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Abstract: Road extraction is a sub-domain of remote sensing applications; it is a subject
of extensive and ongoing research. The procedure of automatically extracting roads from
satellite imagery encounters significant challenges due to the multi-scale and diverse struc-
tures of roads; improvement in this field is needed. Convolutional neural networks (CNNs),
especially the DeepLab series known for its proficiency in semantic segmentation due
to its efficiency in interpreting multi-scale objects’ features, address some of these chal-
lenges caused by the varying nature of roads. The present work proposes the utilization
of DeepLabV3+, the latest version of the DeepLab series, by introducing an innovative
Dense Depthwise Dilated Separable Spatial Pyramid Pooling (DenseDDSSPP) module
and integrating it in the place of the conventional Atrous Spatial Pyramid Pooling (ASPP)
module. This modification enhances the extraction of complex road structures from satellite
images. This study hypothesizes that the integration of DenseDDSSPP with a CNN back-
bone network and a Squeeze-and-Excitation block will generate an efficient dense feature
map by focusing on relevant features, leading to more precise and accurate road extraction
from remote sensing images. The Results Section presents a comparison of our model’s
performance against state-of-the-art models, demonstrating better results that highlight the
effectiveness and success of the proposed approach.

Keywords: DeepLabV3+; ASPP; deep learning; semantic segmentation; satellite imagery;
Xception; remote sensing; Squeeze-and-Excitation; road extraction

1. Introduction

The availability of high-resolution satellite images and development of methodologies
to extract roads from satellite images have revolutionized the remote sensing domain. Some
sub-domains predominately impacted by this revolution include autonomous navigation,
transportation management, urban development planning, and so on. However, the diverse
variations in road structures introduce multi-scale characteristics, which in turn lead to
limitations in accurate road extraction. Additionally, the sparsity of roads and the presence
of shadows in remote sensing images present significant challenges in the automatic and
systematic extraction of roads from satellite imagery.

Mnih and Hinton's [1] study presents pioneering work in automatic road detection
from high-resolution satellite imagery on a large scale. They effectively incorporated a
neural network with millions of trainable weights and successfully equipped the network
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to detect road objects in large datasets of urban imagery automatically. Following the work
of Mnih, several deep learning methods have been utilized to automate road detection and
extraction from remote sensing images. The methods range from general deep learning
algorithms [2—4] to task-specific models [5-7].

While these advanced deep learning methods have been successful in semantic seg-
mentation tasks, such as extracting roads from satellite imagery, the downsampling opera-
tion in the convolution layers may lead to the loss of spatial information [8], a challenge
also noted in feature selection for DDoS detection models [9] and in privacy-preserving
federated learning approaches for medical image analysis [10]. To address this problem in
semantic segmentation, atrous convolution was utilized in a study by Chen et al. [11], which
allows for learning semantic information without spatial loss. This work also proposed an
Atrous Spatial Pyramid Pooling (ASPP) module that performed better in capturing multi-
scale objects. This approach was expanded in DeepLabV3 [12], which can capture global
context, followed by DeepLabV3+ [13], which incorporates a decoder module, with each
progression showing improved performance in the semantic segmentation task. Another
type of convolution called depthwise separable convolution, if used efficiently, can lead
to better performance, as showcased by Chollet et al. [14], who used it in their proposed
model called Xception, achieving state-of-the-art performance in a classification task.

Due to its relevance and effectiveness in multi-scale feature capture, the DeepLab
series has been explored for road extraction in the recent literature [15-17]. These stud-
ies mainly focus on altering the backbone feature extractor in the decoder, altering loss
functions, or incorporating new backbone extractors, such as VGG19 [18], ResNet50 [19],
and Xception [14], alongside the same ASPP module. Even though the ASPP module
has successfully captured multi-scale patterns, it may not adequately capture complex
multi-scale features in objects such as roads. The DenseASPP [20], proposed by Yang et al.,
has effectively captured complex patterns in street scenes due to its capability to interpret
dense features. However, despite its effectiveness, DenseASPP tends to be computationally
intensive. Considering the contributions and limitations of these studies, our contributions
to road extraction are as follows:

*  We propose an innovative module called Dense Depthwise Dilated Separable Spa-
tial Pyramid Pooling (DenseDDSSPP) and replace the ASPP module with it in
DeepLabV3+.

*  We conducted an experimental evaluation of various deep learning models to identify
an optimal backbone network, which is Xception.

*  The present work integrates the Squeeze-and-Excitation block in the decoder to enable
our road extraction process to focus on relevant feature channels from the dense
feature map obtained.

¢ Our study demonstrates the better performance of our proposed model in road ex-
traction compared to state-of-the-art methods across different comparison metrics in a
supervised setup.

2. Related Work

Applications of deep learning models have advanced the field of road extraction from
satellite imagery. Mnih and Hinton’s [1] pioneering work on neural network-based road
extraction laid the foundation for subsequent advancements. Their model demonstrated
the potential of large neural networks to handle extensive datasets for road detection.

U-Net [21], a well-known model recognized for its efficacy in semantic segmentation,
has been widely adapted and extensively applied to road extraction in the recent literature.
Zhang et al. [5] introduced Deep Residual U-Net by incorporating residual units into
the U-Net architecture, achieving better performance in road extraction compared to its
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predecessors, including the original U-Net [21] and Mnih-CNN [1]. Xin et al. [22] proposed
a road-extraction deep learning method called DenseUNet, which takes advantage of the
U-Net skip connection architecture and dense connections within dense units. DenseUNet
is capable of focusing on foreground pixels and achieving comparable results in road
extraction by surpassing shadow occlusions to a limited extent. Hou et al. [23] proposed
the Complement UNet (C-UNet) model for road extraction from satellite imagery. The
method first employs a standard UNet to extract road information, followed by an erasing
procedure that removes partially extracted road areas based on a fixed threshold. The
erased regions are then processed by Multi-scale Dilated UNet (MD-UNet) to extract
finer details, and the outputs from UNet and MD-UNet are fused to produce high-quality
road extraction results. Building upon the importance of leveraging prior contextual
information through U-Net and spatial structural associations for road extraction, Yang et
al. [24] introduced SDUNet, which integrates densely connected blocks with spatial CNN
capabilities. The model leverages a structure-preserving module to enhance the extraction
of continuous road features by incorporating spatial context in four directions, achieving
improved performance in road network extraction.

Continuing the chronological advancements of U-Net, Akhtarmanesh et al. [25]
introduced enhancements like a patch-based attention mechanism and rotation-based
augmentation to the original U-Net. These innovations led to an advanced-attention U-Net
that outperformed earlier methods discussed in this section.

Similarly, LinkNet [26] has been effectively utilized for high-quality road extraction
due to its lightweight design and the integration of residual connections. D-LinkNet, pro-
posed by Zhou et al. [27], extended the LinkNet architecture by incorporating a pretrained
ResNet34 model [19] as the encoder and adding dilated convolution layers in the central
part to enhance the receptive field while preserving spatial details. The decoder remained
similar to the original LinkNet, maintaining computational efficiency. One of the recent
models for road extraction based on LinkNet is RFE-LinkNet, proposed by Zhao et al. [28].
It incorporates receptive field-enhancement modules to capture long-range dependencies
and preserve spatial details. Also, the Channel Attention Module (CAM) and Spatial
Attention Module (SAM) have been employed to refine multi-scale features, resulting in
improved performance in road extraction.

While the previously mentioned CNN models have demonstrated strong performance
in road extraction from satellite imagery, they still face limitations due to the intricate nature
of roads. A promising alternative for achieving accurate and high-quality road extraction is
the implementation of the DeepLab series. DeepLabV3 [12], for instance, employs atrous
convolution within the ASPP module, achieving better results through parallel atrous
convolutions adjusted by the output stride, primarily in general semantic segmentation
tasks. DeepLabV3+ [13], an extension of DeepLabV3, further enhances segmentation
accuracy at object boundaries by incorporating a decoder module. Linghu et al. [17]
improved upon DeepLabV3+ by integrating MobileNetV2 as the backbone feature extractor
and employing the Dice Loss function, achieving higher overall accuracy in road extraction.
However, modifications to the core ASPP module, crucial for multi-scale feature extraction,
remain largely unexplored in the context of road extraction. Wu et al. [29] proposed a
Dense and Global Spatial Pyramid Pooling (DGSPP) module inspired by the ASPP module
but did not take advantage of the encoder-decoder architecture of DeepLabV3+.

Building on these contributions and addressing the limitations of previous studies,
this study proposes advancements in road extraction by replacing the ASPP module with
DenseDDSSPP in the DeepLabV3+ model [13]. In this approach, the output from a preced-
ing depthwise separable convolution layer, after applying a dilation rate, is merged with
the input of the next layer in an iterative procedure. Additionally, our study incorporates
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Squeeze-and-Excitation [30] in the decoder module to support the selection of relevant
features for road extraction decisions. We hypothesize that this approach will efficiently
generate denser features that capture intricate and useful road patterns, potentially leading
to improved road extraction from high-resolution satellite imagery.

3. Materials and Methods

This study focuses on extracting roads from high-resolution satellite imagery using an
advanced CNN-based model. To achieve this goal, we first revisit the foundational concepts
of atrous convolution, depthwise dilated separable convolution, and ASPP. We then detail
the proposal and integration of DenseDDSSPP into the DeepLabV3+ architecture. This
integration aims to enhance road extraction performance beyond current state-of-the-art
models by leveraging the efficiency of dense feature extraction at multiple scales.

3.1. Dilated Convolution in Spatial Pyramid Pooling

Dilated convolution, also called atrous convolution, introduces a dilation rate as a
parameter to conventional convolution operations [31], enabling accurate segmentation.
This technique allows convolutional filters to expand their receptive field without altering
the feature map resolution or increasing the computational cost. Mathematically, the dilated
convolution equation is illustrated as

S

Y(f) =)} X(f+d-s) W(s) (1)

s=1

where X|[f] is the input feature map, W(s) is the s-th weight in the filter, S denotes the
filter’s size, and d denotes the dilation rate. Y([f] is the resultant output feature map.
Increasing d enlarges the receptive field, improving the model’s pixel-level classification
capabilities by capturing broader contextual information. Dilated convolution achieves
this improvement by convolving the input X with a filter modified to insert 4 — 1 zeros
between consecutive filter values, expanding the filter’s coverage area without increasing
the number of parameters. This approach prevents the spatial resolution loss commonly
associated with the downsampling operations in conventional convolution and helps infer
a larger field of view for making road extraction decisions without increasing computation.

3.2. Depthwise Dilated Separable Convolution

Depthwise dilated separable convolution expands the effectiveness of dilated convo-
lution by combining depthwise separability with a dilation rate, enhancing computational
efficiency and receptive field coverage (as depicted in Figure 1). This method involves two
steps: (a) performing depthwise dilated convolution for each input channel independently
with a dilation rate of d, increasing the receptive field to r; x r4, and (b) applying pointwise
convolution to learn linear combinations of the depthwise convolution outputs [32]. Here,
r x r is the receptive field of a regular convolution for learning representation.

Mathematically, we represent depthwise dilated separable convolution as

C S
Y(f/k) = Z ( Xc<f+ d- S) : Wc,k(5>> (2)
s=1

c=1

where X, [f] is the input feature map in the channel ¢, W, x(s) is the s-th weight in the depth-
wise filter for the channel ¢ and output channel k, S denotes the filter’s size, and d denotes
the dilation rate. The inner summation represents the depthwise dilated convolution, and
the outer summation represents the pointwise convolution across all input channels, C.
Y(f, k) is the resultant output feature map for the k-th output channel.
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Figure 1. Depiction of different convolutions.

This convolution reduces computational complexity while maintaining an increased
field of view for feature representation learning, making it a potentially efficient and
powerful tool for road extraction from satellite imagery.

3.3. ASPP Module

The advent of atrous convolution mitigated the issue of spatial resolution loss, but
the appearance of variable-sized objects in images introduced new challenges for accurate
semantic segmentation. To overcome these challenges, Chen et al. [12] proposed using
atrous convolution in a cascading or parallel fashion within the ASPP module, as depicted
on the left side of Figure 2, separated by a dotted line. In the cascading mechanism of the
ASPP module, the output from a lower atrous layer is passed to a higher layer, producing
larger receptive fields. Meanwhile, parallel processing in the ASPP module involves feeding
the same input to multiple atrous layers with varying dilation rates. The output obtained
from each layer is concatenated to form a comprehensive feature map. This feature map
now contains the information of the input across different scales. Mathematically, atrous
convolution with Hg 4(x) and ASPP can be illustrated as

y = Hz6(x) + H312(x) + H318(x) + H324(x) 3)

The value of the dilation rates 6, 12, 18, and 24 is based on the output stride [12]. The
multi-scale feature aggregation utilizing atrous convolution at various dilation rates in
ASPP is a key factor in improving road extraction, particularly at object boundaries.
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Figure 2. Comparison of architectural designs: ASPP vs. DenseDDSSPP modules.

3.4. DeepLabV 3+

DeepLabV3+ [13], an advancement in the DeepLab series, proposes an encoder—
decoder architecture. The encoder employs an ASPP module (as discussed in Section 3.3)
after processing the input via backbone networks such as VGG19 [18], ResNet50 [19],
Xception [14], and so on for a refined feature understanding. Post-ASPP processing, the
decoder concatenates the resultant feature with features sourced from the initial stages of
the same backbone network. This concatenation can recover object boundaries, leading to
better outcomes in semantic segmentation.

3.5. The Proposal and Integration of DenseDDSSPP into the Network

We propose a novel module called DenseDDSSPP and its integration into the
DeepLabV3+ architecture, replacing the standard ASPP module in the encoder to achieve
more accurate road extraction from satellite imagery (as shown in Figure 3). For a clearer
understanding of the differences between ASPP and DenseDDSSPP, Figure 2 provides a
side-by-side illustration of the two modules. Motivated by the work of Yang et al. [20],
DenseDDSSPP is designed using depthwise dilated separable convolution layers arranged
in a cascade, with dilation rates increasing in ascending order. Unlike ASPP, where in-
dividual layers operate independently, DenseDDSSPP concatenates the output of each
intermediate layer, computed through depthwise dilated separable convolutions with a
selected dilation rate, with both the input feature map and the outputs from all previous lay-
ers. This dense arrangement facilitates the generation of comprehensive feature maps that
integrate multi-scale contextual information. Such an arrangement of depthwise dilated
separable convolution layers as a neural network module is a novel contribution in the cur-
rent literature. The resultant concatenated feature map is sequentially passed to subsequent
layers, with this iterative process performed for all convolution layers in the DenseD-
DSSPP module, resulting in the final dense feature map (depicted in Figure 3, within the
encoder section, illustrated with different colored arrows). This approach leverages the
computational efficiency of depthwise separable convolutions, as discussed in Section 3.2,
to construct DenseDDSSPP as an efficient module. Tracing back to Equations (2) and (3),
the layered approach in DenseDDSSPP is mathematically illustrated as follows:

Yl = Ds,d[([Yl—llYl—ZI'"/YO]) (4)

where [ denotes the layer index, d; is the dilation rate for the layer /, and concatenation
is denoted by [...]. The expression [Y;_1,...,Yp] denotes the feature map resulted by
merging the outputs from all preceding layers. Here, Ds 4, represents the depthwise dilated
separable convolution operation with the kernel size S and dilation rate d;. These above
modifications and integration provide two explicit advantages, i.e., an efficient, denser
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feature map and larger receptive field, which are crucial for accurately interpreting complex
road structures.

DenseDDSSPP Encoder

Backbone
Network

Feature -
Enrichment -

[t ﬂ @ ﬂ @ ﬁ @ ﬂ @ ﬂ ----- >© -> —| | 1X1Conv
d=3 d=6 a1z d-18 d=24 =

Feature
Map .

Concatenate -

1X1 Conv C Je— U=

7 "
Transe Squeeze-and-
@ { Exciafion block

I 3X3 Conv I

Upsample
By 4

Output

Figure 3. Architecture of DeepLabV3+ with DenseDDSSPP module. The SE block in the decoder
operates on a tensor of dimensions 1*1*1792, where 1*1 represents the spatial dimensions and
1792 denotes the number of channels.

3.5.1. Selection of Suitable Backbone Network

As described above, the DenseDDSSPP module requires an input feature map, rep-
resented by the light-blue cube in Figure 3, to process through its layers and output a
dense feature map. As mentioned in Section 3.4, DeepLabV3+ utilizes a backbone network
to generate two feature maps from the input: one, denoted as Fj, serves as the input for
the DenseDDSSPP module, and the other, denoted as F,, is propagated to the decoder
(illustrated by the yellow-colored sharp dotted line in Figure 3). Given its important
role, selecting a suitable backbone network is essential for the overall performance of the
DeepLabV3+ architecture. The present study performed an experimental evaluation of
different networks to determine the suitable one. After careful consideration, Xception was
selected as the ultimate backbone network for this work. Specifically, the block3_sepconv2
layer of Xception was chosen to generate F,, while the block13_sepconv2_bn layer was used
to generate F;. The feature map, F;, was subsequently fed into the DenseDDSSPP module,
producing the enhanced feature map F|. A visualization of these layers is presented in
Figure 4. Consequently, the process following this step aligns with the latest DeepLab
series, i.e., DeepLabV3+ [13], where Fl’ and F, are concatenated with necessary feature
enhancement and upsampling in the decoder to form a multi-scaled and dense feature
map, D, as depicted in Figure 3.
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Layer (type) Output Shape Param # Connected to
input_3 (Inputlayer) [(None, 512, 512, 3) @
blockl_convl (Conv2D) (None, 255, 255, 32) 8e4 input_3[@][e]
block3_sepconvl_act (Activation (Mone, 127, 127, 128 @ add[@][e]
block3_sepconvl (SeparableConv2 (MNone, 127, 127, 256 33920 block3_sepconvl_act[@][e]
block3_sepconvl_bn (BatchNormal (None, 127, 127, 256 1824 block3_sepconvl[B][8]
block3_sepconv2_act (Activation (None, 127, 127, 256 @ block3_sepconvl bn[@][8]
block3_sepconv2 (SeparableConv2 (None, 127, 127, 256 67840 block3_sepconv2_act[@][e]
block3_sepconv2_bn (BatchNormal (None, 127, 127, 256 1824 block3_sepconv2[B8][8]
blockl3_sepconvl_act (Activatio (Mone, 32, 32, 728) @ add_1e[e][e]
blockl3_sepconvl (SeparableConv (None, 32, 32, 728) 536536 block13_sepconvl_act[8][8]
blockl3_sepconvl_bn (BatchNorma (None, 32, 32, 728) 2912 blockl3_sepconvl[8][@]
blockl3_sepconvZ_act (Activatio (Mone, 32, 32, 728) @ block13_sepconvl_bn[@][@]
blockl3_sepconv2 (SeparableConv (None, 32, 32, 1824) 752824 block13_sepconv2_act[8][8]
blockl3_sepconv2_bn (BatchNorma (None, 32, 32, 1824) 4896 blockl3_sepconv2[B8][@]
conv2d_35 (Conv2D) (None, 16, 16, 1824) 745472 add_10[8][0]
blockl3_pool (MaxPooling2D) (None, 16, 16, 1824) @ block13_sepconv2_bn[@][@]
batch_normalization_35 (BatchNo (None, 16, 16, 1824) 4896 conv2d_35[@][e]
add_11 (Add) (None, 16, 16, 1624) @ block13_pool[@][@]
batch_normalization_35[@][@]
blockl4 _sepconvl (SeparableConv (None, 16, 16, 1536) 1582880 add_11[@][e]
blockl4 sepconvl_bn (BatchNorma (None, 16, 16, 1536) 6144 blockl4_sepconvi[8][@]
blockl4 sepconvl_act (Activatio (None, 16, 16, 1536) @ blockl14_sepconvl_bn[@][@]
blockl4 _sepconv2 (SeparableConv (None, 16, 16, 2848) 3159552 blockl14_sepconvl_act[8][8]
blockl4 sepconv2_bn (BatchNorma (None, 16, 16, 2848) 8192 blockl4_sepconv2[B8][8]
blockl4 sepconvZ_act (Activatio (None, 16, 16, 2848) @ blockl14_sepconvZ_bn[@][@]

Figure 4. A visualization of Xception’s layers. The dotted line indicates the omission of intermediate
layers for conciseness.

3.5.2. Incorporation of Squeeze-and-Excitation (SE) Block

With the advanced processing mentioned above, we hypothesize that learning the
feature map D will enable our model to understand the intricate features of roads and
accurately extract high-quality road structures. However, it may encounter limitations in
certain edge cases, such as occlusions and the presence of shadows. In these scenarios,
an attention mechanism to focus on relevant patterns in edge cases could be invaluable.
Previous studies [17,23] have suggested that initial layers primarily capture the rough
structure of roads, while deeper layers encode spatial features connected to roads. Building
on this understanding, and to leverage both the deeper layers and the DenseDDSSPP
module, the resultant feature map D is further enhanced using the Squeeze-and-Excitation
(SE) block [30], a technique capable of effectively refining channelwise feature responses
(as depicted in Figure 5). This procedure enriches the feature map D to better capture
edge cases.
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Let D have C channels, where each channel, ¢, has the height H and width W. The
squeeze operation is applied, which can be mathematically expressed as

1 H W
ZC:qu(dC): wazlzldc(lfj) (5)
1=1]=

This is the global average pooling operation.

(1x1xC)

Global § Average Pooling

P (HXWxC)
franent > Fecale SRR S
(HxWxC) Lo
B , K Scaling Operator
“., Dense Feature Map (D) Output Feature Map

Squeeze and Excitation Block

Figure 5. Squeeze-and-Excitation block.

To distinguish between the important channels that lead to better road extraction, we
perform the excitation operation on the information obtained from the squeeze operation.
Similarly to the original work of Hu et al. [30], which acts as an attention mechanism in a
channelwise manner, the excitation operation can be written as

e = Fex(z, W) = 0(W2d(W;2)) 6)

where W; € RE/7%C is the reduction to the dimension C/r, W, € RE*C/7 scales back to the
dimension C, ¢ is the sigmoid activation, and ¢ is the ReLU activation.

Subsequently, we obtain the final feature volume that depicts the importance of one
channel over another by a scaling operation. Given the feature map D and the scalar e, the
scaling operation can be represented as

xXe = Focale(dc, 5¢) = sc - de 7)

where X = [x1,xp,...,xc] and Fy.e refer to channelwise multiplication.

This completes the enhancement of features through the Squeeze-and-Excitation
block in our architecture. Integrating the SE block after the decoder allows the model to
capture comprehensive spatial and contextual information while supporting an attention
mechanism to focus on relevant patterns, especially in edge cases, resulting in improved
road extraction accuracy.

Finally, consistent with the original DeepLabV3+ [13], the above operation is followed
by convolution operations and bilinear upsampling, concluding with a sigmoid activation
function to ensure the accurate extraction of road structures from satellite imagery.

4. Experimental Results

This section comprises two primary components: the first outlines the datasets and
experimental setup, including evaluation metrics and the experimental environment, while
the second presents a comparative analysis of the results achieved by our approach against
baseline models with the chosen datasets.
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4.1. Datasets

In our approach, we used two well-known road datasets, as described below.

4.1.1. Massachusetts Road Dataset

The Massachusetts road dataset, introduced by Mnih and Hinton [1], was selected
as the first dataset. This dataset covers roughly 2600 square kilometers of the state of
Massachusetts, comprising 1171 satellite images along with their corresponding road-
extracted mask images. Each image has dimensions of 1500 x 1500 pixels, with a resolution
of 1 meter per pixel. Given the high dimensions of these images, we employed a patchify
procedure, cropping each image to obtain 512 x 512 tiles. This step was crucial to reduce
computational demands and enable the training of complex deep learning models. From
the entire dataset, 817 images were selected for our experiments, resulting in 3268 images
and corresponding masks of dimensions of 512 x 512. For training and testing, the dataset
was divided using an 80:20 split.

4.1.2. DeepGlobe Road Dataset

Similarly, we used the DeepGlobe dataset [33] as the second dataset to test the per-
formance of our proposed method. It consists of 6226 images with their corresponding
road-extracted masks, with a resolution of 1024 x 1024. To maintain consistency while con-
sidering computational demands, we cropped the images and masks into 512 x 512 tiles,
resulting in 24,904 images and 24,904 masks. Due to memory constraints, we selected
9000 images and their corresponding masks and divided the dataset using an 80:20 split
into training and testing sets.

4.2. Evaluation Metrics

In this study, we selected commonly used metrics such as Precision, F; Score, and
Intersection Over Union (IOU) to assess the model’s performance. These metrics are defined
as follows.

Precision is the ratio of the number of correctly predicted positive observations to the
total predicted positive observations:

TP
Precision — — L
recision = o5 (8)
where TP represents the true positives and FP represents the false positives.
The F; Score, which measures the accuracy of positive predictions, is the harmonic

mean of Precision and Recall. It can be simplified and expressed mathematically as

2TP

T 2TP+FPfEN ©)

151
where FN represents the false negatives.
Intersection Over Union (IOU), which evaluates the pixelwise accuracy of the segmen-
tation, can be mathematically illustrated as

TP

10U = TP+ FP + EN

(10)

Alternatively, IOU can be understood geometrically as the overlap between the pre-
dicted segmentation and the ground truth segmentation.

4.3. Experimental Environment and Baselines

We conducted our experiments using the Python 3.6.8 environment with the Tensor-
Flow framework for all aspects of training and testing. The computational tasks were
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carried out using a system comprising eight NVIDIA A100-PCI GPUs, each featuring 80
GB of HBM2 memory. The computation tasks were facilitated using CUDA version 11.8
and NVIDIA driver version 520.61.05. We utilized a mirrored strategy and distributed the
computation across four GPU machines to manage the intensive deep learning tasks. All
the models were trained for 300 epochs using Adam as the optimizer, with an exponential
decay procedure. The initial learning rate was set to 0.001, with the decay maintained at
steps of 10,000 and a decay rate of 0.96 to ensure efficient training and better convergence
for the models.

Baselines

To validate the efficacy of our proposal, we selected supervised state-of-the-art mod-
els in the road-extraction domain. The selected models were U-Net [21], Attention U-
Net [25], DeepLabV3+ with ASPP [13], SegNet [34], RFE-Link Net [28], DCSFEP [29], and
D-LinkNet [27].

4.4. Comparison and Results

The quantitative results obtained from different state-of-the-art models, including our
proposed model, using the Massachusetts road dataset are presented in Table 1, and those
from using the DeepGlobe road dataset are presented in Table 2. Models such as U-Net [21],
Attention U-Net [25], DeepLabV3+ with ASPP [13], and SegNet [34] were experimented
with within our setup, and the metrics’ results were reported following training and testing.
The results for RFE-Link Net [28] and D-LinkNet [27] and DCSFEP [29] are reported from
the original papers due to the relevancy in the setup and usage of the same dataset. As
seen in Table 1, our proposed model achieved better performance using the Massachusetts
dataset based on the IOU and Precision metrics, with scores of 67.21 and 81.38, respectively,
compared to all other models. Additionally, our model showcased better performance
compared to all models for the F; Score, with 79.29, while the advanced model RFE-Link
Net slightly outperformed our model with a score of 80.07.

Similarly, as seen in Table 2, our proposed model was also successful in achieving
better performance with the DeepGlobe dataset for the IOU and Precision metrics, with
scores of 71.61 and 83.19, respectively, compared to all other models. Along this, the
experimental results followed the same trend as obtained in above, in which our model
again depicted better performance compared to all models for the F; Score, with 81.75,
while the advanced model RFE-Link Net slightly outperformed our model with a score
of 82.85.

Table 1. Quantitative observation of results obtained from all models in Massachusetts road dataset.
Bold values indicate the best performance in the respective metric.

Model 10U (%) Precision (%) F1 Score (%)
U-Net [21] 64.19 80.23 74.78
Original DeepLabV3+ [13] 65.92 80.04 75.60
SegNet [34] 58.67 78.56 73.73
DCSFEP [29] 62.48 - 76.59
D-LinkNet[27] 63.74 75.89 77.86
RFE-LinkNet [28] 66.77 80.88 80.07

Proposed Model 67.21 81.38 79.29
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Table 2. Quantitative observation of results obtained from all models in DeepGlobe road dataset.
Bold values indicate the best performance in the respective metric.

Model 10U (%) Precision (%) F1 Score (%)
U-Net [21] 62.82 80.36 71.83
DeepLabV3+ [13] 69.05 83.16 77.96
SegNet [34] 57.66 80.67 72.09
Attention-UNet [25] 67.42 79.95 80.54
D-LinkNet [27] 63.94 78.54 0.7659
RFE-Link Net [28] 70.72 83.09 82.85
Proposed Model 71.61 83.19 81.75

5. Discussion

In addition to the quantitative metrics’ evaluation, our study also presents visual road-
extraction depictions from our model, including comparisons to other models. Figure 6
presents the road extraction performed using the validation set of the Massachusetts
dataset. As depicted in the diagram, our proposed model achieves accurate road extraction
in several parts of the images, as highlighted with red-colored squares, compared to most
of the other models.

' Ground Truth ~ Proposed

DeepLabV3+
N 73 S\ el

U-Net SegNet

P

oA o o o
EEEE
I

Figure 6. Comparative results of road extraction from the Massachusetts dataset. The figure

presents a side-by-side comparison of road extracted by various models, including the proposed
model, against the ground truth, highlighting the effectiveness of each approach in synthesizing
accurate road extraction.

Similarly, our model demonstrated comparable performance using the DeepGlobe
road dataset, as shown in Figure 7. Accurate road construction and connection can be
seen in the red-colored squares in the diagram. An interesting observation is that our
model tends to connect roads when there are trees present, as highlighted with blue-colored
squares in the second row of Figure 6 and the fourth row of Figure 7. In the ground truth
images, these road connections are not visible. Upon closer inspection, it can be assumed
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that there is a road occluded by trees, and our model may be able to achieve correct road
extraction even in such occluded scenarios.

Based on the quantitative and visualization results, our model outperformed various
state-of-the-art models in road extraction. Our study not only demonstrated better perfor-
mance but also presented an efficient computational approach by adopting the depthwise
separable mechanism and increasing the field of view with the dilation mechanism. To
provide a more intuitive and mathematical understanding of how depthwise separable
dilated convolution used in our work brought efficiency compared to standard convolution,
we can express the computational savings mathematically.

Given an image of the size 512 x 512 x 3 and using a 3 x 3 kernel, the standard
convolution operation can be expressed as

Operations =Hx W x K x K x Cjy X Cout

standard —

where H = 512 (the height of the image), W = 512 (the width of the image), K = 3 (the
size of the kernel), Cj, = 3 (the number of input channels), and Cout = 64 (the number of
output channels). Substituting these values, we obtain

Operations =512 x 512 x3 x3 x3x 64=151,165,440

standard

Ground Truth  Proposed

-

DeepLabV3+

-

UNet SegNet
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Figure 7. Comparative results of road extraction from the DeepGlobe road dataset. The figure
presents a side-by-side comparison of road extracted by various models, including the proposed
model, against the ground truth.

Since depthwise separable convolution involves two steps, the operations can be split
into two parts, depthwise convolution and pointwise convolution, and their operations are
expressed below as

Operations ye,yyise = H X W X KX K x Cin

Operations = H x W X Cin X Cout

pointwise
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Combining both depthwise and pointwise operations, and substituting all the values,
the total number of operations for depthwise separable convolution is

Operations e, muwise separable = 7,077,888 + 50,331, 648 = 57,409,536
To compare the efficiency, we can take the ratio of the operations required:

Operationsdepthwise separable 57,409,536 ~ 0.38
Operations e

151,165,440

standard

This indicates that depthwise separable convolution is approximately 62% more
efficient than standard convolution in terms of operations. While existing studies have ob-
served that single-thread depthwise separable convolution often underperforms in accuracy
compared to conventional convolution [35], our findings demonstrate that incorporating
dense connections can enhance its performance, achieving better results.

Moreover, the computational and memory efficiency of our model is evident when
comparing parameter counts and FLOPs with the original DeepLabV3+ [13]. Specifically,
our model has a parameter count of 20,874,553 (20.87M), lower than DeepLabV3+ with
ASPP, which has 28,314,137 (28.31M) parameters. In terms of FLOPs, our proposed model
achieves 160,801,044,036 (160.80G), compared to the 181,132,742,326 (181.13G) required by
DeepLabV3+ with ASPP. The reduction in FLOPs reflects a decrease in computational cost,
while the smaller parameter count indicates improved memory efficiency.

In summary, the utilization of depthwise separable dilated convolution in our DenseD-
DSSPP module offers both computational and memory efficiency while also improving
feature extraction capabilities. These advancements contribute to the better performance
of our proposed model in road extraction tasks. The code implementation for the pro-
posed model, along with the evaluation set for visualization and comparison, is available
at https://github.com/amaha7984 /Road-Extraction-with- Advanced-Deep-Learning-Model
(accessed on 15 January 2025).

6. Conclusions

Road extraction is one of the most important research areas for applications such
as autonomous navigation and smart city planning, yet it faces several challenges. Our
study addresses these challenges by advancing the capabilities of the DeepLabV3+ model
through the introduction of the Dense Depthwise Dilated Separable Spatial Pyramid Pool-
ing (DenseDDSSPP) module, replacing the standard ASPP module. The study also identifies
Xception as the optimal backbone network for enhanced feature extraction and integrates
the Squeeze-and-Excitation block into the decoder, facilitating channelwise learning to
emphasize relevant features. To the best of our knowledge, our work is the first attempt
to incorporate Dense Depthwise Dilated Separable Convolution to form a DenseDDSSPP
module within a semantic segmentation model for road extraction from satellite imagery.
The proposed approach demonstrated better performance using publicly available datasets
including the Massachusetts road dataset and the DeepGlobe road dataset. Our model
outperformed several state-of-the-art models based on various evaluation metrics in a
supervised learning setup, improving the IOU, Precision, and F; Score metrics. The visual
comparisons further highlighted our model’s ability to accurately extract and connect road
segments, even in scenarios where roads were occluded by trees.

Future work will focus on enhancing the generalizability of our model by collecting
additional datasets and evaluating its performance in zero-shot scenarios [36], enabling
the semantic segmentation of road types not encountered during training. We also aim
to transition from a supervised setup, which requires annotated images for training, to a
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self-supervised learning approach. Inspired by recent advancements in self-supervised
learning, such as those by Hou et al. [23] and Mahara et al. [37], we plan to develop
methods for road extraction that do not rely on corresponding annotated images for each
satellite image. This approach holds the potential to significantly broaden the applicability
of our model to diverse and unannotated datasets. Furthermore, while the present work
integrates the SE block as the attention mechanism, future work will explore other attention
modules, such as CBAM [38] and ECA-Net [39], to perform a comparative analysis and
identify a lightweight, optimal attention module for road extraction.
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