
UPDetector: Sensing Parking/Unparking Activities Using
Smartphones

Shuo Ma
University of Illinois at Chicago

Chicago, IL, USA
sma21@uic.edu

Ouri Wolfson
University of Illinois at Chicago

Pirouette Software Consulting Inc.
Chicago, IL, USA

wolfson@cs.uic.edu

Bo Xu
University of Illinois at Chicago

Pirouette Software Consulting Inc.
Chicago, IL, USA

boxu@cs.uic.edu

ABSTRACT
Real-time information about vacant parking spaces is of
paramount value in urban environments. One promising
approach to obtaining such information is participatory sensing,
i.e. detecting parking/unparking activities using smartphones.
This paper introduces and describes multiple indicators, each of
which provides an inconclusive clue for a parking or an
unparking activity. As a result, the paper proposes a probabilistic
fusion method which combines the output from different
indicators to make more reliable detections. The proposed fusion
method can be applied to inferring other similar high-level
human activities that involve multiple indicators which output
features asynchronously, and that involve concerns about power
consumption. The proposed indicators and the fusion method are
implemented as an Android App called UPDetector. Via
experiments, we show that our App is both effective and energy-
efficient in detecting parking/unparking activities.

Categories and Subject Descriptors
J.m [Computer Applications]: Miscellaneous

General Terms
Algorithms

Keywords
Parking, unparking, sensor, fusion, accelerometer, smartphone,
activity.

1 Introduction
Vacant parking spaces are scarce resources in many urban areas,
and finding these in crowded urban environments can be very
frustrating. In addition, cruising for a vacant parking space slows
down traffic, causes traffic jams, and pollutes the environment.
It is reported that vehicles searching for parking in downtown
Los Angeles created 38 trips around the world, producing 730
tons of carbon dioxide and burning 47,000 gallons of gas in one
year [16]. The key to enable a service that navigates drivers to
available parking spaces is the detection and collection of real-
time parking space availability information. In [23] we have

shown that this collection, even when restricted to a very small
fraction of the drivers (e.g. 5%), and even in the face of detection
errors (up to 25% false positives and negatives), can produce
very reliable real-time estimates (up to 90%) of parking
availability on city blocks. This reliability is enabled by storing
the parking activity history of the participating drivers, and
combining it with real-time signals (or observations). These
signals are the subject of this paper. Some indicators of parking
activities are mentioned in [7, 18], but a comprehensive list and
fusion methods are not provided.

Real-time parking space availability information is of great value
in alleviating the parking problem. By feeding such information
to navigation systems, drivers can be directly led to an available
parking space, or to a block with a high-likelihood of availability.
Existing approaches of generating/collecting real-time parking
spaces availability information can be classified into following
categories: (i) infrastructure based; (ii) probe vehicle based; and
(iii) participatory sensing based.

An infrastructure based approach requires installing sensors
under the pavement (e.g. SFPark project in San Francisco and
StreetLine sensors [20]). This is expensive to implement and
maintain. For example, the SFPark project costs $23M.
Furthermore, the sensors tend to malfunction in adverse weather
conditions, e.g. when covered by mud or snow.

A probe vehicle based approach [7] uses vehicles equipped with
inexpensive sensors such as ultrasonic sensors to scan the street.
To provide real-time availability information, a probe vehicle
needs to scan the same street repeatedly; and to cover large areas,
multiple vehicles need to scan different streets concurrently.
Thus, this approach also incurs a high cost and, if dedicated
vehicles are used, introduces additional traffic.

A participatory sensing based approach exploits the sensors in
smartphones to detect parking/unparking activities. In this paper,
we design and implement an energy-efficient mobile App called
Unparking/Parking detector (UPDetector) that effectively
detects parking and unparking activities by analyzing and fusing
the data of multiple sensors embedded in smartphones.
Specifically, the contributions of this work include:

1. We propose several indicators, each associated with one or
more smartphone sensors, for detecting parking/unparking
activities. These indicators cover both paid and free parking

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.

SIGSPATIAL '14, November 04-07 2014, Dallas/Fort Worth, TX, USA
Copyright 2014 ACM 978-1-4503-3138-8/14/11 $15.00
http://dx.doi.org/10.1145/2674918.2674929

scenarios. For the purpose of energy conservation, we
distinguish between periodical and triggered indicators.

2. We propose a probabilistic method to fuse features output
by the different indicators. These indicators are
asynchronous, i.e. they output feature-vectors at different
times. The proposed fusion method is proved to have a
desirable reinforcement property. The fusion method can be
applied to inferring other high-level human activities that
are characterized by multiple asynchronous indicators. For
example, detecting if a driver is fueling at a gas station.

3. The proposed detection method works regardless of the
phone placement, e.g. pants pocket, or hand-held.

4. Our design of UPDetector reduces the usage of GPS to save
power. We evaluate its energy-consumption via
experiments.

The rest of this paper is organized as follows. In Sec. 2, we
introduce indicators and describe how to fuse features output by
different indicators. Next we detail the features and the
implementation of individual indicators in Sec. 3. In Sec. 4 we
describe the implemented UPDetector App and its performance.
Related work is presented in Sec. 5, and in Sec. 6 we conclude.

2 Indicators and Indicator Fusion
In this section, we first propose a list of indicators in subsection
2.1. Then, in subsection 2.2, we divide the indicators into two
types, the periodical and the triggered indicators. Then we
propose a fusion method in subsection 2.3.

2.1 Preliminaries on Indicators
An indicator is an event that reveals some hint or clue of a
parking or an unparking activity. For example, one indicator for
unparking is that a person first walks then drives. But this
indicator cannot distinguish a passenger from a driver. From this
perspective, a stronger indicator for unparking is that the phone
is connected with the car via Bluetooth since in general a
passenger is less likely than a driver to connect to the car via
Bluetooth. Similarly, Bluetooth disconnection from the car is an
indicator for parking. Another exemplary indicator for parking is
that a person walks towards a roadside pay box and then walks
back to a car. Note that this pay-at-street-parking indicator is
complex enough to be considered an activity by itself and thus
can be decomposed into sub-indictors in order to be
implemented. In addition, drivers could be encouraged (via
incentives) to manually signal a parking or unparking activity.
This user input event is also considered as a special kind of
indicator. In this paper we focus on indicators that have to be
detected by sensors.

Table 1 gives a list of indicators, where the second column states
whether the indicator is for parking, unparking or both activities;
and the last column lists the sensors that are required to
implement the indicator. Indicators output vectors. Each vector
consists of multiple scalar values, each of which is called a
feature. Vectors of the same indicator have the same set of
features. For example, the features of the acoustic sound
indicator include Zero Crossing, Spectral Flux [8]. Sec. 3 details
the features of a subset of the indicators listed here.

Table 1 Example indicators of parking/unparking activities

Indicator activity Explanation Sensors
change in the
variance of the
acceleration (CIV)

both In parking activities, a person first drives and then walks. Since walking often
has a large variance in acceleration while driving has a small variance, this
transition leads to a sudden increase in the variance of acceleration. Likewise, in
unparking activities, the variance of acceleration usually suddenly decreases.

accelerometer

phone connected
or disconnected to
the car via
Bluetooth

both The phone is connected/disconnected to a car via Bluetooth. (The App asks the
user to identify the car Bluetooth device from a list of available Bluetooth
devices. This request is only done once.)

Bluetooth

motion-state
transition (MST)

both A parking activity corresponds to a transition from the driving state to the walking
state; and an unparking activity corresponds to a transition from the walking state
to the driving state.

accelerometer

acoustic signals both The sounds of human-vehicle interactions that are typically made only during
parking or unparking activities. Example interactions include turn on/off the
vehicle engine, and open/close the vehicle doors.

microphone

car backing both Backing the car is common in parking/unparking activities. It is detected by
sensing a sudden reverse in the direction of acceleration.

accelerometer
and gyro

pay at street-
parking box

parking In the paid street parking scenarios, a driver often needs to walk to a pay box to
buy a parking ticket and walk back to the car to place the ticket in the car.

accelerometer
and GPS

WiFi signature
[10]

unparking If the parking location is known, a Wifi signature can be created for it and then
used to detect an unparking activity by periodically comparing the signature of
the current location to that of the known parking location.

wireless interface

parking payment
mobile App’s

parking Parking payment mobile Apps such as ParkMobile [11] and PayByPhone [12]
give a hint of a possible parking activity when such an App is brought to the
foreground of the smartphone by a user.

User-input signal both Drivers may manually signal a parking/unparking event due to incentives
introduced by any gamification or socialization feature of the App.

2.2 Periodical and Triggered Indicators
In UPDetector, indicators that rely only on energy-efficient sensors
(e.g. the accelerometer) output a vector periodically. Such indicators
are referred to as periodical indicators. For example, both the
Change-In-Variance indicator and the motion state transition
indicator are periodical indicators.

Indicators that involve energy-hungry sensors such as the
microphone, are not periodically monitored in order to conserve
energy. They are triggered to output a vector only when the parking
or unparking becomes the hypothesis, i.e. indicated by the periodical
vectors as the most likely outcome among the three outcomes,
namely parking, unparking, none. We refer to such indicators as
triggered indicators. For example, the engine-start sound is a
triggered indicator. That is, only when the periodical vectors
indicate unparking as the most likely outcome, the microphone
starts to record for a few seconds and outputs a vector of features of
the recorded sound sample. Triggered indicators can be considered
auxiliary evidences to verify or refute the hypothesis proposed by
the periodical indicators.

Table 2 lists the indicators described in Table 1 with their
corresponding category, i.e. periodical or triggered. The table shows
the output frequency for the periodical indicators; and for the
triggered indicators, it shows which hypotheses, i.e. parking,
unparking or both, trigger the indicator.

Table 2 List of categorized indicators

Indicator Type
sudden change in
the variance of
acceleration

periodical: once every few seconds

phone connected or
disconnected via
Bluetooth

periodical: frequency at which the
smartphone monitors the Bluetooth
connection

motion state
transition

periodical: once every few seconds

acoustic signals triggered: by parking and unparking
hypotheses

car backing periodical (only when the user at
in_vehicle state): once every a few
seconds

pay at street-
parking

triggered: by parking hypothesis

parking payment
mobile App’s

periodical: frequency at which the
smartphone monitors the foreground App

WiFi signature[10] periodical: compute the WiFi signature at
certain frequency and compare it to the
signature of the parking location

2.3 Indicator Fusion

2.3.1 Proposed Fusion Method
Whenever some indicator outputs a vector, we need to calculate the
probability for each of the three possible outcomes, i.e. parking,
unparking, and none, denoted by , respectively. Let be
the average duration of a parking/unparking activity (e.g. one
minute). Assume that at time point a vector of periodical

indicator I is generated. Let S be the set of vectors consisting of
and the latest vector of every periodical indicator other than I
(assuming that vector is generated no earlier than time point -

). The indicators are assumed independent and thus the vectors in
 are considered independent. Define a fusion set to be a set of

independent vectors to be fused. is a fusion set. Therefore, we can
compute the probability , i=1,2,3 using Eq. (1) below.

 (1)

The calculation of the term and are detailed in
subsections 2.3.1.2 and 2.3.1.3 respectively. If none is the most
likely outcome, then no indicator is triggered and thus no parking or
unparking activity will be detected. Otherwise, the most likely
outcome (i.e. either parking or unparking), denoted by , becomes
the hypothesis, and invokes the triggered indicators. Each triggered
indicator outputs one vector. Denote such triggered vectors by ,

,…, , where is generated earlier than for . Then
the hypothesis is tested in the following way. Let the set of
vectors including the triggered vector , all the triggered vectors
that are generated before and the periodical vector set that
proposes the hypothesis, i.e. .
Whenever a triggered vector is generated, we use Eq. (1) to
calculate the probabilities for all three outcomes, where set is
replaced by set . That is, is also a fusion set. Then we
normalize the calculated probabilities, denoted by , using
Eq. (2).

 (2)

We set a threshold , referred to as the detection threshold,
such that an activity of the hypothesis outcome, i.e. parking or
unparking, is considered detected only when the normalized
probability of the hypothesis is above , i.e. . Note
that once a parking or an unparking activity is detected, we say that
the hypothesis is verified by vector set . Therefore, there is no
need to consider any triggered vector that is generated after , i.e.

, .

Multiple detections of the same activity: It is possible that one
parking/unparking activity is detected multiple times by some
indicator (e.g. the CIV indicator) because the activity lasts a period
in which the indicator outputs multiple times. To cope with this, we
consider all detected activities of the same type (i.e. parking or
unparking) within a short period (e.g. half a minute) as a single
activity.

2.3.1.1 Localization Process
A parking or unparking activity needs to be associated with the time
and location of the activity. To save energy, the App only invokes
the localization process when it is necessary. The timing for
localization could be either when a hypothesis is proposed (by the
periodical vectors) or when a hypothesis is confirmed. If the location

is retrieved at the time when a hypothesis is proposed, then the
location is cached upon retrieval, and consumed if later the
hypothesis is confirmed.

Define the temporal interval from the time when a
parking/unparking activity happens to the time when a location is
retrieved for the activity as the delay of localozation, or simply, the
delay. Obviously the smaller the delay is, the closer the retrieved
location is to the true location where the activity happens. Thus, it
is better to invoke the localization process at the time when a
hypothesis is proposed instead of confirmed since it leads to a
smaller delay.

The App uses the following localization process. Specifically, one
location fix is retrieved via the smartphone localization API,
which intelligently fuses the localization sources GPS, WiFi, and
cellular networks. Simultaneously, another location is requested
via Skyhook [17], a third-party location provider which uses known
Wi-Fi hotspots. The retrieval of and takes about two seconds
on average based on our experiments, and each one of them is
returned with an accuracy estimate. We then choose the location
with the higher accuracy as the detected location of the hypothesis.
Note that the use of a third-party localization API (e.g. Skyhook)
consumes little additional energy since it is invoked occasionally,
i.e. only when a parking or unparking hypothesis is proposed.
Meanwhile it helps improve the location precision.

If one parking/unparking activity is detected multiple times we use
the time and location of the first detection.

2.3.1.2 Calculation of
In this subsection, we detail how to calculate , i.e. the
probability that vector occurs given outcome . Let

 where each is a feature. We regulate that all
features in are mutually independent. In the case that some
features are dependent on each other (two features are dependent if
their Pearson’s Correlation is over a threshold), only one of them is
included in . Since all the features in are mutually independent,
the term can be computed by Eq. (3), where is
the probability that feature has the current value given that the
outcome is .

 (3)

The term is estimated using the following approach.
Conduct experiments that generate outcome . From these
experiments collect a sample set of ’s under the outcome.
Normalize all collected ’s into the interval. Discretize the
range [0, 1] into several bins, allocate the collected samples into the
corresponding bins based on the value of , and calculate the
frequency of each bin. If the frequencies of the bins approximate a
normal distribution, we estimate the using the normal
distribution of which the mean and standard deviation are estimated
using the collected samples. Otherwise, is estimated to
be the frequency of the bin in which falls.

Note that some ’s are estimated rather than obtained by
experiments. For example, for the Bluetooth indicator, we estimate
how many drivers have smartphones connected to the car via
Bluetooth, instead of conducting experiments to determine it.

2.3.1.3 Estimating ’s
Prior probabilities ’s are estimated using the following
approach. of a specific user is equal to (the amount of time
spent on parking activities per statistical window / the amount of
time per statistical window). The size, i.e. amount of time, of a
statistical window is dependent on the location and time of the day.
For example, if user enters a parking structure (detected by using
the energy-efficient Wi-Fi signature method [10]), it means that user

 is likely to park soon and thus the statistical window may be just
a few minutes. For another example, the size of the statistical
window is larger during the night than during daytime since
generally parking activities are less likely to occur at night than in
daytime. In case more than one rule determines the current window
size, the smallest window will apply. For example, assuming that
the size of the window is eight hours at night and is ten minutes if
the car just enters the garage, then the window is ten minutes if a car
enters a garage at night. To estimate the amount of time spent on the
parking activities during a statistical window for user , the App
needs to count the average number of parking activities and estimate
the average time duration that each parking activity takes. At the
beginning, when the user just starts to use our App and there are not
enough samples to calculate these, default values will be applied.

Similarly, is equal to (the amount of time spent on unparking
activities per statistical window / the amount of time per statistical
window). Finally, .

2.3.2 Reinforcement Property
Our proposed fusion method has a desirable reinforcement property.
That is, by combining vectors which occur under the hypothesis (i.e.
either a parking/unparking outcome), we obtain a higher confidence
in the hypothesis outcome. We prove that the reinforcement
property holds when applied to two indicators. We formalize the
property as follows. (The formulation uses the parking outcome as
the hypothesis, but the same argument holds for the unparking
hypothesis.)

Theorem: Given two fusion-set vectors , such that
,i.e. both most

likely occur under the parking outcome ,
.

Intuitively, the theorem indicates that if the probability for is
highest for each of two vectors and , then the probability of
is higher for the fusion set than the probability of under
either one of the vectors or . This means that in our fusion
method these two vectors reinforce each other in concluding . We
give the formal proof below.

Since are interchangeable, next we only prove
While

can be proved using the same rationale. Based on the definition of
normalized probability, i.e. Eq. (2), we have

 (4)

Thus, substituting Eq. (4) into
obtain Eq.

 (5)

Taking the reciprocals on the both sides of Eq. (5), we get Eq. (6)

 (6)

Subtracting one from both sides of Eq (6), we get Eq (7)

 (7)

A sufficient condition for Eq. (7) is Eq. (8). That is, if Eq. (8) holds
then Eq. (7) stands, and thus the theorem is proved.

 (8)

Next we prove the first equation in Eq. (8), i.e.

. The other part can be proved

using the same rationale. Denote by Eq (9).

 (9).

Using the Bayes rule on the right side of Eq. (9), we have Eq. (10)

 (10)

Using the Bayes rule on the left side of Eq. (10), we have Eq. (11)

 (11)

Using the Bayes rule on the second term of the left side of Eq (11),
we have Eq. (12)

 (12)

Dividing the common factor from the both sides of Eq. (12),

we have Eq. (13)

 (13)

Since indicators are independent, and are independent, Eq.
(13) is simplified to Eq. (14).

 (14)

Since most likely occurs under , i.e. . Then it is

clear that Eq. (14) stands and thus Eq. (8) stands. Therefore, we have

Given the above theorem, it is easy to prove the general case, i.e.
that given
that the ’s are independent, and that for each j, is the
largest among , =1,2,3.

3 Implementation of Individual Indicators
In this section, we detail the features and implementation of only a
subset of the proposed indicators. Other indicators, once
implemented, can be plugged-and-played into our system through
the fusion method described earlier.

3.1 The Change-In-Variance (CIV) Indicator

3.1.1 Preliminaries on Accelerometer
The accelerometer of a smart phone has a coordinate-system
consisting of three axes, as shown in Fig. 1. The X axis is horizontal
and points to the right, the Y axis is vertical and points up and the Z
axis points towards the outside of the front face of the screen. Each
reading of the accelerometer contains three values, that is, one value
for each axis. The three axes are defined relative to the screen of the
phone in its default orientation.

Fig. 1 Axes of mobile phone

3.1.2 Features of the CIV Indicator
A sliding window with a fixed size seconds is used. The sliding
window moves forward seconds every time it slides. That is, two
consecutive windows overlap - seconds. We refer to as the
sliding step thereafter. During each window, we calculate the
difference between the variances of the acceleration in the second

half and in the first half of the window. Hereafter we refer to this
feature as the VariDiff of a window. Intuitively, as shown in Fig. 2,
an unparking activity results in a window where the first half
(corresponding to the walking state) has a large variance while the
second half (corresponding to the driving state) has a small variance.
Likewise, the parking activity has a similar sharp difference in
variances of the two halves of the window. We have observed via
experiments that this variance discrepancy exists no matter where
the phone is placed, e.g. in pants pocket, in handbag, etc.

Fig. 2 The sliding window for the CIV indicator

However, the VariDiff feature of the current window itself is not
sufficient due to noise. For example, the VariDiff feature of a
window during which the user walks, may be either positive or
negative since the acceleration during walking is oscillating. As a
result, such a window may be misidentified as a parking or
unparking activity. To deal with the noise, we consider using the
VariDiff feature of all windows within a scope, denoted by . Then
each CIV vector consists of three features: (i) the VariDiff feature of
the current window; (ii) the average value of the VariDiff feature
during the preceding /2 windows; (iii) the average value of the
VariDiff feature during the succeeding /2 windows. Formally, the
scope is the total number of preceding and succeeding windows
that are considered in a CIV vector. Observe that does not include
the current window. In order to calculate feature (iii), the production
of the vector of a window is delayed for windows.

Fig. 3 illustrates the calculation of the CIV vectors. Assume that the
VariDiff feature of 1st, 2nd, 3rd, 4th, 5th window has a value of 0.03,
0.01, 2.6, 1.6, 1.8, respectively, and the scope equals to 4. Then
when the 5th window ends, the CIV vector of the 3rd window is
computed and equals to (0.02, 2.6, 1.7), where 0.02 is the mean of
the VariDiff of the 1st and 2nd windows and 1.7 is the mean of the
VariDiff of the 4th and 5th windows.

Fig. 3 An example of calculating CIV vectors

3.2 The Bluetooth Indicator
The Bluetooth embedded in the phone is a strong indicator when it
is enabled. When a phone is connected to a car (requiring one time
human input to indicate the name of the Bluetooth device of the car),
there is a good chance that the person is the driver and intends to
depart, which corresponds to an unparking activity. Similarly when

a phone is disconnected, it is likely due to a person leaving the car,
which indicates a parking activity. There is only one feature for the
Bluetooth indicator, which takes one of the following three values:
i.e. connected, disconnected, not enabled.

3.3 The Motion State Transition Indicator
Motion states, such as waling, driving, etc., can be classified from
raw accelerometer readings. After motion states are classified, the
transitions between motion states are identified to signify the
parking/unparking activities. The vectors of the motion state
transition indicator thus include four features. The first two features
are the probabilities of the latest motion state being walking and
driving, respectively. Similarly, the last two features are the
probabilities of the motion state before latest being walking and
driving, respectively.

3.4 The Acoustic Indicators
Acoustic indicators refer to the sounds of human-vehicle
interactions that are typically made only during parking or
unparking activities. Example interactions include turn on/off the
vehicle engine, open and close the vehicle doors. Such sounds often
have distinct frequency and amplitude from each other.

It has been shown in [13] that the sounds of these particular human-
vehicle interactions can be classified with relative high precision
and recall using specific audio features [8] e.g. pitch, spectrum.
However, in [13] the authors do not consider power consumption
and thus the sounds are recorded constantly. In our case, in order to
save energy, acoustic sounds are modeled as triggered indicators, as
described in 2.2.2. That is, they are only activated and output vectors
after the parking or unparking outcome becomes the hypothesis.

In addition to the work of [13], we included the “bus noise” (i.e. the
bus engine sound with the background noise) as one of the acoustic
sounds, and found out that the “bus noise” sound is highly
distinguishable from other sounds such as engine start, or door
open/close. This will help distinguish a private car trip from a bus
trip.

4 Evaluation
We implemented a prototype system on the Android platform. This
section details the experimental methodology and the results.
Specifically, we introduce our experimental setting in subsection
4.1. Then we show the performance of the App in subsection 4.2.

4.1 Experimental Methodology

4.1.1 Mobile App Implementation
UPDetector can be implemented on all mobile platforms, such as
Android, Apple iOS and Windows mobile systems. We implement
a prototype on the Android platform using the Samsung Galaxy S3,
which has a 1 GB RAM and quad-core 1.4 GHz Cortex-A9
processor. The sampling frequency of the accelerometer ranges
about 10~30 Hz. Fig. 4 shows some screenshots of the implemented
prototype.

Sliding
Window

1st half 2nd half

walking driving

1st Win.

2nd Win.

3rd Win.

Time4th Win.

5th Win.

We have implemented the following indicators in the UPDetector
App: the Bluetooth indicator, the CIV indicator and the MST
indicator. We have also implemented the acoustic indicator (i.e. the
audio analysis part) on the laptop; unfortunately, we cannot port the
function to the App since Android system currently does not support
the audio feature extraction library. The Bluetooth indicator is
highly reliable by itself and may work independently of other
indicators. Therefore, here we restrict attention to vehicles that do
not have Bluetooth devices and present the detection results using
the CIV and the MST indicators.

Fig. 4 UPDetector implementation screenshots

4.1.2 Data Collection
We have had three people carry a smartphone with the UPDetector
application running during multiple days. During these periods of
time, the smartphone was placed in different positions including
front pant leg pocket, coat pocket, handbag/knapsack and held in
hand. The parking/unparking activities in the experiment were
perpendicular outdoor parking in a living community. The time (in
seconds) of each parking/unparking activity was manually recorded
as the ground truth. The time of an unparking activity is the second
when the vehicle starts to move from a parked state; and the time of
a parking activity is the second when the vehicle reaches the still
state.

The collected data is split into one training set and one test set. The
training data set contains 40 parking activities and 40 unparking
activities. The test data set contains 60 parking activities and 60
unparking activities. The training set is used to learn the conditional
probability of features under different outcomes, i.e. ’s.
Via experiments, we observe that ’s in the training set
approximate normal distributions. So we estimate the parameters of
the normal distributions using the training data set and then use them
for the test data set. The test data is used to evaluate the performance
of the detection of parking/unparking activities.

4.1.3 Detection Methods
We evaluate five detection methods. These methods are categorized
into two groups. The first group consists of three methods that use a
single indicator: (i) the method that only uses the Change-in-
Variance (CIV) indicator, referred to as the CIV method hereafter;

1 except for the MST_CL2 method; since it suffers a long delay, its value is
one minute

(ii) the method that only uses the Motion State Transition (MST),
where the motion state classifier is implemented using the features
described in [5] (multiple classification methods, including meta-
classification methods such as AdaBoost and RandomForest, are
tried to train the model and the best classification method, i.e.
RandomForest, is chosen), referred to as the MST-CL1 method
hereafter; (iii) the method that only uses the Motion State Transition
(MST), where the motion state classifier is provided by Google
Activity Recognition (GAR) API [1], referred to as the MST-CL2
method hereafter. The GAR API returns a distribution over five
possible states including driving, walking, still, tilting, and
unknown. We have observed that the GAR API outputs the unknown
state as the most likely state frequently. To better utilize the API’s
results, we modify the most likely state for the following case. If the
GAR API outputs unknown as the most likely state, and if the second
most likely state has a likelihood that is larger than the sum of the
likelihoods of other three states except unknown and S, we treat as
the most likely state.

The second group consists of two methods that fuse multiple
indicators. The first method, referred to as the CIV-MST_CL1
method, combines the CIV indicator and MST-CL1 using the
probabilistic based fusion algorithm described in Sec. 2.3.

The second method, referred to as the CIV-MST_CL1_CL2 method,
combines the CIV-MST_CL1 method with the MST_CL2 method.
Specifically, each activity detected by the CIV-MST_CL1
method is considered a hypothesis (thus a location is retrieved and
cached when is detected). We have learned from experiments
that the MST_CL2 method is reliable but suffers from a large delay
(see Sec. 4.2.1). Therefore, we consider that is confirmed if later
MST_CL2 also detects the same type (i.e. parking/unparking) of
activity as . If multiple ’s of the same activity type have been
output by CIV-MST_CL1 when MST_CL2 outputs a detection, we
use the location retrieved for the first . Note that here we use a
simple “and” logic to combine the detection results of CIV-
MST_CL1 and MST_CL2 because MST_CL2 is highly reliable (but
unfortunately has a long delay) and thus a simple “and” logic is
sufficient. Otherwise, we would have used the proposed
probabilistic fusion algorithm to combine CIV-MST_CL1 and
MST_CL2.

4.1.4 Matching Detected Activities with the Ground
Truth

A detected parking (unparking) activity is matched to a ground
truth parking (unparking) activity if the time difference between

 and is smaller than five seconds1. For a detected activity ,
the matching ground truth activity can always be uniquely
identified because any two consecutive ground truth activities are at
least minutes away from each other, and thus there is no confusion
in the matching.

Note that a ground truth activity may be detected multiple times (i.e.
matched to several detected activities that are temporally
consecutive and close to each other). This only happens when a
sliding window is used in the indicator (e.g. in the CIV indicator)
and the window slides in a way such that the two consecutives
windows overlap. For example, consider the example shown in Fig.
2. The red window in the figure represents a detected unparking
activity. If we slide the red window slightly to the right, apparently,
the new window may still represent a detected unparking activity
that is matched to the same ground truth activity. When multiple
detected activities are matched to the same ground truth activity ,
we use the first matched detected activity and ignore the rest of the
detected activities that are matched to .

4.1.5 Performance Measures
The performance is measured by the precision and recall. Eq. (15)
gives the definition, where tp, fp, fn are the numbers of true
positives, false positives, and false negatives, respectively. A
detected parking (unparking) activity is a true positive if it
matches a ground truth parking (unparking) activity; otherwise it is
a false positive; and a ground truth activity is considered a false
negative if no detected activity is matched to it.

 (15)

Another measure is the delay of localization. (see def. in Sec.)
Denote by the timestamp of the ground truth activity and by
by the time when the location is received. The delay, denoted by

, can be calculated using Eq. (16).

 . (16)

4.2 Evaluation Results

4.2.1 Detection Accuracy and the Delay
The MST_CL1 classifier is implemented according to [5]. The
MST_CL2 uses the activity recognition API provided by Google.
The API provides one parameter that adjusts the update frequency.
This parameter is set to zero [1] so that the updates are obtained at
the highest possible frequency.

Table 3 lists the values for parameters for the CIV method and the
detection threshold. In this paragraph we discuss these parameters.
Many previous works (e.g. [5, 14]) suggest that the window size
should be large enough to include a few hundred samples but not
too large to increase the delay. Based on the accelerometer sampling
frequency in Android (i.e. about 10~30 Hz), 10 seconds is a

reasonable window size (other window sizes are also tried and 10
seconds show the best results).

A small sliding step helps capture the sudden change in the
acceleration. Intuitively, a small scope helps decrease the delay. We
conducted experiments to learn the impact of the scope parameter
on the precision and recall. The experiments suggest that as the
scope increases, the precision and recall first increases then
decreases. This is because the scope only helps when it includes
recent past samples; and it starts to hurt the performance as it
continues to increase and includes samples from a more remote past.
The results suggest that a scope of six windows achieves the best
precision and recall.

Table 3 Default values of parameters

Notation Meaning Value
 window size of the CIV indicator 10 seconds
 sliding step of the CIV indicator 3 seconds
 scope of the CIV indicator 6 windows
 detection threshold 0.7

Table 4 shows the performance of the detection methods described
in 4.1.3. Note that the average delay in the table refers to the average
delay of the true positives, i.e. the detected activities that are
matched to the ground truth activities.

In the first group (i.e. methods that use only one indicator),
MST_CL2 gives the best precision and recall but it suffers from a
large delay, especially for unparking activities. For this reason the
MST_CL2 method cannot be used alone (i.e. if used a alone the
location of the parking/unparking activity cannot be accurately
identified). Note that the delay for unparking activities is much
larger than that for parking activities for MST_CL2. This is due to
the fact that the GAR API outputs driving state with a much larger
delay than the walking state. In comparison, the CIV method have a
much smaller delay but with a slightly lower recall and a much
lower precision. The MST_CL1 method has the poorest precision
and recall among the three methods. Note that the MST_CL1 uses
the features described in [5], where the authors report a much higher
precision and recall for human activities classification. But in [5],
the phone has a fixed position (i.e. the front leg pocket) while here
the phone is placed in various positions. In addition, [5] does not
include driving as an activity. In general, driving is much harder to
be correctly classified than on foot activities such as walking or
jogging since driving is easily confused with still or standing. (This
may also explain why the GAR API outputs driving activity with a
much larger delay than walking activity.) The results of the first
group demonstrate that no individual indicator is good enough.

Table 4 Detection performance on the testing data set

Detection Methods Parking Activities Unparking Activities
Recall Precision Avg. Delay (secs) Recall Precision Avg. Delay (secs)

Methods that use only
one indicator

CIV 86.2% 29.7% 10.68 87.9% 45.1% 14.43
MST_CL1 60.3% 18.6% 20 70.6% 22.2% 14.17
MST_CL2 94.8% 88.7% 17.75 89.6% 89.6% 46.18

Methods that fuse
multiple indicators

CIV-MST_CL1 91.3% 23.8% 10.3 96.5% 24.3% 15.72
CIV-MST_CL1_CL2 93.1% 90.4% 9.98 81.8% 93.1% 14.36

In the fusion method group, the CIV-MST_CL1 has a higher recall
than that of both the CIV and MST_CL1 method. However, the
method’s precision remains unsatisfying. This is because the fusion
process enhances the detection confidence when both the CIV and
the MST_CL1 method correctly detects the same type activity (i.e.
parking/unparking) with a low confidence and thus helps improve
the recall. However, when both the CIV and the MST_CL1 method
mistakenly detect the same type activity with a low confidence, the
fusion also boosts the confidence, and as a result the precision of the
CIV-MST_CL1 method may be lower than the largest precision of
the constituting methods.

As the integration of the CIV-MST_CL1 method and the MST_CL2
method, the CIV-MST_CL1_CL2 method inherits all the merits: it
has a higher precision than both its constituting methods; it has a
fairly high recall while keeps a small delay.

4.2.2 Energy Consumption
We employ PowerTutor [24] to measure the power consumption.
For the purpose of localization, GPS is enabled when UPDetector
is running. But it is in the stand-by mode and consumes little energy
(about 0.8 mw) during most of time. GPS only enters the energy-
hungry searching mode (about 220 mw) once for each
parking/unparking activity. Since there are at most a few
parking/unparking activities during a day, the power consumption
for localization is negligible.

Most power consumption of the App attributes to CPU usage caused
by the computation during the fusion of periodical vectors. When
UPDetector (running the CIV-MST_CL1_CL2 method) is the only
App running and phone activities (such as call, sms) are avoided,
the corresponding battery life is about 20.3 hours. The battery life
with no app running and no phone activities is around 25 hours. That
is, UPDetector costs 4.7 hours of the battery life. It is possible to
further reduce this cost by decreasing the output frequency of the
periodical indicators such as the CIV, and by special hardware [4].

5 Related Work
5.1 Parking Spaces Detection
In the past, on street parking slot detection is usually performed by
sensors embedded in the pavement, e.g. the SFPark project, or in
vehicles [7]. However, these efforts require a significant investment
and are too expensive to fully cover a large city. Given the
proliferation of mobile devices, smartphone applications such as
ParkMobile and PaybyPhone, that allow drivers to pay for parking
by mobile phones, are emerging. Such App’s can be used by our
method as an indicator for parking. [10] proposes a novel method
which leverages WiFi beacons in urban environments to detect
unparking. This method can be integrated into our work as an
indicator for unparking activities. This method by itself is not
always applicable since WiFi signature works only when the
parking location is covered by multiple WiFi access points.

5.2 Activity Recognition
There have been works on detecting motion activities based on
readings from sensors in smartphones. Generally, a motion activity
detection algorithm is a classifier which reads raw sensor data (e.g.
from GPS [2, 19, 25], from accelerometer [3, 22], from both [15],
or from WiFi/GSM [9]), processes it to extract features, and then
classifies and outputs the motion activity such as still, walking,
running. These existing works are not motivated by detection of
parking/unparking activities and thus bear the following problems
when applied to our problem directly: (i) some of them use GPS
heavily and thus are not applicable to our energy-constrained
scenario; (ii) many works that use accelerometer to classify
everyday human activities do not include driving as an activity; and
they often assume that the accelerometer is placed on a fixed
position with the user. Furthermore, as our study demonstrates, the
motion state transition method by itself is not a reliable indicator for
parking/unparking.

5.3 Classifier Fusion
In [21], the authors survey existing methods of combing multiple
classifiers. These methods include i) ensemble methods that
combine multiple homogenous classifiers (i.e. classifiers that are
learned using the same set of features and the same classification
algorithm), such as Bagging and Boosting; and ii) non-ensemble
methods that combine heterogeneous classifiers, such as the
majority voting (e.g. voting based on either the number of each class
or the aggregated confidence in each class). We apply the ensemble
methods, i.e. the Boosting method via Weka, to implement
individual indicators such as MST. But the ensemble methods do not
handle the asynchronous data problem. That is, in our application
scenario, different indicators output vectors of different feature sets
at different frequencies. Additionally, we aim to save energy, a
consideration that is missing in prior work on classifier fusion. Cost-
sensitive boosting [6] methods may be applicable, but it is not clear
how to incorporate energy consumption into cost functions. As
pointed out by the authors of [21], none of the non-ensemble
methods are shown to be superior to others, neither theoretically nor
empirically. Our proposed fusion method can be considered a non-
ensemble method that is motivated by and designed for the
unparking/parking detection application, and potentially applied to
other applications with the asynchronous data problem.

6 Conclusion and Future Work
We presented the design and implementation of a parking/unparking
activities detection system called UPDetector. We described several
indicators used by UPDetector, and their corresponding features.
UPDetector uses a probabilistic fusion method which combines
features output by multiple indicators to derive parking/unparking
activity detection results. We described this method in the paper.
We evaluated the UPDetector prototype via experiments, and
demonstrated its effectiveness and energy consumption.

Using the implemented Bluetooth indicator, the current App we
implemented has a certain capability of distinguishing a driver from
a passenger. This capability can be further enhanced via

incorporating other indicators, e.g. the pay-at-street-parking box
indicator and the parking-payment-mobile-App indicator listed in
Table 2. In addition, acoustic indicators can be used to distinguish
buses from private cars.

Currently the probabilities ’s are estimated using limited
experimental data collected by ourselves. In the future, via the
means of gamification or socialization, crowdsourcing may help
gather more data and thus provide a more precise estimation of those
probabilities.

Acknowledgments: This research was supported in part by the US
Department of Transportation National University Rail Center
(NURAIL); Illinois Department of Transportation (METSI); and
National Science Foundation grants IIS-1213013, CCF-1216096,
DGE-0549489, IIP-1315169.

7 References
[1] ActivityRecognitionClient | Android Developers:

http://developer.android.com/reference/com/google/androi
d/gms/location/ActivityRecognitionClient.html.

[2] Chu, D., Lane, N.D., Lai, T.T.-T., Pang, C., Meng, X., Guo,
Q., Li, F. and Zhao, F. 2011. Balancing energy, latency and
accuracy for mobile sensor data classification. Proceedings
of the 9th ACM Conference on Embedded Networked
Sensor Systems - SenSys ’11. (2011), 54.

[3] Dernbach, S., Das, B., Krishnan, N.C., Thomas, B.L. and
Cook, D.J. 2012. Simple and Complex Activity
Recognition through Smart Phones. 2012 Eighth
International Conference on Intelligent Environments.
(Jun. 2012), 214–221.

[4] Haichen Shen, Aruna Balasubramanian, Eric Yuan,
Anthony LaMarca, D.W. Improving Power Efficiency
Using Sensor Hubs Without Re-Coding Mobile Apps.

[5] Kwapisz, J., Weiss, G. and Moore, S. 2011. Activity
recognition using cell phone accelerometers. ACM
SIGKDD Explorations Newsletter. 12, 2 (2011), 74–82.

[6] Masnadi-Shirazi, H. and Vasconcelos, N. 2011. Cost-
sensitive boosting. IEEE transactions on pattern analysis
and machine intelligence. 33, 2 (Feb. 2011), 294–309.

[7] Mathur, S. and Jin, T. 2010. Parknet: drive-by sensing of
road-side parking statistics. Proceedings of the 8th
international conference on Mobile systems, applications,
and services. (2010).

[8] McEnnis, D., McKay, C., Fujinaga, I. and Depalle, P. 2006.
jAudio: Additions and Improvements. ISMIR. (2006).

[9] Mun, M., Estrin, D., Burke, J. and Hansen, M. 2008.
Parsimonious mobility classification using GSM and WiFi
traces. Proceedings of the 5th Workshop on Embedded
Networked Sensors. (2008), 1–5.

[10] Nawaz, S., Efstratiou, C. and Mascolo, C. 2013.
ParkSense: A Smartphone Based Sensing System For On-
Street Parking. In Proceedings of the 19th ACM
International Conference on Mobile Computing and
Networking (MOBICOM 2013). (2013).

[11] Parkmobile: http://us.parkmobile.com/.

[12] PayByPhone.: http://www.paybyphone.com/how-it-
works/.

[13] Rababaah, A. 2011. Event Detection, Classification And
Fusion For Non-Stationary Vehicular Acoustic Signals.
International Journal of Science of Informatics. 1, 1
(2011), 9–20.

[14] Ravi, N., Dandekar, N., Mysore, P. and Littman, M. 2005.
Activity recognition from accelerometer data. AAAI.
(2005).

[15] Reddy, S., Mun, M., Burke, J. and Estrin, D. 2010. Using
mobile phones to determine transportation modes. ACM
Transactions on Sensor Networks (TOSN). 6, 2 (Feb.
2010), 1–27.

[16] Shoup, D. 2005. The High Cost of Free Parking. American
Planning Association.

[17] Skyhook Inc.: http://www.skyhookwireless.com/.
[18] Stenneth, L., Wolfson, O., Xu, B. and Yu, P.S. 2012.

PhonePark: Street Parking Using Mobile Phones. 2012
IEEE 13th International Conference on Mobile Data
Management. (Jul. 2012), 278–279.

[19] Stenneth, L., Wolfson, O., Yu, P.S., and Xu, B. . 2011.
Transportation Mode Detection using Mobile Phones and
GIS Information. Proceedings of the 19th ACM
SIGSPATIAL International Conference on Advances in
Geographic Information Systems. (2011).

[20] Streetline, Inc.: www.streetline.com.
[21] Tulyakov, S. and Jaeger, S. 2008. Review of classifier

combination methods. Machine Learning in Document
Analysis and Recognition. Figure 1 (2008), 1–26.

[22] Wang, Y., Lin, J. and Annavaram, M. 2009. A framework
of energy efficient mobile sensing for automatic user state
recognition. Proceedings of the 7th international
conference on Mobile systems, applications, and services.
(2009).

[23] Xu, B., Wolfson, O., Yang, J., Stenneth, L, Yu, P.S., and
Nelson, P. Real-time Street Parking Availability
Estimation. MDM 13: Proceedings of the 14th
International Conference on Mobile Data Management.

[24] Zhang, L., Tiwana, B., Qian, Z. and Wang, Z. 2010.
Accurate online power estimation and automatic battery
behavior based power model generation for smartphones.
Proceedings of the eighth IEEE/ACM/IFIP international
conference on Hardware/software codesign and system
synthesis. (2010).

[25] Zheng, Y., Liu, L., Wang, L. and Xie, X. 2008. Learning
transportation mode from raw gps data for geographic
applications on the web. Proceedings of the 17th
international conference on World Wide Web. 49 (2008).

