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Abstract
Timetable regularity, that is, equability of headways, is an important measure for
service quality in high frequency public transit systems, assuring an evenly dis-
tributed passenger load as well as improving product attractiveness. However, to be
feasible during daily operation a timetable may also have to adhere to other plan-
ning requirements, such as departure time coordination with other service providers
or deliberately short headways to reduce the passenger load of follow-up vehicles.
In this article, a disjunctive program formulation combining aspects of two previ-
ous optimization models is proposed, to generate regular public transit timetables
adhering to planning requirements. The modeled requirements not only allow for
the consideration of feasibility constraints from daily operations, but also for the
consideration of simultaneous departures for transfer connections, an objective tra-
ditionally opposed to regularity. To show its applicability the approach is applied to
two models of artificial transit networks as well as to models of the public transit
network of Cologne, Germany. The results show that the proposed formulation can
be used to generate timetables for network instances of realistic size in acceptable
time. For networks consisting of multiple connected components it is shown that a
decomposition approach can significantly reduce run times.
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1 I N T R O D U C T I O N
Timetable generation is a complex task and a well-known optimization problem (see [8]). It can be subject to different objectives,
ranging from achieving good transfer connections, to equidistant headways, to robustness in general.

Service regularity is a frequently used objective in timetable generation (e.g., see [1, 11, 13, 14, 19–22]). It is a measure
of the equability of headways and can be used for static evaluation of a timetable during the planning phase as well as for
dynamic assessment of operational performance. As shown by van Ort and van Nes [22], a timetable with high regularity during
daily operation results in a more even distribution of passengers across vehicles, lowering spikes in passenger load and making
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the transit system more attractive. Ullrich et al. [21] showed that in systems where vehicles of different lines share common
resources with limited capacity (i.e., most tram systems), regularity can also be used as a measure for the capability of a timetable
to contain consequences of small delays, subsequently heightening the overall punctuality of the system.

Another frequently used objective for timetable generation is synchronization (e.g., see [6, 10, 13, 14, 16, 24]), which is a
measure of the number of (almost) simultaneous vehicle departures/arrivals and as such is opposed to regularity. Timetables
with a high synchronization help to assure attractive transfer connections for passengers by minimizing waiting time, which
is especially important in transit systems with low service frequencies where passengers otherwise may need to wait for a
prolonged time.

A third frequently used objective is robustness (e.g., see [2, 3, 12, 15, 17, 25]), which is a universal measure of the capability
of a system to withstand dynamically occurring disturbances without changes to its initial stable structure. Because of the
generality of this objective, different interpretations can be employed when generating timetables. It is therefore necessary to
specify precisely what type of disturbance is to be addressed when optimizing for robustness. For example, a timetable with
high service regularity can raise robustness against small disturbances in transit systems where vehicles of different lines share
common resources with limited capacity. In contrast, a timetable with buffer times between the planned arrival and departure
times of vehicles can raise the robustness of transfer connections by allowing punctual or early vehicles to wait on feeder
vehicles.

However, to be feasible for daily operation a timetable may also have to adhere to other planning requirements: for exam-
ple, specific departure sequences to accommodate frequent transfer connections or deliberately short headways to reduce the
passenger load of follow-up vehicles. A sizable portion of published optimization approaches for timetable generation seems
to ignore such planning requirements and the resulting timetables subsequently may need to be further modified by hand to be
feasible during daily operations.

In this article, a disjunctive program formulation combining aspects of two previous optimization models is proposed, to
generate regular timetables for (multi modal) public transit systems adhering to planning requirements. The modeled require-
ments not only allow for the consideration of feasibility constraints from daily operations, but also for the consideration of
simultaneous departures for transfer connections, an objective traditionally opposed to regularity. To show its applicability the
approach is applied to two models of artificial transit networks as well as to models of the public transit network of Cologne,
Germany. For networks consisting of multiple connected components it is shown that a decomposition approach can significantly
reduce run times.

The remainder of this article is organized as follows: Section 2 gives a brief overview of related research. Section 3 deals
with the problem formulation, introduces the basic mixed integer program to generate regular timetables, and an extension of
this model to incorporate planning requirements. In Section 4 the applicability of the model is shown, before Section 5 concludes
the article with a summary of the results and some proposals for further research directions.

2 R E L A T E D R E S E A R C H

A multitude of different optimization approaches for timetable generation exist, which can be roughly distinguished by the level
of abstraction of the optimization model, the applied solution method, the utilized (combination) of objectives, and the structural
characteristics of the generated timetable (for a general overview see [8], for more recent overviews about timetabling problems
and their applicability see [4, 5]).

A fundamental optimization approach was introduced by Ceder et al. [6] and later extended by Eranki [10]. It enables the
generation of aperiodic timetables with maximum synchronization at dedicated transfer stops while simultaneously adhering to
given minimum and maximum headways for vehicles of the same line. The model is based on a graph representation of the transit
network with reduced sets of nodes and edges, that is, it contains only nodes and edges associated with previously identified
transfer stops. Ceder et al. then develop a mixed integer linear program (MILP) to maximize the number of simultaneous
arrivals at the nodes of the graph. To solve the MILP the authors develop a constructive algorithm, which first identifies the
most promising node at any given moment and then tries to schedule as many simultaneous arrivals there as possible. If no
more (synchronous) arrivals can be scheduled, the next promising node is identified, and the process repeats. Ceder et al. show
the correctness and applicability of their approach by applying it to models of artificial transit networks as well as to a model
based on a part of the bus network of Israel.

More recent approaches for the generation of synchronous timetables are described by Saharidis et al. [16] and Wu et
al. [24]. Saharidis et al. propose a MILP with several extensions to generate bus timetables, which minimize cost associated
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with passenger waiting time at transfer stops and also take phases with high passenger demand into account. They show the
applicability of their model by using CPLEX to generate timetables for the bus network of the Greek island of Crete and
comparing the simulated waiting times with the observed waiting times.

Wu et al. also develop a model for the minimization of passenger waiting times at transfer stops. But unlike Ceder et al.
and Saharidis et al. they create periodic timetables and assume stochastic driving and waiting times. Additionally, Wu et al.
differentiate between the waiting time of passengers newly boarding a vehicle at a transfer stop, the waiting time of passengers
transferring from one vehicle to another at a transfer stop, and the waiting time of passengers just passing through a transfer stop
without changing vehicles. To mitigate the randomness of travel times they allocate buffer times to vehicle departures. To solve
their model Wu et al. develop a Genetic Algorithm (see [9]) whose probabilistic search strategy they replace with a simple local
search strategy to assure a quick and reliant convergence. They demonstrate the performance and applicability of their approach
by generating timetables for randomly generated network instances and comparing the waiting times resulting from timetables
generated using their approach with waiting times of timetables generated under the assumption of deterministic driving times.
The results show that the usage of stochastic driving times during optimization results in timetables which are better suited to
conditions found during daily operations: They show a reduction in average waiting time for newly boarding passengers as well
as in average waiting time for passengers transferring between vehicles, while raising the average waiting time for passengers
just passing the transfer stop.

Optimization models to generate regular timetables are for example proposed by Genç [11], Bampas et al. [1] and Ullrich
et al. [19–21]. Genç develops an integer linear programming formulation to generate periodic timetables with variable basic
intervals, maximizing the minimum headway between consecutive departures at stops shared by multiple lines. This results in
timetables which distribute all planned departures as equidistantly in their common basic interval as possible, thus raising the
robustness of the system against small disturbances. Genç solves his model using a self-developed Branch-and-Bound solver
(see [7]) and applies it to the generation of timetables for the tram network of Cologne, Germany. To assess the performance of
his solver he compares it with CPLEX. The results show that the Branch-and-Bound solver quickly generates good solutions,
but with increasing run time CPLEX is able to find better solutions. Furthermore, Genç shows that the optimization problem of
generating timetables with maximum service regularity can be traced back to the edge coloring problem, and thus is an NP-hard
optimization problem.

Bampas et al. [1] develop exact and heuristic methods to generate periodic regular timetables for special cases of the
optimization problem posed by Genç, that is, they generate timetables with a common basic interval for special network
structures, like chains, spiders, rings, and trees. As Genç, Bampas et al. show that the underlying optimization problem can be
traced back to the edge coloring problem of graph theory and prove that the generation of maximum regularity timetables with
common basic interval is NP-hard for ring and tree networks. The authors develop exact algorithms for chain, star, and spider
networks as well as heuristic algorithms to approximate the optimal solutions for ring and tree networks.

Ullrich et al. [21] also solve a special case of the optimization problem formulated by Genç, addressing the generation of
regular, periodic timetables with a common basic interval. They extend the model with the possibility to incorporate transit
planning requirements (e.g., guaranteed transfer connections, amplifier lines serving only the city centers, coordination with
intercity rail traffic) during optimization to assure the applicability of the resulting timetables during daily operation. To solve
their model, the authors develop a Branch-and-Bound solver, which is preceded by a Genetic Algorithm supplying initial
upper bounds to kick start the solver. Ullrich et al. apply their approach to several models of the tram networks of Cologne,
Germany and Montpellier, France and show that the resulting timetables raise the robustness against small disturbances, while
simultaneously respecting formulated planning requirements.

A model combining regularity and synchronization is proposed by Ibarra-Rojas and Rios-Solis [14] and extended by Ibarra-
Rojas et al. [13]. In [14], they develop an integer programming formulation to generate timetables, which maximize the number of
synchronous departures to optimize passenger transfers, while also targeting regular departure times to avoid vehicle bunching.
To solve the problem, they develop a multi-start iterated local search algorithm and apply it to different network models based
on the bus network of Monterrey, Mexico. They compare timetables generated by their approach with timetables obtained
using CPLEX and find that their algorithm generates good solutions very quickly, while CPLEX does not solve to optimality
in acceptable time.

In [13], Ibarra-Rojas et al. extend their model with the possibility of considering multiperiod synchronization, that is,
synchronization between vehicles departing in different planning periods of the operational day. To solve this problem Ibarra-
Rojas et al. define several different neighborhood functions to search the solution space as well as different heuristic approaches
using these neighborhoods to approximate solutions for their problem. They apply the resulting approaches to models of different
artificial bus networks as well as to a model based on part of the bus network of Monterrey, Mexico and again compare the
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obtained solution with solutions computed using CPLEX. Their results show that their heuristics can compute good solutions
very quickly and that they achieve a higher number of synchronous departures than approaches that merge separately optimized
planning periods.

An approach for the generation of robust timetables is for example described by Bešinović et al. [2] and Goverde et al. [12].
Bešinović et al. describe a hierarchical two-level framework for the generation of robust railway timetables, which combines a
macroscopic and a microscopic model in an iterative process. The macroscopic model generates timetables with minimal travel
times and maximal robustness by solving an integer linear program for a reduced railway network (i.e., only locations that
allow interactions between trains are considered) using a randomized multi-start greedy heuristic and evaluating them in regard
to their ability to absorb delays via different scenarios with randomly generated delays. The resulting timetables are fed to the
microscopic model, which represents the network in more detail, that is, it considers all locations where section attributes (e.g.,
speed limit, gradient, or curvature radius) change. The model is used to calculate running, blocking, and minimum headway times
and to evaluate the timetables for potential train conflicts and infrastructure occupation violations. Based on these evaluations
the constraints of the macroscopic model may be updated and a new iteration may be started. This process is repeated until a
robust, stable, and conflict-free timetable is found.

The model is extended with a third level by Goverde et al. [12]: a mesoscopic model for fine-tuning train trajectories on
corridors between the macroscopic nodes of the network, in order to optimize energy-efficiency. After the iterations between
the macroscopic and microscopic models are finished, the timetable is given to the mesoscopic model, which uses a dynamic
programming approach to optimize the departure and arrival times at intermediate stops on corridors in order to lower the energy
consumption of trains while travelling on connecting sections. Both Bešinović et al. and Goverde et al. apply their framework
to a model of the Dutch railway network between Utrecht, Eindhoven, Tilburg, and Nijmegen. Their results show that their
approach generates conflict-free timetables, which are more robust and energy efficient than the currently employed timetable.

In the remainder of this article, aspects from the models from Genç and Ullrich et al. will be combined in a new model
to generate periodic regular timetables adhering to planning requirements for (multi modal) public transit systems. Thus, the
resulting timetables should be robust against small, inevitable delays, while at the same time considering feasibility constraints
arising from daily operations, for example, simultaneous departures for transfer connections.

3 G E N E R A T I N G R E G U L A R T I M E T A B L E S A D H E R I N G T O P L A N N I N G
R E Q U I R E M E N T S

In the following the MILP first described by Genç [11] will be extended with the capability to incorporate planning requirements,
following the approach described by Ullrich et al. [19–21]. Therefore, the model by Genç, which up to now was only published in
his German PhD thesis, will first be introduced in summary before the extensions for the incorporation of planning requirements
are described.

3.1 Modeling regularity
To generate regular timetables, the transit network is modeled as a network N (S, C, t, L, T) with a set of
stops S = {s1, . . . , sn}, a set of connections C = {c1, . . . , cv} ⊆ S × S with travel times t : C →
N0 (Here N0 denotes the set of natural numbers, including zero.), and a set of lines L = {l1, . . . , lm}. A line li =(
si1, si2, . . . , sik(i)

)
is a simple directed path in the directed graph G = (S, C) with an interval of potential (periodic) departure

times Ti for every line li from the set of all basic intervals T = {T1, . . . , Tm}.
For every line li the departure time at its first stop si1 is defined by λi ∈ NTi = {0, . . . , Ti − 1}. A timetable is a vector

λ = (λ1, λ2, . . . , λm) from the set of all timetables Λ = NT1 × NT2 × · · · × NTm , with one entry for every line. Because
only periodic timetables with departures at full minutes are considered the sets of potential departure times can be limited by
NTi = {0, . . . , Ti − 1} and the departure times at the starting stops can be limited as shown in Equation 1.

0 ≤ λi ≤ Ti − 1. (1)

Assuming fixed and timetable independent driving times between consecutive stops, the departure times at all stops sip ∈ S (li)

served by line li can be calculated by adding up λi and the sum of the travel times for the stops preceding sip (see Equation 2).
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a
(
sip, li, λ

)
:= λi +

p−1∑
k=1

t (sik , sik+1) , 1 ≤ p ≤ ik (i) . (2)

Under this assumption, the departure times at any given stop s are only dependent on the departure times at the starting stops

and can also be calculated using the zero vector
−→
0 , as shown in Equation 3.

a (s, li, λ) = λi + a
(

s, li,
−→
0
)

. (3)

If it is clear to which timetable a departure time belongs the notation as
i is used instead of a (s, li, λ). Dwell and arrival times

are not explicitly modeled in Genç’ approach, because as is customary for published public transit timetables in Germany, dwell
times are included in the planned travel times.

Before formulating the optimization problem different headway measures have to be defined.

Definition 1 (Headway between two lines at a stop, see [11]). Let s ∈ S be a stop of the network served by lines
li and lj. Further let λ be the timetable under consideration and let xs

ij = ∣∣as
i − as

j

∣∣mod gcd
(
Ti, Tj

)
be the absolute

difference between the departure times as
i and as

j , with gcd
(
Ti, Tj

)
denominating the greatest common divisor

of the basic intervals of li and lj. Then the headway δ
(
s, li, lj, λ

)
between li and lj at s under timetable λ can be

calculated as in Equation 4, as shown by Vince [23]:

δ
(
s, li, lj, λ

)
:= min

{
xs

ij, gcd
(
Ti, Tj

)− xs
ij

}
. (4)

In the best possible case, the departure times of two lines with differing basic intervals can be arranged
equidistantly in the interval defined by the greatest common divisor of their corresponding basic intervals. Thus,
the headway can be bound as shown in Equation 5.

δ
(
s, li, lj, λ

) ≤
⌊

gcd
(
Ti, Tj

)
2

⌋
. (5)

Definition 2 (Minimum headway at a stop, see [11]). Let s ∈ S be a stop of the network and let λ be the timetable
under consideration. The minimum headway δ (s, λ) at s under λ is the minimum of all headways between all pairs
of lines from L (s), the set of lines serving s. It is calculated as shown by Equation 6.

δ (s, λ) :=
⎧⎨
⎩

min
li ,lj∈L(s),li �=lj

δ
(
s, li, lj, λ

)
, |L (s)| > 1

TL(s), |L (s)| = 1
(6)

As a result of Equation 5, an upper bound δ (s) for the headway at stop s can be determined by calculating the
minimum of all possible equidistant departure distributions (see Equation 7).

δ (s) =
⌊

min
li ,lj∈L(s),li �=lj

gcd
(
Ti, Tj

)
2

⌋
, L (s) ≥ 2. (7)

The upper bound of the minimum headway depends only on the basic intervals of the departing lines and is
thus independent of a timetable.

Definition 3 (Headway of a timetable, see [11]). Let λ be the timetable for a given network. The headway δ (λ)

of this timetable is the minimum of all headways at the stops s ∈ S of the network and is calculated as shown in
Equation 8.

δ (λ) := min
s∈S

δ (s, λ) . (8)
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Definition 4 (Headway sum of a timetable, see [11]). Let λ be the timetable for a given network. The headway
sum δΣ (λ) is the sum of all headways at the stops s ∈ S of the network (see Equation 9).

δΣ (λ) :=
∑
s∈S

δ (s, λ) . (9)

An upper bound δΣ for the headway sum can be calculated by adding up the upper bounds for all stops of the
network (see Equation 10).

δΣ =
∑
s∈S

δ (s) . (10)

With these headway measures the optimization problem to generate regular periodic timetables can be defined.

Definition 5 (Regular periodic timetabling problem, see [11]). Let N (S, C, t, L, T) be a network. Find an opti-
mum timetable λ∗ ∈ Λ with δΣ (λ∗) = δ∗

Σ, where δ∗
Σ is the optimum headway sum defined as shown in Equation 11.

δ∗
Σ := max

λ∈Λ:δ(λ)=δ∗
δΣ (λ) . (11)

Here δ∗ is the optimum timetable headway over all timetables λ ∈ Λ (see Equation 12).

δ∗ := max
λ∈Λ

δ (λ) . (12)

Timetables solely satisfying Equation 12 would only achieve the best possible headway at highly frequented
stops, while stops with lower frequencies would be neglected. Timetables satisfying Equation 11 on the other
hand, not only achieve the best possible headway at highly frequented stops, but also consider the other stops of
the network.

The following MILP, introducted by Genç [11], solves the regular periodic timetabling problem:

max
λ∈Λ

δΣ ∗ δ (λ) + δΣ (λ) (13)

s.t.

as
i = λi + a

(
s, li,

−→
0
)

∀s ∈ S, li ∈ L (s) (14)

xs
ij = as

i − as
j − zs

ij ∗ gcd
(
Ti, Tj

) ∀s ∈ S, li, lj ∈ L (s) , li �= lj (15)

0 ≤ xs
ij ≤ gcd

(
Ti, Tj

)− 1 ∀s ∈ S, li, lj ∈ L (s) , li �= lj (16)

δ
(
s, li, lj, λ

) ≤ xs
ij ∀s ∈ S, li, lj ∈ L (s) (17)

δ
(
s, li, ljλ

) ≤ gcd
(
Ti, Tj

)− xs
ij ∀s ∈ S, li, lj ∈ L (s) (18)

δ (s, λ) ≤ δ
(
s, li, lj

) ∀s ∈ S, li, lj ∈ L (s) (19)

1 ≤ δ
(
s, li, lj, λ

) ≤
⌊

gcd
(
Ti, Tj

)
2

⌋
∀s ∈ S, li, lj ∈ L (s) (20)

1 ≤ δ (λ) ≤ δ (s, λ) ∀s ∈ S (21)

1 ≤ δ (s, λ) ≤ δ (s) ∀s ∈ S (22)

0 ≤ λi ≤ Ti − 1 ∀i ∈ L (23)

xs
ij, λi, ∈ N0 (24)

δ
(
s, li, lj, λ

)
, δ (s, λ) , δ (λ) ∈ N (25)

zs
i ∈ Z (26)
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Objective function (13) maximizes not only the headway sum but also the timetable headway, making sure
every solution satisfies both Equations 11 and 12 from Definition 5. The timetable headway is weighted by the upper
bound of the headway sum δΣ to assure a balanced consideration of both headway measures during optimization.

Constraint (14) defines the departure times for every line at every stop, which is used by constraint (15) to
calculate the distance between pairs of departing lines. Note that the equation used in constraint (15) differs from
the equation used in Definition 1: Integer variables zs

ij are introduced to replace the absolute value and modulo
operators. Both formulations are equivalent (as shown by Genç [11]). Constraint (16) enforces the bounds for the
distance between departure times. Constraints (17) and (18) make sure line headway Equation 4 is adhered to,
while constraint (19) assures the same for stop headway Equation 6. Constraints (20) to (22) enforce the headway
bounds. All headways have to be at least 1, to assure that no two vehicles depart from the same stop simultaneously.
The timetable thus is conflict-free. Should simultaneous departures be permitted, the constraints can be modified
accordingly. Constraint (23) assures that the departure times of all lines stay within their corresponding basic
interval. Lastly, constraints (24) to (26) define the domains of all variables.

As can be seen, in order to solve this optimization problem all stops and all possible line pairs at the stops have
to be examined, resulting in a large number of variables and inequalities. This number can be reduced substantially
using equivalence relations on the set of stops as well as on the edge set of the multi-line conflict graph.

Definition 6 (Multi-line conflict graph, see [11]). Given a network N (S, C, t, L, T) the graph MLCG (N) =
(L, M) defines the multi-line conflict graph. It has a vertex for every line li ∈ L and edges

(
s, li, lj

) ∈ M between
the vertices of li and lj, if and only if both lines serve stop s, that is,

(
s, li, lj

) ∈ M ⇔ s ∈ S (li) ∩ S
(
lj

)
.

Given the multi-line conflict graph an alternative headway measure can be defined, which will be used to define
the equivalence relation on the edges of the multi-line conflict graph.

Definition 7 (Line conflict headway, see [11]). Let N (S, C, t, L, T) be a network and let MLCG (N) = (L, M)

be the multi-line conflict graph for this network. The headway δ (m, λ) of a conflict m = (
s, li, lj

) ∈ M is the
headway between the conflicting lines li, lj at stop s and defined as δ (m, λ) := δ

(
s, li, lj

)
.

As shown in Equation 27, this headway measure can be used to define an alternative way to calculate the
headway of a timetable λ instead of Equation 8.

δ (λ) = min
m∈M

δ (m, λ) . (27)

Definition 8 (Equivalence relation on the edges of the multi-line conflict graph, see [11]). Let F
(
si, sj, l

)
be the

travel time from stop si to stop sj of line l and let M be the edge set of the multi-line conflict graph of the
corresponding network. Define a relation RM on M as in Equation 28:

m1 = (s1, l1, l2) ∼RM m2 = (s2, l3, l4)

↔ {l1, l2} = {l3, l4} ∧ F (s1, s2, l1) = F (s1, s2, l2) . (28)

Then the headways for all line conflicts m1, m2 ∈ M for which m1∼RM m2 holds are equal, that is, ∀λ ∈ Λ :
δ (m1, λ) = δ (m2, λ).

Let M0 ⊆ M be the set of equivalent class representatives of M. Then for any given timetable λ of a network
Equation 29 holds.

∀λ ∈ Λ : min
m∈M

δ (m, λ) = min
m∈M0

δ (m, λ) . (29)

As a result, it is sufficient to only examine the set of representatives M0 when calculating the headway of a
timetable.

To further reduce the number of variables and inequalities, another equivalence relation can be defined on the
set of stops.
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F I G U R E 1 Example of stop reduction for two lines serving four common stops. Stops s4, s5, and s6 can be represented by stop s3. The

equivalence class thus has cardinality four

Definition 9 (Equivalence relation on the set of stops, see [11]). Define a relation RΣ on the set of stops S of a
given network as follows:

s1∼RΣ
s2 ⇔ L (s1) = L (s2) ∧ ∃k ∈ Z∀l ∈ L (s1) : F (s1, s2, l) = k. (30)

Under Equation 30 two stops si, sj ∈ S are equivalent to one another, if and only if both are served by the
same lines and the travel time between si, sj is equal for all lines. Because travel times are assumed to be fixed it
is sufficient to only consider the first common stop when calculating the headway in this case and the network can
be reduced as shown in Figure 1.

Let SΣ ⊆ S be the set of representatives of the factor set S/RΣ. The headway sum δΣ (λ) for a given timetable
λ can be calculated using the factor set and the cardinalities of the equivalence classes as shown in Equation 31.

∀λ ∈ Λ : δΣ (λ) =
∑
s∈S

δ (s, λ) =
∑
s∈SΣ

∣∣[s]RΣ

∣∣ ∗ δ (s, λ) . (31)

The number of stops that need to be examined to calculate the headway sum can be reduced further, because
the headway at stops which are only served by one line is constant as per Definition 2. Let S>1 ⊆ S be the set of
stops served by more than one line and let S=1 ⊆ S be the set of stops served by exactly one line. Then Equation
31 can be rewritten as follows:

∀λ ∈ Λ : δΣ (λ) =
∑
s∈S

δ (s, λ) =
∑

s∈SΣ,>1

∣∣[s]RΣ

∣∣ ∗ δ (s, λ) +
∑

s∈S=1

TL(s). (32)

Because the term
∑

s∈S=1
TL(s) is constant and independent of the timetable under consideration, it does not

have to be examined during the optimization run. Instead it can be added to the objective function value afterwards.
The updated MILP to generate regular periodic timetables, also introduced by Genç [11], is shown below.

max
λ∈Λ

δΣ ∗ δ (λ) +
∑

s∈SΣ,>1

∣∣[s]RΣ

∣∣ ∗ δ (s, λ) (33)

s.t.

as
i = λi + a

(
s, li,

−→
0
)

∀m = (
s, li, lj

) ∈ M0 (34)

xs
ij = as

i − as
j − zs

ij ∗ gcd
(
Ti, Tj

) ∀m = (
s, li, lj

) ∈ M0 (35)

0 ≤ xs
ij ≤ gcd

(
Ti, Tj

)− 1 ∀m = (
s, li, lj

) ∈ M0 (36)

δ (m, λ) ≤ xs
ij ∀m = (

s, li, lj
) ∈ M0 (37)

δ (m, λ) ≤ gcd
(
Ti, Tj

)− xs
ij ∀m = (

s, li, lj
) ∈ M0 (38)
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1 ≤ δ (m, λ) ≤
⌊

gcd
(
Ti, Tj

)
2

⌋
∀m = (

s, li, lj
) ∈ M0 (39)

δ (s, λ) ≤ δ (m, λ) ∀s ∈ SΣ,>1, ∀m ∈ M (s) (40)

1 ≤ δ (λ) ≤ δ (s, λ) ∀s ∈ SΣ,>1 (41)

1 ≤ δ (s, λ) ≤ δ (s) ∀s ∈ SΣ,>1 (42)

0 ≤ λi ≤ Ti − 1 ∀i ∈ L (43)

xs
ij, λi, ∈ N0 (44)

δ (m, λ) , δ (s, λ) , δ (λ) ∈ N (45)

zs
i ∈ Z (46)

The first term of the objective function (33) was not changed compared to objective function (13), the second
term was modified according to Equations 31 and 32. Constraints (34) to (46) have not changed in context compared
to constraints (14) to (26), but now use line conflicts and the reduced stop set instead of all stops and all lines.

3.2 Modeling planning requirements
While a timetable with optimum regularity can help to raise punctuality and product attractiveness as well as lower peaks in
passenger load (see [21, 22]), operational, political, or societal requirements may necessitate deviations from these objectives.
Operational requirements mainly concern technical and managerial feasibility constraints, for example, minimum headways
on bi-directional railway tracks to avoid collisions. Political and societal requirements on the other hand, describe additional
constraints brought forward by (potential) stakeholders, for example, the city council instructing the public transit provider to
implement a certain transfer connection to improve the public transit connectivity of some district.

Ullrich et al. [19, 21] identify five different types of planning requirements that should be considered during optimization:

• Departure time requirements: Define intervals of (in)admissible departure times for some line li ∈ L at a stop
s ∈ S (li). This type of requirement can for example be used to incorporate necessary coordination between
the departure times of public transit systems with already scheduled departure times of long distance transit
networks.

• Headway requirements: Define intervals of (in)admissible spacing between the departures of some line li ∈ L at
a stop si ∈ S (li) and some other line lj ∈ L, lj �= li at a stop sj ∈ S

(
lj
)
.

• Amplifier line requirements: Trips of a line li ∈ L should be scheduled to relieve trips of a line lj ∈ L, lj �= li in
areas with very high demand, by defining intervals of (in)admissible spacing between the departure times at the
beginning of a common network section. Typically, requirements of this type are found only when generating
timetables for (light-)rail systems.

• Bi-directional track requirements: Define intervals of (in)admissible spacing between the departure times at stops
at opposing sides of a bi-directional track to avoid collisions. As with amplifier line requirements, requirements
of this type are typically found only when generating timetables for (light-)rail systems.

• Transfer connection requirements: Define intervals of (in)admissible spacing between the departure times of
two lines li, lj ∈ L, li �= lj at a stop s ∈ S (li) ∩ S

(
lj
)
, for example, to allow passengers of vehicles of the first

departing line to transfer to vehicles of the following line.

As can be seen, except for requirements on departure times all requirement types deal with (in)admissible intervals for the
spacing between departure times. As a result, Ullrich [18] shows that (a combination of) the requirement types for departure
times and headways can be used to express all other requirement types, subsequently reducing the set of necessary requirement
types.

Furthermore, requirements usually can be categorized by a priority system. For example, while the fulfillment of one
requirement could be highly desirable, the fulfillment of another requirement might still make the timetable feasible but result
in a less desirable configuration.
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In order to extend the MILP formulated in Section 3.1 with the capability of incorporating prioritized planning requirements
the following formalization is employed: Every planning requirement ω in the set Ω of all planning requirements that should be
considered during optimization refers to at most two lines li, lj ∈ L, li �= lj and two stops si ∈ S (li) , sj ∈ S

(
lj
)
, defines exactly

one lower bound ť and one upper bound t̄ for the corresponding time interval, and holds exactly one priority value ρ from the
set of all potential priority values P = {HIGH , MEDIUM, LOW , PROHIBITED}. A priority value of HIGH implies a highly
desirable requirement, while a value of PROHIBITED signifies an undesirable configuration.

Based on this formalization three different planning requirement types are included into the optimization model, which
slightly deviate from the above-mentioned requirement types: departure time requirements, headway requirements, and transfer
connection requirements. They are formalized as follows:

Definition 10 (Departure time requirement). Let ΩD ∈ Ω be the set of all departure time requirements. A member
of this set is a 5-tuple ω = (

li, s, ť, t̄, ρ
) ∈ ΩD defining a lower bound ť ∈ NTi and an upper bound t̄ ∈ NTi with

ť ≤ t̄ as well as a priority value ρ ∈ P for the departure time as
i of line li ∈ L at stop s ∈ S (li) as expressed in

Equation 47.

ť ≤ as
i − zs

i ∗ Ti ≤ t̄, zs
i ∈ Z. (47)

Definition 11 (Headway requirement). Let ΩH ∈ Ω be the set of all headway requirements. A member of this
set is a 6-tuple ω = (

li, lj, s, ť, t̄, ρ
) ∈ ΩH defining a lower bound ť ∈ {

0, . . . , gcd
(
Ti, Tj

)}
and an upper bound

t̄ ∈ {0, . . . , gcd
(
Ti, Tj

)}
with ť ≤ t̄ as well as a priority value ρ ∈ P for the absolute departure time difference xs

ij
of lines li, lj ∈ L, i �= j at stop s ∈ S (li) ∩ S

(
lj
)

as expressed in Equation 48.

ť ≤ xs
ij ≤ t̄. (48)

Definition 12 (Transfer connection requirement). Let ΩC ∈ Ω be the set of all transfer connection requirements.
A member of this set is a 7-tuple ω = (

li, lj, s, r, ť, t̄, ρ
) ∈ ΩC defining a lower bound ť ∈ {0, . . . , gcd

(
Ti, Tj

)}
and

an upper bound t̄ ∈ {0, . . . , gcd
(
Ti, Tj

)}
with ť ≤ t̄ as well as a priority value ρ ∈ P for the absolute departure time

difference xsr
ij = as

i − ar
j − zsr

ij ∗ gcd
(
Ti, Tj

)
, zsr

ij ∈ Z of lines li, lj ∈ L, li �= lj at stops s ∈ S (li) , r ∈ S
(
lj
)

, s �= r as
expressed in Equation 49.

ť ≤ xsr
ij ≤ t̄. (49)

Definition 13 (Connected requirements). Let ωi = (
li, si, ťi, t̄i, ρi

)
, ωj = (

lj, sj, ťj, t̄j, ρj
) ∈ Ω be planning require-

ments of equal type. ωi and ωj are said to be connected, if they cover the same lines and the same stops, that is,
li = lj ∧ si = sj.

Connected requirements describe logical relationships between (in)admissible intervals on the value range
of the corresponding variables and should be considered together during optimization. As an example, let
ω1, ω2, ω3 be three connected departure time requirements, defined as follows: ω1 = (1, 1, 0, 2, HIGH), ω2 =
(1, 1, 3, 4, MEDIUM), and ω3 = (1, 1, 5, 9, PROHIBITED).

The requirements describe the following logical relationship between the (in)admissible intervals of the
corresponding variables:

((
0 ≤ a1

1 − z1
1 ∗ T1 ≤ 2

) ∨ (3 ≤ a1
1 − z1

1 ∗ T1 ≤ 4
)) ∨ ¬ (5 ≤ a1

1 − z1
1 ∗ T1 ≤ 9

)
These relationships should be represented in the optimization model. For this purpose, connected requirements

with priority values of HIGH , MEDIUM or LOW are joined using logical OR, while connected requirements with
a priority value of PROHIBITED are joined using logical AND. The resulting partial terms then are combined
using a logical OR. To identify connected requirements, the user defined planning requirements are scanned prior
to the optimization and their lines and stops are compared.

The above example also demonstrates that it is not strictly necessary to model requirements with a priority
value of PROHIBITED. Rather, it is intended to model situations in which planners do not have a clear priority,
but only the undesired conditions are known.
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To calculate how well a timetable adheres to a given planning requirement ω, its priority value ρω is associated
with a weight f : P → R and the optimization model is extended with a binary variable bω ∈ {0, 1} indicating
whether ω is adhered to or not. The overall adherence of a given timetable λ to a set of planning requirements Ω

can then be calculated as shown in Equation 50.

Φ (λ, Ω) :=
∑
ω∈Ω

bω ∗ f (ρω) . (50)

Equation 50 cannot simply be added to objective function (35), because their respective value ranges are not
comparable. Therefore, Equation 50 needs to be normalized. This is done by multiplying it by the ratio β between
an upper bound for the regularity value and an upper bound for the requirements adherence (see Equation 51).

β :=
δ ∗ δΣ +∑

s∈SΣ,>1

∣∣[s]RΣ

∣∣ ∗ δ (s)

|Ω| ∗ f (HIGH)
(51)

An upper bound for the regularity value can be calculated by inserting the respective upper bounds into the single
terms of objective function (33). An upper bound for the requirements adherence can be roughly approximated by
multiplying the number of constraints |Ω| with the user defined best weight f (HIGH).

The resulting disjunctive program is shown below. Its objective function combines the maximization of reg-
ularity with the maximization of normalized requirement adherence and allows one to control the importance of
those two factors using a weight 0 ≤ α ≤ 1.

max
λ∈Λ

(1 − α) ∗
⎛
⎝δ (λ) ∗ δΣ +

∑
s∈SΣ,>1

∣∣[s]RΣ

∣∣ ∗ δ (s, λ)

⎞
⎠+ α ∗ β ∗

(∑
ω∈Ω

bω ∗ f (ρω)

)
(52)

s.t.

as
i = λi + a

(
s, li,

−→
0
)

∀m = (
s, li, lj

) ∈ M0 (53)

xs
ij = as

i − as
j − zs

ij ∗ gcd
(
Ti, Tj

) ∀m = (
s, li, lj

) ∈ M0 (54)

0 ≤ xs
ij ≤ gcd

(
Ti, Tj

)− 1 ∀m = (
s, li, lj

) ∈ M0 (55)

δ (m, λ) ≤ xs
ij ∀m = (

s, li, lj
) ∈ M0 (56)

δ (m, λ) ≤ gcd
(
Ti, Tj

)− xs
ij ∀m = (

s, li, lj
) ∈ M0 (57)

1 ≤ δ (m, λ) ≤
⌊

gcd
(
Ti, Tj

)
2

⌋
∀m = (

s, li, lj
) ∈ M0 (58)

δ (s, λ) ≤ δ (m, λ) ∀s ∈ SΣ,>1, ∀m ∈ M (s) (59)

1 ≤ δ (λ) ≤ δ (s, λ) ∀s ∈ SΣ,>1 (60)

1 ≤ δ (s, λ) ≤ δ (s) ∀s ∈ SΣ,>1 (61)

0 ≤ λi ≤ Ti − 1 ∀i ∈ L (62)⎛
⎝ ∨

ω, ρω �=PROH .

ť ≤ as
i − zs

i ∗ Ti ≤ t̄

⎞
⎠ ∨( ∧

ω, ρω=PROH .

¬ (ť ≤ as
i − zs

i ∗ Ti ≤ t̄
)) ∀ω conn., ω ∈ ΩD (63)

bω =
{

1, ť ≤ as
i − zs

i ∗ Ti ≤ t̄
0, ¬ (ť ≤ as

i − zs
i ∗ Ti ≤ t̄

) ∀ω = (
li, s, ť, t̄, ρ

) ∈ ΩD, ρ �= PROH . (64)

bω =
{

1, ¬ (ť ≤ as
i − zs

i ∗ Ti ≤ t̄
)

0, ť ≤ as
i − zs

i ∗ Ti ≤ t̄
∀ω = (

li, s, ť, t̄, ρ
) ∈ ΩD, ρ = PROH . (65)
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⎛
⎝ ∨

ω,ρω�=PROH .

ť ≤ xs
ij ≤ t̄

⎞
⎠∨( ∧

ω,ρω=PROH .

¬ (ť ≤ xs
ij ≤ t̄

)) ∀ω conn., ω ∈ ΩH (66)

bω =
{

1, ť ≤ xs
ij ≤ t̄

0, ¬ (ť ≤ xs
ij ≤ t̄

) ∀ω = (
li, lj, s, ť, t̄, ρ

) ∈ Ω H , ρ �= PROH . (67)

bω =
{

1, ¬ (ť ≤ xs
ij ≤ t̄

)
0, ť ≤ xs

ij ≤ t̄
∀ω = (

li, lj, s, ť, t̄, ρ
) ∈ ΩH , ρ = PROH . (68)

xsr
ij = as

i − ar
j − zsr

ij ∗ gcd
(
Ti, Tj

) ∀ω = (
li, lj, s, r, ť, t̄, ρ

) ∈ ΩC (69)

0 ≤ xsr
ij ≤ gcd

(
Ti, Tj

)− 1 ∀ω = (
li, lj, s, r, ť, t̄, ρ

) ∈ ΩC (70)⎛
⎝ ∨

ω,ρω �=PROH .

ť ≤ xsr
ij ≤ t̄

⎞
⎠∨( ∧

ω, ρω=PROH .

¬ (ť ≤ xsr
ij ≤ t̄

)) ∀ω conn., ω ∈ ΩC (71)

bω =
{

1, ť ≤ xsr
ij ≤ t̄

0, ¬ (ť ≤ xsr
ij ≤ t̄

) ∀ω = (
li, lj, s, r, ť, t̄, ρ

) ∈ ΩC , ρ �= PROH .

(72)

bω =
{

1, ¬ (ť ≤ xsr
ij ≤ t̄

)
0, ť ≤ xsr

ij ≤ t̄
∀ω = (

li, lj, s, r, ť, t̄, ρ
) ∈ ΩC , ρ = PROH .

(73)

β =
δ ∗ δΣ +∑

s∈SΣ,>1

∣∣[s]RΣ

∣∣ ∗ δ (s)

|Ω| ∗ f (HIGH)
(74)

xs
ij, xsr

ij , λi, ∈ N0 (75)

δ (m, λ) , δ (s, λ) , δ (λ) ∈ N (76)

zs
i , zs

ij ∈ Z (77)

bω ∈ {0, 1} (78)

0 ≤ α ≤ 1 (79)

Constraints (53) to (62) handle arrival times, spacing between consecutive arrivals, headways, and departure
times at the lines’ first stops as seen before in Section 3.1 (see constraints (34) to (43)). Constraints (63) to (65)
make sure the arrival times adhere to the bounds defined by the given departure requirements, while constraints
(66) to (68) assure the same thing for the given headway requirements. Constraints (69) and (70) define the
variables and domains for the departure spacing between lines at separate stops as discussed in Definition 12,
while constraints (71) to (73) assure the respective variables adhere to the bounds specified by the given transfer
connection requirements. Lastly, constraint (74) defines the normalizing factor and constraints (75) to (79) establish
the domains of the variables.

3.3 Size of the optimization model
The size of the proposed optimization model depends on the number of line conflicts |M0|, the number of stops served by more
than one line

∣∣SΣ,>1

∣∣, the number of lines |L| and their basic intervals T , and the number of planning requirements |ΩD|, |ΩH |, and
|ΩC|. The optimization model for a given transit network contains at least 6∗|M0|+3∗∣∣SΣ,>1

∣∣+|L|+2∗|ΩD|+2∗|ΩH |+4∗|ΩC|+1
constraints and 5 ∗ |M0| + ∣∣SΣ,>1

∣∣ + |L| + 2 ∗ |ΩD| + |ΩH | + 4 ∗ |ΩC| + 1 variables. The solution space of the optimization
model for a given transit network contains

∏
l∈L Tl potential solutions in the worst case.

Because the solution space may be exponentially large in the size of the model and because of the NP-hardness (see e.g.,
[11], pp. 45–48) of the underlying optimization problem, the run time required to solve the proposed model to optimality for
network instances of realistic size can be quite high, as will be seen in the next Section. However, as shown by Genç [11] the
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T A B L E 1 Characteristics of the examined transit networks

Network |L| |M| |M0| |S| ∣
∣SΣ,>1

∣
∣

LCL 6 50 6 20 4

UCL 8 64 17 40 13

KVB-B 70 313 179 1242 126

KVB-BT 100 822 274 1770 180

run time can be reduced substantially, if the graph representing the transit network under consideration consists of multiple
connected components, that is, physically independent parts of the transit network. Because physically independent connected
components do not share any lines or stops, a simple decomposition approach can be utilized, that is, for every component an
individual timetable can be constructed by solving a reduced optimization model containing only the lines and stops belonging
to the specific component. Afterwards, the partial timetables can be consolidated into an overall timetable for the whole
network.

It should be noted that the decomposition approach cannot be utilized if lines and stops of different connected components
are linked via planning requirements (e.g., a line of component A has to depart after a line of component B). In this case,
while the connected components remain physically independent from each other, they are logically linked via the planning
requirement and subsequently need to be considered simultaneously during optimization.

4 E X P E R I M E N T S

To solve the disjunctive model a Java program was developed that reads all required data from a Microsoft Access database and
initializes the necessary CPLEX model using the IBM ILOG CPLEX 12.5 Java API. The disjunctive constraints are modeled,
as previously described, in the form of propositional clauses.

To validate the proposed model, 12-hour-timetables from 7 am to 7 pm for models of four transit networks with differing
sizes and characteristics (see Table 1) are generated using the self-developed Java application. The computer system used is an
AMD Athlon 64 X2 Dual Core processor with 2.10 GHz and 4 GB RAM. If planning requirements are included, the following
weights are associated with the priority values, based on an experimental sensitivity analysis: f (HIGH) = 1, f (MEDIUM) =
0.25, f (LOW) = 0.125, f (PROHIBITED) = 0.03125.

4.1 Experiments on models of artificial networks
In a first set of experiments the correctness of the optimization model and the permissibility of the generated timetables are
verified by applying it to models of two artificial networks, called Linear City Link (LCL) and Universal City Link (UCL).

4.1.1 Linear city link

LCL is an artificial network with a very simple structure, allowing for easy manual verification of the obtained results (see
Figure 2). Timetables with a common basic interval of 10 minutes are generated.

Without applying planning requirements an optimum regular timetable λ∗ for LCL can achieve a headway of δ (λ∗) = 3
minutes in the best case, arranging the departure times of lines 1-B01, 2-B01, 3-B01 and 1-B02, 2-B02, 3-B02 at their common

F I G U R E 2 Artificial transit network LCL
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F I G U R E 3 Time-distance diagram for an optimum timetable without planning requirements, LCL

stops in such a way that their headways correspond to a permutation of the tuple (3,3,4). The objective function of such a
timetable has the following upper bound:

(3 ∗ 78)︸ ︷︷ ︸
δ(λ∗)∗δΣ

+ (1 ∗ 5 + 1 ∗ 5 + 3 ∗ 8 + 3 ∗ 8)︸ ︷︷ ︸∑
s∈SΣ,>1

|[s]_RΣ|∗δ(s)

+ (10 + 10)︸ ︷︷ ︸∑
s∈S=1

δ(s)

= 312

The optimum timetable computed by our application achieves an objective function value of 310 and a timetable headway
of 3 minutes. The deviation of 1% between the computed objective function value and its upper bound can be explained by
examining the calculation of the upper bound for the stop headway in more detail: When calculating the upper bound for the
stop headway every stop is considered isolated. This has no consequences if the neighboring stops are served by the same lines,
keeping to the same headways. If this condition is not met, one of the stops will not be able to achieve its theoretically optimum
headway and subsequently the objective function value will not reach its upper bound. As an example, consider stops 2 and 3
of network LCL. At stop 2 only lines 1-B01 and 2-B01 depart, resulting in an upper bound for the stop headway of δ (2) = 5
minutes. At stop 3 line 3-B01 joins lines 1-B01 and 2-B01, thus the upper bound for the headway at this stop is δ (3) = 3
minutes. Because most stops (i.e., 2 to 10 and 20 to 13) of LCL are served by the same three lines the optimization will prioritize
achieving the best possible headway at these stops. Thus, it arranges the departures of lines 1-B01 and 2-B01 with a headway
of 4 minutes at stop 3, which subsequently results in a headway of 4 minutes at stop 2 instead of the theoretically optimum of
5 minutes. The same is true for lines 1-B02 and 2-B02 at stop 12.

To examine the impacts of planning requirements, two headway requirements ω1 = (1 − B01, 2 − B01, 2, 5, 5, HIGH) and
ω2 = (1 − B02, 2 − B02, 12, 5, 5, HIGH) are defined, enforcing the theoretically optimal headways of 5 minutes between lines
1-B01 and 2-B01 at stop 2 and lines 1-B02 and 2-B02 at stop 12, respectively. With a weight of α = 0.5 the optimization
generates a timetable with an objective function value of 0.5 ∗ 218 + 0.5 ∗ 146 ∗ 2 = 255 and a timetable headway of 2 minutes.
As expected, the introduction of the planning requirements results in a loss in regularity due to the nonoptimal distribution of
departure times at stops 3 to 10 and 13 to 20. Figures 3 and 4 depict the corresponding time-distance diagrams.

4.1.2 Universal city link

For a second set of experiments the artificial network UCL is employed (see Figure 5). Contrary to LCL it has a more realistic
(i.e., irregular) network structure and with circle lines 2-B01 and 2-B02 includes two special line structures. To verify the
correctness of the optimization model under varying conditions differing basic intervals for the different lines are employed:
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F I G U R E 4 Time-distance diagram for an optimum timetable with planning requirements enforcing 5-minute headways between lines

1-B01/2-B01 at stop 2 and lines 1-B02/2-B02 at stop 12, LCL

F I G U R E 5 Artificial transit network UCL
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T A B L E 2 Exemplary transfer connections between lines from one stop to another, UCL

From At To At Priority
No. line stop line stop HIGH MEDIUM LOW PROHIBITED
1 2-B01 1143 1-B01 1141 3 4 5 2 6 7 0 1 8 9

2 2-B01 1142 4-B01 1141 3 4 5 2 6 7 0 1 8 9

3 3-B01 1043 2-B01 1041 3 4 5 2 6 7 0 1 8 9

4 3-B02 1143 1-B01 1141 3 4 5 2 6 7 0 1 8 9

5 3-B02 1042 2-B01 1041 3 4 5 2 6 7 0 1 8 9

6 4-B01 1041 2-B02 1043 3 4 5 2 6 7 0 1 8 9

7 4-B02 1142 2-B01 1143 3 4 5 2 6 7 0 1 8 9

8 4-B02 1042 2-B02 1043 3 4 5 2 6 7 0 1 8 9

lines 1-B01, 1-B02, 3-B01, 3-B02, 4-B01, and 4-B02 receive a basic interval of 10 minutes, while lines 2-B01 and 2-B02 get a
basic interval of 20 minutes.

Without applying planning requirements an optimum regular timetable λ∗ for UCL can achieve a headway of δ (λ∗) = 3
minutes at best. The objective function value of such a timetable then has an upper bound of 848.

The optimum timetable computed using the optimization without considering planning requirements achieves an objec-
tive function value of 836 and a timetable headway of 3 minutes. Once again, the difference of 12 points (2%) between
the achieved objective function value and the upper bound can be attributed to the isolated examination of stops during the
calculation of the upper bounds. For example, stop 1141 has an upper bound for the stop headway of 5 minutes, but the opti-
mum timetable, which also considers departures at neighboring stops, can only achieve a headway of 4 minutes in the best
case.

To examine a more realistic scenario, eight exemplary transfer connections are modeled (see Table 2, columns 2 to 4).
The specific requirements defined should result in transfer connections with a low waiting time, but not so low that passengers

may narrowly miss their connection. Thus, transfer connections of 3–4 minutes are valued the most (see Table 2, column 5),
followed by transfer connections of 5 minutes (see Table 2, column 6). Transfer connections of 2 minutes as well as 6–7 minutes
are still tolerable (see Table 2, column 7), while transfer connections of 0–1 and 8–9 minutes have to be avoided (see Table 2,
column 8). This results in the 48 constraints visible in Table 2, that is, six connected requirements for each transfer connection
to be modeled.

With weight α = 0.5 the optimization computes an optimum timetable with an objective function value of 0.5 ∗ 600 + 0.5 ∗
16∗5.875 = 347 and a timetable headway of 2 minutes. As shown by Table 3, the optimization assigns highly prioritized values
for five of the eight defined transfer connections. Only the transfer connections from lines 2-B01 to 4-B01, 3-B02 to 1-B01, and
4-B01 to 2-B02 are assigned low priority values. Figure 6 and 7 depict time-distance diagrams for the network corridors between
stops 1031 to 1062 and 1061 to 1032 for an optimum timetable without planning requirements and an optimum timetable under
consideration of the transfer connection requirements from Table 2.

T A B L E 3 Achieved time intervals for connections between lines, UCL

No. From At To At Headway Priority
1 2-B01 1143 1-B01 1141 4 HIGH

2 2-B02 1142 4-B01 1141 2 LOW

3 3-B01 1043 2-B01 1041 3 HIGH

4 3-B02 1143 1-B01 1141 7 LOW

5 3-B02 1042 2-B01 1041 3 HIGH

6 4-B01 1041 2-B02 1043 2 LOW

7 4-B02 1142 2-B01 1143 3 HIGH

8 4-B02 1042 2-B02 1043 3 HIGH
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F I G U R E 6 Partial time-distance diagram for an optimum timetable without planning requirements, UCL

4.2 Experiments on Cologne’s bus network
To examine the efficiency of the proposed approach under realistic conditions the optimization is applied to a model based on
data of the bus network of Cologne from 2001, abbreviated KVB-B. The model consists of 70 lines servicing 1242 stops, which
are part of 615 stations. Timetables with a common basic interval of 10 minutes and no planning requirements are generated.

Under these conditions an optimum regular timetable λ∗ for KVB-B can at best achieve a headway of δ (λ∗) = 2 minutes
and an objective function value of 33 729. The optimum timetable computed by CPLEX achieves an objective function value
of 33 509 (a 1% deviation from the upper bound) with a headway of 2 minutes. Table 4 compares the number of stops with a
specific stop headway under the optimum timetable generated using the optimization with the maximum possible numbers if
all stops would assume their respective upper bound. Because of the isolated consideration of stops when calculating the upper

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4

St
op

Departure Time [Min.]

1-B01 2-B02 3-B01 4-B02

1-B02 2-B01 3-B02 4-B01

F I G U R E 7 Partial time-distance diagram for an optimum timetable with planning requirements as described in Table 2, UCL
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T A B L E 4 Number of stops with certain headways, KVB-B

Headway 1 2 3 4 5 6 7 8 9 10
Maximum number 0 13 19 0 178 0 0 0 0 1027

Optimum timetable 0 36 38 33 103 0 0 0 0 1027

bounds, the generated timetable deviates from the theoretically possible numbers. However, the optimization is able to reach
the upper bound for at least 116 (or 55%) of the 210 stops served by more than one line.

4.3 Experiments on Cologne’s bi-modal tram and bus network
In addition to the described bus network, the public transit network of Cologne also includes 30 tram lines servicing 528 tram
stops; the combined bi-modal network is abbreviated KVB-BT. It is not practicable to experimentally model transfer connections
for all of these stops, as detailed and privileged expert knowledge would be necessary for a meaningful representation of the
underlying political and economic intentions. During such a modeling process historical information on passenger trips would
have to be gathered and analyzed, for example, from origin–destination matrices, and in concert with political and economic
deliberations used to identify the most important stations to be outfitted with transfer connection requirements.

Even without available local expert knowledge, exemplary requirements for some of the most important transit hubs in the
Cologne network can be constructed. These include the three major bus and tram hubs Chorweiler, Ostheim, and Porz Markt.
Except for station Porz Markt, the three selected stations contain separated stops for each line. At Porz Markt, the tram lines
7-T01 and 8-T01, as well as 7-T02 and 8-T02, share common stops—however, as these lines share most parts of their routes,
and as lines 7-T01/02 have significantly longer routes, it can be assumed that lines 7-T01 and 7-T02 are more relevant regarding
transfer requirements.

Additionally, the three selected stations represent a cross section of possible combinations of line starts and ends: Chorweiler
station is the start and end station for tram lines 18-T01/02 and bus lines 126-B01/02, while also being serviced by bus lines
120-B01/02, 121-B01/02, and 125-B01/02; Ostheim station is the terminal station for bus lines 157-B01/02, and is additionally
serviced by tram lines 9-T10/02 and bus lines 152-B01/02; Porz Markt station is traversed by tram lines 7-T01/02, and is the
terminal station for tram lines 8-T01/02 and bus lines 152-B01/02, 154-B01/02, 160-B01/02, 161-B01/02, and 162-B01/02.

At least 25 planning requirements are necessary to represent the described transfer connections (see column “High” in
Table 5). Ideally, these requirements should enforce simultaneous departures for all participating lines. That is only possible at
Ostheim, though at Chorweiler and Porz Markt the arriving bus lines have both preceding and succeeding stops in common,
so that the optimizer cannot schedule simultaneous departures. Therefore, the requirements must be relaxed to allow for more
leeway. This is achieved by defining 34 additional medium to low priority requirements (see the corresponding columns in
Table 5). At Porz Markt and Ostheim station the requirements also enforce simultaneous departures for lines 7-T01/02 and
9-T01/02, respectively, to enable passengers to transfer to other lines.

Generating a 12-hour timetable with a global headway interval of 10 minutes adhering to these requirements yields an
optimum timetable with an objective function value of 19 411 = 0.5 ∗ 34 376 + 0.5 ∗ 4446 and a headway of 1 minute. For
comparison, ignoring the transfer requirements yields an optimum timetable with an objective function value of 45 026 and a
headway of 2 minutes. Fulfilling the requirements results in a reduction of regularity of about 23.7%.

The resulting departure times at the selected stations are shown in Table 6; the runtime for the generation of the optimum
timetable adhering to planning requirements is shown in Table 7.

4.4 Comparison and discussions
As discussed earlier, the efficiency of the proposed approach depends highly on the size and structure of the transit network
under consideration, as can be seen in Table 7. It shows average run times over 10 optimization runs for the four examined
transit networks, split into the three distinct phases of the optimization: preprocessing the network and constraint information
into a solvable CPLEX model, solving this model with CPLEX, and translating the results from CPLEX into a set of actual trips
with distinct starting times which can be stored in a database.

The time spent in the preprocessing phase increases with the number of stops and lines, because the identification of line
conflicts and equivalence classes gets more complex. The time spent in postprocessing increases with the number of lines as
well as the length of the planning period, as generating timetables for fewer lines and shorter periods results in the generation
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T A B L E 5 Planning requirements modeling transfer connections at selected stations. Each row
depicts up to three requirements, one per priority

From At To At Priority
Station line stop line stop HIGH MEDIUM LOW
Chorweiler 18-T01 1739 120-B01 9 0 1 2 3

18-T01 1739 120-B02 49 0 1 2 3

18-T01 1739 121-B01 85 0 1 2 3

18-T01 1739 121-B02 123 0 1 2 3

18-T01 1739 125-B01 186 0 1 2 3

18-T01 1739 125-B02 193 0 1 2 3

18-T01 1739 126-B02 231 0 1 2 3

Ostheim 9-T01 1549 9-T02 1562 0 - - -

9-T01 1549 152-B01 840 0 - - -

9-T02 1562 152-B01 840 0 - - -

9-T01 1549 152-B02 891 0 - - -

9-T02 1562 152-B02 891 0 - - -

9-T01 1549 157-B01 1145 0 - - -

9-T02 1562 157-B01 1145 0 - - -

Porz Markt 7-T01 1505 7-T02 1510 0 - - -

7-T01 1505 152-B01 825 0 1 2 3

7-T02 1510 152-B01 825 0 1 2 3

7-T01 1505 154-B01 907 0 1 2 3

7-T02 1510 154-B01 907 0 1 2 3

7-T01 1505 160-B01 979 0 1 2 3

7-T02 1510 160-B01 979 0 1 2 3

7-T01 1505 161-B01 1023 0 1 2 3

7-T02 1510 161-B01 1023 0 1 2 3

7-T01 1505 162-B01 1036 0 1 2 3

7-T02 1510 162-B01 1036 0 1 2 3

T A B L E 6 Departure times at the selected stations under an optimum timetable adhering to planning requirements

Station Chorweiler Ostheim Porz Markt
Linie 18-T01

120-B01

120-B02

121-B01

121-B02

125-B01

125-B02

126-B01

9-T01

9-T02

152-B01

152-B02

157-B01

7-T01

7-T02

152-B01

154-B01

160-B01

161-B01

162-B01

Departure time 9 8 9 9 8 6 7 7 7 7 7 7 7 9 9 8 9 7 9 6

of fewer trips and subsequently requires fewer time-consuming database operations. For LCL and UCL the time spent in
postprocessing is especially significant as it represents 93% of the overall run time. The actual optimization problem is solved
virtually instantaneously for LCL and UCL, but requires more than 2.5 hours for KVB-B and nearly 2 hours for KVB-BT,
due to their size. Therefore, gaps (a relative tolerance between the best integer objective and the upper bound calculated by

T A B L E 7 Average times for different phases of the optimization

Network Preprocessing [Sec.] CPLEX [Sec.] Postprocessing [Sec.] Overall runtime [Sec.] Gap [%]
LCL 0.90 0.59 18.71 20.20 -

UCL 0.90 0.78 22.24 23.92 -

KVB-B 7.09 > 8861.66 185.16 > 9053.91 0.3

KVB-BT 8.30 > 6299.50 64.10 > 6371.80 1.0
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T A B L E 8 Average time of different phases of the optimization with separation

Network Preprocessing [Sec.] CPLEX [Sec.] Postprocessing [Sec.] Overall runtime [Sec.]
LCL 0.86 0.73 18.88 20.47

KVB-B 7.36 1577.68 186.49 1771.53

CPLEX) of 0.3% and 1.0% were applied in order to obtain solutions in an acceptable time. Without the specification of a gap
the algorithm was not able to finish in an acceptable time. The shorter run time for KVB-BT in comparison to KVB-B is due
to the slightly larger gap and the defined planning requirements, which limit the permissible departure times.

Nonetheless, the timetable for KVB-B discussed in Section 4.2 is an optimum regular timetable for the bus network of
Cologne, because fortunately the data for the underlying network results in a graph consisting of five physically independent
connected components, enabling the application of the decomposition approach described in Section 3.3. To ensure the optimality
of the resulting generated timetable, the solution obtained by CPLEX leveraging the separation approach was afterwards used
as start configuration for an optimization run without separation, resulting in no further improvement and thus proving the
optimality.

How the separation into connected components affects the run time can be seen in Table 8. Network LCL does not profit
from the approach and actually yields an insignificantly higher run time. The bus network of Cologne on the other hand profits
significantly from the described approach, reducing the runtime by at least 82% to about 26 minutes. Both UCL and KVB-BT
have no entries in Table 8, because due to their strong interconnectivity no decomposition is possible.

5 C O N C L U S I O N S

In this article, a disjunctive program formulation for the generation of regular transit timetables, which also adhere to prioritized
planning requirements, was proposed. These requirements include fixed departure times, headways at common stops, and
transfer connections.

The approach was applied to models of four different transit networks: two small artificial networks, the bus network of
Cologne, Germany, as well as the complete bi-modal transit network of Cologne, Germany. The conducted experiments showed
that the proposed approach can indeed be used to generate regular timetables, which will adhere to given sets of planning
requirements, although fulfilling given planning requirements may result in lower regularity. However, by already including
planning requirements during timetable generation, no further manual modifications to ensure adherence to those requirements
should be necessary afterwards and subsequently the resulting timetables should be more feasible for daily operations.

Furthermore, it was shown that the size and structure of the examined transit network heavily influences the run time, but if
the transit network can be separated into physically independent connected components, a simple decomposition approach can
be used to significantly reduce run time, by separately optimizing the connected components and merging the resulting partial
timetables into an overall timetable. Regardless of whether the network prohibits the application of the decomposition approach
or not, the proposed model and its implementation allow one to generate feasible public transit time tables in acceptable time.

Although the improvement of practicability by the proposed model is important, it can only be a first step. To further ensure
the practicability of the generated timetables, they should be exposed to dynamic conditions, for example, variations in travel
and boarding times. One way to achieve this goal without costly trial and error during actual operations is to employ simulation
methods. For this reason, a new discrete event-based simulation framework will be developed allowing one to evaluate the
practicability of generated timetables under dynamic conditions.
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