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To be a feasible base for simulation studies of Cologne's tram network, a valid vehicle schedule has to con-

sider several requirements, like multiple vehicle depots and multiple types of vehicles. The local transport 

provider utilizes both low-floor and high-floor vehicles, with high-floor vehicles being qualified to serve 

both high-floor and low-floor platforms. Therefore mixed vehicle rotations are acceptable, but generally not 

desired. This paper presents a set of models which adhere to these requirements, while also considering sev-

eral possible optimization goals, like minimum number of deployed vehicles, and minimum combined length 

of maintenance trips.

1 Introduction 

In recent work, some of the authors conducted simu-

lation studies on the influence of robust time tables 

on punctuality in tram networks, especially in the 

tram networks of the cities of Montpellier (see [15]) 

and Cologne (see [13]). A combination of heuristic 

and exact optimization methods was applied to gen-

erate robust time tables, which then were simulated 

with a microscopic simulation model (see [11]). It has 

been shown that a tram network has to fulfill a set of 

structure constraints for robust time tables to have an 

effect on overall punctuality (see [14]). Up until now, 

the vehicle schedules, consisting of the assignment of 

the scheduled trips to a fleet of vehicles, were gener-

ated by simple heuristic methods. The resulting vehi-

cle schedules were usually feasible, but were not 

considering optimization goals like cost minimization 

or maximizing robustness. They were thus not very 

realistic and restricting the accuracy of the simulation 

results. 

To address this issue, this paper presents a network 

flow model and its accompanying integer linear mod-

el based on the model introduced in [8], which adhere 

to the requirements for a feasible vehicle schedule for 

Cologne's tram network while considering several 

optimization goals like minimizing the number of 

deployed vehicles, minimizing the combined lengths 

of maintenance trips, or minimizing overall cost. A 

CPLEX implementation of this model is then utilized 

to generate such schedules for Cologne's tram net-

work. 

This paper continues with sharing some background 

on vehicle scheduling and recent research on the 

subject (section 2). Following that, an optimization 

model for multi-depot, multi-vehicle-type vehicle 

scheduling for Cologne's tram network is presented 

(section 3). Several experiments are conducted, 

demonstrating the adaptivity of the model for differ-

ent optimization goals (section 4). The paper closes 

with a short summary of lessons learned and some 

thoughts on further research (section 5). 

2 Background 

2.1 Vehicle scheduling 

A vehicle schedule 𝑅 consists of an assignment of 

scheduled trips 𝑓 ∈ 𝐹 to one of a fleet of vehicles, 

with 𝐹 = 𝐹 ∪ 𝐹 , and 𝐹  the set of planned service 

trips, and 𝐹  the set of maintenance trips. A rotation 

𝑟 = (𝑓  , 𝑓  , … , 𝑓  ) for a given vehicle usually starts 

with a maintenance trip from the depot, where the 

vehicle is stored, to the start platform of the first 

service trip. After this service trip the vehicle may 

continue with a maintenance trip to the start platform 

of the next service trip, etc. The rotation ends with a 

return trip to the depot. A vehicle schedule 𝑅 =

(𝑟 , … , 𝑟 ) consists of a set of rotations covering all 

planned trips of an operational day. The vehicle 
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scheduling optimization problem consists of finding 

the optimal vehicle schedule 𝑅 , usually regarding 

minimal cost. 

Vehicle scheduling problems are frequently solved 

using network flow models. Figure 1 depicts an ex-

ample of such a model for a simple single-depot ve-

hicle scheduling problem with one vehicle type. The 

graph can be transformed into an integer linear prob-

lem which can then be solved by a software solver 

like CPLEX. 

 

Figure 1. Simple network flow model for vehicle 

scheduling. Dashed lines are service trips, solid lines 

represent maintenance trips 

As a first step, a given instance is represented by a 

graph 𝐺(𝑉, 𝐹) with vertices 𝑣, 𝑤 ∈ 𝑉 representing 

start and end platforms of trips and edges 𝑒 =

(𝑣, 𝑤) ∈ 𝐹 representing the trips. A cost function 

𝑐(𝑒), 𝑐: 𝐹 →  ℝ maps the cost of each trip, which is 

usually proportional to the length of the correspond-

ing trip. A depot 𝑑 ∈ 𝐷 is a marked vertex; its capaci-

ty 𝜆  represents the number of vehicles which can be 

stored in 𝑑. There is only a single depot in this exam-

ple. 

Each trip 𝑓 ∈ 𝐹 starts at a platform 𝑓  and ends at a 

platform 𝑓 . 𝐹 is defined as 𝐹 = 𝐹 , ∪ 𝐹 ∪ 𝐹 ∪

𝐹 ,  and thus consists of the maintenance trips 

𝐹 , ⊂ 𝐹  from the depot 𝑑 to the start of each ser-

vice trip 𝑓 ∈ 𝐹 , the regular service trips 𝐹 , the 

maintenance trips (𝑓 , 𝑓 ) ∈ 𝐹 , 𝑖 ≠ 𝑗 from the end of 

a trip 𝑓  to the start platform of each trip 𝑓  with𝑓 <

𝑓 , and the return trips from the last platform of a 

rotation to the depot 𝐹 , ⊂ 𝐹 . We define an order of 

time compatibility on the set of trips: 𝑓 < 𝑓  means 𝑓  

can be served after 𝑓 . This order considers the trans-

fer time of a vehicle to get in time for the scheduled 

departure from the last platform of trip 𝑓  to the first 

platform of trip 𝑓 . If 𝑓 ≮ 𝑓 , trips 𝑓  and 𝑓  cannot be 

served by the same vehicle. 

The network flow model is then transformed into an 

integer linear model (see [16]), as shown in Table 1. 

    

Minimize  ∑ 𝑐    ∈   (OF) 

    

Subject to    =     𝑓 ∈ 𝐹  (C1) 

    ∈   ,     𝑓 ∈ 𝐹  (C2) 

  ∑   = ∑    ∈  ( ) ∈  ( )    𝑣 ∈ 𝑉 (C3) 

   (  ,  )  𝜆   (C4) 

    

Table 1. Integer linear program for a simple vehicle 

schedule 

The elements    of the solution vector   are inter-

preted as decisions whether a potential trip is covered 

by a vehicle. Obviously all service trips have to be 

covered, therefore   =   for all 𝑓 ∈ 𝐹  (see (C1)). 

For each maintenance trip 𝑓 ∈ 𝐹  the value of    can 

either be 1, if this trip is covered by a vehicle, or 0, if 

it is not (see (C2)). Constraint (C3) denotes that the 

number of outgoing edges 𝛿 (𝑣) of a node 𝑣 which 

are covered by a vehicle has to be equal to the num-

ber of covered incoming edges 𝛿 (𝑣). This means 

that each vehicle which enters a platform has to leave 

it subsequently. The edge between 𝑑  and 𝑑  denotes 

a virtual trip and can be interpreted as a counter of 

deployed vehicles. Because of (C3) all vehicles leav-

ing the depot at 𝑑  have to return to it eventually via 

𝑑 . Constraint (C4) therefore sets an upper bound to 

the number of deployed vehicles. 

 

Figure 2. Vehicle 1 executes (f1, f2, f4), vehicle 2 exe-

cutes (f3) 

A valid solution to the example is shown in Figure 2. 

The value  (  ,  ) = 2 denotes that two vehicles are 

employed: the first vehicle leaves the depot, executes 

the trips 𝑓 , 𝑓 , and 𝑓 , and then returns to the depot; 
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the second vehicle leaves the depot, executes trip 𝑓  

and then also returns to the depot. 

The optimizer finds the vector   which minimizes the 

objective function (OF) value, and thus yields the 

combination of rotations with the minimum cost. 

Because all service trips have to be covered under 

any such vehicle schedule, this yields a schedule 𝑅  

with minimum cost for maintenance trips. 

For each instance of this simple vehicle scheduling 

problem, a network flow model and a corresponding 

integer linear model can be generated which allows 

for an optimal solution to be found by the well known 

methods of integer linear programming (see [16]). 

2.2 Related Work 

The vehicle scheduling problem has been extensively 

covered in the past 50 years and several different 

formulations and approaches exist (see e.g. [1, 2, 3, 5, 

6, 7, 8, 9, 10] or, for an overview, see [4]). While the 

general vehicle scheduling optimization problem is 

known to be NP-hard (see [1]) some special cases are 

known to be in P and can be solved efficiently. 

Gavish and Shlifer in [7] for example use a (quasi-) 

assignment model to minimize cost resulting from 

fleet size and maintenance trips for solving the single-

depot vehicle scheduling problem with only one ve-

hicle type. Similarly, Bodin et al. in [2] use the net-

work flow approach to convert the single-depot vehi-

cle scheduling problem into a minimum cost flow 

problem. 

More realistic (albeit NP-hard) instances arise when 

multiple depots and vehicle types are considered. In 

those cases the problem is often solved using multi-

commodity models (as in [1, 8, 10]) or set partition-

ing formulations (as in [9]). Kliewer, Mellouli and 

Suhl in [10] for example apply a two-stage aggrega-

tion process to reduce the number of decision varia-

bles before solving the multi-depot multi-vehicle-type 

vehicle scheduling problem using a multi-commodity 

approach. Grötschel, Schöbel and Völker in [8] on the 

other hand first solve the corresponding single-depot 

problem before applying heuristic methods to repair 

invalid rotations, i.e. rotations including service trips 

not compatible with the respective depot. Hadjar, 

Marcotte and Soumis in [9] in turn develop a branch-

and-bound algorithm combining column generation, 

variable fixing and cutting planes to solve the prob-

lem with the set partitioning formulation. 

3 Vehicle scheduling for Cologne’s 

tram network 

Cologne's local transport provider utilizes both low-

floor and high-floor vehicles based in several depots, 

with high-floor vehicles being qualified to serve both 

high-floor and low-floor platforms. Therefore mixed 

vehicle rotations (i.e. rotations containing both low-

floor and high-floor service trips) are acceptable to 

some extend, but generally not desired. As a result a 

feasible vehicle schedule for Cologne's tram network 

has to consider several requirements, like multiple 

vehicle depots and multiple types of vehicles. A fea-

sible model should also enable several optimization 

goals: a minimum number of employed vehicles (as 

acquisition and maintenance of vehicles is expen-

sive), a minimum combined length of connecting 

trips (as too many non-service trips congest the net-

work), minimum overall cost, or a balance of those. 

The simple model shown in section 2.1 does obvious-

ly not accommodate those requirements, but it can be 

utilized as a starting point to build a more complex 

model. 

 

Figure 3. Multi-depot vehicle scheduling 

To accommodate for multiple depots, we use a multi-

commodity model based on the one presented in [8] 

(see Figure 3), which allows for several depots 𝑑 ∈

𝐷, with each depot storing only one type of vehicles. 

The set 𝐹  denotes the service trips a depot d can 

serve, thus considering multiple vehicle types (indi-

cated by node color in Figure 3). Set 𝐷 ⊆ 𝐷 denotes 

the subset of all depots from which a service trip 𝑓 

can be served. There exist trips which can be served 

by several depots and vehicle types (trip 𝑓  in Figure 

3), therefore 𝐹  ∩ 𝐹    will typically not be empty. 

Service trips have to be covered under each valid 

vehicle schedule. Thus, the combined cost of service 

trips can be considered constant, it can therefore be 

parametrized. The resulting compressed model (see 
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Figure 4) manages on less decision variables and can 

thus be computed faster. 

 

Figure 4. Multi-depot vehicle scheduling with com-

pression 

Table 2 shows an integer linear program for the mul-

ti-depot multi-vehicle-type vehicle schedule problem. 

Here, the elements    ,   of the solution vector   are 

interpreted as decisions whether a potential mainte-

nance trip between the end platform of trip 𝑓  and the 

start platform of trip 𝑓  should be covered by a vehi-

cle. 

    

Min.  ∑  ∑ ((𝑣( , )  𝑐)   ( , )) ∈  
  ∈   (O1, O2) 

   ∑ ∑ (𝑣(  ,  )   (  ,  )
 )       ∈  

  (O3) 

   ∑ (𝑣( , )   ( , )) ∈  
    (O4) 

    

S.t.  ∑ ( (  , )  ∑  (  ,  )
 ) =        ∈   𝑓 ∈ 𝐹 

  (C1) 

   ( ,  )  ∑  (  ,  )
 

      

 ∑  (  ,  )
   (  , ) =        

 𝑑 ∈ 𝐷,  

 𝑓 ∈ 𝐹 
  

(C2) 

     ∑  ( , )  𝜆  ∈  
  𝑑 ∈ 𝐷 (C3) 

 
  ( , ) ∈   ,   

 𝑖, 𝑗

∈ 𝐷 ∪ 𝐹  
(C4) 

    

Table 2. Integer program for a multi-depot multi-

vehicle-type vehicle schedule 

The objective function considers (O1) the fixed cost 𝑐 

of a vehicle's deployment, (O2) the cost of the first 

maintenance trip from the depot to the first platform 

of its first trip, (O3) the combined cost of the mainte-

nance trips connecting service trips, and (O4) the 

return trip to the depot from the last platform of the 

last service trip. 

Constraint (C1) guarantees that for every service trip 

𝑓 only one of the possible succeeding trips is select-

ed. Together with the network flow conservation 

constraint (C2) this guarantees that each trip is cov-

ered by at most one vehicle and has only one preced-

ing trip. Constraint (C3) guarantees for each depot a 

number of deployed vehicles that is within this 

depot's capacity, while (C4) guarantees that each 

potential maintenance trip is either covered by a vehi-

cle or not. 

Several optimization goals can be reached by varying 

the fixed cost 𝑐: If 𝑐 is set to a value greater than the 

maximum length of maintenance trips 𝑣   , then 

executing maintenance trips is generally preferred to 

deploying another vehicle, thus minimizing the total 

number of deployed vehicles. If  < 𝑐 < 𝑣   , then 

the model prefers deploying another vehicle to exe-

cuting any maintenance trips with length greater than 

zero, thus minimizing the combined lengths of 

maintenance trips. By sweeping fixed cost 𝑐 between 

𝑣    and 𝑣    a trade-off between number of de-

ployed vehicles and lengths of maintenance trips may 

be observed. 

4 Experiments 

4.1 Modeling Cologne’s tram network 

We apply the developed model to our hometown 

Cologne's tram network based on the time table data 

of 2001 (see Figure 5). It consists of 528 platforms 

and 58 track switches connected via 584 tracks. These 

tracks cover a total length of 407.4 kilometers, result-

ing in an average track length of 697.6 meters. 15 

lines with 182 line routes are served by 178 vehicles 

which execute 2,814 trips per operational day. The 

vehicles are stored in three maintenance depots, two 

of them store high-floor vehicles (near stations 

Aachener Straße/Gürtel (ASG) and Niehler 

Straße/Gürtel (NSG)), and one stores low-floor vehi-

cles (near station Kalk Kapelle (KKP)). 
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Figure 5. Cologne's tram network 

As test scenario we chose the tram schedule of 2001 

from 3 am to 12 pm, which covers most of the 

planned service trips of a typical operational day. The 

described instance is solved via the CPLEX software 

package. We conduct five experiments: 

(E1) The fixed cost is set to a value 𝑐 > 𝑣    to min-

imize the number of deployed vehicles. For Cologne's 

tram network 𝑣    is established as 𝑣   = 4 .9 7 

kilometers, describing the distance from station 

Chorweiler (CHW) to station Bad Godesberg 

Stadthalle in the neighboring town of Bonn. The fixed 

cost are accordingly set to 𝑐 = 4 .9 8. 

(E2) The fixed cost is set to a value 𝑐 < 𝑣    to min-

imize the combined length of maintenance trips. The 

value of 𝑣    is established as 𝑣   =  .342 kilome-

ters, occurring between stations Zollstock 

Südfriedhof (ZSF) and Klettenbergpark (KLB). For 

this experiment the fixed cost is set to 𝑐 =  .34 . 

(E3) A sweep over 𝑣    𝑐  𝑣    is conducted to 

explore the trade-off between the number of deployed 

vehicles and the lengths of maintenance trips. 

(E4) Up until now, low-floor platforms could be 

served by both high-floor and low-floor vehicles. For 

this experiment we explicitly forbid mixed vehicle 

rotations, which results in two separated problem 

instances.  

(E5) This experiment allows mixed vehicle rotations, 

but sets a penalty by doubling the cost of low-floor 

trips served by high-floor vehicles. For (E4) and (E5) 

𝑐 is again set to 41.908. 

4.2 Results and discussion 

Table 3 shows the results of experiments (E1) and 

(E2). Setting the fixed cost to a value greater than 

𝑣    results in a vehicle schedule with 109 vehicles 

serving 18.72 service trips on average. In comparison, 

a fixed cost value less than 𝑣    raises the number of 

utilized vehicles by 4.4 percent (or 5 vehicles) to 114 

vehicles in total, which serve 17.91 service trips on 

average. By utilizing more vehicles variable cost can 

be lowered by 1.05 percent. 

 (E1): Minimizing 

number of vehi-

cles 

(E2): Minimizing 

length of mainte-

nance trips 

Run time 2,470 s 1,037 s 

Overall cost 6,007 1,577 

Fix cost 4,567.86 152,87 

Variable cost 1,439.14 1,424.13 

Vehicles 109 114 

μL 18.72 17.91 

σL 8.79 8.15 

minL 6 6 

maxL 50 46 

Table 3. Results of experiments (E1) and (E2). μL and 

σL denote average rotation length and standard 

deviation. minL and maxL denote minimum and 

maximum rotation length   

A general trade-off between the number of vehicles 

and the length of the maintenance trips is highlighted 

by the results of experiment (E3) (see Figure 6). For 

  𝑐  5.4 a reduction of vehicles is compensated 

by longer maintenance trips. For fixed cost values of 

𝑐 ≥ 5.4 both the number of utilized vehicles and the 

length of the maintenance trips stagnate, indicating 

that it is not possible to serve all planned service trips 

with fewer vehicles.  
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Figure 6. Results of experiment (E3) 

The results of the last experiments (E4) and (E5) are 

shown in Table 4. As expected, banning mixed rota-

tions reduces the set of valid solutions and subse-

quently results in a less efficient vehicle schedule 

compared to the solutions from experiments (E1) and 

(E2). On the other hand, penalizing mixed rotations in 

(E5) does not result in significant changes compared 

to (E1). 

 (E4): No mixed 

rotations 

(E5): Penalty for 

mixed rotations 

Run time 436.92 s 7,650.91 s 

Overall cost 6,592 6,251 

Fix cost 4,651.68 4,567.86 

Variable cost 1,940.32 1,683.14 

Vehicles 111 109 

μL 18.10 18.66 

σL 9.27 8.08 

minL 4 6 

maxL 51 52 

Table 4. Results of experiments (E4) and (E5) 

5 Summary and further research 

In this paper, we shared an optimization model to 

generate multi-depot, multi-vehicle-type vehicle 

schedules for Cologne's tram network. This model 

can be tuned to consider optimization goals like min-

imizing the number of deployed vehicles, minimizing 

the combined lengths of maintenance trips, or mini-

mizing overall cost. Several series of experiments 

showed the applicability of the model while exploring 

its tuning capabilities. 

In a further step, the described model will be applied 

to generate vehicle schedules for given time tables, 

which in turn are generated by the optimization tools 

described in [12] and [13]. These combined schedules 

will then be simulated with the simulation engine 

described in [11] to further validate their applicability. 
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