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Abstract: This study utilises a deep convolutional neural network (CNN) implementing regularisation and batch normalisation
for the removal of mixed, random, impulse, and Gaussian noise of various levels from digital images. This deep CNN achieves
minimal loss of detail and yet yields an optimal estimation of structural metrics when dealing with both known and unknown
noise mixtures. Moreover, a comprehensive comparison of denoising filters through the use of different structural metrics is
provided to highlight the merits of the proposed approach. Optimal denoising results were obtained by using a 20-layer network
with 40 × 40 patches trained on 400 180 × 180 images from the Berkeley segmentation data set (BSD) and tested on the
BSD100 data set and an additional 12 images of general interest to the research community. The comparative results provide
credence to the merits of the proposed filter and the comprehensive assessment of results highlights the novelty and
performance of this CNN-based approach.

1 Introduction
Noise remains a challenge in many image acquisition and
transmission systems. The presence of noise, regardless of its
nature or source of origin, often leads to image degradation that is
as difficult to overcome as it is to formulate its underlying effects.
This study focuses on images containing impulse noise (salt and
pepper, and random value) and additive Gaussian noise. Impulse
noise is caused by analogue-to-digital (A/D) converter saturation,
transmission and/or memory errors, and faulty pixels in camera
sensors [1, 2]. Gaussian noise, on the other hand, is caused by three
common factors: amplifier noise, shot noise, and film grain noise
[3, 4]. In order to remove or attenuate significantly these sources of
noise, smoothing filters are often used to decrease the noise
variance while attempting to preserve the important image details
as much as possible. However, noise removal is further
complicated when the images are degraded by mixtures of impulse
and Gaussian noise, whose combination significantly alters the
structural metrics of any given image. It thus becomes necessary to
find a reliable process by which the challenging effects of such
mixed noise could be attenuated. Therefore, a standard course of
action is to perform a suitable smoothing technique to the image
before some form of gradient could be applied to preserve the finer
image details. Given that derivatives could amplify the effect of
noise, a trade-off must be negotiated between the task of
decreasing the noise variance and that of keeping all the relevant
image details. This trade-off should consider the difficult challenge
faced in any ensuing edge detection that needs to be performed on
the resulting denoised image.

Consequently, edge detection remains a difficult nontrivial
problem and yet an essential preprocessing step for object
identification, image segmentation, feature extraction, pattern
recognition, and other relevant image processing tasks. When
dealing with images, pertinent details can be useful for all types of
real-world applications, but the concern has always been in
delineating what really constitutes an edge with a high degree of
similarity in contrast to other background pixels and noise data that
could be misidentified as edges.

The current literature provides two comprehensive reviews on
the use of neural networks for image denoising [5, 6] along with
several studies proposing different convolutional neural networks
(CNNs) with various merits and different application domains such

as hyperspectral image classification [7, 8], and Gaussian
denoising [9–12]. While the authors of [13] produce other
significant work on convolutional networks for eye fixation
prediction by using a three-layer network with two convolutional
layers and one fully-connected layer. Multi-label image
classification is offered in [14] through an AlexNet-like network
with two auxiliary layers and one additional input layer. Fine-
grained image classification is discussed in [15] and multi-view
multitask gaze estimation using n- and 1-fully connected layers is
provided in [16].

Several impulse and Gaussian denoising methods have also
been proposed, such as switching adaptive median and fixed
weighted mean filter (SAMFWMF) [17], the proposed filter in [18]
and CNN filters [11, 12]. Moreover, there are also several mixed
impulse-Gaussian denoising methods, among them mixed noise
filter (MNF) [19] (a combination of non-local mean [20] and
bilateral filters [21]), adaptive median filter [22], total variation-
based filters [23, 24], fuzzy-based filters [25–30], sparsity-based
filter [31–33], low-rank approximation filter [34, 35], non-local
similarity filter [36], maximum likelihood estimation filter
(PARIGI method) [37], genetic programming filter [38], finite
element filter [39], morphological-based filter [40], and the so-
called framelet filter [41].

The methods uniquely used for either impulse or Gaussian
denoising have shown good performance in the presence of the
targeted noise, but such performance is degraded when the two
noises are combined (i.e. present in a given image at the same
time). Previously reported methods that have considered mixed
impulse and Gaussian denoising filters are based on traditional
methods that could not properly confront such problem when in the
presence of high noise levels, leading to loss of image details and
excessive blurring burdening further the edge detection process.

For a fair assessment of the proposed method against others that
have focused on mixed impulse and Gaussian noise under different
intensity levels, a comparative study is provided contrasting the
results obtained using the proposed deep learning algorithm against
those from the most recent and effective denoising filters. In this
comparative assessment, the focus is placed on the low-rank
approximation algorithm (LSM-NLR) [35] which has proven to be
effective for the removal of mixed impulse and Gaussian noise in
images. The LSM-NLR method is based on Laplacian scale
mixture (LSM) modelling and non-local low-rank regularisation. In
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order to model the impulse noise in LSM, a MAP estimator is
defined by the authors in [35]. For non-local rank regularisation, a
combination of the LSM model, the MAP estimator, and a low-
rank regularisation model was used with the assumption that
similar patches are interdependent, consequently resolving the
denoising process by using an optimisation algorithm. The authors
of this effective approach claim to obtain better result than the two-
phase deblurring/denoising (TPD) method (or Cai1) [42], sparse
and low-rank regularisation denoising (SLR) [43], the well-known
BM3D [44], the non-locally centralised sparse representation [45],
and the weighted encoding with sparse non-local regularisation
(WESNR) [33].

It should be noted that the WESNR method does not have an
impulse noise detection step due to its generated artefacts when in
the presence of high noise levels. It defines the image as the
product of sparse coding and a dictionary and in order to eliminate
the noise, an optimal estimation of sparse code is calculated by
encoding the noisy image over the dictionary. Because of the two
different noise categories, the weight (close to 1 for pixels
corrupted by Gaussian noise and smaller weights (w) for pixels
corrupted by impulse noise) is assigned to residuals; and therefore,
an optimal estimation for sparse coding is defined in the presence
of mixed noise based on sparse regularisation. This method is
claimed to outperform ROR-NLM [46], Cai [47], l1 − l0 [31], TF
[21], and M + BM3D [44].

With all these challenges, the proposed study is motivated by
three objectives: (i) To determine new ways for overcoming the
persisting problems experienced by previously reported denoising
methods in order to attenuate the effects of noise as much as
possible while retaining more image details. (ii) To deblur the
image in such a way as to yield an enhanced noise-free image were
the absence of noise is visually appreciable. (iii) To preserve edge
information and therefore yield sharper and continuous edge
boundaries (one of the main aims of this study).

Herein, a novel denoising filter is introduced to combine the
ability to preserve more edge details with better prospects for
achieving high structural similarity to the original (noise-free)
image even in the presence of high levels of mixed impulse and
Gaussian noise. The obtained results, as presented and discussed
later, are contrasted to well-known denoising filters to gauge the
performance of the proposed denoising method.

2 Proposed method
The proposed method, as illustrated in Fig. 1, uses an end-to-end
deep CNN to achieve optimal denoising of mixed impulse and
Gaussian noise while, consequently, directly estimating the original
noise-free image. Thereafter, batch normalisation is applied to

speed up and improve the denoising process. Finally, the network
is trained for both known and unknown noise levels. Known noise
level is presumed when the training and testing data have similar
noise levels. However, for unknown noise level, the network is
trained based on a specific high noise intensity level and the testing
data is assumed to have different levels of the noise intensity,
which are presumed to be lower than those used in the training
data.

2.1 Noise models

The normalised salt and pepper impulse noise model is expressed
as follows:

xc =

Xmin Probability Pp

Xmax Probability Ps

Xmin < c < Xmin Probability 1 − Pp − Ps

(1)

In this type of representation, also used in [48], c denotes the
uncorrupted value of a given pixel that could be affected by salt
noise with probability Ps and by pepper noise with probability Pp.
This normalised representation of the image assigns Xmin to be 0
and Xmax as 1. When using random value impulse noise as in [49],
any given corrupted pixel has a random value between Xmin and
Xmax.

Gaussian noise is additive and independent. It can be the result
of amplifiers noise, shot noise, film grain noise [50], and others.
The model of Gaussian noise can thus be expressed as follows:

xG i, j = x i, j + n i, j (2)

where xG represents the noisy image containing Gaussian noise, x
is the original noise-free image, and n is the additive Gaussian
noise.

2.2 Evaluation metrics

Standard structural metrics are computed to compare the
performance of multiple filters against the proposed method and
gauge the quality of the denoised image. The following are the
metrics used in this study:

• Feature similarity index (FSIM) [51] measures the quality of the
denoised image based on the human visual system (HVS).

• Peak signal-to-noise ratio (PSNR) measures the level of noise
remaining in the denoised image.

Fig. 1  Network model
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Equations (3)–(8) provide the formulations for FSIM and PSNR
measures together with their respective related components.
Hereafter, x i, j  represent a pixel i, j  in the original noise-free
image, and y i, j  represent a pixel i, j  in the denoised image
resulting from the filtering process.

The FSIM between the noisy and the denoised images is
measured as follows:

FSIM =
∑i ∈ Ω SL i ⋅ PCm i

∑i ∈ Ω PCm i
(3)

where Ω is a partial domain of the whole image with
PCm i = max PC1 i , PC2 i , and where SL i  is the similarity at
the location i as given below:

SL i = SPC i SG i (4)

SPC i  is the similarity measure between PC1 and PC2 as the
extracted PC maps from the noisy and denoised images,
respectively, as defined in the following equation:

SPC i =
2PC1 i ⋅ PC2 i + T1

PC1 i
2 + PC2 i

2 + T1

(5)

where T1 is a positive constant used to increase the stability of
SPC i . SG i , defined in (6), represents the similarity measure
between G1 and G2 representing the GM maps extracted from the
noisy and denoised images, respectively,

SG i =
2G1 i ⋅ G2 i + T2

G1 i
2 + G2 i

2 + T2

(6)

GM = Gh
2 + Gv

2, where Gh and Gv are the partial derivatives in the
horizontal and vertical directions. T2 is a positive constant
dependent on the dynamic range of GM.

The PSNR measure is given as follows:

PSNR = 10log
max x

2

MSE
(7)

where the MSE defines the mean square error as in (8) with max(x)
expressing the maximum pixel intensity of image x.

MSE =
∑i = 0

M − 1 ∑ j = 0
N − 1

x i, j − y i, j
2

M × N
(8)

Here M and N define the x and y dimensions of the image.

2.3 Related work on the use of CNN for denoising images

The following are some notable research endeavours that have used
CNNs for image denoising. The work in [52] proposes a
combination of sparse coding and deep neural networks, pre-
trained with denoising auto-encoders (DAs), as an alternative to
training pure DAs. The study in [53] uses a multilayer perceptron
(MLP) for image denoising. While study in [11] presents a
trainable non-linear reaction-diffusion (TRND) method and uses
supervised training to construct a dynamic non-linear reaction-
diffusion model with time-dependent parameters (linear filters and
influence functions) for Gaussian denoising. This method in [11] is
similar to the feedback CNN presented in [54], and in both cases,
each iteration (stage) of the proposed diffusion process uses
convolutional operations of a set of linear filters. The work in [55]
introduced a super-resolution algorithm and CNN for mixed noise
removal. The work in [12] introduces a deep CNN method
(DnCNN) that can be seen as a generalisation of TRND [11] that
(i) is easier to train, by replacing the influence function with a
rectified linear units (ReLUs) [56]; (ii) increases architectural
depth (number of convolution layers) to improve image modelling
capacity; and (iii) incorporates batch normalisation [57] to improve
performance.

All the aforementioned networks are used solely for Gaussian
denoising and all of them, except for [12], were used to remove
known/predefined noise levels. As Gaussian noise is additive, the
network in [12] removes the noise by using residual learning, i.e.
learning the noise. However, when Gaussian and impulse noise are
mixed the resulting interference is no longer additive and the
network in [12] no longer provides adequate denoising results. It is
for this reason, that the proposed approach did not use residual
learning to directly estimate the denoised image.

2.4 Batch normalisation and network parameters

During training, any change to a deep neural network layer's
parameters causes a change in the distribution of the subsequent
layer's input, referred to as an internal covariate shift. Batch
normalisation [57] can alleviate internal covariate shift by learning
the normalisation parameters of each part of the model and
applying it to each mini-batch training.

Empirically, it can be observed that the network's depth and
patch size are dependent on the type and level of noise present.
Specifically, larger patch sizes are shown to exhibit better
performance in the presence of higher noise levels [58]. The
network presented in [11] used ten convolutional layers (or five
stages) with patches of 61 × 61 to remove a predefined level of
Gaussian noise. The network in [12] uses 17 layers of 40 × 40
patches for known-noise-level denoising and 20 layers of 50 × 50
patches for unknown noise-level Gaussian denoising.

2.5 Network model

The proposed CNN model is a modified version of the VGG [59]
and DnCNN [12] models aimed at overcoming the challenge of
mixed impulse and Gaussian noise removal. The network's input is
a noisy image yi, produced by artificially injecting noise to a clean
original image xi , and the network's output f yi  is an estimate of
the original noise-free image. The network's loss function is the
summation of the squared error between the estimated and original
noise-free images as formulated in (9). Finally, the network's
parameters are updated by minimising this loss function as in [6,
60].

L = ∑
i = 1

N

f yi − xi 2
2 (9)

where N is the number of training image sets ( yi, xi ).
As previously mentioned, the network used in this study

resembles that used in [12] with few changes. It is composed of
three different types of layers, where the first is a convolutional
layer of 64 3 × 3 × 1 filters with ReLU non-linear activation
functions [9, 10, 13, 56] used to create 64 feature maps, the second
through second-to-last layers are batch normalised [10, 57]
convolutional layers of 64 3 × 3 × 64 filters with ReLU activations
[56]; and the last layer is composed of a single convolutional
kernel of shape 3 × 3 × 64 used to output the reconstructed image.
The use of ReLU activations [56] on convolutional layers separates
the mixed noise from the noisy observations through the hidden
layers. Finally, the input images are directly padded with zeros to
reduce boundary artefact [12] resulting from size mismatches
between different input images. Fig. 1 illustrates the proposed
CNN-based network model.

In contrast to [12], this network attempts to predict the noise-
free image directly instead of obtaining it from subtracting the
predicted residuals of the noisy image. This is a consequence of the
non-additive nature of the noise types considered in this study.

Although batch normalisation is used to prevent overfitting,
additional steps are also considered to ensure the desired outcome.
For example, every time the network starts a new epoch (a run
through the training data) a new random seed is used to regenerate
the noisy images. This extra step has proved to be a very helpful
regulation technique as it prevents the network from seeing the
same input image twice, or at least assign a very low probability to
such event, allowing the network to better generalise.
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Through empirical evaluations, it is noted that optimal
denoising results are obtained by using 20 layers with 40 × 40
patches for both known and unknown noise-level denoising.
Although either, stochastic gradient descent (SGD) [61] and Adam
gradient-based optimisation [9, 62] could have been used, previous
CNNs [7, 10, 12, 14–16] have used SGD, and the performance of
networks with and without batch normalisation for both SGD and
Adam are assessed in [12]. This demonstrates that batch
normalisation can significantly improve the PSNR for SGD by
increasing the number of epochs. Therefore, in this study SGD [61]
is used.

Finally, all the source code developed and modified for this
study is available at: ‘https://github.com/wizquierdo/DnCNN’ for

other researchers to perform comparative assessments and explore
any potential improvements.

3 Results
In the implementation phase, 400 180 × 180 pixels images from the
Berkeley segmentation dataset (BSD) are used to train the
described network for both known and unknown noise-level
removal, similar to [11, 12, 35]. While for testing, the data sets
used include the BSD100 dataset and the additional 12 images
shown in Fig. 2 not seen in the training. The study in [35] uses
these same data sets.

As previously stated, the optimal results were obtained by using
a 20-layer network with 40 × 40 patches for any noise-level. The
SGD method is used with an additional learning rate of 0.1 (which
decreased over subsequent epochs), weight decay of 0.0001,
momentum of 0.09, and mini-batches of size 128 similar to studies
reported in [12–14, 16, 63]. It should be noted that the type of
noise mixture affected the numbers of epochs that the model
needed to complete the training phase.

All implementations were carried out in MATLAB 2017b using
the MatConvNet package [12, 20] for CNNs on a PC with Nvidia
Quadro M6000 GPU. The time required to train the network varied
between 24 and 48 h depending on the noise mixture (as different
mixtures required a different number of epochs).

Once the network was trained, the results obtained from the
proposed denoising method are compared to the results obtained
from the WESNR [33] and the LSM-NLR [35] methods on
different images and under the same mixed impulse and Gaussian
noise intensities.

Fig. 3 shows the comparative results when removing Gaussian
noise with a standard deviation of 20 and 50% salt and pepper
impulse noise from the test image ‘Vase’. Fig. 4 shows the
denoising comparison for Gaussian noise with a standard deviation
of 20 and 30% random value impulse noise the from test image
‘Flower’. Fig. 5 presents the performance in the presence of
Gaussian noise with a standard deviation of 10, with 40% salt and
pepper impulse noise, and 10% random value impulse noise from
the test image ‘Boat’. As seen from these figures, the proposed
CNN attains better performance at preserving relevant image
details than all other filters, with the highest similarity measure,
and resulting in the least amount of noise residue. Moreover, these
improvements lead to better edge tracking, especially when dealing
with high-intensity mixtures of impulse and Gaussian noise.

Fig. 2  12 test images considered
 

Fig. 3  Denoising results of different filters on test image ‘Vase’ corrupted with Gaussian with standard deviation 20 and salt and pepper impulse noise with
50%
(a) Original image, (b) Noisy image; images denoised by, (c) WESNR [33] (PSNR = 24.43 dB, FSIM = 0.9235), (d) LSM-NLR [35] (PSNR = 29.24 dB, FSIM = 0.9556), (e)
Unknown noise-level proposed CNN (PSNR = 29.17 dB, FSIM = 0.9532), (f) Known noise-level proposed CNN (PSNR = 29.58 dB, FSIM = 0.9586)
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Finally, Figs. 6–11 show the case the denoising results of the
proposed CNN trained with varying degrees of known and
unknown noise-levels in the presence of different intensity
mixtures of Gaussian and impulse noises on the testing images. 

Tables 1 and 2 show the results of known and unknown noise-
levels removal for mixed Gaussian and impulse noise. They,
respectively, show the results obtained from the average PSNR and
the average FSIM [51] metrics from the 12 test images shown in

Fig. 4  Denoising results of different filters on test image ‘Flower’ corrupted with Gaussian with standard deviation 20 and random value impulse noise with
30%
(a) Original image, (b) Noisy image; images denoised by, (c) WESNR [33] (PSNR = 23.04 dB, FSIM = 0.8956), (d) l0-NLR [35] (PSNR = 23.51 dB, FSIM = 0.9071), (e) LSM–NLR
[35] (PSNR = 24.36 dB, FSIM = 0.9156), (f) Unknown noise-level proposed CNN (PSNR = 27.07 dB, FSIM = 0.9482)

 

Fig. 5  Denoising results of different filters on test image ‘Boat’ corrupted with Gaussian with standard deviation 10, salt and pepper impulse noise with 40%
and random value impulse noise with 10%
(a) Original image, (b) Noisy image; images denoised by, (c) WESNR [33] (PSNR = 27.32 dB, FSIM = 92.75), (d) LSM-NLR [35] (PSNR = 28.89 dB, FSIM = 0.9482), (e) Unknown
noise-level proposed CNN (PSNR = 30.97 dB, FSIM = 0.9620), (f) Known noise-level proposed CNN (PSNR = 30.82 dB, FSIM = 0.9646)

 

Fig. 6  Denoising results of proposed CNN on test image ‘Fruits’
(a) Original test image, (b) Corrupted image with mixed Gaussian (s.d. = 10) and salt and pepper (50%), (c) Unknown noise-level denoising (PSNR = 33.28 dB, FSIM = 0.9736), (d)
Known noise-level denoising (PSNR = 33.53 dB, FSIM = 0.9743)
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Fig. 2 after the denoising process. Gaussian noise with a standard
deviation of 10, 20, 30, and 50, and salt and pepper impulse noises
with standard deviation 10, 20, 30, 40, and 50% were injected.
Known noise-level denoising required 125 epochs while unknown
noise-level denoising required 150; further increments of the
number of training epochs yielded better results in both cases. The
network was run 50 times for each noise level over the testing set
and the means and standard deviations of the results were
calculated.

Tables 3 and 4 show the results obtained for the average PSNR
and the average FSIM measures on the BSD100 data set images. 
The collection method, number of epochs, and noise levels injected
are equal to those of Tables 1 and 2.

Tables 5 and 6 show the average PSNR and the average FSIM
measures for the 12 test images for unknown noise-level of mixed
Gaussian and random value impulse noise. The collection method,
number of epochs, and noise levels injected are equal to those of
Tables 1 and 2.

Fig. 7  Denoising results of proposed CNN on test image ‘Hill’
(a) Original test image, (b) Corrupted image with mixed Gaussian (s.d. = 30) and salt and pepper (20%), (c) Unknown noise-level denoising (PSNR = 28.57 dB, FSIM = 0.9200), (d)
Known noise-level denoising (PSNR = 28.77 dB, FSIM = 0.9236)

 

Fig. 8  Denoising results of proposed CNN on test image ‘Boat’
(a) Original test image, (b) Corrupted image with mixed Gaussian (s.d. = 30) and random value impulse noise (30%), (c) Unknown noise-level denoising (PSNR = 28.24 dB, FSIM = 
0.9211)

 

Fig. 9  Denoising results of proposed CNN on test image ‘Lena’
(a) Original test image, (b) Corrupted image with mixed Gaussian (s.d. = 50) and random value impulse noise (50%), (c) Unknown noise-level denoising (PSNR = 27.31 dB, FSIM = 
0.9107)

 

Fig. 10  Denoising results of proposed CNN on test image ‘385039 of BSD100 dataset’
(a) Original test image, (b) Corrupted image with mixed Gaussian (s.d. = 10) and salt and pepper (40%) random value impulse noise (10%), (c) Unknown noise-level denoising
(PSNR = 27.18 dB, FSIM = 0.8902), (d) Known noise-level denoising (PSNR = 27.09 dB, FSIM = 0.8962)

 

Fig. 11  Denoising results of proposed CNN on test image ‘Couple’
(a) Original test image, (b) Corrupted image with mixed Gaussian (s.d. = 20) and salt and pepper (10%) random value impulse noise (30%), (c) Unknown noise-level denoising
(PSNR = 28.16 dB, FSIM = 0.9266), (d) Known noise-level denoising (PSNR = 28.55 dB, FSIM = 0.9303)
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Tables 7 and 8 show the average PSNR and average FSIM for
the same 12 test images after performing both unknown and known
noise-level denoising for mixed Gaussian, salt and pepper, impulse,
and random value impulse noise. Gaussian noise at 10 and 20, salt
and pepper impulse noises at 10 and 40%, and random value
impulse noise at 10 and 30% are used. The number of epochs for
known noise-level denoising is 30 and for unknown noise-level
denoising is 35.

Tables 9 and 10 show the PSNR and FSIM of the results from
unknown noise-level denoising for mixed Gaussian and random
value impulse noise on the BSD100 data set images. The
combinations of Gaussian noise with standard deviations 10, 20,
30, and 50 and random value impulse noise at 10, 20, 30, 40, and

50% are used. The network was trained for 150 epochs while
further training showed added improvement.

Tables 11 and 12 show the PSNR and FSIM of the results of
both known and unknown noise-level denoising from mixed
Gaussian, salt and pepper impulse, and random value impulse noise
images of the BSD100 data set. Gaussian noise with standard
deviations 10 and 20, salt and pepper impulse noises at 10 and
40%, and random value impulse noise at 10 and 30%. The network
was trained for 30 epochs for known noise-level denoising and for
35 epochs for unknown noise-level denoising.

Table 1 PSNR (DB) comparison on 12 test images for unknown versus known noise-level denoising for mixed Gaussian and
salt and pepper
Gaussian noise Impulse

noise, %
WESNR [33] l1-NLR [35] l0-NLR [35] LSM-NLR

[35]
Proposed CNN

(unknown)
Proposed CNN (known)

σ = 10 50 28.95 29.75 29.89 30.60 31.0823 ± 0.0095 31.4845 ± 0.0127
σ = 20 50 26.73 27.50 27.75 28.51 28.6711 ± 0.0096 28.9127 ± 0.0112
σ = 30 20 26.80 26.59 27.09 28.31 28.3351 ± 0.0067 28.5869 ± 0.0836

50 24.52 25.85 26.13 26.70 26.9530 ± 0.1371 27.1718 ± 0.0138
σ = 50 10 20.80 24.44 24.83 26.00 26.1794 ± 0.0063 26.4956 ± 0.0063

50 14.43 23.35 23.56 24.36 24.5109 ± 0.0136 24.8086 ± 0.0116
Bold values emphasize the obtained results of the proposed filter in this paper.

 

Table 2 FSIM (%) comparison on 12 test images for unknown versus known noise-level denoising for mixed Gaussian and salt
and pepper
Gaussian noise Impulse

noise, %
WESNR [33] l1-NLR

[35]
l0-NLR

[35]
LSM-NLR

[35]
Proposed CNN (unknown) Proposed CNN (known)

σ = 10 50 95.29 96.49 96.39 96.63 0.9677 ± 1.1773 × 10−4 0.9703 ± 1.0412 × 10−4

σ = 20 50 91.99 93.32 93.38 93.76 0.9409 ± 1.8120 × 10−4 0.9430 ± 2.1311 × 10−4

σ = 30 20 91.55 93.02 93.12 93.21 0.9346 ± 0.0014 0.9367 ± 1.6123 × 10−4

50 88.80 90.02 90.04 91.06 0.9133 ± 3.1004 × 10−4 0.9154 ± 4.0265 × 10−4

σ = 50 10 82.29 89.31 89.36 90.04 0.9000 ± 2.0388 × 10−4 0.9005 ± 2.1699 × 10−4

50 66.08 83.69 83.50 85.44 0.8637 ± 4.0668 × 10−4 0.8661 ± 4.4334 × 10−4

Bold values emphasize the obtained results of the proposed filter in this paper.
 

Table 3 PSNR (DB) comparison on BSD100 data set for unknown vs. known noise-level denoising for mixed Gaussian and
salt and pepper
Gaussian noise Impulse

noise, %
WESNR [33] l1-NLR [35] l0-NLR [35] LSM-NLR

[35]
Proposed CNN

(unknown)
Proposed CNN (known)

σ = 10 50 26.62 27.54 27.36 28.17 29.0404 ± 0.0046 29.4035 ± 0.0055
σ = 20 50 24.81 25.86 26.12 26.88 27.1435 ± 0.0049 27.3621 ± 0.0053
σ = 30 20 24.94 24.61 25.27 26.94 27.0714 ± 0.0031 27.2842 ± 0.0021

50 22.92 24.43 24.81 25.44 25.7770 ± 0.0060 25.9552 ± 0.0044
σ = 50 10 19.82 22.13 22.80 24.05 25.2762 ± 0.0031 25.5064 ± 0.0033

50 14.44 22.22 22.66 23.96 23.9800 ± 0.0058 24.0689 ± 0.0048
Bold values emphasize the obtained results of the proposed filter in this paper.

 

Table 4 FSIM (%) comparison on BSD100 data set for unknown and known noise-level denoising for mixed Gaussian and salt
and pepper
Gaussian noise Impulse

noise, %
WESNR [33] l1-NLR

[35]
l0-NLR

[35]
LSM-NLR

[35]
Proposed CNN (unknown) Proposed CNN (known)

σ = 10 50 86.45 89.96 90.06 89.87 0.8979 ± 1.2083 × 10−4 0.9085 ± 9.5743 × 10−5

σ = 20 50 80.61 83.25 83.79 83.83 0.8528 ± 2.1385 × 10−4 0.8638 ± 1.4583 × 10−4

σ = 30 20 80.05 82.79 83.00 83.00 0.8500 ± 1.4967 × 10−4 0.8551 ± 1.0677 × 10−4

50 78.45 80.43 80.66 80.75 0.8136 ± 0.200 0.8170 ± 1.8009 × 10−4

σ = 50 10 73.45 76.71 78.05 80.51 0.8060 ± 1.3329 × 10−4 0.8083 ± 1.8824 × 10−4

50 63.90 75.22 75.60 75.66 0.7627 ± 3.1885 × 10−4 0.7578 ± 2.5994 × 10−4

Bold values emphasize the obtained results of the proposed filter in this paper.
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4 Conclusion

Table 5 PSNR (DB) comparison on 12 test images for unknown noise-level denoising for mixed Gaussian and random value
impulse
Gaussian noise Impulse noise, % WESNR [33] l1-NLR [35] l0-NLR [35] LSM-NLR [35] Proposed CNN (unknown)
σ = 10 10 30.24 31.25 31.36 32.30 33.0696 ± 0.0049

20 29.36 29.46 29.86 30.82 31.2961 ± 0.0100
30 28.40 27.74 28.55 29.37 30.3377 ± 0.0116
40 27.02 26.74 26.92 27.24 29.4561 ± 0.0080
50 25.30 24.72 25.18 25.36 28.6942 ± 0.0423

σ = 20 10 27.69 28.62 28.90 29.22 29.8603 ± 0.3333
20 27.09 27.50 27.78 28.27 29.8453 ± 0.0082
30 26.42 26.21 26.74 27.28 28.9769 ± 0.0097
40 25.24 24.83 25.37 26.08 28.4833 ± 0.0084
50 23.86 23.19 24.00 24.62 27.9477 ± 0.0236

σ = 30 10 26.11 26.56 26.95 26.98 27.3427 ± 0.0097
20 25.55 25.49 25.92 26.20 28.2655 ± 0.0115
30 24.92 24.30 25.00 25.39 27.8864 ± 0.0104
40 23.74 23.11 23.74 24.33 27.4426 ± 0.0100
50 22.30 21.62 22.52 23.18 27.0158 ± 0.0112

σ = 50 10 23.16 23.83 24.14 24.27 26.5025 ± 0.0031
20 22.59 22.73 23.20 23.61 26.5615 ± 0.0055
30 21.84 21.59 22.31 22.85 26.3021 ± 0.0084
40 20.78 20.73 21.14 21.95 25.6629 ± 0.0086
50 19.35 19.34 20.08 20.73 24.7693 ± 0.0160

Bold values emphasize the obtained results of the proposed filter in this paper.
 

Table 6 FSIM (%) comparison on 12 test images for unknown noise-level denoising for mixed Gaussian and random value
impulse
Gaussian noise Impulse noise, % WESNR [33] l1-NLR [35] l0-NLR [35] LSM-NLR [35] Proposed CNN (unknown)
σ = 10 10 96.65 97.48 97.57 97.63 0.9777 ± 8.6987 × 10−5

20 96.06 96.63 96.78 96.99 0.9712 ± 1.0816 × 10−4

30 95.25 95.32 95.78 96.17 0.9677 ± 1.6653 × 10−4

40 93.69 93.25 93.93 93.88 0.9480 ± 2.0952 × 10−4

50 90.99 90.23 90.96 91.00 0.9386 ± 2.1346 × 10−4

σ = 20 10 92.82 94.29 94.77 94.78 0.9608 ± 1.0206 × 10−4

20 92.12 93.31 93.56 93.80 0.9543 ± 1.1349 × 10−4

30 91.27 91.91 92.15 92.67 0.9451 ± 2.2174 × 10−4

40 89.44 89.05 89.78 90.83 0.9366 ± 2.0672 × 10−4

50 87.07 85.86 86.70 87.92 0.9278 ± 2.7104 × 10−4

σ = 30 10 90.19 91.06 91.67 91.68 0.9414 ± 9.0921 × 10−4

20 89.32 89.66 89.86 90.42 0.9382 ± 1.6833 × 10−4

30 88.30 87.91 87.96 89.17 0.9303 ± 0.0020
40 85.95 84.47 85.06 86.59 0.9223 ± 2.1602 × 10−4

50 82.93 81.13 81.93 83.78 0.9136 ± 4.1212 × 10−4

σ = 50 10 82.71 85.19 85.54 86.31 0.9112 ± 8.6603 × 10−4

20 80.92 83.09 82.66 84.60 0.9075 ± 1.7635 × 10−4

30 78.94 80.82 79.86 82.72 0.9012 ± 2.2361 × 10−4

40 76.17 76.79 76.39 79.66 0.8927 ± 2.9754 × 10−4

50 72.51 73.53 73.74 76.80 0.8827 ± 3.8588 × 10−4

Bold values emphasize the obtained results of the proposed filter in this paper.
 

Table 7 PSNR (DB) comparison on 12 test images for unknown and known noise-level denoising for mixed Gaussian, salt and
pepper impulse and random value impulse
Gaussian noise Impulse

noise, %
Random value
noise level, %

WESNR
[33]

l1-NLR
[35]

l0-NLR
[35]

LSM-NLR
[35]

Proposed CNN
(unknown)

Proposed CNN
(known)

σ = 10 40 10 27.25 28.00 28.36 29.20 31.9400 ± 0.0179 30.7781 ± 0.0104
σ = 20 10 30 25.27 25.74 25.87 26.10 28.2207 ± 0.0089 28.6746 ± 0.0102
Bold values emphasize the obtained results of the proposed filter in this paper.
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Table 8 FSIM (%) comparison on 12 test images for unknown and known noise-level denoising for mixed Gaussian, salt and
pepper impulse and random value impulse
Gaussian noise Impulse

noise, %
Random

value noise
level, %

WESNR
[33]

l1-NLR
[35]

l0-NLR
[35]

LSM-
NLR [35]

Proposed CNN
(unknown)

Proposed CNN
(known)

σ = 10 40 10 93.53 95.06 95.14 96.09 0.9738 ± 1.0498 × 10−4 0.9665 ± 1.1537 × 10−4

σ = 20 10 30 90.30 90.56 90.56 91.32 0.9348 ± 2.6162 × 10−4 0.9379 ± 2.0485 × 10−4

Bold values emphasize the obtained results of the proposed filter in this paper.
 

Table 9 PSNR (DB) comparison on BSD100 data set for unknown noise-level denoising for mixed Gaussian and random value
impulse
Gaussian noise Impulse noise, % WESNR [33] l1-NLR [35] l0-NLR [35] LSM-NLR [35] Proposed CNN (unknown)
σ = 10 10 27.66 29.13 29.15 30.12 31.9660 ± 0.0020

20 27.06 27.67 27.79 28.54 30.1583 ± 0.0029
30 26.44 26.27 26.75 27.27 29.0402 ± 0.0029
40 25.40 25.22 25.43 27.27 28.1507 ± 0.0040
50 24.09 23.61 23.92 24.37 27.4191 ± 0.0023

σ = 20 10 25.67 26.97 27.22 27.64 28.9212 ± 0.0033
20 25.47 26.07 26.21 26.73 28.6438 ± 0.0031
30 25.04 25.03 25.35 25.86 27.7893 ± 0.0055
40 24.13 23.85 24.24 24.85 27.2935 ± 0.0043
50 22.98 22.43 23.01 23.45 26.7856 ± 0.0021

σ = 30 10 24.86 25.38 25.71 25.87 26.6653 ± 0.0171
20 24.46 24.35 24.65 24.96 27.2172 ± 0.0164
30 23.97 23.53 24.01 24.51 26.7719 ± 0.0057
40 23.03 22.56 23.01 23.73 26.3448 ± 0.0062
50 21.74 21.21 21.89 22.69 25.9463 ± 0.0054

σ = 50 10 22.67 23.09 23.19 23.40 25.6711 ± 0.0012
20 22.21 22.38 22.60 23.08 25.6309 ± 0.0023
30 21.47 21.36 21.79 22.48 25.3034 ± 0.0030
40 20.50 20.58 20.82 21.85 24.7095 ± 0.0056
50 19.13 19.14 19.65 20.62 23.8956 ± 0.0050

Bold values emphasize the obtained results of the proposed filter in this paper.
 

Table 10 FSIM (%) comparison on BSD100 data set for unknown noise-level denoising for mixed Gaussian and random value
impulse
Gaussian noise Impulse noise, % WESNR [33] l1-NLR [35] l0-NLR [35] LSM-NLR [35] Proposed CNN (unknown)
σ = 10 10 87.25 91.82 92.51 92.70 0.9358 ± 5.9362 × 10−5

20 86.12 90.00 90.38 90.83 0.9116 ± 7.4322 × 10−5

30 84.91 87.72 88.20 88.94 0.8897 ± 0.0016
40 82.60 81.63 82.61 88.94 0.8938 ± 1.7099 × 10−4

50 80.20 79.34 80.36 79.62 0.8463 ± 2.8516 × 10−4

σ = 20 10 79.44 87.89 87.24 87.44 0.9003 ± 8.3381 × 10−5

20 78.62 83.82 85.23 85.38 0.8859 ± 1.7674 × 10−4

30 77.81 82.49 82.98 83.35 0.8674 ± 2.0273 × 10−4

40 46.03 78.05 80.20 80.44 0.8508 ± 1.7974 × 10−4

50 74.59 75.84 76.26 76.83 0.8345 ± 2.1202 × 10−4

σ = 30 10 77.30 80.96 83.46 82.70 0.8644 ± 7.9881 × 10−5

20 76.59 79.44 80.27 80.20 0.8558 ± 9.7496 × 10−5

30 76.01 78.46 78.82 78.87 0.8422 ± 1.8048 × 10−4

40 74.27 75.05 75.72 75.74 0.8277 ± 2.4142 × 10−4

50 72.78 73.04 73.19 71.98 0.8129 ± 2.2593 × 10−4

σ = 50 10 74.93 76.17 76.15 76.19 0.8259 ± 4.5774 × 10−5

20 73.78 74.19 74.38 74.88 0.8128 ± 1.4083 × 10−4

30 72.65 73.77 73.51 73.34 0.7997 ± 9.9043 × 10−5

40 70.52 70.27 70.34 70.00 0.7866 ± 3.1593 × 10−4

50 67.97 69.01 69.13 68.66 0.7734 ± 3.2558 × 10−4

Bold values emphasize the obtained results of the proposed filter in this paper.
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This study introduces a deep feed-forward CNN filter for the
removal of mixed Gaussian and impulse noise, assuming both
known and unknown noise level denoising. Empirical evaluations
demonstrate that the proposed method does overcome the presence
of mixed Gaussian and impulse noise and is capable of addressing
different intensity levels, which prior state-of-the-art methods had
difficulties at addressing both issues simultaneously (mixed noise
with different intensity levels).

The proposed CNN-based network is composed of 20 layers
and directly estimates the clean noise-free image instead of the
residuals due to the non-additive nature of the targeted noise. Batch
normalisation along with random noise seeds are used to overcome
the internal covariate shift problem, to allow for higher learning
rates, and achieve greater training data variance.

Consequently, the results of the proposed filter show the best
(i.e. highest) structural metrics in comparison to other well-known
denoising filters, which are proven to be quite effective in their
own merits when tasked with removing mixed Gaussian and
impulse noise. These results also prove that the proposed filter
preserves larger amounts of edge details, as reflected by the highest
structural similarity measure, proving the closeness of the denoised
images to their respective original noise-free images.

The CNN-based network model can be extended for use to the
denoising of colour images. For this model to work with colour
images, a modification is needed to transform the convolutional
layers to handle 3D filters. However, you could get around this
modification by applying the CNN to each RGB channel
independently and then recombining them into the original colour
image. This model is also amenable for the removal of other types
of noise as long as their respective transfer functions can be
formulated. Moreover, the results obtained through such a model
can be used as an initial first step for other application domains
such as edge tracking, object identification, pattern recognition,
segmentation, and registration, among others.

5 Acknowledgments
The authors were grateful for the continued support from the
National Science Foundation (NSF) under grants CNS-1920182,
CNS-1532061, CNS-1551221, CNS-1338922, CNS-2018611, and
the NIA/NIH 1P30AG066506-01 with the 1Florida ADRC. They
remain grateful to the support of the Ware Foundation. Additional
support was provided through the National Science Foundation
Graduate Research Fellowship Program (NSF-GRFP) for Mr
Harold Martin and the FIU-University Graduate School (UGS)
through the dissertation year fellowship (DYF) provided to Dr
Mehdi Mafi.

6 References
[1] Bovik, A.C.: ‘Handbook of image and video processing’ (Academic press,

Cambridge, MA, USA, 2000, 2nd edn.)
[2] Healey, G.E., Kondepudy, R.: ‘Radiometric CCD camera calibration and

noise estimation’, IEEE Trans. Pattern Anal. Mach. Intell., 1994, 16, (3), pp.
267–276

[3] Liu, C., Szeliski, R., Kang, S.B., et al.: ‘Automatic estimation and removal of
noise from a single image’, IEEE Trans. Pattern Anal. Mach. Intell., 2008, 30,
(2), pp. 299–314

[4] Liu, W., Lin, W.: ‘Additive white Gaussian noise level estimation in SVD
domain for images’, IEEE Trans. Image Process., 2013, 22, (3), pp. 872–883

[5] Mafi, M., Martin, H., Andrian, J., et al.: ‘A comprehensive survey on impulse
and Gaussian denoising filters for digital images’, Signal Process., 2019, 157,
pp. 236–260

[6] Xu, Y., Zhou, X., Chen, S., et al.: ‘Deep learning for multiple object tracking:
a survey’, IET Comput. Vis., 2019, 13, (4), pp. 355–368

[7] Shamsolmoali, P., Zareapoor, M., Yang, J.: ‘Convolutional neural network in
network (CNNiN): hyperspectral image classification and dimensionality
reduction’, IET Image Proc., 2019, 13, (2), pp. 246–253

[8] Hamouda, M., Ettabaa, K.S., Bouhlel, M.S.: ‘Hyperspectral imaging
classification based on convolutional neural networks by adaptive sizes of
windows and filters’, IET Image Proc., 2019, 13, (2), pp. 392–398

[9] Zhang, F., Cai, N., Wu, J., et al.: ‘Image denoising method based on a deep
convolution neural network’, IET Image Proc., 2018, 12, (4), pp. 485–493

[10] Khaw, H.Y., Soon, F.C., Chuah, J.H., et al.: ‘High-density impulse noise
detection and removal using deep convolutional neural network with particle
swarm optimisation’, IET Image Proc., 2019, 13, (2), pp. 365–374

[11] Chen, Y., Pock, T.: ‘Trainable nonlinear reaction diffusion: a flexible
framework for fast and effective image restoration’, IEEE Trans. Pattern
Anal. Mach. Intell., 2017, 39, (6), pp. 1256–1272

[12] Zhang, K., Zuo, W., Chen, Y., et al.: ‘Beyond a Gaussian denoiser: residual
learning of deep CNN for image denoising’, IEEE Trans. Image Process.,
2017, 26, (7), pp. 3142–3155

[13] Liu, N., Han, J., Liu, T., et al.: ‘Learning to predict eye fixations via
multiresolution convolutional neural networks’, IEEE Trans. Neural Netw.
Learn. Syst., 2018, 29, (2), pp. 392–404

[14] Shi, W., Gong, Y., Tao, X., et al.: ‘Training DCNN by combining max-
margin, max-correlation objectives, and correntropy loss for multilabel image
classification’, IEEE Trans. Neural Netw. Learn. Syst., 2018, 29, (7), pp.
2896–2908

[15] Shi, W., Gong, Y., Tao, X., et al.: ‘Fine-grained image classification using
modified DCNNs trained by cascaded softmax and generalized large-margin
losses’, IEEE Trans. Neural Netw. Learn. Syst., 2019, 30, (3), pp. 683–694

[16] Lian, D., Hu, L., Luo, W., et al.: ‘Multiview multitask gaze estimation with
deep convolutional neural networks’, IEEE Trans. Neural Netw. Learn. Syst.,
2018, 30, (10), pp. 3010–3023

[17] Mafi, M., Rajaei, H., Cabrerizo, M., et al.: ‘A robust edge detection approach
in the presence of high impulse noise intensity through switching adaptive
median and fixed weighted mean filtering’, IEEE Trans. Image Process.,
2018, 27, (11), pp. 5475–5490

[18] Mafi, M., Tabarestani, S., Cabrerizo, M., et al.: ‘Denoising of ultrasound
images affected by combined speckle and Gaussian noise’, IET Image Proc.,
2016, 12, (12), pp. 2346–2351

[19] Bing, L., QuanSheng, L., JiaWei, X., et al.: ‘A new method for removing
mixed noises’, Sci. Chin. Inf. Sci., 2011, 54, (1), pp. 51–59

[20] Buades, A., Coll, B., Morel, J.-M.: ‘A non-local algorithm for image
denoising’. Proc. IEEE Int. Conf. Computer Vision and Pattern Recognition,
San Diego, CA, USA, 2005, vol. 2, pp. 60–65

[21] Garnett, R., Huegerich, T., Chui, C., et al.: ‘A universal noise removal
algorithm with an impulse detector’, IEEE Trans. Image Process., 2005, 14,
(11), pp. 1747–1754

[22] Su, T.J., Li, C.I.: ‘An adaptive filtering method for mixed noise of images’.
IEEE Int. Symp. on Computer, Consumer and Control, Taichung, Taiwan,
2012

Table 11 PSNR (DB) comparison on BSD100 data set for unknown and known noise-level denoising for mixed Gaussian, salt
and pepper impulse and random value impulse
Gaussian noise Impulse

noise, %
Random value
noise level, %

WESNR
[33]

l1-NLR
[35]

l0-NLR
[35]

LSM-NLR
[35]

Proposed CNN
(unknown)

Proposed CNN
(known)

σ = 10 40 10 26.20 26.13 26.45 27.11 29.0286 ± 0.0044 29.0522 ± 0.0044
σ = 20 10 30 23.91 24.58 24.55 24.70 27.0155 ± 0.0057 27.3811 ± 0.0042
Bold values emphasize the obtained results of the proposed filter in this paper.

 

Table 12 FSIM (%) comparison on BSD100 data set for unknown and known noise-level denoising for mixed Gaussian, salt
and pepper impulse and random value impulse
Gaussian noise Impulse

noise, %
Random

value noise
level, %

WESNR
[33]

l1-NLR
[35]

l0-NLR
[35]

LSM-
NLR [35]

Proposed CNN
(unknown)

Proposed CNN
(known)

σ = 10 40 10 86.23 86.60 86.09 88.44 0.8962 ± 1.1804 × 10−4 0.9055 ± 7.0711 × 10−5

σ = 20 10 30 80.65 79.24 80.27 79.72 0.8592 ± 1.4142 × 10−4 0.8551 ± 1.5470 × 10−4

Bold values emphasize the obtained results of the proposed filter in this paper.
 

3800 IET Image Process., 2020, Vol. 14 Iss. 15, pp. 3791-3801
© The Institution of Engineering and Technology 2020



[23] Huang, Y.M., Ng, M.K., Wen, Y.W.: ‘Fast image restoration methods for
impulse and Gaussian noises removal’, IEEE Signal Process. Lett., 2009, 16,
(6), pp. 457–460

[24] Rodríguez, P., Rojas, R., Wohlberg, B.: ‘Mixed Gaussian-impulse noise image
restoration via total variation’. IEEE Int. Conf. Acoustics, Speech, and Signal
processing, Kyoto, Japan, 2012

[25] Arnal, J., Sanchez, M.G., Vidal, V.: ‘Parallel filter for mixed Gaussian-
impulse noise removal’. IEEE Int. Conf. Signal Processing: Algorithms,
Architectures, Arrangements, and Applications, Poznan, Poland, 2013

[26] Morillas, S., Gregori, V., Hervás, A.: ‘Fuzzy peer groups for reducing mixed
Gaussian-impulse noise from color images’, IEEE Trans. Image Process.,
2009, 18, (7), pp. 1452–1466

[27] Jayasree, M., Narayanan, N.K.: ‘A novel fuzzy filter for mixed impulse
Gaussian noise from color images’. Proc. Int. Conf. Signal, Networks,
Computing, and Systems, New Delhi, India, 2016, pp. 53–59

[28] Sun, Y., Junwei, H., Jun, L.: ‘An information-fusion edge preserving method
in image filtering’. 16th IEEE Conf. Wireless Communications Networking
and Mobile Computing, Chengdu, People's Republic of China, 2010

[29] Guo, X., Guo, B.: ‘A fuzzy filter for color images corrupted by mixed noise’.
IEEE Int. Conf. Identification, Information and Knowledge in the Internet of
Things, Beijing, People's Republic of China, 2014

[30] Chankhachon, S., Intajag, S.: ‘Resourceful method to remove mixed
Gaussian-impulse noise in color images’. 12th IEEE Int. Conf. Computer
Science and Software Engineering, Songkhla, Thailand, 2015

[31] Xiao, Y., Zeng, T., Yu, J., et al.: ‘Restoration of images corrupted by mixed
Gaussian-impulse noise via l1–l0 minimization’, Pattern Recognit., 2011, 44,
pp. 1708–1720

[32] Filipović, M., Jukić, A.: ‘Restoration of images corrupted by mixed Gaussian-
impulse noise by iterative sost-hard thresholding’, Pattern Recognit., 2011,
44, (8), pp. 1708–1720

[33] Jiang, J., Zhang, L., Yang, J.: ‘Mixed noise removal by weighted encoding
with sparse nonlocal regularization’, IEEE Trans. Image Process., 2014, 23,
(6), pp. 2651–2662

[34] Jiang, J., Yang, J., Cui, Y., et al.: ‘Mixed noise removal by weighted low rank
model’, Neurocomputing, 2015, 151, pp. 817–826

[35] Huang, T., Dong, W., Xie, X., et al.: ‘Mixed noise removal via Laplacian
scale mixture modeling and nonlocal low-rank approximation’, IEEE Trans.
Image Process., 2017, 26, (7), pp. 3171–3186

[36] Eslahi, N., Mahdavinataj, H., Aghagolzadeh, A.: ‘Mixed Gaussian-impulse
noise removal from highly corrupted images via adaptive local and nonlocal
statistical priors’. 9th IEEE Iranian Conf. Machine Vision and Image
Processing, Tehran, Iran, 2015

[37] Delon, J., Desolneux, A., Guillemot, T.: ‘PARIGI: a patch-based approach to
remove impulse-Gaussian noise from images’, Image Process. On Line, 2014,
5, pp. 130–154

[38] Aher, R.P., Jodhanle, K.C.: ‘Removal of mixed impulse noise and Gaussian
noise using genetic programming’. Proc. IEEE Int. Conf. Signal Processing,
Beijing, People's Republic of China, 2012

[39] Lamichhane, B.P.: ‘Finite element techniques for removing the mixture of
Gaussian and impulsive noise’, IEEE Trans. Signal Process., 2009, 57, (7),
pp. 2538–2547

[40] Mendiola-Santibañez, J.D., Terol-Villalobos, I.R.: ‘Filtering of mixed
Gaussian and impulsive noise using morphological contrast detectors’, IET
Image Process., 2014, 8, (3), pp. 131–141

[41] Shen, Y., Han, B., Braverman, E.: ‘Removal of mixed Gaussian and impulse
noise using directional tensor product complex tight framelets’, J. Math.
Imag., 2016, 54, (1), pp. 64–77

[42] Cai, J., Chan, R.H., Nikolova, M.: ‘Two-phase methods for deblurring images
corrupted by impulse plus Gaussian noise’, Inverse Probl. Imag., 2008, 2, pp.
187–204

[43] Ji, H., Huang, S., Shen, Z., et al.: ‘Robust video restoration by joint sparse
and low rank matrix approximation’, SIAM J. Imag. Sci., 2011, 4, (4), pp.
1122–1142

[44] Dabov, K., Foi, A., Katkovnik, V., et al.: ‘Image denoising by sparse 3-d
transform-domain collaborative filtering’, IEEE Trans. Image Process., 2007,
16, (8), pp. 2080–2095

[45] Dong, W., Zhang, L., Shi, G., et al.: ‘Nonlocally centralized sparse
representation for image restoration’, IEEE Trans. Image Process., 2013, 22,
(4), pp. 1620–1630

[46] Xiong, B., Yin, Z.: ‘A universal denoising framework with a new impulse
detector and nonlocal means’, IEEE Trans. Image Process, 2012, 21, (4), pp.
1663–1675

[47] Cai, J.F., Chan, R., Nikolova, M.: ‘Fast two-phase image deblurring under
impulse noise’, J. Math. Imag. Vis., 2010, 36, pp. 46–53

[48] Mafi, M., Martin, H., Adjouadi, M.: ‘High impulse noise intensity removal in
MRI images’. IEEE Symp. on Signal Processing in Medicine and Biology
Symp., Philadelphia, PA, USA, 2017

[49] Dong, Y., Chan, R.H., Xu, S.: ‘A detection statistic for random-valued
impulse noise’, IEEE Trans. Image Process., 2007, 16, (4), pp. 1112–1120

[50] Healey, G.E., Kondeputy, R.: ‘Radiometric CCD camera calibration and noise
estimation’, IEEE Trans. Pattern Anal. Mach. Intell., 1994, 16, (3), pp. 267–
276

[51] Zhang, L., Zhang, L., Mou, X., et al.: ‘FSIM: A feature similarity index for
image quality assessment’, IEEE Trans. Image Process., 2011, 20, (8), pp.
2378–2386

[52] Xie, J., Xu, L., Chen, E.: ‘Image denoising and inpainting with deep neural
networks’. Proc. 25th Int. Conf. Neural Information Processing Systems
(NIPS), Lake Tahoe, NV, USA, 2012, pp. 341–349

[53] Burger, H.C., Schuler, C.J., Harmeling, S.: ‘Image denoising: can plain neural
networks compete with BM3D?’. Proc. IEEE Conf. Computer Vision and
Pattern Recognition, Providence, RI, USA, 2012, pp. 2392–2399

[54] Jain, V., Seung, S.: ‘Natural image denoising with convolutional networks’.
Proc. Conf. Advances in Neural Information Processing Systems (NIPS),
Vancouver, BC, Canada, 2009, vol. 21, pp. 769–776

[55] Ding, L., Zhang, H., Xiao, J., et al.: ‘An improved image mixed noise
removal algorithm based on superresolution algorithm and CNN’, Neural
Comput. Appl., 2019, 31, (Suppl 1), pp. S325–S336

[56] Krizhevsky, A., Sutskever, I., Hinton, G.E.: ‘Image net classification with
deep convolutional neural networks’. Proc. Conf. Advances in Neural
Information Processing Systems (NIPS), Lake Tahoe, NV, USA, 2012, pp.
1097–1105

[57] Ioffe, S., Szegedy, C.: ‘Batch normalization: accelerating deep network
training by reducing internal covariate shift’. Proc. Conf. Machine Learning
(ICML), Lille, France, 2015, pp. 448–456

[58] Levin, A., Nadler, B.: ‘Natural image denoising: optimality and inherent
bounds’. Proc. IEEE Conf. Computer Vision and Pattern Recognition,
Providence, RI, USA, 2011, pp. 2833–2840

[59] Simonyan, K., Zisserman, A.: ‘Very deep convolutional networks for large-
scale image recognition’. Conf. Learning Representations, San Diego, CA,
USA, 2015

[60] Zhao, H., Gallo, O., Frosio, I., et al.: ‘Loss functions for image restoration
with neural networks’, IEEE Trans. Comput. Image., 2017, 3, (1), pp. 47–57

[61] Duchi, J., Hazan, E., Singer, Y.: ‘Adaptive subgradient methods for online
learning and stochastic optimization’, J. Mach. Learn. Res., 2011, 12, pp.
2121–2159

[62] Kingma, D., Ba, J.: ‘Adam: A method for stochastic optimization’. Conf.
Learning Representations, San Diego, CA, USA, 2015

[63] He, K., Zhang, X., Ren, S., et al.: ‘Delving deep into rectifiers: surpassing
human-level performance on imagenet classification’. Proc. IEEE Conf.
Computer Vision, Las Condes, Chile, 2015, pp. 1026–1034

IET Image Process., 2020, Vol. 14 Iss. 15, pp. 3791-3801
© The Institution of Engineering and Technology 2020

3801


