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ABSTRACT 
Real-time information about vacant parking spaces is of 
paramount value in urban environments. One promising 
approach to obtaining such information is participatory sensing, 
i.e. detecting parking/unparking activities using smartphones. 
This paper introduces and describes multiple indicators, each of 
which provides an inconclusive clue for a parking or an 
unparking activity. As a result, the paper proposes a probabilistic 
fusion method which combines the output from different 
indicators to make more reliable detections. The proposed fusion 
method can be applied to inferring other similar high-level 
human activities that involve multiple indicators which output 
features asynchronously, and that involve concerns about power 
consumption. The proposed indicators and the fusion method are 
implemented as an Android App called UPDetector. Via 
experiments, we show that our App is both effective and energy-
efficient in detecting parking/unparking activities. 

Categories and Subject Descriptors 
J.m [Computer Applications]: Miscellaneous 

General Terms 
Algorithms 

Keywords  
Parking, unparking, sensor, fusion, accelerometer, smartphone, 
activity. 

1 Introduction 
Vacant parking spaces are scarce resources in many urban areas, 
and finding these in crowded urban environments can be very 
frustrating. In addition, cruising for a vacant parking space slows 
down traffic, causes traffic jams, and pollutes the environment. 
It is reported that vehicles searching for parking in downtown 
Los Angeles created 38 trips around the world, producing 730 
tons of carbon dioxide and burning 47,000 gallons of gas in one 
year [16]. The key to enable a service that navigates drivers to 
available parking spaces is the detection and collection of real-
time parking space availability information. In [23] we have 

shown that this collection, even when restricted to a very small 
fraction of the drivers (e.g. 5%), and even in the face of detection 
errors (up to 25% false positives and negatives), can produce 
very reliable real-time estimates (up to 90%) of parking 
availability on city blocks. This reliability is enabled by storing 
the parking activity history of the participating drivers, and 
combining it with real-time signals (or observations). These 
signals are the subject of this paper. Some indicators of parking  
activities are mentioned in [7, 18], but a comprehensive list and 
fusion methods are not provided. 

Real-time parking space availability information is of great value 
in alleviating the parking problem. By feeding such information 
to navigation systems, drivers can be directly led to an available 
parking space, or to a block with a high-likelihood of availability. 
Existing approaches of generating/collecting real-time parking 
spaces availability information can be classified into following 
categories: (i) infrastructure based; (ii) probe vehicle based; and 
(iii) participatory sensing based.  

An infrastructure based approach requires installing sensors 
under the pavement (e.g. SFPark project in San Francisco and 
StreetLine sensors [20]). This is expensive to implement and 
maintain. For example, the SFPark project costs $23M. 
Furthermore, the sensors tend to malfunction in adverse weather 
conditions, e.g. when covered by mud or snow.  

A probe vehicle based approach [7] uses vehicles equipped with 
inexpensive sensors such as ultrasonic sensors to scan the street. 
To provide real-time availability information, a probe vehicle 
needs to scan the same street repeatedly; and to cover large areas, 
multiple vehicles need to scan different streets concurrently. 
Thus, this approach also incurs a high cost and, if dedicated 
vehicles are used, introduces additional traffic.  

A participatory sensing based approach exploits the sensors in 
smartphones to detect parking/unparking activities. In this paper, 
we design and implement an energy-efficient mobile App called 
Unparking/Parking detector (UPDetector) that effectively 
detects parking and unparking activities by analyzing and fusing 
the data of multiple sensors embedded in smartphones. 
Specifically, the contributions of this work include: 

1. We propose several indicators, each associated with one or 
more smartphone sensors, for detecting parking/unparking 
activities. These indicators cover both paid and free parking 
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scenarios. For the purpose of energy conservation, we 
distinguish between periodical and triggered indicators. 

2. We propose a probabilistic method to fuse features output 
by the different indicators. These indicators are 
asynchronous, i.e. they output feature-vectors at different 
times. The proposed fusion method is proved to have a 
desirable reinforcement property. The fusion method can be 
applied to inferring other high-level human activities that 
are characterized by multiple asynchronous indicators. For 
example, detecting if a driver is fueling at a gas station.  

3. The proposed detection method works regardless of the 
phone placement, e.g. pants pocket, or hand-held.  

4. Our design of UPDetector reduces the usage of GPS to save 
power. We evaluate its energy-consumption via 
experiments.  

The rest of this paper is organized as follows. In Sec. 2, we 
introduce indicators and describe how to fuse features output by 
different indicators. Next we detail the features and the 
implementation of individual indicators in Sec. 3. In Sec. 4 we 
describe the implemented UPDetector App and its performance. 
Related work is presented in Sec. 5, and in Sec. 6 we conclude. 

2 Indicators and Indicator Fusion 
In this section, we first propose a list of indicators in subsection 
2.1. Then, in subsection 2.2, we divide the indicators into two 
types, the periodical and the triggered indicators. Then we 
propose a fusion method in subsection 2.3. 

2.1 Preliminaries on Indicators 
An indicator is an event that reveals some hint or clue of a 
parking or an unparking activity. For example, one indicator for 
unparking is that a person first walks then drives. But this 
indicator cannot distinguish a passenger from a driver. From this 
perspective, a stronger indicator for unparking is that the phone 
is connected with the car via Bluetooth since in general a 
passenger is less likely than a driver to connect to the car via 
Bluetooth. Similarly, Bluetooth disconnection from the car is an 
indicator for parking. Another exemplary indicator for parking is 
that a person walks towards a roadside pay box and then walks 
back to a car. Note that this pay-at-street-parking indicator is 
complex enough to be considered an activity by itself and thus 
can be decomposed into sub-indictors in order to be 
implemented. In addition, drivers could be encouraged (via 
incentives) to manually signal a parking or unparking activity. 
This user input event is also considered as a special kind of 
indicator. In this paper we focus on indicators that have to be 
detected by sensors. 

Table 1 gives a list of indicators, where the second column states 
whether the indicator is for parking, unparking or both activities; 
and the last column lists the sensors that are required to 
implement the indicator. Indicators output vectors. Each vector 
consists of multiple scalar values, each of which is called a 
feature. Vectors of the same indicator have the same set of 
features. For example, the features of the acoustic sound 
indicator include Zero Crossing, Spectral Flux [8]. Sec. 3 details 
the features of a subset of the indicators listed here. 

Table 1 Example indicators of parking/unparking activities 

Indicator activity Explanation Sensors 
change in the 
variance of the 
acceleration (CIV) 

both In parking activities, a person first drives and then walks. Since walking often 
has a large variance in acceleration while driving has a small variance, this 
transition leads to a sudden increase in the variance of acceleration. Likewise, in 
unparking activities, the variance of acceleration usually suddenly decreases. 

accelerometer 

phone connected 
or disconnected to 
the car via 
Bluetooth 

both The phone is connected/disconnected to a car via Bluetooth. (The App asks the 
user to identify the car Bluetooth device from a list of available Bluetooth 
devices. This request is only done once.) 

Bluetooth 

motion-state 
transition (MST) 

both A parking activity corresponds to a transition from the driving state to the walking 
state; and an unparking activity corresponds to a transition from the walking state 
to the driving state. 

accelerometer 

acoustic signals both The sounds of human-vehicle interactions that are typically made only during 
parking or unparking activities. Example interactions include turn on/off the 
vehicle engine, and open/close the vehicle doors.  

microphone 

car backing both Backing the car is common in parking/unparking activities. It is detected by 
sensing a sudden reverse in the direction of acceleration. 

accelerometer 
and gyro 

pay at street-
parking box 

parking In the paid street parking scenarios, a driver often needs to walk to a pay box to 
buy a parking ticket and walk back to the car to place the ticket in the car. 

accelerometer 
and GPS 

WiFi signature 
[10] 

unparking If the parking location is known, a Wifi signature can be created for it and then 
used to detect an unparking activity by periodically comparing the signature of 
the current location to that of the known parking location. 

wireless interface 

parking payment 
mobile App’s  

parking Parking payment mobile Apps such as ParkMobile [11] and PayByPhone [12] 
give a hint of a possible parking activity when such an App is brought to the 
foreground of the smartphone by a user.  

 

User-input signal both Drivers may manually signal a parking/unparking event due to incentives 
introduced by any gamification or socialization feature of the App. 

 



2.2 Periodical and Triggered Indicators 
In UPDetector, indicators that rely only on energy-efficient sensors 
(e.g. the accelerometer) output a vector periodically. Such indicators 
are referred to as periodical indicators. For example, both the 
Change-In-Variance indicator and the motion state transition 
indicator are periodical indicators.  

Indicators that involve energy-hungry sensors such as the 
microphone, are not periodically monitored in order to conserve 
energy. They are triggered to output a vector only when the parking 
or unparking becomes the hypothesis, i.e. indicated by the periodical 
vectors as the most likely outcome among the three outcomes, 
namely parking, unparking, none. We refer to such indicators as 
triggered indicators. For example, the engine-start sound is a 
triggered indicator. That is, only when the periodical vectors 
indicate unparking as the most likely outcome, the microphone 
starts to record for a few seconds and outputs a vector of features of 
the recorded sound sample. Triggered indicators can be considered 
auxiliary evidences to verify or refute the hypothesis proposed by 
the periodical indicators. 

Table 2 lists the indicators described in Table 1 with their 
corresponding category, i.e. periodical or triggered. The table shows 
the output frequency for the periodical indicators; and for the 
triggered indicators, it shows which hypotheses, i.e. parking, 
unparking or both, trigger the indicator. 

Table 2 List of categorized indicators     

Indicator Type 
sudden change in 
the variance of 
acceleration 

periodical: once every few seconds  

phone connected or 
disconnected via 
Bluetooth 

periodical: frequency at which the 
smartphone monitors the Bluetooth 
connection 

motion state 
transition 

periodical: once every few seconds 

acoustic signals triggered: by parking and unparking 
hypotheses 

car backing  periodical (only when the user at 
in_vehicle state): once every a few 
seconds 

pay at street-
parking  

triggered: by parking hypothesis 

parking payment 
mobile App’s  

periodical: frequency at which the 
smartphone monitors the foreground App  

WiFi signature[10] periodical: compute the WiFi signature at 
certain frequency and compare it to the 
signature of the parking location 

2.3 Indicator Fusion 

2.3.1 Proposed Fusion Method 
Whenever some indicator outputs a vector, we need to calculate the 
probability for each of the three possible outcomes, i.e. parking, 
unparking, and none, denoted by , respectively. Let  be 
the average duration of a parking/unparking activity (e.g. one 
minute). Assume that at time point  a vector  of periodical 

indicator I is generated. Let S be the set of vectors consisting of  
and the latest vector  of every periodical indicator other than I 
(assuming that vector  is generated no earlier than time point -

). The indicators are assumed independent and thus the vectors in 
 are considered independent. Define a fusion set to be a set of 

independent vectors to be fused.  is a fusion set. Therefore, we can 
compute the probability , i=1,2,3 using Eq. (1) below.  

                               (1) 

The calculation of the term  and  are detailed in 
subsections 2.3.1.2 and 2.3.1.3 respectively. If none is the most 
likely outcome, then no indicator is triggered and thus no parking or 
unparking activity will be detected. Otherwise, the most likely 
outcome (i.e. either parking or unparking), denoted by , becomes 
the hypothesis, and invokes the triggered indicators. Each triggered 
indicator outputs one vector. Denote such triggered vectors by , 

,…, , where  is generated earlier than  for . Then 
the hypothesis  is tested in the following way. Let  the set of 
vectors including the triggered vector , all the triggered vectors 
that are generated before  and the periodical vector set  that 
proposes the hypothesis, i.e. . 
Whenever a triggered vector  is generated, we use Eq. (1) to 
calculate the probabilities for all three outcomes, where set  is 
replaced by set . That is,  is also a fusion set. Then we 
normalize the calculated probabilities, denoted by , using 
Eq. (2).  

                (2) 

We set a threshold , referred to as the detection threshold, 
such that an activity of the hypothesis outcome, i.e. parking or 
unparking, is considered detected only when the normalized 
probability of the hypothesis is above , i.e. . Note 
that once a parking or an unparking activity is detected, we say that 
the hypothesis  is verified by vector set . Therefore, there is no 
need to consider any triggered vector that is generated after , i.e. 

, .  

Multiple detections of the same activity: It is possible that one 
parking/unparking activity is detected multiple times by some 
indicator (e.g. the CIV indicator) because the activity lasts a period 
in which the indicator outputs multiple times. To cope with this, we 
consider all detected activities of the same type (i.e. parking or 
unparking) within a short period (e.g. half a minute) as a single 
activity. 

2.3.1.1 Localization Process 
A parking or unparking activity needs to be associated with the time 
and location of the activity. To save energy, the App only invokes 
the localization process when it is necessary. The timing for 
localization could be either when a hypothesis is proposed (by the 
periodical vectors) or when a hypothesis is confirmed. If the location 



is retrieved at the time when a hypothesis is proposed, then the 
location is cached upon retrieval, and consumed if later the 
hypothesis is confirmed.  

Define the temporal interval from the time when a 
parking/unparking activity happens to the time when a location is 
retrieved for the activity as the delay of localozation, or simply, the 
delay. Obviously the smaller the delay is, the closer the retrieved 
location is to the true location where the activity happens. Thus, it 
is better to invoke the localization process at the time when a 
hypothesis is proposed instead of confirmed since it leads to a 
smaller delay. 

The App uses the following localization process. Specifically, one 
location fix  is retrieved via the smartphone localization API, 
which intelligently fuses the localization sources GPS, WiFi, and 
cellular networks. Simultaneously, another location  is requested 
via Skyhook [17], a third-party location provider which uses known 
Wi-Fi hotspots. The retrieval of  and  takes about two seconds 
on average based on our experiments, and each one of them is 
returned with an accuracy estimate. We then choose the location 
with the higher accuracy as the detected location of the hypothesis. 
Note that the use of a third-party localization API (e.g. Skyhook) 
consumes little additional energy since it is invoked occasionally, 
i.e. only when a parking or unparking hypothesis is proposed. 
Meanwhile it helps improve the location precision. 

If one parking/unparking activity is detected multiple times we use 
the time and location of the first detection.  

2.3.1.2 Calculation of  
In this subsection, we detail how to calculate , i.e. the 
probability that vector  occurs given outcome . Let 

 where each  is a feature. We regulate that all 
features in  are mutually independent. In the case that some 
features are dependent on each other (two features are dependent if 
their Pearson’s Correlation is over a threshold), only one of them is 
included in . Since all the features in  are mutually independent, 
the term  can be computed by Eq. (3), where  is 
the probability that feature  has the current value given that the 
outcome is .  

                                                       (3) 

The term  is estimated using the following approach. 
Conduct experiments that generate outcome . From these 
experiments collect a sample set of ’s under the  outcome. 
Normalize all collected ’s into the  interval. Discretize the 
range [0, 1] into several bins, allocate the collected samples into the 
corresponding bins based on the value of , and calculate the 
frequency of each bin. If the frequencies of the bins approximate a 
normal distribution, we estimate the  using the normal 
distribution of which the mean and standard deviation are estimated 
using the collected  samples. Otherwise,  is estimated to 
be the frequency of the bin in which  falls. 

Note that some ’s are estimated rather than obtained by 
experiments. For example, for the Bluetooth indicator, we estimate 
how many drivers have smartphones connected to the car via 
Bluetooth, instead of conducting experiments to determine it. 

2.3.1.3 Estimating ’s 
Prior probabilities ’s are estimated using the following 
approach.  of a specific user  is equal to (the amount of time 
spent on parking activities per statistical window / the amount of 
time per statistical window). The size, i.e. amount of time, of a 
statistical window is dependent on the location and time of the day. 
For example, if user  enters a parking structure (detected by using 
the energy-efficient Wi-Fi signature method [10]), it means that user 

 is likely to park soon and thus the statistical window may be just 
a few minutes. For another example, the size of the statistical 
window is larger during the night than during daytime since 
generally parking activities are less likely to occur at night than in 
daytime. In case more than one rule determines the current window 
size, the smallest window will apply. For example, assuming that 
the size of the window is eight hours at night and is ten minutes if 
the car just enters the garage, then the window is ten minutes if a car 
enters a garage at night. To estimate the amount of time spent on the 
parking activities during a statistical window for user , the App 
needs to count the average number of parking activities and estimate 
the average time duration that each parking activity takes. At the 
beginning, when the user just starts to use our App and there are not 
enough samples to calculate these, default values will be applied.  

Similarly,  is equal to (the amount of time spent on unparking 
activities per statistical window / the amount of time per statistical 
window). Finally, . 

2.3.2 Reinforcement Property 
Our proposed fusion method has a desirable reinforcement property. 
That is, by combining vectors which occur under the hypothesis (i.e. 
either a parking/unparking outcome), we obtain a higher confidence 
in the hypothesis outcome. We prove that the reinforcement 
property holds when applied to two indicators. We formalize the 
property as follows. (The formulation uses the parking outcome as 
the hypothesis, but the same argument holds for the unparking 
hypothesis.) 

Theorem: Given two fusion-set vectors ,  such that 
,i.e. both most 

likely occur under the parking outcome , 
. 

Intuitively, the theorem indicates that if the probability for  is 
highest for each of two vectors  and , then the probability of  
is higher for the fusion set  than the probability of  under 
either one of the vectors  or . This means that in our fusion 
method these two vectors reinforce each other in concluding . We 
give the formal proof below. 

Since are interchangeable, next we only prove 
While



can be proved using the same rationale. Based on the definition of 
normalized probability, i.e. Eq. (2), we have

      (4)

Thus, substituting Eq. (4) into
obtain Eq.

                                                      (5) 

Taking the reciprocals on the both sides of Eq. (5), we get Eq. (6) 

                                                                    (6) 

Subtracting one from both sides of Eq (6), we get Eq (7) 

                   (7) 

A sufficient condition for Eq. (7) is Eq. (8). That is, if Eq. (8) holds 
then Eq. (7) stands, and thus the theorem is proved.  

                                                            (8) 

Next we prove the first equation in Eq. (8), i.e. 

. The other part  can be proved 

using the same rationale. Denote  by Eq (9). 

                                                              (9). 

Using the Bayes rule on the right side of Eq. (9), we have Eq. (10) 

                                             (10) 

Using the Bayes rule on the left side of Eq. (10), we have Eq. (11) 

                           (11) 

Using the Bayes rule on the second term of the left side of Eq (11), 
we have Eq. (12) 

                    (12) 

Dividing the common factor  from the both sides of Eq. (12), 

we have Eq. (13) 

                            (13) 

Since indicators are independent,  and  are independent, Eq. 
(13) is simplified to Eq. (14). 

                    (14)

Since  most likely occurs under , i.e. . Then it is 

clear that Eq. (14) stands and thus Eq. (8) stands. Therefore, we have 
  

Given the above theorem, it is easy to prove the general case, i.e. 
that  given 
that the ’s are independent, and that for each j, is the 
largest among , =1,2,3. 

3 Implementation of Individual Indicators 
In this section, we detail the features and implementation of only a 
subset of the proposed indicators. Other indicators, once 
implemented, can be plugged-and-played into our system through 
the fusion method described earlier.  

3.1 The Change-In-Variance (CIV) Indicator 

3.1.1 Preliminaries on Accelerometer 
The accelerometer of a smart phone has a coordinate-system 
consisting of three axes, as shown in Fig. 1. The X axis is horizontal 
and points to the right, the Y axis is vertical and points up and the Z 
axis points towards the outside of the front face of the screen. Each 
reading of the accelerometer contains three values, that is, one value 
for each axis. The three axes are defined relative to the screen of the 
phone in its default orientation.  

Fig. 1 Axes of mobile phone

3.1.2 Features of the CIV Indicator 
A sliding window with a fixed size  seconds is used. The sliding 
window moves forward  seconds every time it slides. That is, two 
consecutive windows overlap -  seconds. We refer to  as the 
sliding step thereafter. During each window, we calculate the 
difference between the variances of the acceleration in the second 



half and in the first half of the window. Hereafter we refer to this 
feature as the VariDiff of a window. Intuitively, as shown in Fig. 2, 
an unparking activity results in a window where the first half 
(corresponding to the walking state) has a large variance while the 
second half (corresponding to the driving state) has a small variance. 
Likewise, the parking activity has a similar sharp difference in 
variances of the two halves of the window. We have observed via 
experiments that this variance discrepancy exists no matter where 
the phone is placed, e.g. in pants pocket, in handbag, etc.  

Fig. 2 The sliding window for the CIV indicator 

However, the VariDiff feature of the current window itself is not 
sufficient due to noise. For example, the VariDiff feature of a 
window during which the user walks, may be either positive or 
negative since the acceleration during walking is oscillating. As a 
result, such a window may be misidentified as a parking or 
unparking activity. To deal with the noise, we consider using the 
VariDiff feature of all windows within a scope, denoted by . Then 
each CIV vector consists of three features: (i) the VariDiff feature of 
the current window; (ii) the average value of the VariDiff feature 
during the preceding /2 windows; (iii) the average value of the 
VariDiff feature during the succeeding /2 windows. Formally, the 
scope  is the total number of preceding and succeeding windows 
that are considered in a CIV vector. Observe that  does not include 
the current window. In order to calculate feature (iii), the production 
of the vector of a window is delayed for  windows. 

Fig. 3 illustrates the calculation of the CIV vectors. Assume that the 
VariDiff feature of 1st, 2nd, 3rd, 4th, 5th window has a value of 0.03, 
0.01, 2.6, 1.6, 1.8, respectively, and the scope  equals to 4. Then 
when the 5th window ends, the CIV vector of the 3rd window is 
computed and equals to (0.02, 2.6, 1.7), where 0.02 is the mean of 
the VariDiff of the 1st and 2nd windows and 1.7 is the mean of the 
VariDiff of the 4th and 5th windows. 

Fig. 3 An example of calculating CIV vectors 

3.2 The Bluetooth Indicator 
The Bluetooth embedded in the phone is a strong indicator when it 
is enabled. When a phone is connected to a car (requiring one time 
human input to indicate the name of the Bluetooth device of the car), 
there is a good chance that the person is the driver and intends to 
depart, which corresponds to an unparking activity. Similarly when 

a phone is disconnected, it is likely due to a person leaving the car, 
which indicates a parking activity. There is only one feature for the 
Bluetooth indicator, which takes one of the following three values: 
i.e. connected, disconnected, not enabled.  

3.3 The Motion State Transition Indicator 
Motion states, such as waling, driving, etc., can be classified from 
raw accelerometer readings. After motion states are classified, the 
transitions between motion states are identified to signify the 
parking/unparking activities. The vectors of the motion state 
transition indicator thus include four features. The first two features 
are the probabilities of the latest motion state being walking and 
driving, respectively. Similarly, the last two features are the 
probabilities of the motion state before latest being walking and 
driving, respectively. 

3.4 The Acoustic Indicators 
Acoustic indicators refer to the sounds of human-vehicle 
interactions that are typically made only during parking or 
unparking activities. Example interactions include turn on/off the 
vehicle engine, open and close the vehicle doors. Such sounds often 
have distinct frequency and amplitude from each other. 

It has been shown in [13] that the sounds of these particular human-
vehicle interactions can be classified with relative high precision 
and recall using specific audio features [8] e.g. pitch, spectrum. 
However, in [13] the authors do not consider power consumption 
and thus the sounds are recorded constantly. In our case, in order to 
save energy, acoustic sounds are modeled as triggered indicators, as 
described in 2.2.2. That is, they are only activated and output vectors 
after the parking or unparking outcome becomes the hypothesis.  

In addition to the work of [13], we included the “bus noise” (i.e. the 
bus engine sound with the background noise) as one of the acoustic 
sounds, and found out that the “bus noise” sound is highly 
distinguishable from other sounds such as engine start, or door 
open/close. This will help distinguish a private car trip from a bus 
trip. 

4 Evaluation 
We implemented a prototype system on the Android platform. This 
section details the experimental methodology and the results. 
Specifically, we introduce our experimental setting in subsection 
4.1. Then we show the performance of the App in subsection 4.2. 

4.1 Experimental Methodology 

4.1.1 Mobile App Implementation  
UPDetector can be implemented on all mobile platforms, such as 
Android, Apple iOS and Windows mobile systems. We implement 
a prototype on the Android platform using the Samsung Galaxy S3, 
which has a 1 GB RAM and quad-core 1.4 GHz Cortex-A9 
processor. The sampling frequency of the accelerometer ranges 
about 10~30 Hz. Fig. 4 shows some screenshots of the implemented 
prototype.  

Sliding 
Window

1st half 2nd half

walking driving

1st Win.

2nd   Win.

3rd Win.

Time4th  Win.

5th  Win.



We have implemented the following indicators in the UPDetector 
App: the Bluetooth indicator, the CIV indicator and the MST 
indicator. We have also implemented the acoustic indicator (i.e. the 
audio analysis part) on the laptop; unfortunately, we cannot port the 
function to the App since Android system currently does not support 
the audio feature extraction library. The Bluetooth indicator is 
highly reliable by itself and may work independently of other 
indicators. Therefore, here we restrict attention to vehicles that do 
not have Bluetooth devices and present the detection results using 
the CIV and the MST indicators.  

        

Fig. 4  UPDetector implementation screenshots 

4.1.2 Data Collection 
We have had three people carry a smartphone with the UPDetector 
application running during multiple days. During these periods of 
time, the smartphone was placed in different positions including 
front pant leg pocket, coat pocket, handbag/knapsack and held in 
hand. The parking/unparking activities in the experiment were 
perpendicular outdoor parking in a living community. The time (in 
seconds) of each parking/unparking activity was manually recorded 
as the ground truth. The time of an unparking activity is the second 
when the vehicle starts to move from a parked state; and the time of 
a parking activity is the second when the vehicle reaches the still 
state.  

The collected data is split into one training set and one test set. The 
training data set contains 40 parking activities and 40 unparking 
activities. The test data set contains 60 parking activities and 60 
unparking activities. The training set is used to learn the conditional 
probability of features under different outcomes, i.e. ’s. 
Via experiments, we observe that ’s in the training set 
approximate normal distributions. So we estimate the parameters of 
the normal distributions using the training data set and then use them 
for the test data set. The test data is used to evaluate the performance 
of the detection of parking/unparking activities. 

4.1.3 Detection Methods 
We evaluate five detection methods. These methods are categorized 
into two groups. The first group consists of three methods that use a 
single indicator: (i) the method that only uses the Change-in-
Variance (CIV) indicator, referred to as the CIV method hereafter; 

                                                                 

1 except for the MST_CL2 method; since it suffers a long delay, its value is 
one minute 

(ii) the method that only uses the Motion State Transition (MST), 
where the motion state classifier is implemented using the features 
described in [5] (multiple classification methods, including meta-
classification methods such as AdaBoost and RandomForest, are 
tried to train the model and the best classification method, i.e. 
RandomForest, is chosen), referred to as the MST-CL1 method 
hereafter; (iii) the method that only uses the Motion State Transition 
(MST), where the motion state classifier is provided by Google 
Activity Recognition (GAR) API [1], referred to as the  MST-CL2 
method hereafter. The GAR API returns a distribution over five 
possible states including driving, walking, still, tilting, and 
unknown. We have observed that the GAR API outputs the unknown 
state as the most likely state frequently. To better utilize the API’s 
results, we modify the most likely state for the following case. If the 
GAR API outputs unknown as the most likely state, and if the second 
most likely state  has a likelihood that is larger than the sum of the 
likelihoods of other three states except unknown and S, we treat  as 
the most likely state.  

The second group consists of two methods that fuse multiple 
indicators. The first method, referred to as the CIV-MST_CL1 
method, combines the CIV indicator and MST-CL1 using the 
probabilistic based fusion algorithm described in Sec. 2.3.  

The second method, referred to as the CIV-MST_CL1_CL2 method, 
combines the CIV-MST_CL1 method with the MST_CL2 method. 
Specifically, each activity  detected by the CIV-MST_CL1 
method is considered a hypothesis (thus a location is retrieved and 
cached when  is detected). We have learned from experiments 
that the MST_CL2 method is reliable but suffers from a large delay 
(see Sec. 4.2.1). Therefore, we consider that  is confirmed if later 
MST_CL2 also detects the same type (i.e. parking/unparking) of 
activity as . If multiple ’s of the same activity type have been 
output by CIV-MST_CL1 when MST_CL2 outputs a detection, we 
use the location retrieved for the first . Note that here we use a 
simple “and” logic to combine the detection results of CIV-
MST_CL1 and MST_CL2 because MST_CL2 is highly reliable (but 
unfortunately has a long delay) and thus a simple “and” logic is 
sufficient. Otherwise, we would have used the proposed 
probabilistic fusion algorithm to combine CIV-MST_CL1 and 
MST_CL2. 

4.1.4 Matching Detected Activities with the Ground 
Truth 

A detected parking (unparking) activity  is matched to a ground 
truth parking (unparking) activity  if the time difference between 

 and  is smaller than five seconds1. For a detected activity , 
the matching ground truth activity  can always be uniquely 
identified because any two consecutive ground truth activities are at 
least minutes away from each other, and thus there is no confusion 
in the matching.  



Note that a ground truth activity may be detected multiple times (i.e. 
matched to several detected activities that are temporally 
consecutive and close to each other). This only happens when a 
sliding window is used in the indicator (e.g. in the CIV indicator) 
and the window slides in a way such that the two consecutives 
windows overlap. For example, consider the example shown in Fig. 
2. The red window in the figure represents a detected unparking 
activity. If we slide the red window slightly to the right, apparently, 
the new window may still represent a detected unparking activity 
that is matched to the same ground truth activity. When multiple 
detected activities are matched to the same ground truth activity , 
we use the first matched detected activity and ignore the rest of the 
detected activities that are matched to .  

4.1.5 Performance Measures 
The performance is measured by the precision and recall. Eq. (15) 
gives the definition, where tp, fp, fn are the numbers of true 
positives, false positives, and false negatives, respectively. A 
detected parking (unparking) activity  is a true positive if it 
matches a ground truth parking (unparking) activity; otherwise it is 
a false positive; and a ground truth activity  is considered a false 
negative if no detected activity is matched to it.  

                                   (15) 

Another measure is the delay of localization. (see def. in Sec. ) 
Denote by  the timestamp of the ground truth activity  and by 
by  the time when the location is received. The delay, denoted by 

, can be calculated using Eq. (16).  

                                             .                                 (16) 

4.2 Evaluation Results 

4.2.1 Detection Accuracy and the Delay  
The MST_CL1 classifier is implemented according to [5]. The 
MST_CL2 uses the activity recognition API provided by Google. 
The API provides one parameter that adjusts the update frequency. 
This parameter is set to zero [1] so that the updates are obtained at 
the highest possible frequency. 

Table 3 lists the values for parameters for the CIV method and the 
detection threshold. In this paragraph we discuss these parameters. 
Many previous works (e.g. [5, 14]) suggest that the window size 
should be large enough to include a few hundred samples but not 
too large to increase the delay. Based on the accelerometer sampling 
frequency in Android (i.e. about 10~30 Hz), 10 seconds is a 

reasonable window size (other window sizes are also tried and 10 
seconds show the best results).  

A small sliding step helps capture the sudden change in the 
acceleration. Intuitively, a small scope helps decrease the delay. We 
conducted experiments to learn the impact of the scope parameter 
on the precision and recall. The experiments suggest that as the 
scope  increases, the precision and recall first increases then 
decreases. This is because the scope only helps when it includes 
recent past samples; and it starts to hurt the performance as it 
continues to increase and includes samples from a more remote past. 
The results suggest that a scope of six windows achieves the best 
precision and recall. 

Table 3 Default values of parameters 

Notation Meaning Value 
 window size of the CIV indicator 10 seconds 
 sliding step of the CIV indicator 3 seconds 
 scope of the CIV indicator 6 windows 
 detection threshold 0.7 

Table 4 shows the performance of the detection methods described 
in 4.1.3. Note that the average delay in the table refers to the average 
delay of the true positives, i.e. the detected activities that are 
matched to the ground truth activities. 

In the first group (i.e. methods that use only one indicator), 
MST_CL2 gives the best precision and recall but it suffers from a 
large delay, especially for unparking activities. For this reason the 
MST_CL2 method cannot be used alone (i.e. if used a alone the 
location of the parking/unparking activity cannot be accurately 
identified). Note that the delay for unparking activities is much 
larger than that for parking activities for MST_CL2. This is due to 
the fact that the GAR API outputs driving state with a much larger 
delay than the walking state. In comparison, the CIV method have a 
much smaller delay but with a slightly lower recall and a much 
lower precision. The MST_CL1 method has the poorest precision 
and recall among the three methods. Note that the MST_CL1 uses 
the features described in [5], where the authors report a much higher 
precision and recall for human activities classification. But in [5], 
the phone has a fixed position (i.e. the front leg pocket) while here 
the phone is placed in various positions. In addition, [5] does not 
include driving as an activity. In general, driving is much harder to 
be correctly classified than on foot activities such as walking or 
jogging since driving is easily confused with still or standing. (This 
may also explain why the GAR API outputs driving activity with a 
much larger delay than walking activity.) The results of the first 
group demonstrate that no individual indicator is good enough. 

Table 4 Detection performance on the testing data set  

Detection Methods Parking Activities Unparking Activities 
Recall Precision Avg. Delay (secs) Recall Precision Avg. Delay (secs) 

Methods that use only 
one indicator 

CIV  86.2% 29.7% 10.68 87.9% 45.1% 14.43 
MST_CL1 60.3% 18.6% 20 70.6% 22.2% 14.17 
MST_CL2 94.8% 88.7% 17.75 89.6% 89.6% 46.18 

Methods that fuse 
multiple indicators 

CIV-MST_CL1 91.3% 23.8% 10.3 96.5% 24.3% 15.72 
CIV-MST_CL1_CL2 93.1% 90.4% 9.98 81.8% 93.1% 14.36 



In the fusion method group, the CIV-MST_CL1 has a higher recall 
than that of both the CIV and MST_CL1 method. However, the 
method’s precision remains unsatisfying. This is because the fusion 
process enhances the detection confidence when both the CIV and 
the MST_CL1 method correctly detects the same type activity (i.e. 
parking/unparking) with a low confidence and thus helps improve 
the recall. However, when both the CIV and the MST_CL1 method 
mistakenly detect the same type activity with a low confidence, the 
fusion also boosts the confidence, and as a result the precision of the 
CIV-MST_CL1 method may be lower than the largest precision of 
the constituting methods.  

As the integration of the CIV-MST_CL1 method and the MST_CL2 
method, the CIV-MST_CL1_CL2 method inherits all the merits: it 
has a higher precision than both its constituting methods; it has a 
fairly high recall while keeps a small delay.  

4.2.2 Energy Consumption 
We employ PowerTutor [24] to measure the power consumption. 
For the purpose of localization, GPS is enabled when UPDetector 
is running. But it is in the stand-by mode and consumes little energy 
(about 0.8 mw) during most of time. GPS only enters the energy-
hungry searching mode (about 220 mw) once for each 
parking/unparking activity. Since there are at most a few 
parking/unparking activities during a day, the power consumption 
for localization is negligible.  

Most power consumption of the App attributes to CPU usage caused 
by the computation during the fusion of periodical vectors. When 
UPDetector (running the CIV-MST_CL1_CL2 method) is the only 
App running and phone activities (such as call, sms) are avoided, 
the corresponding battery life is about 20.3 hours. The battery life 
with no app running and no phone activities is around 25 hours. That 
is, UPDetector costs 4.7 hours of the battery life. It is possible to 
further reduce this cost by decreasing the output frequency of the 
periodical indicators such as the CIV, and by special hardware [4]. 

5 Related Work 
5.1 Parking Spaces Detection 
In the past, on street parking slot detection is usually performed by 
sensors embedded in the pavement, e.g. the SFPark project, or in 
vehicles [7]. However, these efforts require a significant investment 
and are too expensive to fully cover a large city. Given the 
proliferation of mobile devices, smartphone applications such as 
ParkMobile and PaybyPhone, that allow drivers to pay for parking 
by mobile phones, are emerging. Such App’s can be used by our 
method as an indicator for parking. [10] proposes a novel method 
which leverages WiFi beacons in urban environments to detect 
unparking. This method can be integrated into our work as an 
indicator for unparking activities. This method by itself is not 
always applicable since WiFi signature works only when the 
parking location is covered by multiple WiFi access points.  

5.2 Activity Recognition 
There have been works on detecting motion activities based on 
readings from sensors in smartphones. Generally, a motion activity 
detection algorithm is a classifier which reads raw sensor data (e.g. 
from GPS [2, 19, 25], from accelerometer [3, 22], from both [15], 
or from WiFi/GSM [9]), processes it to extract features, and then 
classifies and outputs the motion activity such as still, walking, 
running. These existing works are not motivated by detection of 
parking/unparking activities and thus bear the following problems 
when applied to our problem directly: (i) some of them use GPS 
heavily and thus are not applicable to our energy-constrained 
scenario; (ii) many works that use accelerometer to classify 
everyday human activities do not include driving as an activity; and 
they often assume that the accelerometer is placed on a fixed 
position with the user. Furthermore, as our study demonstrates, the 
motion state transition method by itself is not a reliable indicator for 
parking/unparking.  

5.3 Classifier Fusion  
In [21], the authors survey existing methods of combing multiple 
classifiers. These methods include i) ensemble methods that 
combine multiple homogenous classifiers (i.e. classifiers that are 
learned using the same set of features and the same classification 
algorithm), such as Bagging and Boosting; and ii) non-ensemble 
methods that combine heterogeneous classifiers, such as the 
majority voting (e.g. voting based on either the number of each class 
or the aggregated confidence in each class). We apply the ensemble 
methods, i.e. the Boosting method via Weka, to implement 
individual indicators such as MST. But the ensemble methods do not 
handle the asynchronous data problem. That is, in our application 
scenario, different indicators output vectors of different feature sets 
at different frequencies. Additionally, we aim to save energy, a 
consideration that is missing in prior work on classifier fusion. Cost-
sensitive boosting [6] methods may be applicable, but it is not clear 
how to incorporate energy consumption into cost functions. As 
pointed out by the authors of [21], none of the non-ensemble 
methods are shown to be superior to others, neither theoretically nor 
empirically. Our proposed fusion method can be considered a non-
ensemble method that is motivated by and designed for the 
unparking/parking detection application, and potentially applied to 
other applications with the asynchronous data problem.  

6 Conclusion and Future Work 
We presented the design and implementation of a parking/unparking 
activities detection system called UPDetector. We described several 
indicators used by UPDetector, and their corresponding features. 
UPDetector uses a probabilistic fusion method which combines 
features output by multiple indicators to derive parking/unparking 
activity detection results. We described this method in the paper. 
We evaluated the UPDetector prototype via experiments, and 
demonstrated its effectiveness and energy consumption. 

Using the implemented Bluetooth indicator, the current App we 
implemented has a certain capability of distinguishing a driver from 
a passenger. This capability can be further enhanced via 



incorporating other indicators, e.g. the pay-at-street-parking box 
indicator and the parking-payment-mobile-App indicator listed in 
Table 2. In addition, acoustic indicators can be used to distinguish 
buses from private cars.  

Currently the probabilities ’s are estimated using limited 
experimental data collected by ourselves. In the future, via the 
means of gamification or socialization, crowdsourcing may help 
gather more data and thus provide a more precise estimation of those 
probabilities. 
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