
 

Abstract: In the past few years, there have been 
many research studies conducted in the field of 
Satellite Image Classification. The purposes of 
these studies included flood identification, forest 
fire monitoring, greenery land identification, and 
land-usage identification. In this field, finding 
suitable data is often considered problematic, and 
some research has also been done to identify and 
extract suitable datasets for classification. 
Although satellite data can be challenging to deal 
with, Convolutional Neural Networks (CNNs), which 
consist of multiple interconnected neurons, have 
shown promising results when applied to satellite 
imagery data. In the present work, first we have 
manually downloaded satellite images of four 
different classes in Florida locations using the 
TerraFly Mapping System, developed and managed 
by the High Performance Database Research Center 
at Florida International University. We then develop 
a CNN architecture suitable for extracting features 
and capable of multi-class classification in our 
dataset. We discuss the shortcomings in the 
classification due to the limited size of the dataset. 
To address this issue, we first employ data 
augmentation and then utilize transfer learning 
methodology for feature extraction with VGG16 and 
ResNet50 pretrained models. We use these features 
to classify satellite imagery of Florida. We analyze 
the misclassification in our model and, to address 
this issue, we introduce a location-based CNN 
model. We convert coordinates to geohash codes, 
use these codes as an additional feature vector and 
feed them into the CNN model. We believe that the 
new CNN model combined with geohash codes as 
location features provides a better accuracy for our 
dataset. 
 

Index Terms: CNN (Convolutional Neural 
Network), Data Augmentation, Geohash Code, 
Satellite Image, Transfer Learning 

1. INTRODUCTION 

HE classification of remotely sensed data has 
numerous practical applications, including 

forest fire detection, landslide detection, and 
environmental monitoring. In recent years, several  

 
Manuscript received March 24, 2023.  
Arpan Mahara is at the Knight Foundation School of Computing  

and Information Sciences, Florida International University, Miami,  
FL, USA (e-mail: amaha038@cs.fiu.edu) 
     Naphtali Rishe is at the Knight Foundation School of 
 Computing and Information Sciences, Florida International 
University, Miami, FL, USA (e-mail: rishe@cs.fiu.edu) 
Correspondence email is amaha038@cs.fiu.edu  

machine learning and deep learning algorithms, 
including but not limited to K-Nearest Neighbor 

(KNN), Random Forest (RF), Support Vector 
Machine (SVM), and Neural Networks (NNs), have 
been applied to the classification of remotely 
sensed data. In the Deep Learning field, CNNs 
have demonstrated the capability to learn complex 
models [1]. One of the key reasons for CNNs’ 
success is their ability to extract features 
automatically, which greatly benefits researchers 
in achieving generalized and efficient 
classification. Comprehensive reviews of various 
models, architectures, and classifications related 
to CNNs can be found in references [1]–[3]. 

In general, image classification is performed 
based on pixel-wise feature extraction and 
assigning them to certain classes. Mnih proposed 
a CNN architecture for aerial image classification 
using a patch-based framework[4]. In that paper, 
the CNN network outputs a dense classification 
patch rather than a single categorical value. As a 
result, the patch-based CNN architecture 
increases the number of unproductive trainable 
parameters, potentially leading to inefficiencies in 
classification. To provide a solution to this issue, 
Maggiori et al. [5] proposed a fully convolutional 
architecture that only incorporates the convolution 
and deconvolution norms of CNN, producing 
classification maps that can be used for satellite 
image classification. In [5], the authors have 
created a more efficient CNN architecture, but 
their focus was on binary classification with only 
one class, i.e., buildings. The authors have not 
addressed the importance of using image location 
to enhance classification accuracy. The CNN 
architecture we use in this paper is based on the 
architectures described in [4] and [5], and we 
focus on multi-class image classification by 
integrating the location concept. In [6], coordinates 
were integrated into CNN to enhance remote 
sensing image classification. During the training 
phase, they directly fed spatial information, such 
as longitude and latitude, as an additional feature 
to the CNN for feature extraction. Similarly, Tang 
et al. [7] proposed a GPS encoding idea that 
incorporates location information into CNN for 
extracting features and improved image 
classification. They represented location as a 
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binary code, with each bit corresponding to a 
specific geographic location. They devised a 
method for creating a set of grid cells covering the 
Earth’s geographical area, primarily focusing on 
regions within the United States. 
 In the present work, we first downloaded 
satellite images of Florida using TerraFly Map’s 
raster API, which incorporates a predefined tile 
system utilizing the Microsoft Bing projection. The 
images are all 256 * 256 pixels and have three 
color channels (Red, Green, and Blue). We have 
grouped the images into four different classes: 
Building, GreeneryLand, House, and 
WaterResource. Here, by a “house” we mean a 
structure of 1-2 stories, and by a “building” we 
mean a structure of 3 or more stories. We have 
developed our CNN architecture based on the 
idea mentioned in [4] and [5]. However, CNNs 
require large datasets to learn features and make 
efficient predictions, and our CNN may not be able 
to generalize efficient classification from manually-
collected datasets due to the lack of a large 
number of images. To improve the efficiency of our 
classification, we first use data augmentation 
presented in [8]. Then, we adopt transfer learning 
strategies presented in [9] to extract features using 
pre-trained models, such as VGG16 and 
ResNet50. Finally, we enhance the CNN’s feature 
set by converting each longitude and latitude to 
geohash codes and feeding them as extra 
features. Geohash is a process that converts 
coordinates into strings of data, which are easy to 
handle; more information on geohash codes can 
be found in [10]–[12]. We then evaluate the 
accuracy of our model with these additional 
features. 

The paper is structured as follows. In Section 2, 
we describe the mechanism of CNN and how we 
have prepared the dataset. In Section 3, we 
propose a CNN architecture and analyze the 
shortcomings of the lack of a large dataset. In 
Subsection 3.1, we set up a transfer learning 
architecture to obtain an efficient classification 
model. In addition, we integrate coordinates as 
geohash codes into our model. Section 4 presents 
the computational results achieved from all the 
models, including the results obtained after the 
integration of location information. Finally, we 
summarize our findings and outline future 
research directions in Section 5. 

2. CNN INTRODUCTION AND DATASET 

CNNs are a special type of neural networks that 
have been invented to mimic the mechanism of 
human brain for identifying or recognizing objects. 
They contain numerous interconnected neurons, 
each of which responds only to their own receptive 
field. The interesting part of the neurons in CNNs 
is that they possess the ability to automatically 

extract features from an image. In a CNN, each 
neuron undergoes input and output procedures to 
learn the pattern of the model. The common 
mathematical interpretation of the neural 
operation to obtain an output ‘o’ can be expressed 
as follows: 

      o = σ (∑ 𝑤 .
ୀଵ  𝑥 + 𝑏)                    (1) 

where σ is an activation function that helps the 
CNN to learn an intricate pattern by encompassing 
non-linearity in the output. Similarly, xk and wk are 
kth input and kth weight, respectively, and b denotes 
a scalar parameter added to each output, which 
helps the CNN to extract complicated patterns 
from data. Biases should be carefully addressed; 
otherwise, they may lead to overfitting or 
underfitting in the model.  
 In general, the CNN architecture has three 
different layers: a convolutional layer, a pooling 
layer, and a connected layer. In the convolutional 
layer, the dot product between the kernel and the 
input image is calculated by sliding a filter over the 
image. This aids the architecture in extracting 
features from the images in the dataset. The 
sliding of the filter around the image can be 
controlled with a specific stride size. Let’s say we 
have an image of dimension D*D with C channels. 
We define the size of the stride as S, the size of 
the kernel or filter as K, and X as the amount of 
padding to maintain the same size of images in 
both the input and output sectors. The output of 
the convolutional layer can be stated as follows: 

                Cout = 
ିାଶ

ௌ
+1                             (2) 

Once the output is calculated, it is passed through 
an activation function. A pooling layer is applied in 
the CNN in order to deduct trainable parameters 
and balance the computation, which serves as an 
efficient feature extraction by reducing the size of 
the output map obtained from the convolutional 
layer. A fully connected layer simply flattens the 
output obtained from the previous layer, which 
helps to connect the obtained features to the 
labels in the given model.   

As mentioned above, we used the TerraFly 
Map’s raster API (which uses the Microsoft Bing 
projection) to download the images. We use the 
TerraFly Map to determine the XY tile coordinates 
for specific regions within Florida, keeping the 
zoom level constant at 19. After determining those 
coordinates, we pass the values to the Raster 
API’s URL, and then we use web scraping to 
download the images. Since we aim to integrate 
the location feature into our CNN model, we need 
to prepare a dataset of satellite images that also 
have associated coordinates. To achieve this, we 
converted each XY tile coordinates obtained from 
the map to longitude and latitude by using the 
following procedure: 

A = X tile, B = Y tile coordinates                     (i) 
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pixelA = A * 256 + 128                                   (ii) 
 
pixelB = B * 256 + 128                                  (iii) 
 
sizeofMap = 256 * 2zoom                                            (iv) 
 
normA = (pixelA / (sizeofMap)) – 0.5             (v) 
 
normB = 0.5 – (pixelB / (sizeofMap))            (vi) 
 

Latitude=90 – ቀ
ଷ

గ
ቁ * tan-1(exp(-2π*normB) (vii) 

 
Longitude = 360 * normA                            (viii) 

 
In our model, we use a specific zoom value of 

19. To calculate the geohash code, we use the 
values of the latitude and longitude obtained from 
equations (vii) and (viii), as described in [12]. We 
use the Python Geohash Library to convert the 
latitude and longitude to geohash codes. In our 
final step of dataset preparation, we map each 
geohash code to the right images by using a 
Python dictionary. The keys of the dictionary are 
the filenames, and the values are the 
corresponding geohash codes. 

3. THE PROPOSED ARCHITECTURE 

 Our CNN architecture utilizes ideas from [4] 
and [5]. We apply convolutional layers that 
incorporate both convolutional and deconvolution 
operations, as described in [5]. We flatten the 
multi-dimensional tensor into a single-dimensional 
tensor output and apply the dense layer principle 
the output, as suggested by Mnih [4]. We feed the 
fully connected layer of the images into the CNN 
to extract the feature map, which is used for 
classifying the images according to their given 
labels. Our CNN architecture differs from the one 
presented in [6], as we focus on extraction that is 
capable of detecting features in the images, rather 
than extracting the spatial features of pixels in the 
images. As we can observe in Figure 1, the CNN 
architecture has three convolutional layers and 
three max pooling layers. In each max pooling 
layer, we downsample the dimension of each input 
map by a factor of 2, resulting in a feature map of 
size 32*32. Downsampling is a common approach 

in neural networks to reduce memory usage 
during computation and to enable high-level 
feature extraction [13]. We flatten the resulting 
feature map by applying a flatten layer, which 
transforms it into a one-dimensional array of size 
65,536. We then apply two separate dense layers 
followed by a Softmax activation function. The final 
dense layer has 4 units, as our model has 4 
classes of satellite images and the probability 
distribution is over those 4 classes.  

In the first stage of our image classification 
procedure, we use a satellite image dataset that 
excludes geohash codes. We split the dataset into 
a training set, a testing set, and a validation set, 
with 80%, 10%, and 10% of the full dataset, 
respectively. We have experimented with our 
model using various numbers of epochs and batch 
sizes, and have determined that using 60 epochs 
with a batch size of 32 produces the best results. 
In general, researchers tend to choose an optimal 
number of epochs to achieve good accuracy in 
complex models and prevent the model from 
overfitting. A lower accuracy in the testing set 
indicates that the model is overfitting. One reason 
for this overfitting is the lack of a large amount of 
data in our model, as we only had 300 images in 
each class, with a total of 1200 images. CNNs 
require a large dataset to extract complex features 
and provide better accuracy in image classification 
[13].  

To address this problem, we have used data 
augmentation strategies of deep learning, as 
presented in [8], [14], and [15]. In terms of images, 
data augmentation involves increasing the size of 
the dataset by applying variations, such as rotating 
images, changing the visual effects, etc., to the 
existing images [14]. To increase the size of the 
dataset, we have applied random horizontal 
flipping, random rotation with approximately 8.62 
degrees, and random zooming of 20% scale. The 
data augmentation has helped to address the 
problem of overfitting, but we have concluded that 
we can further increase the overall accuracy of our 
dataset by training our model using a pretrained 
model, such as VGG16 and ResNet50, with the 
concept of transfer learning. In the following 
Subsection 3.1, we provide details on how we use 
transfer learning in our model to improve overall 
accuracy. 
    

 

Figure 1: An illustration of the architecture of the CNN used. The template of the image has been obtained via 
https://alexlenail.me/NN-SVG/LeNet.html. 
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3.1 Applying Transfer Learning 

Transfer learning is a way to use a pretrained 
model in a different but related model to solve the 
problem of the lack of abundant data to extract 
effective features and reduce the time required for 
training the dataset [16]. Our idea on integrating 
Transfer Learning is based on [9] and [17], and we 
have selected VGG16 and ResNet50 as the two 
pretrained models for our experiment. VGG16 is 
one of the most widely used deep neural network 
architectures; it consists of 13 convolutional layers 
and 3 dense layers, and the model has been 
trained on the ImageNet dataset [18]. Similarly, 
ResNet50 is another widely used deep neural 
network trained on the ImageNet dataset, 
consisting of 50 layers in total; it enables the 
network to assimilate residual functions rather 
than underlying mappings [19].  

To set up the model using the transfer learning 
idea, we first remove the final connected layer of 
the VGG16 model. Then, we use the pretrained 
weights, and we set up the desired input shape to 
256*256*3, the same shape that matches the input 
shape of the images in our original dataset. We 
freeze all the pre-trained layers and use only pre-
trained weights to extract features, training the two 
new dense layers to predict new images in the 
dataset. The output of the flatten layer obtained 
from the pretrained model is passed to the first 
dense layer with 256 neurons, followed by the 
Relu activation function. In addition to this, we 
apply the Dropout function to the output from the 
dense layer to prevent overfitting in our model. 
Thereafter, we apply the final fully connected layer 
with 4 output nodes to obtain the probability 
distribution among 4 classes to predict the images 
followed by the Softmax activation function. We 
follow the same procedure when using the 
ResNet50 model. Once both models were ready, 
we experimented with them in our dataset. 
However, we have found misclassification in some 
of our data, which was further hindering the 
accuracy. To improve the accuracy, we integrate 
location coordinates in our image classification 
model in Subsection 3.2. 

3.2 Integration of Location as Geohash Codes 

Our goal is to increase the accuracy of satellite 
image classification in the downloaded dataset by 
integrating location information. We have decided 
to use geohash codes obtained from the 
conversion of latitude and longitude values. 
Geohash is a type of data structure used with 
spatial data that provide an encoding of latitude 
and longitude [20]. We are motivated to use 
geohash codes because locations with long 
common geohash prefixes are generally located 
nearby each other [20]. Our dataset contains 
satellite images downloaded within Florida, and 
there is a correlation between geographical 
location and image content. Images of houses and 
buildings are in two different classes, and some of 
these images might be misclassified if the model 

only considers visual characteristics because 
building images and house images captured from 
satellites have some visual similarity. In our 
dataset, two images of houses or buildings tend to 
be nearby each other as they have been 
downloaded by specifying the tiles coordinates. 
We believe that we can exploit this idea in our 
model by using geohash codes and prevent the 
misclassification of data. 

We have experimented with the location 
concept by incorporating geohash codes into the 
VGG16 pretrained model. We have converted 
each geohash code into a floating-point value 
since neural networks typically deal with numerical 
values rather than strings. Next, we add a new 
input layer for the geohash code and concatenate 
the flattened layer containing the weight features 
of VGG16 with the geohash codes, as shown in 
Figure 2. We then apply the same dense layers 
noted in Subsection 3.1 to extract the features that 
assist in the prediction of new images. We follow 
the same procedure of concatenation geohash 
code with the output layer in ResNet50.  

Finally, we integrate location information, i.e., 
geohash codes, into our CNN architecture. We 
concatenate the feature map induced by applying 
3 convolutional and 3 pooling layers with geohash 
codes to obtain a combined feature vector. We 
then follow the same procedure as noted above 
and apply a flatten layer and a dense layer, 
respectively, to the combined feature vector. We 
have experimented with our models using 60 
epochs and a batch size of 32 to obtain accuracy.  

4. COMPUTATIONAL RESULTS 

We have sequentially tested all the models, 
starting from the CNN architecture that only 
extracts features from the image without 
concatenating the geohash codes. Our intent is 
not just to check the accuracy in the dataset but 
also to analyze whether the model is overfitting by 
checking how well it performs on unseen image 
data. We use the Top-1 accuracy metric to check 
accuracies on all the models. Our CNN 
architecture yields an accuracy of 0.9244 on the 
training set but only 0.8842 on the testing set, 
indicating overfitting due to the limited size of the 
dataset. To address this issue, we apply data 
augmentation to the dataset, and our CNN 
architecture can generate approximately 0.9185 
accuracy on the testing dataset and 0.9253 on the 
training set. Even though data augmentation helps 
to increase the dataset, it still lacks the power to 
generalize efficient feature extraction. So, we 
utilize transfer learning by using pretrained 
models, VGG16 and ResNet50, for efficient 
feature extraction that could be used to obtain 
better accuracy in our dataset. Having tested 
these models on all the datasets, we achieve an 
accuracy of approximately 0.9456 on the testing 
set and 0.9529 on the 
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Figure 2: An illustration of the architecture obtained by integrating geohash codes into the CNN (including pretrained models) 

architecture.  

training set for VGG16, as well as approximately 
0.9516 on the testing set and 0.9576 on the 
training set for ResNet50, respectively. 

Similarly, as mentioned in Subsection 3.2 
above, to integrate location as an additional 
feature, we initially integrate the geohash codes 
with VGG16 and ResNet50 pretrained models. We 
achieve top-1 accuracies of 0.9789 on the testing 
set and 0.9769 on the training set using the 
combined VGG16 and geohash feature 
architecture, and top-1 accuracies of 0.9812 on 
the testing set and 0.9795 on the training set using 
the combined ResNet50 and geohash feature 
architecture. Finally, we experimented with 
integrating location information into our CNN 
architecture by concatenating the geohash codes 
with the image features. By doing so, we are able 
to increase the top-1 accuracy on the testing set 
from 0.9185 to 0.9542 and on the training set from 
0.9253 to 0.9512 by incorporating location as a 
feature. 

From the results mentioned above, we can see 
that incorporating the geohash coding feature has 

led to an improvement in our classification 
accuracy. In each model, after integrating 
geohash as a location feature, there is an increase 
of top-1 accuracy by 2 to 3 percentage points. The 
reason for the small increases in the accuracies is 
because of the small size of the dataset. We have 
observed misclassifications mainly among house 
and building images, as they have a resemblance, 
but the number of misclassifications is relatively 
small due to our small dataset size. However, we 
can mitigate these misclassifications by utilizing 
geohash codes to differentiate between these 
images with similar features.     

We present the results and comparisons of all 
the models mentioned above in Table 1. The 
notations used in Table 1 are as follows:  

o 𝐴𝑐𝑐. – accuracy in the testing set 
(general accuracy of the model); 

o AccT – accuracy in the training set; 
o 𝐿𝑜𝑠𝑠 – categorical cross-entropy loss in 

our multi-class classification model; 

 

Table 1. Results and comparisons among our models based on the accuracy 

Method Acc. AccT Loss 
CNN (only) 0.8842 0.9244 0.8272 
CNN + Data Augmentation 0.9185 0.9253 0.4380 
VGG16 (CNN) 0.9456 0.9529 0.2549 
RestNet50 (CNN) 0.9516 0.9576 0.1590 
CNN + Data Augmentation + Geohash Code 0.9542 0.9512 0.0954 
VGG16 (CNN) + Geohash Code 0.9789 0.9769 0.0443 
ResNet50 (CNN) + Geohash Code 0.9812 0.9795 0.0394 

 As shown in Table 1, the proposed CNN model, 
as well as the VGG16 and ResNet50 models, 
show improved accuracy after the integration of 
geohash codes. As shown in the table, the 
categorical cross-entropy loss decreases after the 
geohash codes have been applied, indicating that 
the models are able to make predictions that are 
closer to the true class membership probabilities. 
The lower loss value and similar accuracy on both 
the training and testing datasets suggest that the 
model is not overfitting to the training data. 

5. CONCLUSION 

This paper analyzes the limitations of using only 
image features in multi-class satellite image 

classification using CNNs. In multi-class satellite 
image classification, CNN architectures tend to 
make false predictions when there is a high 
degree of visual similarity between images from 
different classes. This issue is addressed by 
integrating geohash codes as an additional feature 
in the CNN model. With the additional geohash 
code feature map, the CNN model is able to make 
more accurate predictions. 

According to the results presented in this paper, 
we can deduce that geohash codes can be used 
as an additional feature vector in the CNN 
architecture to make correct predictions and 
increase accuracy in satellite image classification. 
However, this may not apply in scenarios where 
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there is no correlation between geographical 
location and image content. To build a robust 
model for satellite image classification, it is 
important to take into account a range of factors, 
such as the size and preprocessing of the dataset, 
integrating additional feature vectors, the risk of 
overfitting, and the CNN architecture itself. This is 
because even a well-designed architecture may 
produce poor results if there is insufficient data or 
if the data has not been efficiently preprocessed. 

In the future, we plan to explore the use of 
hybrid models in satellite image classification. The 
K-NN machine learning algorithm will be one of 
our focuses to identify the K-number of images 
that are most similar to each other based on their 
geohash codes, and then to automatically classify 
them into their respective classes. This approach 
has the prospect of increasing the accuracy of 
classifying images that are difficult to distinguish 
based on visual features alone, and may enable 
real-time classification of satellite imagery for 
applications such as disaster management and 
environmental monitoring. 
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