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ABSTRACT
In the dynamic field of urban planning and the context of unprece-
dented natural events, such as hurricanes, the fast generation of
accurate maps from satellite imagery is paramount. While several
studies have utilized Generative Adversarial Networks (GANs) for
map generation from satellite images, the present work introduces
a new approach by integrating contrastive learning into the GAN
framework for enhanced map synthesis. Our methodology distinc-
tively employs positive sampling by aligning similar features (e.g.,
roads) in both satellite images and their corresponding map outputs,
and contrasts this with negative samples for disparate elements.
This approach effectively replaces the conventional cyclic process
in GANs with a more streamlined, unidirectional procedure, lead-
ing to improvements in both the quality of the synthesized maps
and computational efficiency. We show the effectiveness of our
proposed model, offering an advancement in map generation for
remote sensing applications.
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1 INTRODUCTION
The emergence of satellite technology has revolutionized the way
we capture and utilize images of Earth’s surface. Access to these
images, whether in real-time or offline, has become important in
various applications. Among these, the generation of readable maps
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from satellite imagery stands out as one of the major applications,
especially for navigation and geographic information systems. This
need has motivated researchers to develop computational models
capable of transforming satellite images into maps that are more
intuitive for human interpretation.

Initially, the focus was on paired image translation methods,
where models were trained on datasets consisting of corresponding
pairs of satellite images andmaps. Innovativeworks like that of Isola
et al. [19] demonstrated the feasibility of using Generative Adver-
sarial Networks (GANs) for map generation tasks with remarkable
success. However, a significant limitation of these approaches is
their reliance on paired datasets, which are time-consuming and
costly to compile. This challenge led to the emergence of unsuper-
vised methods, such as CycleGAN [32], which can learn to translate
between domains from unpaired datasets. Despite not being specif-
ically designed for map generation, CycleGAN and other models
integrating and adapting a cyclic procedure in synthesis have shown
promising results in this domain, as evidenced by the works of Gan-
guli et al. [11], Song et al. [27], and Chen et al. [7]. The work of
Seo et al. [26] demonstrates the adaptability of GANs to a wide
range of image generation tasks, adapting the DCGAN architecture
for the unique challenges of colorizing grayscale images using a
one-to-one training approach.

Map synthesis holds enormous potential, particularly for emer-
gency response during natural disasters, such as earthquakes, wild-
fires, and floods, and for urban planning [28]. In these scenarios, the
ability to synthesize up-to-date maps from satellite images at a fast
pace is invaluable. However, the cyclic nature of models like Cycle-
GAN introduces significant computational overhead, making them
less practical for time-sensitive applications [18]. Responsive to this
challenge, the integration of the emergent unsupervised learning
paradigm of contrastive learning within the GAN framework shows
promise for map synthesis. The utilization of contrastive learning
techniques is particularly appealing given their demonstrated suc-
cess in the remote sensing domain, as shown in studies by Bai et
al. [4] and Abbasnejad et al. [1], along with their broader impact
evidenced by revolutionary methods such as SimCLR [6] and MoCo
[16] across various fields.

Gutmann and Hyvärinen’s work is foundational in contrastive
learning, focusing on distinguishing actual data from noise, laying
the groundwork for advanced machine learning applications [14].
Although primarily focused on statistical models rather than direct
applications in GANs for image translation, the principles in their
paper highlight key aspects of contrastive learning. Subsequently,
Oord et al. introduce a method for learning high-dimensional data
representations by capturing shared information across different
parts of a signal, enhancing data synthesis quality [24]. Building on
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Figure 1: Overview of the Proposed Model’s Architecture. The model processes an input satellite image using a generator
implemented with patch-based contrastive learning. The PatchNCEA loss function is utilized, which maximizes the mutual
information between corresponding objects within the red highlighted areas, while minimizing the same against negative
samples depicted by the yellow rectangles. To prevent unintended translations during synthesis, the model incorporates
PatchNCEB loss together with adversarial loss, ensuring the generation of realistic-looking map images.

the insights from thework of Oord et al. [24], Park et al. demonstrate
a practical application of contrastive learning concepts in a GAN
framework [25], particularly through representation learning at the
patch level of images. The work of Park et al. suggests the potential
for applying these advanced contrastive learning techniques to map
synthesis from satellite imagery.

2 RELATEDWORKS
In the current literature, map synthesis is primarily conducted
using conditional GANs, which can be broadly categorized into
two approaches: paired and unpaired translation. In the paired
translation context, the utilization of the Pix2Pix model by Isola et
al. has shown promising results in map synthesis [19]. However, the
real-world scarcity of paired satellite and map images necessitated
exploration into GANs capable of practical map synthesis with
unpaired datasets. Zhu et al.’s work stands out as a foundational
contribution in this domain [32].

Following the core idea of CycleGAN [32], several literature
studies explored the generation of maps from satellite images. Ex-
panding on CycleGAN’s concept, the GeoGAN model proposed by

Ganguli, Garzon, and Glaser significantly advances map generation
from satellite images [11]. It uniquely combines reconstruction and
style transfer losses with a conditional GAN to enhance the quality
of map synthesis. This innovative approach, particularly its third
model architecture, yields more accurate map features, showcasing
the evolving techniques inmap synthesis from satellite imagery. Fol-
lowing the development of GeoGAN, the researchers introduce the
Semantic-regulated Geographic GAN (SG-GAN), which integrates
crowdsourced vehicle GPS coordinates into the map synthesis pro-
cess [31]. This model adopts the Pix2Pix framework as its backbone,
enhancing it with additional layers of GPS data and semantic esti-
mations to reduce noise and improve accuracy in areas with sparse
geographic information. The SG-GAN [31] approach not only en-
riches the map generation process with external geographic data
but also maintains the standard adversarial training, demonstrating
an advanced application of GANs in satellite-to-map image conver-
sion. In the subsequent year, Song et al. introduced MapGen-GAN
[28], an enhancement of the CycleGAN approach inmap generation.
This model incorporates circularity and geometrical consistency
constraints to refine the translation of remote-sensing images into
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maps. These innovations enable MapGen-GAN to achieve more
accurate and reliable map generation, particularly in emergency
response scenarios.

Consequently, it is important to note that the above generative
models focus on either the pix2pix model (paired mechanism) or the
cyclic approach (unpaired translation). These approaches are often
not realistically applicable due to the lack of paired data or the com-
putational overhead associated with the cyclic process, as suggested
in the work by Kazemi et al. [20]. Not specifically designed and
tested on map synthesis, contrastive learning in GAN proposed by
Park et al. [25] successfully replaced the cyclic approach and yielded
good results on image quality and complexity in image-to-image
translation. Extending upon the work of Park et al., Han et al. [15]
presents a novel method for unsupervised image-to-image transla-
tion that utilizes a dual learning setting with two encoders. This
approach smartly integrates contrastive learning within a cyclic
procedure, enabling the model to learn mappings between two
unpaired domains effectively. The given work achieved better per-
formance in image-to-image translation tasks compared to previous
cyclic and contrastive models, as evidenced by the Fréchet Inception
Distance (FID) score [17], a metric used to measure the similarity be-
tween distributions of real images and generated images, reflecting
improvements in both variety and quality. Similarly, SCONE-GAN,
as presented by Abbasnejad et al. [1], advances image translation
by incorporating contrastive learning with graph convolutional
networks to generate more realistic and diverse scenery images.
This approach effectively maintains image structure, maximizes
mutual information between style and output, and demonstrates
enhanced performance on four datasets. It is worth mentioning that
contrastive learning with mutual information maximization at the
patch level has not yet been explored dominantly on map synthesis
given satellite images. The present work revisits the contrastive
learning approach proposed by Park et al. [25] in map synthesis to
achieve better results based on visualization and time complexity.

3 THE PROPOSED APPROACH
This section presents a detailed procedure on how Contrastive
Learning was utilized by selecting positive and negative samples on
patch level adapting for our specific domain in the present work for
Map Synthesis. The architecture of our model is depicted in Figure 1,
which illustrates the integration of patch-based contrastive learning
within the generative adversarial framework.

3.1 Overall Architecture
3.1.1 Goal. The goal of this work is to generate maps in domain
𝐵 from the input satellite images from domain 𝐴, by learning the
reasonable mapping between two images, 𝑎 and 𝑏, given unpaired
instances 𝐴 = {𝑎 ∈ 𝐴}, 𝐵 = {𝑏 ∈ 𝐵}. The problem can also be
understood as translating images from domain 𝐴 ⊂ R𝐻×𝑊 ×𝐶 , to
target domain 𝐵 ⊂ R𝐻×𝑊 ×𝐶 , where H is height, W is width, and C
is the number of channels of given satellite images respectively. In
our translation challenge, the focus is on rendering roads in map
images with distinct coloration, differentiating them from other fea-
tures, such as greenery subjects (vegetation), which is represented
in green and can be seen in Figure 1. We aim to simplify complex
urban areas present in satellite images, retaining only essential

details to aid navigation. This selective detailing ensures that im-
portant navigational elements are emphasized, while extraneous
information is minimized, resulting in a clear and user-friendly
map output. CycleGANs implement a cyclic approach to achieve
the final goal by first translating 𝑎 ∈ 𝐴 to 𝑏 ∈ 𝐵 and then back to
𝑎 and vice versa by using two different generators and two cor-
responding discriminators to discriminate map images generated
by the given generators. This methodology and its variations have
been explored and demonstrated in the works of Hsieh et al. [18],
Ganguli et al. [11], and Song et al. [28]. This cyclic procedure of
generating images, in general, is very time consuming and restric-
tive because the process considers the relation between the input
domain and the target domain is a bijection [13]. To address this,
we adopt an alternative method, i.e., Contrastive Learning in condi-
tional GAN, as presented by Park et al. [25], by learning translation
in one direction using only one generator and one discriminator.

3.1.2 Generator Architecture in present work. The present work
employs a ResNet-based generator, proven successful in generative
models [8], integral for synthesizing map images from satellite
images. This generator is an essential component of our Generative
Adversarial Network (GAN) framework, designed to capture and
translate the complex spatial and textural information present in
satellite images into the corresponding map representations.

ResNet-based Generator. Motivated by the work of Zhu et al. [32],
the present work’s generator features a series of 9 residual blocks,
which form the backbone of both the encoding and decoding pro-
cesses. These blocks enable the model to handle deep feature extrac-
tion efficiently, preserving crucial details and structures essential
for accurate map generation.

Encoder-Decoder Structure. Structured into an encoder and a de-
coder, the generator first encodes the satellite image into a latent
space, extracting key features and patterns. The decoder then recon-
structs these features into a map image, ensuring that the generated
map retains fidelity to the input satellite image while introducing
the stylistic elements of map visuals.

Support for Contrastive Learning. The architecture of the gen-
erator is specifically designed to support the contrastive learning
approach and the PatchNCE loss, as presented in the study by Park
et al. [25], which are detailed in the following subsections. The
effectiveness of these methods in our model support the robust
feature extraction and synthesis capabilities of the generator.

3.1.3 Discriminator Architecture. Following the architecture of the
ResNet-based generator adapted in the present work, our model
adapts a discriminator essential for the adversarial training process
in our GAN framework. In the adversarial training setup, the dis-
criminator’s task is to accurately classify real and synthesized map
images, providing a learning signal to the generator to improve the
quality of its output. This process forms a crucial part of the GAN
framework, enabling the generation of high-fidelity map images
from satellite data. For the discriminator architecture, we select
PatchGAN with a 70x70 patch size due to its successful application
in generative models as noted by Alqahtani et al. [2] to determine if
the given image is synthesized or real. This particular discriminator,
instead of directly determining if the entire image is real or fake,
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first divides the given generated map image or ground truth map
image into 70x70 patches. Then, it evaluates and scores each patch
individually on its authenticity. The final decision about the image
being real or generated is based on the average of these scores. This
design choice helps the generator generate realistic-looking map
images by focusing detail at the patch level [9]. The discrimina-
tor uses LeakyReLU [22] for non-linearity and has been initialized
with an emphasis on stability in the training process. Also, we
stick to instance normalization rather than batch normalization to
have high-quality map images since instance normalization was
successful in generating image-to-image translation on similar but
different domains [32].

Having established the foundation of our model’s generator and
discriminator architecture, we now delve into the specifics of our
contrastive learning approach and the effective use of the PatchNCE
loss function in map synthesis, adapted from CUTmodel as detailed
by Park et al. [25].

3.1.4 Contrastive Learning Approach. In this work, the essence of
our contrastive learning approach lies in transforming satellite im-
agery into simplified map representations, as illustrated in Figure
2. Starting with a satellite image 𝑎 from domain 𝐴 and a corre-
sponding map image 𝑏 from domain 𝐵, we define an anchor feature
𝑓 ∈ R𝐾 extracted from 𝑏, and a corresponding positive feature
𝑝 ∈ R𝐾 extracted from 𝑎, where 𝐾 represents the feature space
dimensionality. Additionally, we sample a set of negative features
{𝑛𝑖 }𝑁𝑖=1, with each𝑛𝑖 ∈ R

𝐾 , from domain𝐴. These negative features
are sourced either from different locations within the same image
or from different images, as depicted in Figure 2, and distinctly
highlighted with yellow colored squares.

The contrastive loss function in this work aims to decrease the
embedding space between 𝑓 and 𝑝 , without collapsing them into
a single point. Simultaneously, it tends to widen the separation
in the feature space between f and the set of negative features
{𝑛𝑖 }. These actions allow inherent variability and help to avoid
overly restrictive mappings [3]. For example, we do not want to
make vegetation and forest (two different components) strictly as
negative or positive, and we do not want the distance sampled to
be zero. So, considering this, our loss is defined as:

𝐿(𝑓 , 𝑝, {𝑛𝑖 }) =

− log
exp(sim(𝑓 , 𝑝)/𝜏)

exp(sim(𝑓 , 𝑝)/𝜏) +∑𝑁
𝑖=1 exp(sim(𝑓 , 𝑛𝑖 )/𝜏)

(1)

Here, the similarity measure sim(𝑓 , 𝑝) is defined as the dot prod-
uct between ℓ2 normalized vectors 𝑓 and 𝑝 , which is essentially the
cosine similarity (i.e., sim(𝑓 , 𝑝) = 𝑓 ·𝑝

∥ 𝑓 ∥ ∥𝑝 ∥ ), as mentioned by Chen
et al. [6]. 𝜏 is a temperature parameter that scales the similarity
scores. By minimizing this loss, our framework facilitates a feature
space where positive pairs are closer compared to anchor-negative
pairs, yet not identical, mirroring the complex relationship between
satellite imagery and map representations.

3.2 Formulation
3.2.1 Modified PatchNCE Loss for Suitable Contrastive Learning in
Map Synthesis. In our refined approach to the PatchNCE loss for
translating satellite images to map images, we enhance the negative

sampling strategy. This strategy involves selecting negative samples
from various locations within the same image, as well as from
entirely different satellite images.

Multilayer, Patchwise Contrastive Learning. Building upon the
methodology outlined by Park et al. [25], our approach integrates
a two-layer Multilayer Perceptron (MLP) network represented as
𝐻𝑥 , within specific encoder layers. This MLP network is used to
transform the feature maps from each layer into an enhanced fea-
ture stack. In this architecture, each layer, along with its respective
spatial location in the encoder’s feature hierarchy, corresponds to
a distinct patch of the initial image. As we delve into deeper layers,
these patches increase in size. We focus on 𝑋 key layers and pass
the feature maps through the MLP network, producing a set of
enhanced features 𝑧𝑥𝑋 = 𝐻𝑥 (𝐺𝑒𝑛𝑐𝑥 (𝑎))𝑋 , where𝐺𝑒𝑛𝑐𝑥 denotes the
output of the 𝑥-th selected layer of the encoder.

PatchNCE Loss with Enhanced Features. The adapted PatchNCE
loss, termed PatchNCE-SAT, involves a generator𝐺 , a set of layers𝐻
within the network, and an input data distribution 𝐴 is formulated
as:

𝐿PatchNCE-SAT (𝐺,𝐻,𝐴) = E𝑎∼𝐴

[
𝑋∑︁
𝑥=1

𝑆𝑥∑︁
𝑠=1

𝑋

(
𝑧𝑠𝑥 , 𝑧

𝑠
𝑥 ,

{𝑧𝑆\𝑠𝑥 }, {𝑧diff,diffloc
𝑥 }

)] (2)

In equation (2), 𝑧𝑠𝑥 represents the feature representation from
the generated image at layer 𝑥 , and patch 𝑠 . 𝑧𝑠𝑥 is the corresponding
feature from the real image. {𝑧𝑆\𝑠𝑥 } are features from other patches
within the same image at the same layer. {𝑧diff,diffloc

𝑥 } are the nega-
tive samples drawn from different locations in other satellite images
at the same layer. 𝑋 denotes the number of layers, and 𝑆𝑥 is the
number of sampled patches at layer 𝑥 .

This PatchNCE-SAT loss, by utilizing the refined features from
the MLP network 𝐻𝑥 , ensures a robust and nuanced contrastive
learning mechanism, vital for the generation of accurate and con-
textually coherent map images from satellite data.

3.2.2 GAN Loss for Generation of Realistic-Looking Maps. To en-
sure the generation of realistic-looking maps from satellite images,
the present work utilizes an adversarial loss function, also known
as GAN loss, initially proposed by Goodfellow et al. [12]. The GAN
loss comprises two main components: the loss for the generator and
the loss for the discriminator. The objective is to train the generator
to produce map images that are indistinguishable from real map
images while the discriminator learns to differentiate between the
real and generated maps. The GAN loss can be formulated as:

𝐿GAN =E𝑏∼𝐵 [log𝐷 (𝑏)]+
E𝑎∼𝐴 [log(1 − 𝐷 (𝐺 (𝑎)))] (3)

In equation (3), 𝐷 (𝑏) represents the discriminator’s decision for
a ground truth map image 𝑏.𝐺 (𝑎) is the generated map image from
the input satellite image 𝑎 that should hypothetically correspond
to b. 𝐴 is the distribution formed by real satellite images, and 𝐵 is
the distribution formed by real map images. The generator 𝐺 aims
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Figure 2: Contrastive Learning and Feature Selection at the Patch Level. Our model samples an anchor patch from the output 𝑏
(1_Map) and compares it with the corresponding input patch at the same location in 𝑎 (1_sat), both highlighted with red colored
squares. ’n’ negative patches are drawn from the same input image (1_Sat) and from a randomly selected different image
within domain 𝐴 (2_Sat), these are highlighted with yellow colored squares. This contrastive learning approach is designed to
efficiently leverage both input and output patches within a shared embedding space, aiming to enhance the precision of our
map synthesis.

to minimize this loss, while the discriminator 𝐷 aims to maximize
it, leading to a minimax game between the two [12].

3.2.3 Final Loss Functions. The objective of our model is twofold:
first, to generate realistic-looking map images from satellite images
(domain 𝐴), and second, to ensure that the corresponding patches
between the input satellite images and the output map images are
closely aligned. Simultaneously, our model aims to differentiate
between the anchor patch and other non-corresponding patches
within the same satellite image and across different satellite images,
employing these as negatives in the contrastive learning process.
To accomplish these goals, we integrate multiple loss functions.
This includes the GAN loss for realism, the PatchNCE-SAT loss for
ensuring patch-level correspondence in domain 𝐴, and a similar
PatchNCE loss for domain 𝐵 to prevent inappropriate translation
by the generator, similar to the identity loss presented by Zhu et
al. [32]. Our work’s combined final loss function is formulated as

follows:

𝐿final =𝜆GAN𝐿GAN (𝐺, 𝐷,𝐴, 𝐵)+
𝜆PatchNCE-A𝐿PatchNCE-SAT (𝐺,𝐻,𝐴)+
𝜆PatchNCE-B𝐿PatchNCE-SAT (𝐺,𝐻, 𝐵)

(4)

4 EXPERIMENTS
For the experiments and comparison, we used a public Google map
dataset collected by Zhu et al. [32]. We selected 1096 images for
training and 500 for testing our model and compared it to state-of-
the-art methods. All the images have dimensions of 256x256. For
comparison, we utilized different evaluation metrics, as presented
below.

4.1 Evaluation Metrics
In this study, we utilize a set of evaluation metrics to assess the
performance of our model, focusing on the accuracy and quality of
the image generation results. These metrics include the Root Mean
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Square Error (RMSE), Peak Signal-to-Noise Ratio (PSNR), and the
Structural Similarity Index Measure (SSIM).

4.1.1 Root Mean Square Error (RMSE). The RMSE is a widely used
measure of the differences between values predicted by a model and
the values observed [5]. For an original image 𝑂 and its estimated
counterpart 𝐸, each of size𝑚 × 𝑛, the RMSE is defined as:

RMSE =

√√√
1
𝑚𝑛

𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

(𝑂𝑖 𝑗 − 𝐸𝑖 𝑗 )2 (5)

In the context of GANs for image generation, a lower RMSE value
typically indicates better quality of the generated images, as it
signifies a smaller average difference between the generated and
the original images [21].

4.1.2 Peak Signal-to-Noise Ratio (PSNR). PSNR is a popular metric
for measuring the quality of reconstruction of lossy compression
codecs [30]. Essentially, it measures the ratio of the maximum
potential power of a signal to the power of the noise that distorts
its representation. As a function of RMSE, the PSNR is computed
as follows:

PSNR = 20 · log10
(
MAX𝑂
RMSE

)
(6)

where MAX𝑂 represents the maximum possible pixel value of
the image.

4.1.3 Structural Similarity Index (SSIM). The SSIM index is a metric
used to assess the perceived quality of digital images and videos. By
analyzing different segments of an image, SSIM evaluates the visual
impact caused by variations in luminance, contrast, and structure.
This comparison is done between a predicted image and the original
one [29]. The SSIM index is represented by the following formula:

𝑆𝑆𝐼𝑀 (𝑥,𝑦) = 2𝑥𝑦 +𝐶
𝑥2 + 𝑦2 +𝐶

. (13)

In this equation, 𝑥 and 𝑦 have similarity values within the range
of [0,1]. The term 𝐶 is a constant, introduced to avoid division by
zero, which prevents the output of an undetermined value. The
SSIM value lies between 0 and 1, where a value of 1 signifies ideal
identical images.

4.2 Experimental Environment and Baselines
Experiment Setting. We conducted our experiments in a Python

3.10.12 environment, utilizing the PyTorch framework for all deep
learning tasks. The computational workload was handled by an
NVIDIA V100 GPU, which comes with 15GB of GPU RAM, ideal
for handling demanding image generation tasks. Our experimental
procedure spanned 40 epochs. During the first half of these epochs,
we maintained a steady learning rate, whereas, in the latter half, we
allowed the learning rate to decrease linearly. This approach facili-
tated more precise adjustments as the model neared its convergence
point. We set the temperature parameter 𝜏 = 0.07. Along with this,
we set the loss functions’ parameters: 𝜆GAN = 1, 𝜆PatchNCE-A = 1,
and 𝜆PatchNCE-B = 2. We didn’t just focus on standard performance
metrics; we also paid close attention to the model’s time complexity.
This involved careful monitoring and recording of the time taken
for each epoch to complete, from which we calculated an average

epoch duration. These observations helped us estimate the train-
ing time required for the model, adding a valuable perspective for
comparing models based on time efficiency.

Baselines. For our comparative analysis, we selected three well-
established generative adversarial network models as our baselines,
DCLGAN [15], CycleGAN [32], and GcGAN [10]. These models
were chosen due to their relevance and proven effectiveness in
image generation and translation tasks, which aligns with the ob-
jectives of our study. Our proposed method was evaluated against
these models using the chosen dataset and the specified evaluation
metrics (RMSE, PSNR, and SSIM), providing a comprehensive view
of its effectiveness in generating map images.

4.3 Comparison and Results
The comparative performance of our model against other GANs,
as mentioned above, is presented in Table 1, complemented by
visualizations in Figure 3. These results demonstrate the better per-
formance of our model. The detailed performances of the proposed
model and the comparative models are summarized as follows:

• Our Model: Achieved an RMSE value of 43.8872, attained a
PSNR value of 28.2572, and reached an SSIM value of 0.6255.
Our model was trained in approximately 1.76 hours, equiva-
lent to about 1 hour and 45 minutes.

• CycleGAN: Recorded an RMSE of 48.1944 and a PSNR of
27.7143, both slightly lower in performance than our model.
The SSIM was 0.5915, indicating less structural similarity to
the target images compared to our model. The training dura-
tion for CycleGAN was marginally longer at approximately
1.97 hours, close to 2 hours.

• DCLGAN: Showed an RMSE of 47.4574 and a PSNR of
28.2961, slightly better than CycleGAN and our model. It
achieved a better SSIM value of 0.6336 compared to our
model, yet the training timewas the longest at approximately
2.67 hours, or about 2 hours and 40 minutes.

• GcGAN: Recorded the highest RMSE of 58.1702 and the
lowest PSNR of 26.3392, indicating lower performance in
map synthesis. It achieved an SSIM value of 0.4680, the lowest
among themodels. Although it was the fastest to train, taking
only about 0.89 hours, or approximately 53 minutes, it failed
to generate visually appealing results.

The quantitative results in Table 1 and the qualitative results, as
visualized in Figure 3, collectively highlight the better image quality
and training efficiency of our model in comparison to existing meth-
ods. While DCLGAN [15] demonstrates slightly better performance
metrics, it does so at the cost of longer training times. In scenarios
where a balance between computational efficiency and accuracy
is important, our model emerges as a preferable choice. Moreover,
despite GcGAN’s [10] faster training capability, it falls short in
producing visually appealing results, emphasizing the trade-offs
inherent in model selection.

5 CONCLUSION AND FUTUREWORK
In this study, we have demonstrated the practical application of
contrastive learning within a GAN framework for map synthesis
from satellite imagery. Our generative approach involves drawing
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Table 1: Performance Comparison: Our Model vs. Other GANs

Models RMSE PSNR SSIM Time for Training (in Hr)

Our Model 43.8872 28.2572 0.6255 1.76
CycleGAN 48.1944 27.7143 0.5915 1.97
DCLGAN 47.4574 28.2961 0.6336 2.67
GcGAN 58.1702 26.3392 0.4680 0.89

Input GcGAN CycleGAN DCLGAN Our Model GroundTruth

Figure 3: Comparative Results of Map Synthesis. The figure presents a side-by-side comparison of map images generated by
variousmodels, including OurModel, against the Ground Truth, underscoring the effectiveness of each approach in synthesizing
accurate map details.

an anchor from the output map image, aligning it with the corre-
sponding positive sample from the input image, and contrasting it
with negative samples from different locations within the same and
different satellite images. These selections are made at the patch
level of the images, employing PatchNCE-SAT, as detailed in the
previous sections, to maximize mutual information between two
corresponding elements while minimizing information between
unrelated elements. This method has successfully enabled the GAN
model to establish a more accurate mapping between input and
output, thus enhancing the quality of the generated map images.
The experimental results, assessed using RMSE, PSNR, and SSIM
metrics, have shown that incorporating contrastive learning into
GANs yields better outcomes in map synthesis compared to exist-
ing GAN models. Notably, while DCLGAN demonstrates slightly
better performance in some aspects, it requires longer training
times, making our model a more efficient choice in terms of com-
putational resources and time. Similarly, despite its faster training,
GcGAN does not match the visual quality achieved by our model.
These comparisons emphasize our model’s balance of efficiency
and quality, making it a strong candidate for practical applications
like emergency rescue operations. This study not only highlights
the effectiveness of our approach in map synthesis but also lays
possibilities for future advancements in image processing in remote
sensing with generative models.

This study primarily focused on image data for map synthesis
without incorporating additional parameters. Moving forward, we

aim to integrate geographical features, such as latitude and longi-
tude, to the potential enhancement of the map generation process.
Additionally, we plan to collect and utilize our dataset, to be down-
loaded using the TerraFly Mapping System developed and managed
by the High Performance Database Research Center at Florida In-
ternational University, as previously detailed by Mahara and Rishe
[23]. This approach is predicted to provide us with satellite images
with additional parameters, varying resolutions, and imagery from
different seasons. These variations may potentially contribute to
broadening the generalizability of our model in generating maps
from satellite imagery. Given the significant role of data augmen-
tation in contrastive learning, we plan to explore and design new
augmentation techniques specifically designed for our domain.
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