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 Almost three-quarters (74%) of smartphone owners get real-
time location-based information on their phones as of 
February 2012, up from 55% in May 2011[Zickuhr12]

 Already more than 1.08 billion smartphone users in the world, 
91.4 million are from the United States in 2011

 Google Maps currently has more than 350 million users
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 Envision an web-based map services that
1. Find accurate information by query: find nearest 5 hotel with bay view 

and swimming pool
2. Spatial Data analysis and share: how house price related with location
3. Efficiently host web-based map service: balance resource allocation 

to different tiers to gain the best QoS

 However, several factors affect functionality
1. Query may take long time if the data is too big
2. Lack of analysis model and bad visualization implicate the data 

analysis
3. Dynamic web workloads and involve multiple CPU and I/O intensive 

tiers make it challenging to host web-based map service
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 This dissertation tackles

1. Inefficient indexing and query for Top-k nearest Spatial Boolean 
queries and poor visualization of query results

2. Complicated and fussy geographic visualization and data analysis

3. Inefficiently host web map service evolves multi-tiers
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1. sksOpen: an open-sourced an Online Indexing and Boolean 
Querying System for Big Geospatial Data

2. GeoCloud: an extra layer running upon the TerraFly map and 
can efficiently support many different visualization functions 
and spatial data analysis models

3. v-TerraFly: techniques to predict the demand of map 
workloads online and optimize resource allocations 
considering both response time and data freshness as the 
QoS target
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 Geographic information retrieval
 [Jones04] Spirit Spatial Search Engine analyzing the geographic 

references in text (single field)

 [Zhou05] propose a hybrid index structure combined with 
different partitions of space (grid is not efficient as R-Tree)

 [Hariharan07] multiple R*-trees (more join operation)

 Spatial data analysis and visualization 
 [Johnston01] [O'Sullivan03] analysis on desktop like Esri

 [Anselin06] GeoDa analysis tools

 Workload prediction and resource management
 [Huebscher08] A survey of autonomic computing (no web map)

 [Rao09] Virtual Machines Auto-configuration (identical between 
tiers)
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 Integrated with the TerraFly Geospatial database 

 Efficient indexing and query engine 

 Map Reduce parallel

 Processing Top-k Spatial Boolean Queries

 Provide ergonomic visualization of query results 

 Published in [Yun131]
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 Spatial database D = {o1, o2, ..., oN} ;   
◦ for every   o ∈ D    < p, T >

 Top-k Spatial Boolean Queries(k-SB) 

query Q is a triple < l, k,B >;
◦ l is the query location (spatial constraint)

◦ k is the desired output size

◦ B is the conjunctive Boolean predicate

 L is a list of result of the k-SB query Q



 Fast retrieval objects even far away
◦ R-Tree

 Efficiently filter objects not satisfying keyword constraints
◦ Inverted file



 Hybrid Spatial Keyword Index 
[Cary10]
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Term t contains all bitmaps sorted by 

super node index

Prune if not contain desired B

Bitmap bit operation to speed up query



 Z-ordering a function which 
maps multidimensional data to 
one dimension while preserving 
locality of the data points

 Z-ordering can be used to 
efficiently build a Quad tree for a 
set of points. The basic idea is to 
sort the input set according to Z-
order

 Z-values for the two dimensional 
case with integer coordinates 
0 ≤ x ≤ 7, 0 ≤ y ≤ 7
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Hotel with 4 stars or above and less than $200 per night near downtown Miami



 Data file: “us_consumer_2012_full”

 68GB    173,483,090 records     136 fields per each record

 KNN query

 Top 50 records, 38339 characters

 Query time: 1.211971 seconds, includes the disk access time for record 
retrieval.

 KNN query with Boolean restriction CITY=miami&FIRST_NAME=jose

 Top 50 records, 33308 characters.

 Query time: 1.707193 seconds, includes the disk access time for record 
retrieval.
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 Summary
◦ Efficient online indexing, querying, and visualization system for Big 

Geospatial data.

◦ Leveraged MapReduce to Improve a distributed disk-resident hybrid 
index for efficiently answering k-NN queries with Boolean constraints 
on textual content.

◦ A better interactive user interface.
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 Extra layer running upon TerraFly map 

 Facilitates the end user to visualize and 
analyze spatial data

 Share the analysis results with URLs

 Supporting many different visualization 
functions and data analysis models

 MapQL Map creation language

 Published in [Yun132, Yun133, Huibo13]
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 Geospatial data analysis is becoming more popular 

 Challenges
◦ Bad data visualization

◦ Complicated and fussy tools to analysis

◦ Data analysis is resource consuming

 TerraFly GeoCloud
◦ Visualize and manipulate data

◦ Online data analysis

◦ MapQL feature
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 A prototype spatial data analysis web application
◦ Uses TerraFly Maps API

◦ JavaScript TerraFly API add-ons

◦ JavaScript Web app GUI and charting library

 TerraFly Spatial Analysis – from Module to Cloud:
◦ TerraFly to provide online Spatial Analysis Solutions in a high 

performance cloud Environment.
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• Upload datasets

• Manipulate datasets

• Visualize datasets with custom appearances 

• Analyze datasets with different models

• Graph analysis results

• Share results with others

http://terrafly.fiu.edu/GeoCloud/
http://terrafly.fiu.edu/GeoCloud/
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• The user uploads a spatial dataset

• Supports several file types

• Sent by HTTP POST to backend



• A user requests data from the backend

• Adds dataset to map using TerraFly Maps API

• UI to customize the appearance 







 Spatial  Autocorrelation
◦ Check for spatial dependency and clusters

 Spatial Correlation
◦ Check for Dependency of one variable to another

 Clustering
◦ Grouping similar spatial objects

 Kriging
◦ Geo statistical estimator for unobserved locations

 Disease Clustering



 Spatial  Autocorrelation



 Share with a URL
◦ Share multiple visualized datasets

◦ Share analysis results

Describes the Map location Describes Dataset



• An SQL-like language used to render map layers

• Facilitate developer to use the TerraFly map as their wish

• Easily create their own maps.

syntax check semantic check
Successfully 

Parsed 

MapQL Statements

Create style 

configuration 

object

Y

Return  Error  

Information

N

Load style info 

for a object and 

render to map

Finished 
render for all 

objects

Successfully 

Done
Y

N

Parse statement 

and store style 

Info into DB



SELECT    
CASE         

WHEN star >= 1 and star < 2 THEN '/var/www/cgi-bin/hotel_1star.png'         
WHEN star >= 2 and star < 3 THEN '/var/www/cgi-bin/hotel_2stars.png'         
WHEN star >= 3 and star < 4 THEN '/var/www/cgi-bin/hotel_3stars.png'        
WHEN star >= 4 and star < 5 THEN '/var/www/cgi-bin/hotel_4stars.png'        
WHEN star >= 5 THEN '/var/www/cgi-bin/hotel_2stars.png'         

ELSE '/var/www/cgi-bin/hotel_0star.png'    
END AS T_ICON_PATH, 

h.Geo AS GEO
FROM 

osm_fl o 
LEFT JOIN
hotel_all h 
ON 
ST_Distance(o.geo, h.geo) < 0.05 

WHERE    
o.name = 'Florida Turnpike';

Query the hotels along a certain 

street within a certain distance



 Summary
◦ Easily analyze and visualize spatial data in browser

◦ Satisfy the increasing demand of information sharing

◦ Allows users to customize their own spatial data 
visualization using a SQL-like MapQL language rather than 
writing codes with Map API
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 Predict the demand of map workloads online

 Autonomic resource management

 Optimize resource allocations considering 
both response time and data freshness as the 
QoS target

 Involved multiple CPU and I/O intensive tiers

 Published in [Yun134] 

 Undergoing journal review [Yun135] [Lixi13]
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 Multi-Tiers Web map service

 Easy management and maintenance by virtual machine

 Better utilization of computing resource

 Dynamically distributing system
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 Based on the double exponential smoothing (DES) method
◦ Suitable for discrete data sequence with repeated changing patterns

 New two-level time series prediction approach

42

𝑌𝐷𝑒𝑠 𝑡 + 1 = 2𝑆′ 𝑡 − 𝑆′′ 𝑡 +
𝛼

1 − 𝛼
𝑆′ 𝑡 − 𝑆′′ 𝑡

Eq. 1: 𝑤′ 𝑡 + 1 = 𝜇ℎ𝑤ℎ
𝐷𝑒𝑠 𝑡 + 1 + 𝜇𝑑𝑤𝑑

𝐷𝑒𝑠 𝑡 + 1

Eq. 2: 𝑤ℎ
𝐷𝑒𝑠 𝑡 = 2𝑆′ 𝑡 − 1 − 𝑆′′ 𝑡 − 1 +

𝛼ℎ

1−𝛼ℎ
𝑆′ 𝑡 − 1 − 𝑆′′ 𝑡 − 1

Eq. 3: 𝑤𝑑
𝐷𝑒𝑠 𝑡 = 2𝑆′ 𝑡 − 24 − 𝑆′′ 𝑡 − 24 +

𝛼𝑑

1−𝛼𝑑
𝑆′ 𝑡 − 24 − 𝑆′′ 𝑡 − 24

• 𝑤ℎ
𝐷𝑒𝑠 is the horizontal double exponential smoothing 

prediction based on the hourly pattern in the workload

• 𝑤𝑑
𝐷𝑒𝑠 is the vertical double exponential smoothing prediction 

based on the daily pattern of the workload

𝑆′ 𝑡 = 𝛼𝑌 𝑡 + 1 − 𝛼 𝑆′ 𝑡 − 1 𝑆′′(𝑡) = 𝛼𝑆′(𝑡) + (1 − 𝛼)𝑆′′(𝑡 − 1)



 Two-level prediction method delivers significantly better 
accuracy in predicting the request rate of one month workload
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 QoS model consider both the responsiveness in serving user 
mapping requests (reader tier) and the quality of returning 
geographic information (loader tier)

 The former guarantees acceptable response time and the 
latter keeps the imagery data up to date

 QoS model is defined to represent the overall system 
performance 
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Eq. 5: 𝑄𝑜𝑆 𝑡 = 𝑟 𝑡 × 𝑓(𝑡)

Eq. 6: 𝑟 𝑡 =  
𝑅𝑇𝑟𝑒𝑓

𝑅𝑇 𝑡

Eq. 7: 𝑓 𝑡 = 1 − 𝜌 × 𝑓 𝑡 − 1 + ∆𝐷 𝑡 /𝐷𝑟𝑒𝑓

r(t) is called the normalized response time

f(t) is called the cumulative data freshness 

𝜌 is the decaying factor 



 v-TerraFly prototype 

 Real traces collected from the TerraFly production system

 Two Dell PowerEdge 2970 servers
◦ Two six-core 2.4GHz AMD Opteron CPUs

◦ 32GB of RAM

◦ 1TB 7.2 RPM SAS disk

 Windows Server 2008 and Hyper-V

 Each Reader and Loader VM 
◦ one core CPU

◦ 2G memory
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 Summary:
◦ Created by virtualizing the multi-tiers of a typical map service system 

◦ Allowing resources to be dynamically allocated across the tiers

◦ Predicting the workload intensity based on historical data

◦ Estimating the resource needs of the map service’s Reader and Loader 
Tiers based on their performance models

◦ Unique QoS metric is then defined to capture the tradeoff
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 Conclusions
◦ sksOpen improves spatial query experience

◦ GeoCloud do spatial analysis online and share results with URLs

◦ v-TerraFly efficiently manage computing resources for web map 
services

◦ sksOpen provide data input to GeoCloud 

◦ v-TerraFly provide backend performance support to sksOpen and 
GeoCloud
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 Limitations
◦ sksOpen

 Still need to improve the code to be open source

 Large disk redundancy

◦ GeoCloud

 Need domain expert experience to do analysis

 Need a MapQL statement generator to open to public use.

◦ v-TerraFly

 No large scale implementation

 Different input pattern need to be verified

52



 Motivation & Problem Statement
 Main Contributions
 Related Work
 Contributions (Breakdown)
1. sksOpen
2. GeoCloud
3. v-TerraFly

 Conclusions and Limitations
 Future Work
 References

53



 sksOpen : Improve the code structure and limit disk cost

 GeoCloud: Better UI for public use

 v-TerraFly:  Explore how to apply the principle of v-TerraFly 
to other applications
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 Queue nodes by distance to search point

 Locate the search point

 Keep the top k candidacy in cache

 Back trace and Subtract

 Finish
Hjaltason, G. R., & Samet, H. (1999). 

Distance browsing in spatial 

databases.ACM Transactions on 

Database Systems



 Similar to R-Tree KNN search, the best-first traversal 
algorithm proposed

 Replace the first operation with
◦ For each entry e in node n do

 If (isSubtressCandidate(B,n,[e’s position in n])) then
 Queue.push(e.ptr) with priority dist (e.MBR, l)

 prune

 isSubtressCandidate evaluates B predicate by merging query 
term bitmaps on a range of super nodes, one super node at a 
time, until one candidate is found.



 http://vn4.cs.fiu.edu/cgi-
bin/arquery.cgi?category=hotelsd_wikix2011_elevation&x1=-
80.193573&y1=25.773941&vid=&referer=&place_name=Query++
4+&extraref=1&arcriteria=1&star_rating%3E=4

 http://sksheavy.cs.fiu.edu:8080/sks/query?category=us_consumer
_2012_full&y1=33.68881&x1=-
116.18922&vid=&srvc=&&arcriteria=1&&timeout=20&d=9999999
9&numfind=200&maxeval=2000&printdist=1&header=1&CITY=mi
ami&FIRST_NAME=jose

 homicide8893 http://geocloud.cs.fiu.edu/#7:38.69052889803671
:-90.06382140624999/29:ps:ffff00:1:50:50:aaccff

 http://geocloud.cs.fiu.edu/
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