
Minimal Spatio-Temporal Database Repairs

Markus Mauder1, Markus Reisinger1, Tobias Emrich1, Andreas Züfle1(B),
Matthias Renz1, Goce Trajcevski2, and Roberto Tamassia3

1 Ludwig-Maximilians-Universitüt München, Munich, Germany
{mauder,reisinger,zuefle,renz}@dbs.ifi.lmu.de

2 Northwestern University, Evanston, USA
goce@eecs.northwestern.edu

3 Brown University, Providence, USA
rt@cs.brown.edu

Abstract. This work addresses the problem of efficient detection and fix-
ing of inconsistencies in spatio-temporal databases. In contrast to tradi-
tional database settings, where integrity constraints pertain to explicitly
stored values and values defined via views and aggregates, spatio-temporal
data may exhibit other types of constraint violations that cannot be tied
to stored or aggregated values. The main reason is that spatio-temporal
phenomena are continuous but their database representations are discrete.
Thus, the constraints are semantic in nature, as opposed to being depen-
dent on the actual stored data. We give a general definition of semantic
constraints of a trajectory database and define rules to repair violations
of these constraints. In order to minimize the distortion of the state of the
database, we aim at minimizing the changes needed for repairing viola-
tions of such semantic constraints. Towards this goal, we define a measure
of dissimilarity between the initial database and its repaired state. Also, to
minimize dissimilarity, we propose several simple rules of space- and time-
distortion that shift inconsistent observations in space and time to remove
inconsistencies. Our evaluation shows that these rules often run into local
minima, and thus may not be able to repair a database. To remedy this
problem, we propose a hybrid approach that chooses between several pos-
sible space and time distortions. We show that a greedy approach which
always chooses the locally best repair may still run into local minima and
propose a simulated-annealing approach that combines greedy and ran-
dom repairs to avoid these local minima.

1 Introduction

By the end of 2014, there were nearly 7 billion mobile subscriptions world-
wide [1]. This fact, along with miniaturization of computing and sensing devices
and GPS and RFID technologies, has provided a foundation for generating
extremely large volumes of location-in-time data: petabytes of location-based
(i.e., spatio-temporal) data are generated every day [11]. The management of
(location, time) information about mobile entities is essential for a variety of
application domains, ranging from navigation and efficient traffic management to
emergency/disaster rescue management, environmental monitoring, fly-through
c© Springer International Publishing Switzerland 2015
C. Claramunt et al. (Eds.): SSTD 2015, LNCS 9239, pp. 255–273, 2015.
DOI: 10.1007/978-3-319-22363-6 14

256 M. Mauder et al.

visualization, and various military applications (e.g., radar data, troops track-
ing) [14]. Essentially, every application requiring some form of Location Based
Services (LBS) [16] needs efficient techniques for storage, retrieval and query
processing of spatio-temporal data—topics studied in the field of Moving Objects
Databases (MOD) [10].

Physical factors, such as the imprecision of sensing devices and communi-
cation links, often cause location data to be inaccurate and noisy. In addition
to this problem—even with perfect sampling accuracy—the data intended to
capture a continuous motion can be represented only at discrete time-instances.
Moreover, data records can be obsolete as users may update their location infre-
quently, e.g., due to bad connectivity or to preserve battery power. Thus, one
has to cater to the uncertainty as a natural factor when considering the repre-
sentation of spatio-temporal data (cf. [6]). A complementary observation is that
data sources may be various heterogeneous devices: roadside-sensors, weather
stations, satellite imagery, (mobile) weather radar, crowd sourced observations,
ground and aerial LIDAR—to name but a few. Having multiple sources may
yield not only cause type-mismatch issue, but also generate conflicting loca-
tion information about the same object and cause problems in reconciling the
data [18]. Complementary to uncertainty, the above contexts may cause other
types of semantic inconsistencies that have not been addressed so far. Namely,
a user posing a continuous k-Nearest Neighbor (k-NN) query, may be presented
with an answer containing two (or more) vehicles that “have collided.” This is
an example of violating the following basic semantic constraint: “two objects
cannot be at the same place at the same time.” Such a violation may be due
to imprecise location-samples. Also, it often arises from the use of interpolation
(linear, Bezier, etc.) in-between observed samples [9].

The main objective this work is to provide techniques detecting and fixing’
such inconsistencies. The focus of this paper is not on removing the inherent
uncertainty, which follows from the imprecision of location detection and can be
an additional cause of inconsistencies. Rather, we aim at repairing the “symp-
toms” of the “inevitable uncertainty”. As an example, the interpolation of GPS
signals may lead to the consequence of having a trajectory of a given car going
through a lake. Fixing this problem by having the trajectory going around the
lake may still yield the wrong trajectory, as the true trajectory may look differ-
ent. Hence, while we cannot claim to have alleviated the root-causes for errors
in spatio-temporal databases, we take a first step towards fixing the symptoms
based on semantic constraints. Clearly, a method for database repairs should
aim at minimizing the distortion between the original database and the repaired
database. The main contribution of this work can be summarized as follows:

– We identify and formalize the problem of semantic inconsistencies in spatio-
temporal data. This formalization identifies a wide class of problems, that
have been largely neglected in the moving object and trajectory database
literature.

– Since the problem of finding an optimal database repair is NP-hard, we pro-
pose a number of heuristics to repair a spatio-temporal database, which are

Minimal Spatio-Temporal Database Repairs 257

organized into three general categories of solution, including time-distortion,
space-distortion and hybrid approaches.

– We present experimental observations quantifying different trade-offs among
the proposed methods.
The rest of this paper is organized as follows. Section 2 presents a review

related work. In Sect. 3, we formalize the problem of Moving Object Database
(MOD) inconsistencies along with metrics to measure the quality of a database
repair. Section 5 gives the details of the proposed algorithmic solutions and the
experimental observations are presented in Sect. 6. Finally, in Sect. 7, we conclude
the paper and outline directions for future work.

2 Related Work

We now overview the literature on several different topics related to the prob-
lems addressed in this paper. However, as we will argue, although each body of
work has yielded interesting and relevant results, none has addressed the specific
problems tackled by our work, nor has provided a readily applicable “tool-chain.”

Relational Database Repairs: Traditional database approaches repair
[3,4,17] the identified inconsistencies by removing objects or by changing
attribute values. Such approaches however, can not be applied directly to spatio-
temporal data. Arbitrarily changing a (location, time) pair is likely to yield new
inconsistencies, as the changed trajectory may reach an unreachable state, or
may have an unrealistically high speed in the repaired version of the database.
The main challenge in spatio-temporal data is to incorporate repair rules to span
a space of semantically meaningful repairs.

Probabilistic Spatio-Temporal Database Repairs: The recently published
approach of [12] aims at repairing probabilistic spatio-temporal databases as
defined in [13]. In this setting, each mobile object is assigned a set of spatial
regions and a probability interval defining the likelihood to be within this region.
In an interpretation of such a database, the probability of a region must be within
its interval and the probabilities of all regions of an object must sum up to
one. Such a database is inconsistent if no interpretation exists. The approach
of [12] shows how to minimally change probability intervals in order to obtain
an interpretation. The problem setting in this work can not be extended to
trajectory databases.

A recent approach presented in [8] models the motion of a spatio-temporal
object by a stochastic process, such that each possible world is indeed associated
with a probability. Constraints such as “Object x must not be in state s at time t”
can be incorporated into this model by adapting the corresponding probabilities.
More complex constraints, such as inter-object constraints that prohibit objects
from being at in same state at the same time, can not be incorporated into such
models as easily.

Linear Temporal Logic: Our problem of removing inconsistencies from a tra-
jectory database can be cast in the realm of temporal logic. For instance, using

258 M. Mauder et al.

Propositional Linear Temporal Logic (LTL) [7], a trajectory T = s1, s2, ..., s|T |
can be described using the eventually operator � by �s1 � s2... � s|T |. Semanti-
cally, this LTL formulation induces a trajectory where eventually state s1 must
be visited after any number of intermediate states, then s2 must eventually be
visited after possible more intermediate states and so on. Further constraints
can be formulated, e.g. to constrain the database such that no two objects may
be at the same location at the same time, by applying the always operator �
to express the rule ∀T1, T2 ∈ D, t ∈ T : �T1(t) �= T2(t). Using logical solvers for
LTL [15], we can efficiently find an interpretation1 for each trajectory such that
all constraints are satisfied, if any such interpretation exists. While LTL allows
to formulate any semantic constraint, the main problem of LTL is that, being a
logic rather than a function, it does not allow to find any optimal solution. Thus,
LTL allows to check if there exists a model that satisfies all given constraints,
which any way of formulating a cost function that can be optimized. In most
applications, the problem of finding such a model is trivia. For example, the solu-
tion of using a serial schedule, which avoids any inconsistency between objects by
simple removing any temporal overlap between trajectories, does always work.

While the solution based on serially scheduling each trajectory is valid, it
is prohibitively expensive, since “repaired” trajectories may be extensively dis-
torted in time. We are looking for a solution which minimizes the changes to the
database performed by the repair.

3 Problem Definition

This section presents the details of the novel types of inconsistencies and desir-
able properties of (methodologies for) enforcing the semantic constraints in a
given MOD.

A spatio-temporal database DST stores triples (oid, location, time), where
oid ∈ {o1, ..., oN} is a unique object identifier, location ∈ S is a spatial position in
space and time ∈ T is a point in time. Semantically, each such triple corresponds
to the location of object oi at some time. In D, an object can be described by
a function troi

: T → S that maps each point in time to a location in space2

S; this function is called trajectory. The corresponding trajectory database is
denoted as D = {tro1 , ..., troN

}.
Assuming that the location of an object oi is known for any point in time

is unrealistic as the location of object oi can only be determined at discrete
time-instants. The frequency of location-samplings is also bounded by physical
constraints, such as the availability of a GPS signal. Between discrete obser-
vations, the position of a moving object has to be estimated via some type of
a dead reckoning. These estimations are based on incomplete information, and
thus, may be imprecise.
1 In LTL, an interpretation is a Kripke structure which, in our case, maps each tra-

jectory and each point in time to a state.
2 Most often the Euclidian 2D space is considered, however, extension to 3 (or higher)

dimensions as well as road-network constraints have been commonly considered in
the literature.

Minimal Spatio-Temporal Database Repairs 259

3.1 Spatio-Temporal Constraints

The violation of a constraint in a trajectory database D indicates that D con-
tains erroneous trajectories, possibly incurred due to faulty dead reckoning, or
due to deficiency of measuring devices used to capture trajectories. Since we are
considering historical data, we lack the option of improving the available infor-
mation, e.g., by requesting the objects to give a more accurate position update.
Since the cause for the inconsistency cannot be removed, the only viable app-
roach is to repair the trajectories in order to mitigate the symptoms of this lack
of information.

In contrast to traditional database settings, where integrity constraints per-
tain to explicitly stored values and values defined via views and aggregates,
spatio-temporal data may exhibit other types of constraint violations that cannot
be tied to stored or aggregated values. The main reason is that spatio-temporal
phenomena are continuous but their database representations are discrete. Thus,
the constraints are semantic in nature, as opposed to being dependent on the
actual stored data.

Definition 1. Let C be a set of constraints. A database D is said to satisfy C,
noted as D � C, if all constraints are satisfied in D. If D � C, then D is said to
be inconsistent.

Loosely speaking, a spatio-temporal constraint can be thought of as any rule
describing some semantic constraint related to the trajectories in D. A con-
straint c ∈ C may pertain to an individual object. An example of such an Object
Constraint is the constraint “An object must not enter a specified area R on
Sunday between 2am and 5am.” This constraint can be formally expressed as

∀(tro ∈ D),∀(t ∈ [Sunday 2am,Sunday 5am]) : tro(t) �∈ R.

In contrast, some constraints may be defined between trajectories, such as
“two objects must not be in the same place at the same time” which can be
expressed as

∀(troi
, troj

, i �= j),∀t : troi
(t) �= troj

(t).

In practice, constraints involving more than one object lead to hard optimiza-
tion problems, as a single repair of one trajectory may have a large number of
consequences on the constraints involving other objects. Section 4 will show that
such constraints lead to NP-hard optimization problems. Since we are consider-
ing the general case, we will be considering such hard inter-object constraints in
our experimental evaluation in Sect. 6.

3.2 Database Repair Rules

In this work, we will propose a number of trajectory database repair rules. These
rules define for a given trajectory T ∈ D the set of possible repairs T R. Before we
propose these rules in Sect. 5, we first formally define the purpose of a repair rule.

260 M. Mauder et al.

Definition 2 (Trajectory Database Repair Rule). Let D denote the set of
all possible trajectory databases. A trajectory database repair rule R : D �→ D∗

is a function, which maps a trajectory database D to a set of possible repairs.

As an example, a repair rule R may allow to simply remove a trajectory from
D. This repair rule can be specified by

R(D) = {D′|D′ ⊂ D}.

Definition 3 (Database Repair). Let D be a trajectory database inconsistent
with respect to a set of semantic constraints C and let R be a set of repair rules.
Let DR ∈ R∗(D) be a trajectory database derived by iteratively applying repair
rules R ∈ R to D. If DR |= C holds, then the trajectory database DR is called a
database repair of D.

In many cases, such as the aforementioned exemplary repair rule that allows
to discard trajectories, one trivial way of obtaining a database repair DR which
satisfies all given constraints c ∈ C is, for example, the empty database DR = {}.
Given the lack of any actual trajectory, it trivially satisfies many constraints.
Hence, strictly speaking, the challenge is not only to find just any database
repair, but to find a database repair having the minimal difference from the
initial database D.

Definition 4 (Minimal Database Repair). Let D be a trajectory database
inconsistent with respect to a set of semantic constraints C. Let dist(D,DR) be
a dissimilarity function between databases. A minimal repair DR

min is defined as

DR
min = argMinDR∈DR,DR|=C

dist(D,DR),

where DR represents the set of all possible repairs of D.

The goal of this work is to efficiently compute, for a given trajectory database D
and a set of semantic constraints C, a minimal repair DR

min of D. This problem
falls into the class of constraint satisfaction problems and we show in Sect. 4 that
it is NP-hard. We will relax the problem to find heuristic solutions that yield a
database repair having sufficiently low dissimilarity to the initial database.

3.3 Quality of a Repair

To measure the quality of a repair, a dissimilarity function dist(D,DR) is needed.
In accordance with Definition 4, this function will be minimized. Thus, this func-
tion defines the semantic of a “good” database repair, which is expected to min-
imize the total number of changes of the database D, and should guarantee that
changes are divided fairly over all trajectories. To measure the total dissimilar-
ity between D and DR, we can simply aggregate the dissimilarity of individual
trajectories:

dist(D,DR) =
∑

T∈D
dist(T, TR),

Minimal Spatio-Temporal Database Repairs 261

where dist(T, TR) is a dissimilarity function defined on trajectories such as aver-
age Euclidean-distance or edit distance. In addition, changes in DR should be
divided fairly among trajectories, in order to avoid starvation of single trajecto-
ries in the repaired database. Such fairness can be enforced as follows

dist(D,DR) =
∑

T∈D
g(dist(T, TR)),

where g(x) is a function that monotonically increases in R
+, such as the square

function, to take into account the distances of individual trajectories.
In the remainder of this work, we propose solutions to remove inconsistencies

from a trajectory database D. For this purpose, in Sect. 4, we provide a for-
mal proof of the NP-hardness of fixing inconsistencies in a trajectory database.
Heuristic solutions are presented in Sect. 5. In Sect. 6, we perform an experimen-
tal analysis of the quality of these solutions on real data sets, evaluating both
run-time and quality of the resulting repair.

4 Complexity Analysis

In the following, we show that the problem of finding the optimal repair DR of
a trajectory database D is generally hard. For this purpose, we show that the
simpler problem of finding any repair is already NP-complete.

Lemma 1. Given a trajectory database D, a set of constraints C and a set of
repair actions A, the problem of deciding whether there exists a repair DR which
is derived from D using rules in A, such that DR |= C is NP-complete.

Proof. Let D be a database of arbitrary trajectories, and let A be repair action
such that for each trajectory Ti ∈ D there exists exactly one possible repair.
For each Ti ∈ D, let pi denote the unrepaired trajectory Ti, and let � pi denote
the repaired trajectory which is derived by applying the only possible repair in
A to Ti. Furthermore, let C be a set of inter-object constraints such that each
constraint cs,t ∈ C requires that at least one object must be in state s at time
t. Let cs,t(D, A) ⊆

⋂
1≤i≤N{pi, � pi} denote the set of all possible trajectories

that satisfy constraint cs,t, i.e., all possible trajectories that are located in state
s at time t. Since each constraint ss,t requires at least one trajectory to be in
state s at time t, the constraint ss,t can be rewritten as the disjunction of all
trajectories satisfying this constraint:

cs,t =
∨

p∈cs,t(D,A)

p.

This boolean formula returns true if and only if the constraint cs,t is satisfied.
For all constraints to be satisfied, the conjunction of all these disjunctions yields
the following boolean formula:

∧

cs,t∈C

∨

p∈cs,t(D,A)

p.

262 M. Mauder et al.

This formula returns true, if and only if, for a given database repair DR ∈
{p1, � p1} × {pN , � pN} satisfies all constraints in C. Consequently, the problem of
finding a valid repair of D is equivalent to the satisfiability problem of the above
boolean formula. This satisfiability problem, known as k-SAT, is known to be
NP-complete.
�

Due to the hard nature of the problem, will omit an exact algorithm to find an
optimal database repair, i.e., a repair that minimizes the amount of database
distortion. It should be noted that such an algorithm can be specified using
integer linear programming, yet such a solution may have unbearable run-times
even for toy databases. Instead, in the next section, we will propose approximate
algorithms, which return a database repair DR which may not be minimal in
terms of distortion of the original database D, or which may fail to satisfy some
constraints.

5 Algorithms

Before discussing our algorithmic solutions for spatio-temporal database repairs
in Sect. 5.2, we specify the following components in Sect. 5.1:

1. Spatio-temporal constraints and techniques for their detection
2. Allowed repair rules
3. Dissimilarity function to measure the quality of a database repair

5.1 Component Specifications

Spatio-Temporal Constraints. There are several alternatives for spatio-
temporal constraints. In this paper, we consider the following very general con-
straint: “Two objects must not be within a threshold of ε meters of each other
at any time.” This constraint is formally expressed as follows:

∀(troi
, troj

, i �= j),∀t : dist(troi
(t), troj

(t)) > ε.

This constraint is able to ensure that objects with a spatial extent of ε never
occupy the same space at the same time, or that objects do not get too close to
each other.

As the next step, it is important to be able to quickly find violations of the
above constraint in the database. To detect these violations, we use a spatio-
temporal R∗-tree to index the set S of all trajectory segments defined by two
successive GPS signals of the same object, using time as a third dimension. Each
trajectory segment s is minimally bounded by a rectangle �(s) and added to
the tree. Thus, each leaf of this R∗-tree is a single rectangle pointing to the
exact representation of the approximated trajectory segment. To find all initial
collisions, we perform a similarity-join [5] joining the indexed database with itself
(ignoring identity) and using ε as the similarity threshold that is only applied on

Minimal Spatio-Temporal Database Repairs 263

the spatial dimensions (and not on the time). The result is a set of intersection
pairs (s, c) where s and c are segments of two different trajectories.

Once the initial collisions have been found, future collisions caused by data-
base repairs can be found very efficiently, by querying against the tree only
segments that have been changed by a repair.

Repair Rules. In our problem setting (Sect. 3), a database repair is still unspec-
ified. In the following, we focus on the manipulation of the vertices of the tra-
jectories in order to obtain a countable number of possible repairs. To identify
the vertex to be repaired to remedy a constraint violation, we always consider
the vertex closest to the violation point of both corresponding trajectories. The
vertex can then be manipulated in one of the following ways:

– Time domain: The manipulation of a vertex v back in time implies that the
movement from the previous vertex to v is slowed down and the movement
from v to its subsequent vertex is sped up. The manipulation of v forward
in time has the opposite effect. Note that the time manipulation of a vertex
is constrained by its predecessor and its successor. Manipulating the time
of v beyond the times of its predecessor or its successor yields anomalous
movement in the spatial domain.

– Spatial domain: Manipulating the spatial position of a trajectory vertex has
also impact on the speed of the movement.

– Time and spatial domains: Obviously, the spatial and temporal manipula-
tion can be combined. A special case of spatio-temporal manipulation is the
manipulation of v along the spatio-temporal path to its predecessor or its
successor.

Based on these observations, we define the following three rules named after
the cardinality of the set provided. Throughout this section, the input to a rule
is the repair triple vp, v, vf , where v is the vertex to repair, vp is the predecessor
of v, and vf is the successor of v in the trajectory. Furthermore, a vertex v is
characterized by the triple (v.t, v.x, v.y) representing the time, the x position
and the y position of v, respectively.

Definition 5 (Two-Rule). Given repair triple vp, v, vf , the Two-Rule returns
two vertices v′

1 and v′
2, where

v′
1 =

vp + v

2
v′
2 =

vf + v

2
(1)

Note that the two vertices returned by the Two-Rule are located in time and
space half the way forward and backward around vertex v.
The Four-Rule adds temporal repairs.

Definition 6 (Four-Rule). Given repair triple vp, v, vf and time distortion
Δt, the Four-Rule returns the two vertices returned by the Two-Rule plus the
two vertices v′

3 and v′
4, where

v′
3 = (v.t − Δt, v.x, v.y)

v′
4 = (v.t + Δt, v.x, v.y) (2)

264 M. Mauder et al.

(a) Two-Rule (b) Four-Rule

(c) Ten-Rule (d) Ten-Rule

Fig. 1. Repair rules

ensuring that v.t − Δt ≥ vp.t and v.t + Δt ≤ vf .t

The Ten-Rule adds eight absolute spatial distortions.

Definition 7 (Ten-Rule). Given repair triple vp, v, vf , time distortion Δt, and
space distortion Δs, the Ten-Rule returns the following ten vertices:

v′
3 = (v.t − Δt, v.x, v.y),v′

4 = (v.t + Δt, v.x, v.y),
v′
5 = (v.t, v.x − Δs, v.y),v′

6 = (v.t, v.x + Δs, v.y),
v′
7 = (v.t, v.x, v.y − Δs),v′

8 = (v.t, v.x, v.y + Δs), (3)
v′
9 = (v.t, v.x − Δs, v.y − Δs),v′

10 = (v.t, v.x + Δs, v.y + Δs),
v′
11 = (v.t, v.x − Δs, v.y + Δs),v′

12 = (v.t, v.x + Δs, v.y − Δs)

ensuring that v.t − Δt ≥ vp.t and v.t + Δt ≤ vf .t

Minimal Spatio-Temporal Database Repairs 265

Figure 1 gives an overview of these three rules, where we show in 1(a) the shift
on the segment and we show in 1(b) the additional time shift. Figures 1(c) and
1(d) show all ten options, while the Southwest option was chosen in Fig. 1(d).
The effectiveness of these rules will be evaluated later on, but obviously the Ten-
Rule should perform best, as it offers the most possibilities and so the algorithms
will typically choose one of the ten vertices output by the Ten-Rule as the best
repair. Besides that, the Two-Rule and Four-Rule are again working relative to
the surrounding vertices which brings the already discussed disadvantages.

Quality Measure. As the cause of a constraint violation is unknown, the only
sensible approach is to limit the changes to the database as much as possible.
Accordingly, the quality of a repair is assessed by the magnitude of its effect on
D. A heuristic solution will generally generate a number of possible solutions,
one of which will be chosen as the best one after a finite amount of processing
time. For this purpose, a quality-measurement function dist(D,DR) for repairs
is used for ranking.

dist(D,DR) =
∑

i∈[1,|D|]
dist(tri, tr

R
i). (4)

For the purpose of measuring the distance between the original trajectories
and the repaired trajectories, we propose the following three dissimilarity func-
tions.

The first function, disteuclid, intuitively yields the spatial difference of two
trajectories.

disteuclid(tr, trR) =
∑

i∈[1,|tr|]

(
(viφ

− vR
iφ

)2 + (viλ
− vR

iλ
)2 + (vit

− vR
it

)2
) 1

2
. (5)

Utilizing weights for every dimension (wφ, wλ, wt) it is easy to provide a
Weighted Euclidean Distance function that takes into account the weighting of
the time in contrast to the spatial dimensions.

distweighted(tr, tr
R) =

∑

i∈[1,|tr|]

(
wφ(viφ

− vR
iφ
)2 + wλ(viλ

− vR
iλ
)2 + wt(vit − vR

it
)2
) 1

2
. (6)

Finally, in order to provide an alternative to the Euclidean Distance, the
third function is based on the Maximum Distance:

distmax(tr, trR) =
∑

i∈[1,|tr|]
max{(viφ

− vR
iφ

), (viλ
− vR

iλ
), (vit

− vR
it

)}. (7)

In order to improve efficiency, the implementation of the above dissimilarity
functions does not compute the complete dist(D,DR) after every repair step,
but rather compares only trajectories that have been changed during the repair
step and sums up the differences for every repair step.

266 M. Mauder et al.

5.2 Generate Database Repairs

The components outlined above can be combined to create an algorithm to
generate a database repair. As finding a minimal database repair is NP-hard
(Sect. 4), any resulting algorithm should employ heuristics to find a good (but
not necessarily optimal) repair.

We have identified the following paradigms as possible approaches: Random,
Greedy, and Simulated Annealing.

In our description of these algorithms we use the following functions:

– c : D → V returns the set of vertices that are part of any conflict in D.
– Rv : D → D is the repair function R (as defined in Sect. 3), but limited to

manipulations of the conflicting vertex v.

Random. The simplest approach does not try to choose a good repair function
at all. Instead it applies a random instance of a set of possible repair functions
to a random conflicting vertex in the database. See Algorithm1 for a detailed
description.

Algorithm 1. Random(D, R)
1: while c(D) �= ∅ do
2: V ← c(D)
3: v ← rnd(V)
4: R ← rnd(R)
5: D ← Rv(D)
6: end while

Applying a random repair function does not necessarily reduce the number
of conflicts. As a consequence, the algorithm might not converge on a solution.

Greedy. The more sophisticated Greedy algorithm uses the number of remain-
ing constraints after applying each function to make a better choice. The Random
algorithm’s weak spot is its unguided choice of repair function. The Greedy algo-
rithm considers only the local improvement of each repair. The repair yielding
the lowest number of remaining constraint violations is picked and applied to D.
See Algorithm 2 for details.

Compared to the Random algorithm, Greedy’s locally optimal repairs yield
a much faster convergence on a (possibly local) optimum. However, the increase
of complexity leads to an increase in runtime. To find a repair that is closer
to the minimal database repair, an algorithm must avoid the local minimum
Greedy is prone to converge on. The following algorithm addresses this problem
by combining random and greedy elements.

Minimal Spatio-Temporal Database Repairs 267

Algorithm 2. Greedy(D, R)
1: while c(D) �= ∅ do
2: V ← c(D)
3: v ← V [0]
4: Ropt ← argminR∈R ‖R(D)‖
5: D ← Ropt(D)
6: end while

Simulated Annealing. The deterministic nature of greedy algorithms makes
them prone to local minima. For this reason, algorithm Greedy presented above is
likely to return a valid database quickly, but this result is unlikely to be minimal
(or close to minimal). To increase the likelihood of finding a global minimum,
we now describe an algorithm based on simulated annealing. See Algorithm 3
for a detailed description.

Algorithm 3. SA(D, R)
1: δ = 1
2: while c(D) �= ∅ do
3: if random(]0; 1]) < δ then
4: D ← Random(D, R)
5: else
6: D ← Greedy(D, R)
7: end if
8: δ ← δ − Δδ

9: end while

By consolidating the Random and Greedy algorithms we counter the overly
deterministic nature of greedy algorithms by introducing some randomness in a
directed way. This algorithm avoids local minima by initially choosing random
repairs, then trying to improve on the best random result using more and more
greedy approaches. In each iteration, this algorithm first decides to either per-
form a Random repair or a Greedy repair with increasing bias toward greediness.
In the first iteration, the probability δ of performing a Greedy repair is zero. In
each subsequent iteration, this probability increases by a parameter Δδ ∈ [0, 1].

The Simulated Annealing algorithm is expected to be slower than the Greedy
algorithm, but more flexible and able to find a more global minimum. Compared
to the Random algorithm, Simulated Annealing is faster and more directed. This
claim will be evaluated in the following.

6 Experiments

The experimental evaluation presented in this section was conducted using a
desktop computer having an Intel i7-870 CPU at 2.93 GHz and 8 GB of RAM.

268 M. Mauder et al.

Table 1. Abbreviations for experiments

tdra Absolute Time-Distortion Repair tdrr Relative Time-Distortion Repair

ldraAbsolute Location-Distortion Repair ldrr Relative Location-Distortion Repair

ra Random gr Greedy

sa Simulated Annealing 2 Two-Repair-Rules

4 Four-Repair-Rules 10 Ten-Repair-Rules

The spatio-temporal dataset that we are using consists of workout GPS data,
i.e., running and hiking GPS-traces obtained from Endomondo (https://www.
endomondo.com). For each GPS-position of a workout a trajectory is stored in
D using linear interpolation, which is the main source of inconsistencies. The
service is most popular in Scandinavia, so most workouts are located in cities
there. The dataset we used was from the area of Copenhagen, which has a number
of vertices between 2567 and 652854. In a data cleaning step, we removed: (1)
trajectories that do not have an absolute time-stamp, to avoid having a huge
number of runners at the beginning of time; (2) outlier GPS signals yielding
a run-speed of more than 50 km per hour. The constraint is that two objects
must not be closer than ε to each other, where ε is a parameter that we can
vary in order to alter the number of inconsistencies, called collisions. Unless
otherwise specified, the default value is ε = 3 m. In this evaluation, we use four
straightforward algorithms as a baseline. These four algorithms randomly pick
a conflicting GPS-signal p that is adjacent to a conflicting trajectory segment.
The, p is distorted by (i) moving its time-stamp one second towards the time
of the next GPS-signal (Absolute Time-Distortion), or (ii) by moving its time-
stamp half-way to the time of the next GPS-signal, or (iii) moving its location one
meter towards the location of the next GPS-signal, or (iv) by moving its location
half-way to the location of the next GPS-signal. Table 1 lists the various repair
heuristics that we presented in Sect. 5 and shows the respective abbreviations
that we will use in the following evaluation.

6.1 Collision Detection

In Sect. 5.1 we describe how we can find collisions in a trajectory database. This
is performed by querying individual trajectory segments at an R∗-tree. For our
experiments, we use the R∗-tree implementation of the ELKI-framework [2]. The
average time required for a single intersection query, depends on the capacity of
the R∗-tree. For leaf capacities of 10, 100, and 1000, we measured an average query
time of 0.1283, 0.3390, and 7.2444, respectively. We are using a leaf capacity of 10 in
the following. Figure 2(a) shows the total time required to find all initial collisions,
which requires a large number of intersection queries. The number of collisions is
also influenced by the intersection pipe radius ε, and Fig. 2(a) illustrates the effect
on the Endomondo dataset. It is notable that the time required to find collisions
seems independent of ε. This is attributed to the fact that even for a ε of 50 m, the
number of collision candidates that have to be evaluated is too small to significantly

https://www.endomondo.com
https://www.endomondo.com

Minimal Spatio-Temporal Database Repairs 269

(a) Number of collisions (b) Overall Run-Times

Fig. 2. Runtime experiments

impact the run-time. Thus, the vast majority of time is lost in the collision candi-
date generation step.

Figure 2(b) shows the time required to repair the found collisions. In each
iteration of each algorithm, three steps are required: (i) Repairing a collision,
(ii) then updating the index with the new distorted trajectory, and (iii) finding
new collisions involving the distorted trajectory. The times required for these
three steps are shown in Fig. 2(b). We note that despite the use of an efficient
index structure, the time needed to repair two colliding trajectories lasts only a
fraction of the time needed to find the collision and update/move the trajectory.

6.2 Run Time

The time to repair a collision is further shown in Table 2, along with the number
of repair iterations – which varies depending on the heuristic used (likely that the
collision has not been fixed, or new collisions may have been incurred). In Table 2,
stars next to run-times imply that in at least one case, the repair algorithm did
not terminate. Non-terminating cases are ignored for the computation of run-
times in this experiments. We can make the following observations: We see that
purely time distorting heuristics (tdra and tdrr) and purely location distorting
heuristics (ldra and ldrr) are able to repair a database quickly. However, due to
the simple rules that these approaches follow, they are unable to handle some
cases which may occur in trajectory databases.

– In the case of relative repairs (tdrr and ldrr) this is caused be the fact that if
two trajectory segments completely falls into their ε-range, then no distortion
on these segments can yield a successful repair.

– In the case of absolute repairs (tdra and ldra), some special cases can not be
handled. For instance, in the case where two trajectories remain at the same
location for multiple GPS-signals: in this case GPS-signals are shifted, but
the likelihood of reaching a state where all signals are collision free becomes
minimal.

270 M. Mauder et al.

Table 2. Runtime of all algorithms

Algorithm Time to repair # Repairs t/#rep

GR4 16.294 342 0.047643

GR10 51.181 330 0.155094

GR2 10.522 429 0.024527

ldra 0.198∗ 341 0.000581

ldrr 20.92∗ 1341 0.015600

RA4 0.557 545 0.001022

RA10 0.503 519 0.000969

RA2 0.898 684 0.001313

SA4 16.046 343 0.046781

SA10 47.673 332 0.143593

SA2 11.708 464 0.025233

tdra 18.02∗ 5506 0.003273

tdrr 17.823∗ 1340 0.013301

When omitting the cases where these approaches do not terminate, we note that
the fastest repair is achieved by the ldra heuristics, which distort observed GPS-
signals in space. Furthermore, we can see that among the heuristics to choose a
possible repair, the Random-heuristics (RA2, RA4, RA10) perform best, which
is expected as these heuristics are not required to make any expensive greedy
probing steps. The Greedy (GR2, GR4, GR10) and the Simulated Annealing
(SA2, SA4, SA10) require approximately the same time to apply their repairs,
but require significantly more time than the pure random approach. Finally,
we can see that an increase of the number of repair rules does not affect the
random approach, since the time to pick a rule at random can be neglected. For
the Simulated Annealing and Greedy approaches, the run-time increases sub-
linearly in the number of repair rules: Firstly, each greedy-step requires probing
all possible repair rules to pick the most promising one. Yet, this greedy choice
is rewarded by reducing the number of total repair iterations that are required
to fix the database, thus lowering the run-time.

6.3 Experiments on Quality of Repair

In Sect. 5.1 we established three different dissimilarity functions. The results
of the experiments are shown in Fig. 3. The larger the dissimilarity, the lower
the quality of the corresponding repair. The Euclidean and Maximum Distances
almost always return the same values, as in most cases, a single trajectory is
distorted at one segment only. For the Euclidean distance, we set the weights
to (1, 1, 0.5) in order to weight the location stronger, because the domain of
latitude and longitude is smaller than the time domain of a workout in seconds.
At first glance, it appears that the purely time distorting heuristics (tdra and

Minimal Spatio-Temporal Database Repairs 271

Fig. 3. Quality of repairs.

tdrr) and purely location distorting heuristics (ldra and ldrr) seem to yield a
nearly perfect repair quality. However, this conclusion is misleading, since for this
experiment, we were not able to consider the cases where ldra, ldrr, tdra and
tdrr do not terminate. These cases however, are the interesting and hard cases,
where the most distortion is required to repair the database. Despite this bias,
which arises from the fact that ldra, ldrr, tdra and tdrr can not repair some
collisions, we decided to keep the quality experiments for completeness. Another
important observation that we can make in Fig. 3, is that for the repair quality
of approaches utilizing several repair rules (Random, Greedy and Simulated
Annealing), the repair quality improves significantly as the number of possible
repair rules increases. In particular, the approach that allows to dodge collisions
by distorting space in one of eight directions or by distorting time in one of two
directions (the ten-repair-rule case) achieves an extremely high repair quality.
When we compare the three heuristics to choose a repair rule, we see that the
random heuristic performs by far the worst, thus leading to a large number of
needless distortions. The greedy heuristic and the simulated annealing heuristic
show comparable results. In fact, the simulated annealing approach yields a
better quality in some cases. This is possible, as our greedy approach only selects
the locally best next repair rule, which may not lead to the global best repair. In
contrast, the simulated annealing allows to initially do quick random decisions
to get rid of the majority of collisions, and then fix the remaining ones by using
greedy decisions.

To summarize, our initial proposed repair rules using only spatial distortion
(ldra and ldrr) and our proposed repair rules using only time distortion (tdra
and tdrr) are not able to repair complex inconsistencies. Nevertheless, these

272 M. Mauder et al.

approaches are easily implemented and have low run-times, such that these
approaches might find applications in cases where a few remaining inconsis-
tencies can be tolerated. Regarding our proposed repair rules, we saw that the
random heuristic is able to achieve the fastest run-time, but incurs a repair-error
that may not be tolerable in practice. The greedy approach has the worst run-
time, which is attributed to the fact that in every iteration all possible repair
rules are tested to choose the locally best. The simulated annealing approach
yields a good trade-off, achieving a repair quality comparable to the quality of
the greedy approach, while being much faster. Furthermore, we saw a trade-off
between run-time and repair quality in the number of repair rules: a larger num-
ber of repair rules leads to a (sub-linear) increase in run-times but also to a
(drastic) improvement of repair quality. Clearly, a proper choice of repair rules
is highly domain specific, depending on the types of inconsistencies that are
repaired, and depends on the time-constraints given to the algorithm.

7 Conclusions

In this work, we have formalized a category of problems that has been largely
neglected in moving object literature – repairing inconsistencies in historical
trajectory databases. This is an important problem since such databases are
inherently uncertain for a number of reasons and, in addition, attempt to capture
continuous phenomena via discrete values. We have shown that this problem is
NP-hard, such that we aim at finding heuristics that find a good repair rather
than finding the optimal repair. For this purpose, we presented a number of initial
solutions, including a time-distortion algorithm, a space-distortion algorithm, as
well as a set of generic algorithms that apply pre-defined repair rules, including
a random algorithm, a greedy algorithm and a simulated annealing algorithm.
Our experimental setting is aimed at one specific type of inconsistency, namely
collisions. The results show that the simple approaches fail to find any repair at
all. In contrast, our proposed repair-rule based solutions are able to find a good
repair in acceptable time. We believe that this work will spur many challenges in
identifying different domain-properties and corresponding heuristics to speed up
the “fixings” for different constraints. While finding an optimal repair is a hard
problem, we feel that a combination of the techniques presented in this work, as
well as the consideration of new ideas, may yield a new solution that combines
the best these worlds.

The problem of fixing inconsistencies in moving objects database becomes
even more challenging when moving regions are involved. The removal of incon-
sistencies in such setting may have the potential of existing prediction models
that are used in geo-sciences. Addressing the context of mobile regions is one part
of our future work. We are also planning to investigate the trade-offs between
fixing the inconsistencies in the data vs. fixing inconsistencies in the (answers
to) pending queries – which can be challenging in the context of streaming (loca-
tion,time) data. Another challenge that we plan to address is to investigate the
impact – and efficient removal – of the inconsistencies in various spatio-temporal
data mining tasks.

Minimal Spatio-Temporal Database Repairs 273

References

1. Mobile subscribers 2014: ITU World Telecommunication/ICT Indicators-
database. http://www.itu.int/en/ITU-D/Statistics/Documents/facts/ICTFacts
Figures2014-e.pdf

2. Achtert, E., Kriegel, H.-P., Schubert, E., Zimek, A.: Interactive data mining with
3d-parallel-coordinate-trees. In: Proceedings of the 2013 ACM SIGMOD Interna-
tional Conference on Management of Data, pp. 1009–1012. ACM (2013)

3. Arenas, M., Bertossi, L., Chomicki, J.: Consistent query answers in inconsistent
databases. In: Proceedings of the Eighteenth ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS 1999, pp. 68–79 (1999)

4. Bohannon, P., Fan, W., Flaster, M., Rastogi, R.: A cost-based model and effec-
tive heuristic for repairing constraints by value modification. In: Proceedings of
SIGMOD, pp. 143–154 (2005)

5. Brinkhoff, T., Kriegel, T., Seeger, B.: Efficient processing of spatial joins using
R-trees. In: Proceedings of the 1993 ACM SIGMOD International Conference on
Management of Data, Washington, D.C., pp. 237–246, 26–28 May 1993

6. Cheng, R., Emrich, R., Kriegel, H., Mamoulis, N., Renz, M., Trajcevski, G., Züfle,
A.: Managing uncertainty in spatial and spatio-temporal data. In: IEEE 30th Inter-
national Conference on Data Engineering, Chicago, ICDE 2014, IL, USA, March
31 - April 4, 2014, pp. 1302–1305 (2014)

7. Emerson, E.: Temporal and modal logic. In: Handbook of Theoretical Computer
Science, Volume B: Formal Models and Sematics (B) (1990)

8. Emrich, T., Kriegel, H.-P., Mamoulis, N., Renz, M., Züfle, A.: Querying uncertain
spatio-temporal data. In: Kementsietsidis, A., Salles, M.A.V. (eds) ICDE, pp. 354–
365. IEEE Computer Society (2012)

9. Gindele, T., Brechtel, S., Dillmann, R.: Learning driver behavior models from
traffic observations for decision making and planning. IEEE Intell. Transport. Syst.
Mag. 7(1), 69–79 (2015)

10. Güting, R.H., Schneider, M.: Moving Objects Databases. Morgan Kaufmann, Ams-
terdam (2005)

11. Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., Byers,
A.H.: Big data: The next frontier for innovation, competition, and productivity.
McKinsey and Company Report, May 2009

12. Parisi, F., Grant, J.: Repairs and consistent answers for inconsistent probabilistic
spatio-temporal databases. In: Straccia, U., Cal̀ı, A. (eds.) SUM 2014. LNCS, vol.
8720, pp. 265–279. Springer, Heidelberg (2014)

13. Parker, A., Subrahmanian, V., Grant, J.: A logical formulation of probabilistic
spatial databases. IEEE Trans. Knowl. Data Eng. 19(11), 1541–1556 (2007)

14. Pitoura, E., Samaras, G.: Locating objects in mobile computing. IEEE Trans.
Knowl. Data Eng. (TKDE) 13(4), 571–592 (2001)

15. Rozier, K., Vardi, M.: LTL satisfiability checking. In: Automated Technology for
Verification and Analysis (2011)

16. Schiller, J., Voisard, A.: Location-Based Services. The Morgan Kaufmann Series
in Data Management Systems. Morgan Kaufmann, San Francisco (2004)

17. Wijsen, J.: Database repairing using updates. ACM Trans. Database Syst. 30(3),
722–768 (2005)

18. Zhang, B., Trajcevski, G.: The tale of (fusing) two uncertainties. In: Proceedings of
the 22nd ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems, Dallas/Fort Worth, TX, USA, pp. 521–524, 4–7 November
2014

http://www.itu.int/en/ITU-D/Statistics/Documents/facts/ICTFactsFigures2014-e.pdf
http://www.itu.int/en/ITU-D/Statistics/Documents/facts/ICTFactsFigures2014-e.pdf

	Minimal Spatio-Temporal Database Repairs
	1 Introduction
	2 Related Work
	3 Problem Definition
	3.1 Spatio-Temporal Constraints
	3.2 Database Repair Rules
	3.3 Quality of a Repair

	4 Complexity Analysis
	5 Algorithms
	5.1 Component Specifications
	5.2 Generate Database Repairs

	6 Experiments
	6.1 Collision Detection
	6.2 Run Time
	6.3 Experiments on Quality of Repair

	7 Conclusions
	References

