2 ¼ 2:8þ c2 � 1:3 ¼ 4:204:

The next three subranges are identical to the last three
subranges given in Example 3, that is, c3 ¼ 0:318,
c4 ¼ ÿ0:318, c5 ¼ ÿ1:15, wm3 ¼ 3:2134, wm4 ¼ 2:3866,
wm5 ¼ 1:305, and p3 ¼ p4 ¼ p5 ¼ 25% � 0:32 ¼ 0:08. As-
sume that the query term weight is 2. The polynomial for
the term t in the generating function is

0:01 �X11:6 þ 0:07 �X8:408 þ 0:08 �X6:4268

þ 0:08 �X4:7732 þ 0:08 �X2:61 þ 0:68:

Note that the subrange-based method needs to know the
standard deviation of the weights for each term. As a result,
a database with m terms is now represented as m triplets
fðpi; wi; �iÞg, i ¼ 1; . . . ;m, where pi is the probability that
term ti appears in a document in the database, wi is the
average weight of term ti in all documents containing the
term and �i is the standard deviation of the weights of ti in
all documents containing ti. Furthermore, if the maximum
normalized weight of each term is used by the highest
subrange, then the database representative will contain m
quadrupletsfðpi; wi; �i;mwiÞg, with mwi being the max-
imum normalized weight for term ti. Our experimental

results indicate that the maximum normalized weight is a
critical parameter that can drastically improve the estima-
tion accuracy of search engine usefulness. In the following
section, we elaborate why the maximum normalized weight
is a critically important piece of information for correctly
identifying useful search engines.

3.2.1 Single-Term Query

Consider a query q that contains a single term t. Suppose
the similarity function is the widely used Cosine function.
Then, the normalized query has a weight of 1 for the term t
and the similarity of a document d with the query q using
the Cosine function is w0, which is the dot product ð1 � w0Þ,
where w0 ¼ w=jdj is the normalized weight of the term t in
the document d, jdj is the norm of d, and w is the weight of
the term in the document before normalization. Consider a
database D1 that contains documents having term t. The
component of the database representative concerning term t
will contain the maximum normalized weight mw1, if mw1

is the largest normalized weight of term t among all
documents in database D1. By our discussion just before
this section, the highest subrange contains the maximum
normalized weight only and its probability is set to be 1
divided by the number of documents in the database. The
generating function for the query q for the database D1 is:

p1 �Xmw1 þ . . . ;

where p1 is 1=n and n is the number of documents in this
database. For a different database Di, i 6¼ 1, having
maximum normalized term weight mwi for term t, the
generating function for the same query for database Di is
obtained by replacing mw1 by mwi in the above expression
(with p1 being modified accordingly). Suppose mw1 is the
largest maximum normalized term weight of term t among
all databases and mw2 is the second largest with
mw1 > mw2. Suppose the threshold of retrieval T is set
such that mw1 > T > mw2. Then, the estimated number of
documents with similarities greater than T in database D1 is
at least p1 � n ¼ 1 because mw1 > T . Since

T > mw2 > mwj; ðj 6¼ 1; 2Þ;

the estimated numbers of documents with similarities
greater than T in database D2 and other databases are zero.
Thus, database D1 is the only database which can be
identified by our estimation method as having documents
with similarities greater than T for the single term query.
This identification is correct because documents with
normalized term weight mw1 only appear in database D1

and documents in other databases have similarities less
than or equal to mw2. In general, if the maximum normal-
ized weights of term t in the databases are arranged in
descending order mw1 > mw2 > . . . > mws > . . . > mwv,
where v is the number of databases, and the threshold T
is set such that mwsÿ1 > T > mws, then databases
D1; D2; . . . ; Dsÿ1 will be identified by our estimation
method to be searched. This identification is consistent
with the ideal situation, where these selected databases
contain documents with similarities greater than T and
other databases do not have the desired documents (with
similarities greater than T). Thus, our method guarantees
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the correct identification of useful search engines for single
term queries. The same argument applies to other similarity
functions such as [21]. Several recent studies indicate that
30 percent or higher percentages of all Internet queries are
single-term queries [10], [11]. Thus, for a large percentage of
all Internet queries, our method guarantees optimal
identification when the maximum normalized weight of
each term is utilized.

4 DISCUSSION ON APPLICABILITY

We now discuss several issues concerning the applicability
of the new method.

4.1 Scalability

If the representative of a database used by an estimation
method has a large size relative to that of the database, then
this estimation method will have a poor scalability, as such
a method is difficult to scale to thousands of text databases.
Suppose each term occupies four bytes. Suppose each
number (probability, average weight, standard deviation,
and maximum normalized weight) also occupies 4 bytes.
Consider a database with m distinct terms. For the
subrange-based method, m probabilities, m average
weights, m standard derivations, and m maximum normal-
ized weights are stored in the database representative,
resulting in a total storage overhead of 20 �m bytes. Table 2
shows, for several document collections, the percentage of
the sizes of the database representatives based on our
approach relative to the sizes of the original document
collections.

In Table 2, all sizes are in pages of 2 KB. The statistics of
the second and third columns of the three document
collections, namely, WSJ (Wall Street Journal), FR (Federal
Register), and DOE (Department of Energy), were collected
by ARPA/NIST [8]. Table 2 shows that for the three
databases, the sizes of the representatives range from 3.79 to
7.40 percent of the sizes of the actual databases. Therefore,
our approach is fairly scalable. Also, typically, the percen-
tage of space needed for a database representative relative
to the database size will decrease as the database grows.
This is because, when new documents are added to a large
database, the number of distinct terms either remains
unchanged or grows slowly.

In comparison to the database representative used in
gGlOSS, the size of the database representative for our
approach is 67 percent larger (due to storing the standard
deviation and the maximum normalized weight for each

term). The following methods can be used to substantially
reduce the size of the database representative.

There are several ways to reduce the size of a database
representative. Instead of using 4 bytes for each number
(probability, average weight, standard deviation, maximum
normalized weight), a one-byte number can be used to
approximate it as follows: Consider probability first.
Clearly, all probabilities are in interval [0, 1]. Using one
byte, 256 different values can be represented. Based on this,
interval [0, 1] is partitioned into 256 equal-length intervals.
Next, the average of the probabilities falling into each small
interval can be computed. Finally, we map each original
probability to the average of its corresponding interval. The
probability 0.15, for example, lies in the 39th interval
(½0:1484; 0:1523�). In the database representative, this prob-
ability will be represented by the number 38 (using one
byte). Suppose the average of all probabilities in the 39th
interval is 0.1511. Then, 0.1511 will be used to approximate
the probability 0.15. Similar approximation can also be
applied to average weights, maximum normalized weights,
and standard deviations. Our experimental results show
(see Section 5) that the approximation has negligible impact
on the estimation accuracy of database usefulness. When
the above scheme is used, the size of the representative of a
database with m distinct terms drops to 8 �m bytes from
20 �m bytes. As a result, the sizes of the database
representatives for the above databases will be about 1.5
to 3 percent of the database sizes. Further size reduction is
possible by using 4 bits for each weight, maximum
normalized weight, and standard deviation. Our experi-
mental results show (also in Section 5) that good accuracy
can still be obtained with the reduction. When 4 bits are
used for each weight, maximum normalized weight, and
standard deviation while each probability still uses one
byte, the size of the representative of a database with m

distinct terms drops to 6:5 �m bytes, reducing the above
percentages further to 1.23 to 2.4 percent. As mentioned
above, for larger databases, the database representatives are
likely to occupy even lower percentages of space.

4.2 Hierarchical Organization of Representatives

If the number of search engines is very large, the
representatives can be clustered to form a hierarchy of
representatives. Each query is first compared against the
highest level representatives. Only representatives whose
ancestor representatives have been estimated to have a
large number of very similar documents will be examined
further. As a result, most database representatives will not
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be compared against the query. A similar idea has also been

suggested by Gravano and Garcia-Molina [6].
Suppose P1; . . . ; Pv are the representatives of v local

databases D1; . . . ; Dv. A higher-level representative P above

these representatives in the hierarchy can be considered as a

representative of a database D, where D is combined from

D1; . . . ; Dv by a union. We now discuss how to obtain P

from P1; . . . ; Pv. We assume that databases D1; . . . ; Dv are

pair-wise disjoint. Let Ti be the set of terms in Di,

i ¼ 1; . . . ; v. For a given term t, let piðtÞ be the probability

of a document in Di that contains t, wiðtÞ be the average

weight of t in all documents in Di that contain t, mwiðtÞ be

the maximum normalized weight of t in all documents in

Di, and �iðtÞ be the standard deviation of all positive

weights of t in Di. Let pðtÞ, wðtÞ, mwðtÞ, and �ðtÞ be the

probability, average weight, maximum normalized weight,

and standard deviation of term t in the new representative

P, respectively. We now discuss how to obtain pðtÞ, wðtÞ,
mwðtÞ, and �ðtÞ. To simplify the notation, assume that

piðtÞ ¼ wiðtÞ ¼ mwiðtÞ ¼ �iðtÞ ¼ 0 if t is not a term in Ti,

i ¼ 1; . . . ; v.
The first three quantities, namely pðtÞ, wðtÞ, and mwðtÞ,

can be obtained easily.

pðtÞ ¼
Pv

i¼1 piðtÞ � niPv
i¼1 ni

;

where ni is the number of documents in Di.

wðtÞ ¼
Pv

i¼1 piðtÞ � ni � wiðtÞPv
i¼1 piðtÞ � ni

;

mwðtÞ ¼ maxfmw1ðtÞ; . . . ;mwvðtÞg:

We now compute �ðtÞ. Let kiðtÞ be the number of

documents containing t in Di. Note that kiðtÞ ¼ piðtÞ � ni.
Let wijðtÞ denote the weight of t in the jth document in Di.

From

�iðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
j w

2
ijðtÞ

kiðtÞ
ÿ w2

i ðtÞ

s
;

we have P
j w

2
ijðtÞ

kiðtÞ
¼ �2

i ðtÞ þ w2
i ðtÞ: ð12Þ

Based on the definition of standard deviation, we have

�ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i

P
j w

2
ijðtÞP

i kiðtÞ
ÿ

P
i

P
j wijðtÞP

i kiðtÞ

� �2
s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
j w

2
1jðtÞP

i kiðtÞ
þ � � � þ

P
j w

2
vjðtÞP

i kiðtÞ
ÿ w2ðtÞ

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1ðtÞP
i
kiðtÞ
�

P
j
w2

1j
ðtÞ

k1ðtÞ
þ���þ kvðtÞP

i
kiðtÞ
�

P
j
w2
vj
ðtÞ

kvðtÞ ÿw2ðtÞ

r
:

From (12), we have

�ðtÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1ðtÞP
i
kiðtÞ
�ð�2

1
ðtÞþw2

1
ðtÞÞþ���þ kvðtÞP

i
kiðtÞ
�ð�2

vðtÞþw2
vðtÞÞÿw2ðtÞ

q
:

The above derivations show that each quantity in the
representative P can be computed from the quantities in the
representatives at the next lower level.

4.3 Obtaining Database Representatives

To obtain the accurate representative of a database used by
our method, we need to know the following information:
1) the number of documents in the database, 2) the document
frequency of each term in the database (i.e., the number of
documents in the database that contain the term), and 3) the
weight of each term in each document in the database.
Items 1 and 2 are needed to compute the probabilities and
Item 3 is needed to compute average weights, maximum
normalized weights, and standard deviations. Items 1 and 2
can usually be obtained with ease. For example, when a
query containing a single term is submitted to a search
engine, the number of hits returned is the document
frequency of the term. Many other proposed approaches
for ranking text databases also use the document frequency
information [3], [6], [27]. Most recently, the STARTS
proposal for Internet metasearching [5] suggests that each
database (source) should provide document frequency for
each term.

We now discuss how to obtain information (Item 3). In
an Internet environment, it may not be practical to expect a
search engine to provide the weight of each term in each
document in the search engine. We propose the following
techniques for obtaining the average term weights, their
standard deviations, and the maximum normalized term
weights.

1. Use sampling techniques in statistics to estimate the
average weight and the standard deviation for each
term. When a query is submitted to a search engine,
a set S of documents will be returned as the result of
the search. For each term t in S and each document d
in S, the term frequency of t in d (i.e., the number of
times t appears in d) can be computed (the STARTS
proposal even suggests that each search engine
provides the term frequency and weight information
for each term in each returned document [5]). As a
result, the weight of t in d can be computed. If the
weights of t in a reasonably large number of
documents can be computed (note that more than
one query may be needed), then an approximate
average weight and an approximate standard
deviation for term t can be obtained. Since the
returned documents for each query may contain
many different terms, the above estimation can be
carried out for many terms at the same time.

2. Obtain the maximum normalized weight (with
respect to the global similarity function used in the
metasearch engine) for each term t directly as
follows: Submit t as a single term query to the local
search engine which retrieves documents according
to a local similarity function. Two cases are
considered:

Case 1: The global similarity function is known to
be the same as the similarity function in the search
engine. In this case, if the search engine returns a
similarity for each retrieved document, then the
similarity returned for the first retrieved document
is the maximum normalized weight for the term; if
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the search engine does not return similarity expli-
citly, then the first retrieved document is down-
loaded to compute its similarity with the one-term
query and this similarity will be the maximum
normalized weight for the term.

Case 2: The global similarity function and the local
similarity function are different or the local similar-
ity function is unknown. In this case, the first few
retrieved documents are downloaded to compute
the global similarities of these documents with the
one-term query. The largest similarity is then
tentatively used as the maximum normalized
weight, which may need to be adjusted when
another document from the same search engine is
found to have a higher weight for the term (with
respect to the global similarity function).

Although using sampling techniques can introduce
inaccuracy to the statistical data (e.g., average weight and
standard deviation), our usefulness estimation method is
quite robust with respect to the inaccuracy as a 4-bit
approximation of each value can still produce reasonably
accurate usefulness estimation. Furthermore, a recent study
indicates that using sampling queries is capable of generat-
ing acceptable statistical information for terms [4].

5 EXPERIMENTAL RESULTS

Three databases, D1, D2, and D3, and a collection of 6,234
queries are used in the experiment. D1, containing 761
documents, is the largest among the 53 databases that are
collected at Stanford University for testing the gGlOSS
system. The 53 databases are snapshots of 53 newsgroups at
the Stanford CS Department news host. D2, containing
1,466 documents, is obtained by merging the two largest
databases among the 53 databases. D3, containing
1,014 documents, is obtained by merging the 26 smallest
databases among the 53 databases. As a result, the
documents in D3 are more diverse than those in D2 and
the documents in D2 are more diverse than those in D1. The
queries are real queries submitted by users to the SIFT
Netnews server [23], [6]. Since most user queries on the
Internet environment are short [1], [14], only queries with
no more than six terms are used in our experiments.
Approximately 30 percent of the 6,234 queries in our
experiments are single-term queries.

For all documents and queries, noncontent words such
as “the,” “of,” etc. are removed. The similarity function is
the Cosine function. This function guarantees that the
similarity between any query and document with non-
negative term weights will be between 0 and 1. As a result,
no threshold larger than 1 is needed.

We first present the experimental results when the
database representative is represented by a set of quad-
ruplets ðwi; pi; �i;mwiÞ (average normalized weight, prob-
ability, standard deviation, maximum normalized weight)
and each number is the original number (i.e., no approx-
imation is used). The results will be compared against the
estimates generated by the method for the high-correlation
case and our previous method proposed in [18]. (The
method in [18] is similar to the basic method described in
Section 3.1 of this paper except that it utilizes the standard
deviation of the weights of each term in all documents to

dynamically adjust the average weight and probability of
each query term according to the threshold used for the
query. Please see [18] for details. No experimental results
for the method for the disjoint case [6] will be reported here
as we have shown that the method for the high-correlation
case performs better than that for the disjoint case [18].) We
then present the results when the database representative is
still represented by a set of quadruplets but each original
number is approximated either by a one-byte number or a
4-bit number. This is to investigate whether our estimation
method can tolerate certain degrees of inaccuracy on the
numbers used in the database representative. These experi-
ments use six subranges for our subrange-based method.
The first subrange contains only the maximum normalized
term weight; the other subranges have medians at 98 per-
centile, 93.1 percentile, 70 percentile, 37.5 percentile, and
12.5 percentile, respectively. Note that narrower subranges
are used for weights that are large because those weights
are often more important for estimating database useful-
ness, especially when the threshold is large. Finally, we
present the results when the database representative is
represented by a set of triplets ðwi; pi; �iÞ and each number
is the original number. In other words, the maximum
normalized weight is not directly obtained but is estimated
to be the 99.9 percentile from the average weight and the
standard deviation. The experimental results show the
importance of maximum normalized weights in the estima-
tion process. All other medians are the same.

5.1 Using Quadruplets and Original Numbers

Consider database D1. For each query and each threshold,
four usefulnesses are obtained. The first is the true
usefulness obtained by comparing the query with each
document in the database. The other three are estimated
based on the database representatives and estimation
formulas of the following methods: 1) the method for the
high-correlation case, 2) our previous method [18], and
3) our subrange-based method with the database represen-
tative represented by a set of quadruplets and each number
being the original number. All estimated usefulnesses are
rounded to integers. The experimental results for D1 are
summarized in Table 3.

In Table 3, T is the threshold and U is the number of
queries that identify D1 as useful (D1 is useful to a query if
there is at least one document in D1 which has similarity
greater than T with the query, i.e., the actual NoDoc is
greater than or equal to 1). When T = 0.1, 1,474 out of 6,234
queries identify D1 as useful. The comparison of different
approaches are based on the following three different
criteria.

1. match/mismatch: For a given threshold, “match”
reports among the queries that identify D1 as useful
based on the true NoDoc, the number of queries that
also identify D1 as useful based on the estimated
NoDoc; “mismatch” reports the number of queries
that identify D1 as useful based on the estimated
NoDoc, but, in reality, D1 is not useful to these
queries based on the true NoDoc. For example,
consider the “match/mismatch” column using the
method for the high-correlation case. When T = 0.1,
“296/35” means that out of the 1,474 queries that
identify D1 as useful based on the true NoDoc,
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296 queries also identify D1 as useful based on the
estimated NoDoc by the high-correlation approach;
and there are also 35 queries that identify D1 as
useful based on the high-correlation approach, but,
in reality, D1 is not useful to these 35 queries.
Clearly, a good estimation method should have its
“match” close to “U” and its “mismatch” close to
zero for any threshold. Note that, in practice,
correctly identifying a useful database is more
significant than incorrectly identifying a useless
database as a useful database. This is because
missing a useful database does more harm than
searching a useless database. Therefore, if estimation
method A has a much larger “match” component
than method B while A’s “mismatch” component is
not significantly larger than B’s “mismatch” compo-
nent, then A should be considered to be better than B.

Table 3 shows that the subrange-based approach
is substantially more accurate than our previous
method [18], which in turn is substantially more
accurate than the high-correlation approach under
the “match/mismatch” criteria. In fact, for thresh-
olds between 0.1 and 0.4, the accuracy of the
subrange-based method is 91 percent or higher for
the “match” category.

2. d-N: For each threshold T, the “d-N” (for “difference
in NoDoc”) column for a given estimation method
indicates the average difference between the true
NoDoc and the estimated NoDoc over the queries that
identify D1 as useful based on the true NoDoc. For
example, for T = 0.1, the average difference is over
the 1,474 queries. The smaller the number in “d-N”
is, the better the corresponding estimation method
is. Again, Table 3 shows that the subrange-based
approach is better than our previous method for
most thresholds, which in turn is much better than
the high-correlation approach under the “d-N”
criteria.

3. d-S: For each threshold T, the “d-S” (for “difference
in AvgSim”) column for a given estimation method
indicates the average difference between the true
AvgSim and the estimated AvgSim over the queries
that identify D1 as useful based on the true NoDoc.
Again, the smaller the number in “d-S” is, the better
the corresponding estimation method is. Table 3
shows that the subrange-based approach is substan-
tially more accurate than the other two approaches
for all thresholds.

The experimental results for databases D2 and D3 are
summarized in Tables 4 and 5, respectively. From Tables 3,
4, and 5, the following observations can be made. First, the
subrange-based estimation method significantly outper-
formed the other two methods for each database under
each criteria. Second, the “match” components are best for
database D1, and not as good for database D2 and for
database D3. This is probably due to the inhomogeneity of
data in databases D2 and D3.

5.2 Using Quadruplets and Approximate Numbers

In Section 4.1, we proposed a simple method to reduce the
size of a database representative by approximating each
needed number (such as average weight) using one byte or
4 bits. When the accuracy of each parameter value is
reduced from 4 bytes to 1 byte, there is essentially no
difference in performance (see Table 6 relative to Table 3).
Table 7 lists the experimental results when all numbers are
represented by 4 bits except that each probability continues
to use 1 byte, again for database D1. The results (compare
Tables 6 and 7 with Table 3) show that the drop in accuracy
of estimation due to approximation is small for each criteria.

Similar but slightly weaker results can be obtained for
databases D2 and D3 (see Tables 8 and 9 relative to Table 4
for D2 and Tables 10 and 11 relative to Table 5 for D3).

5.3 Using Triplets and Original Numbers

In Section 3.2.1, we discussed the importance of the
maximum normalized weights for correctly identifying
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useful databases, especially when single term queries are

used. Since single term queries represent a large fraction of

all queries on the Internet environment, it is expected that the

use of maximum normalized weights will significantly

improve the overall estimation accuracy for all queries.

Among the 6,234 queries used in our experiments, 1,941 are

single term queries. Table 12 shows the experimental results

for database D1 when the maximum normalized weights are

not explicitly obtained. Instead, it is assumed that, for each

term, the normalized weights of the term in the set of

documents containing the term satisfy a normal distribution

and the maximum normalized weight is estimated to be the

99.9 percentile based on its average weight and its standard

deviation. Comparing the results in Table 3 and those in

Table 12, it is clear that the use of maximum normalized

weights can indeed improve the estimation accuracy

substantially. Nevertheless, even when estimated maximum

normalized weights are used, the results based on the

subrange-based approach are still much better than those

based on the high-correlation assumption and those obtained

by our previous method [18]. Similar conclusions can be

reached when the results in Tables 4 and 13 are compared

and when the results in Tables 5 and 14 are compared.

6 COMBINING TERMS

In the subrange-based estimation method presented earlier,
terms are assumed to be independently distributed in the
documents of the database. Although the overall experi-
mental results reported in Section 5 are very good, there is
some room for improvement at high retrieval thresholds
(see Tables 3, 4, and 5 with threshold values 0:5 and 0:6.)
Thus, we propose the following scheme to incorporate the
dependencies of terms in the estimation process.

There are quite a few term dependency models in the
information retrieval literature (see, for example, the tree-
dependency model, the Bahadur-Lazarsfeld model, and the
generalized dependency model in [26].) In [18], we
employed the Bahadur-Lazarsfeld model to incorporate
the dependencies into the estimation process. That model is
somewhat complicated. In addition, it does not make use of
the maximum normalized term weight. As the experimental
results in the last section indicate, the maximum normalized
term weight is a critical parameter. Thus, the following
approach is used instead.

Consider the distributions of terms ti and tj in a database
of documents. Within the set of documents having both
terms, there is a document having the largest sum of the
normalized term weight of ti and the normalized term
weight of tj. Let the largest sum be called the maximum
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normalized weight of the combined term and be denoted by
mnwij. If terms ti and tj are combined into a single term,
then the probability that a document in the database has the
maximum normalized weight of the combined term, mnwij,
can be assumed to be 1=n, where n is the number of
documents in the database. As pointed out earlier, it is
unlikely that another document in the database has the
same maximum normalized weight under the combined
term. If the two terms were independently distributed in the
documents of the database, then the probability that a
document in the database has the normalized sum of term
weights mnwij under the two terms ti and tj can be
estimated using the subrange-based estimation method.
Specifically, for term ti, we form a polynomial representing
the probability that a document has the maximum normal-
ized term weight for ti and the probabilities that a
document has certain percentiles of weights for term ti
(see Example 4). Similarly, another such polynomial can be
formed for term tj. By multiplying these two polynomials
together, the desired probability can be estimated. The
criteria that the two terms ti and tj should be combined into
a single term tij is that the estimated probability under the
term independence assumption is very different from 1=n
and the maximum normalized weight of the combined term
is higher than the maximum normalized weight of each of
the two individual terms. Since our aim is to estimate the
similarities of the most similar documents, the latter
condition is to ensure that, if the combined term is used,
it will not lead to smaller similarities. The former condition
is implemented by computing the difference in absolute
value between 1=n and the estimated probability and then
comparing to a preset threshold. If the difference exceeds
the threshold, then the two terms should be combined. The
difference for the term pair ti and tj is denoted by dij and is
stored together with the combined term tij.

If the two terms are combined, then we obtain from the
documents containing both terms the distribution of the
sum of the normalized weights of the two terms. From the
distribution, we apply the subrange-based estimation for

the combined term. For a combined term tij, we store the
maximum normalized sum mnwij, the average normalized
sum, its standard deviation, its probability of occurrence,
and its difference dij. The last quantity is utilized to
determine which term should be combined with a given
term in a query and will be explained later.

Example 5. Suppose that the user’s query q is “computer

algorithm,” and that normalized term weight is used in

this example.
Let the maximum normalized weight for the terms

“computer” and “algorithm” be mw1 ¼ 0:458 and
mw2 ¼ 0:525, respectively. Suppose that the polynomials
for the two terms are

0:0013 �X0:458 þ 0:00016 �X0:374 þ 0:0054 �X0:316þ
0:0279 �X0:198 þ 0:0174 �X0:101 þ 0:0174 �X0:0056 þ 0:93

and

0:0013 �X0:525 þ 0:0225 �X0:428 þ 0:039 �X0:356þ
0:252 �X0:234 þ 0:157 �X0:128 þ 0:157 �X0:0223 þ 0:37:

Suppose that the maximum normalized weight of the
combined term “computer algorithm” mnw12 ¼ 0:825
which is greater than mw1 and mw2. By multiplying
the above polynomials, the probability that a document
has a total normalized weight (associated with these
two terms) of mnw12 or higher is 3:878 � 10ÿ5. This
probability is based on the assumption that the two
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terms were independent. The actual probability is
1=n ¼ 0:0013, where n ¼ 761 in this example. Since
the estimated probability and the actual probability
differ substantially, the two terms should be combined.
The combined term occurs in 53 documents out of a
total of 761 documents. Its average normalized weight
is 0:352; and the standard deviation of the normalized
weights is 0:203. Using the subrange-based method on
the combined term, the first subrange contains the
maximum normalized sum of 0.825 and the probability
associated with this subrange is 0.0013. The second
subrange has its median at the 98th percentile. From
the standard normal distribution table, the constant c
for the 98th percentile is 2.055. Thus, the median
weight is 0:352þ 2:055 � 0:203 ¼ 0:769. Note that the
larger end point of the second subrange corresponds to
the ð1ÿ 1

53Þ � 100th percentile. Since the median is at
the 98th percentile, the width of the second subrange is

2 �
�
ð1ÿ 1

53
Þ � 100ÿ 98

�
=100 ¼ ð 4

100
ÿ 2

53
Þ:

Thus, the probability that the normalized weight of the

combined term in a document lies in the second

subrange (having median at the 98th percentile) is�
4

100ÿ 2
53

�
� 53

761 ¼ 0:000158. The median weights and

probabilities for the other subranges can be determined

similarly. Thus, the polynomial for the combined term is

0:0013 �X0:825 þ 0:000158 �X0:769 þ 0:0055 �X0:667þ
0:0279 �X0:458 þ 0:0174 �X0:287 þ 0:0174 �X0:118 þ 0:93:

In general, Oðm2Þ term pairs need to be tested for
possible combinations, where m is the number of terms.
When m is large, the testing process may become too time
consuming. In order that the process be easily carried out,

we restrict the terms to be query terms (i.e., terms appearing
in previously submitted queries) and each pair of terms to
be in adjacent locations in a query. The latter condition is to
simulate phrases since the components of a phrase are
usually in adjacent locations.

Given a query, we need to estimate the distribution of
the similarities of the query with the documents in the
database, while taking into consideration that certain terms
in the query may be combined. We shall restrict a combined
term to contain two individual terms only. It is essential to
decide for a given term of the query whether it is to be
combined, and if the term is to be combined, which term
should be combined with it. Specifically, consider three
adjacent terms ti, followed by tj and then followed by tk in
the query. If term ti has been combined with its preceding
term, then it will not be combined with term tj (because a
phrase usually consists of two words and it is simpler to
recognize phrases containing two words than phrases
containing three or more words); otherwise, check if the
combined term tij exists. If the combined term tij exists,
then check if the combined term tjk exists. If both combined
terms exist, then compare the differences dij and djk. The
larger difference indicates which term should be combined
with term tj for this query. For example, if djk is larger than
dij, then term tj is combined with tk and the distribution of
the combined term should be used to estimate the
distribution of the similarities of the documents with this
query. If only one of the combined term exists, then that
combined term will be used. If none of the two combined
terms exists, then term tj is not combined with any term.

Using this strategy to combine terms, we perform
experiments on the same set of queries and the same three
databases D1, D2, and D3. The results are reported in
Tables 15, 16, and 17. It is clear that the combined-term
method is better than the subrange-based method in the
match/mismatch measure, especially when the thresholds
(0.5 and 0.6) are large. Close to optimal results are obtained.
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Theoretically, it is possible to get better results by
1) combining three or more terms together and 2) modifying
the polynomial representing two terms when they are
combined. It should be noted that the polynomial for the
combined term does not take into consideration the
situations that exactly one of the two terms occurs. It is
possible to include those situations. However, that would
require storing more information. Similarly, the process of
combining three or more terms into one is feasible but would
introduce complications. Since the simple combined-term
method yields close to optimal results, it is not clear whether
it is worthwhile to complicate the estimation process.

7 CONCLUSIONS

In this paper, we introduced a search engine usefulness
measure which is intuitive and easily understood by users.
We proposed a statistical method to estimate the usefulness
of a given search engine with respect to each query.
Accurate estimation of the usefulness measure allows a
metasearch engine to send queries to only the appropriate
local search engines to be processed. This will save both the
communication cost and the local processing cost substan-
tially. Our estimation method has the following properties:

1. The estimation makes use of the number of docu-
ments desired by the user (or the threshold of
retrieval), unlike some other estimation methods
which rank search engines without using the above
information.

2. It guarantees that those search engines containing
the most similar documents are correctly identified
when the submitted queries are single-term queries.
Internet users submit a high percentage of such short
queries and they can all be sent to the correct search
engines to be processed using our method.

3. Experimental results indicate that our estimation
methods are much more accurate than existing
methods in identifying the correct search engines
to use, in estimating the number of potentially useful
documents in each database, and in estimating the
average similarity of the most similar documents.

We intend to fine-tune our algorithm to yield even better
results and to perform experiments involving much larger
and many more databases. Our current experiments are
based on the assumption that term weights satisfy the
normal distribution. However, the Zipfian distribution [20]
may model the weights more accurately. We will also

examine ways to further reduce the storage requirement for
database representatives.
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