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1 Introduction

Like many other university courses, University of Cologne's (UoC) programming
class can be attended by di�erently sized teams (of typically two to six students),
who handle presentations and homework collectively. The course consists of up
to 30 work groups with di�erent capacities taking place at di�erent times and
days of the week. The organizers found it desirable to enable to students who
formed a team prior to the course to participate together with their peers in
the same work group. Because students typically have tight schedules, it is
preferable to give individual students the opportunity to weight the available
time slot options according to their individual priorities. In this process students
should also be able to put an individual weight on their collaboration with their
established team. If the marginal bene�t of staying with this team is outweighed
by the cost of being collectively assigned to a non-optimum work group, the
team should be split, and more favorable assignments of the individual students
should be generated. Finding an optimum team priority assignment of student
teams to work groups is related to the Generalized Assignment Problem (GAP,
see [9], pp. 189-220), which is well known to be NP-hard.

This paper presents the Team Priority Assignment Problem (TPAP), de-
scribes its relationship to GAP and shows that TPAP as a combinatorial opti-
mization problem is NP-hard. A method based on the simulated annealing meta
heuristic (see [4]) is presented, which enables the course organizers to generate
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high-quality - though not optimal - solutions in reasonable run time for team
priority assignments of UoC's programming class.

This report continues by sharing some background on the team priority
assignment problem and recent research on that subject (section 2). Following
on that, a heuristic approach to the problem is presented (section 3). Some
experiments are conducted, demonstrating the approach's suitability to provide
high quality solutions to real-world instances (section 4). The paper closes
with a short summary of lessons learned and some thoughts on further research
(section 5).

2 Background

2.1 Team priority assignment

The objective of TPAP is to �nd optimum assignments xi,j ∈ {0, 1} of students
si ∈ S with n := |S | to work groups gj ∈ G , m := |G | with a capacity µj .
Here, xi,j is set to 1 if student si is assigned to group gj , or set to 0 if not.
Each student si awards a weight ci,j ∈ R+ for each possible assignment to a
group gj . She also indicates the team ti she is part of, and sets a team priority
pi ∈ R+ which represents the value of being assigned to the same group as the
other members of team ti .

The objective function f (x ) consists of two parts g(x ) and h(x ). If all team
members are assigned to the same work group, no further cost are added to the
global sum of assignment weights g(x ). If this is the case for all students, the
objective function consists only of the combined group assignment cost shown
in equation 1.

g(x ) =

n∑
i=1

m∑
j=1

(xi,j · ci,j ) (1)

If not all members of a team tj are assigned to the same work group, the
team priority values pi for all si with ti = tj become e�ective according to
equation 2.

h(x ) =

n∑
i=1

m∑
j=1

xi,j · bi,j · pi (2)

The factor bi,j is calculated in the following way (see equation 3): If the
set Tti of students in team ti consists only of one student (namely student si),
bi,j is set to 0. If Tti consists of two or more students, bi,j is calculated as the
portion of the team which is not assigned to the work group containing student
si taken to the power of four. The fourth power was chosen because with teams
of the expected sizes the resulting values discourage separating a single student
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Figure 1: Cost resulting from separating various numbers of students from their
team with power-of-four (blue) and linear (red) objective function component

from her team (see �gure 1 for a team size of four).

bi,j =

(

∑
s∈Tti

(1−xs,j )
|Tti
|−1 )4 for |Tti | > 1

0 for |Tti | = 1
(3)

If a team has to be split, it is thus encouraged to be split in equal parts.
This maps the desire not to isolate single students but to keep at least partial
teams intact.

Building up on this, TPAP as a combinatorial optimization problem can be
de�ned as �nding an assignment matrix x with xi,j ∈ {0, 1}, which minimizes the
objective function f (x ), combined from g(x ) and h(x ), and shown in equation
4.

f (x ) = g(x ) + h(x ) =

n∑
i=1

m∑
j=1

xi,j · (ci,j + bi,j · pi) (4)

A valid solution has to adhere to two restrictions (see table 1): restriction (a)
guarantees that the maximum size µj is observed for each group j ; restriction
(b) de�nes that each student is assigned to exactly one group.

2.2 Computational complexity

To decide on TPAP's computational complexity we show in a �rst step that
special cases of the Generalized Assignment Problem (GAP) can be reduced to
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Minimize f (x ) =
∑n

i=1

∑m

j=1 xi,j · (ci,j + bi,j · pi)

with bi,j =

(

∑
s∈Tti

(1−xs,j )
|Tti
|−1 )4 for |Tti | > 1

0 for |Tti | = 1

and Tt = {i ∈ {1, ...,n}|ti = t} ∀t ∈ N

Subject to

(a)
∑n

i=1 xi,j ≤ µj ∀j ∈ {1, ...,m}

(b)
∑m

j=1 xi,j = 1 ∀i ∈ {1, ...,n}

xi,j ∈ {0, 1}

Table 1: The TPAP optimization problem

TPAP. 3-Partition, which is known to be NP-complete, is then reduced to these
GAP cases. It is thus shown that TPAP is NP-complete, or - as an optimization
problem - NP-hard.

As described, TPAP is closely related to a special case of GAP, where usually
terms of production and logistics (e.g. tasks, machines, a machine's capacity)
are applied. GAP instances can here be interpreted as assignments of student
teams (i.e. tasks) to work groups (i.e. machines), in which teams cannot be
split (unlike in TPAP). As in TPAP, di�erent assignments result in di�erent
cost for the whole team. Also as in TPAP, GAP work groups can have di�erent
capacities, and team sizes can vary. Unlike TPAP, not every instance of GAP
has a feasible solution, and team sizes can be dependent on the group a team
is assigned to. This is analogous to GAP's tasks being assigned to machines of
di�erent capacity and throughput, where team sizes represent di�erent necessary
machine times on di�erent machines. In short: GAP is more �exible than TPAP
in allowing di�erent team sizes depending on the assigned work group, but less
�exible in that the teams cannot be split up.

Otherwise, the problems are similar: For instances of TPAP which have
their team priorities set to in�nity, �nding a result of �nite cost is equivalent to
solving a GAP instance in which TPAP's individual students' cost are combined
to team cost. If a GAP instance has no feasible solution, all solutions of the
TPAP instance have in�nite cost. In reverse, an instance of GAP in which team
sizes do not change depending on the assigned work group can be seen as an
instance of TPAP. This is formed by

1. deconstructing every team into single students,
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2. setting their ci,j so that for each group the assignment of all team members
to this group yields the same cost as assigning the team to the equivalent
group in GAP, and

3. setting their team priorities to in�nity.

It can now be shown that TPAP as a combinatorial optimization problem is NP-
hard. To accomplish this, we show that 3-Partition (a well-known NP-complete
problem, see [5]) can be reduced to TPAP. A 3-Partition instance consists of a
multiset (a set in which members can appear more than once) A = {a1, . . . a3m},
with ai ∈ N and B ∈ N with B ·m =

∑3m
i=1 ai . The problem is de�ned as �nding

a partition of A into m subsets so that for each set, the sum of its members
equals B . This is NP-complete even if B/4 < ai < B/2, which forces each
subset to contain exactly three members.

Given a 3-Partition instance, an equivalent GAP instance is created as fol-
lows (analogous to [16], pp. 801-802):

1. Create 3m teams, where team i has a constant size of ai students regard-
less of the assigned group, for all i ∈ 1, . . . , 3m,

2. set all assignment cost to the same arbitrary value, and

3. create m work groups of size B .

Each solution of this GAP instance corresponds to a solution of the 3-Partition
instance: For each group, the assigned teams correspond to a set of integers of
the 3-Partition instance whose sum is B . This GAP instance can be mapped to
a TPAP instance as described above.

2.3 Related research

Several approaches on the general assignment problem and its derivatives exist,
including [3], [6], [11], [12], [13], [14], [15] and [16] (for an overview which also
includes some extensions, see [2]). Several of those methods are based on exact
algorithms, like branch-and-bound in [8] and [14], or branch-and-prize in [15].

Many special cases of GAP are well-known problems of their own, e.g. the
multiple knapsack problem (see [9], pp. 157-188, for the regular knapsack prob-
lem also see [9], pp. 13-80), or the linear sum assignment problem (see [1], pp.
4-7). Techniques for these special cases include the Hungarian Method for the
linear sum assignment problem (see [6], improved in [11]), which can be im-
plemented with cubic time complexity, and bound-and-bound for the multiple
knapsack problem (see [9], pp. 170-176).

Other authors apply heuristic methods, like tabu search in [3] and [12],
simulated annealing in [12], or a combination of methods in [13].

Some authors, e.g. [7] and [16], regard the assignment of military personnel
to certain positions considering several policies as the Personnel Assignment
Problem (PAP). Some variants of PAP are very similar to TPAP, in that they
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consider suitability of personnel for positions; [16] also tries to prevent relo-
cating e.g. married couples to di�erent military bases. Di�erent from TPAP,
[16] also includes hierarchical-ordering constraints, i.e. the military ranks of
the personnel should match the hierarchy of the assigned positions. [16] ap-
plies an genetic algorithm to some of those sub-problems, including one called
�Assignment Problem with Set Constraints� (APSC). Apart from the described
di�erences, APSC has strong similarities with TPAP, especially its de�nition of
set constraints which partition personnel into subsets which must be assigned
as a whole to a single subset of positions. This corresponds to teams being
assigned to the same work group in TPAP.

3 A heuristic approach to team priority assign-

ment

To �nd good solutions in a reasonable time, a heuristic method is presented
based on the simulated annealing technique (see [4]), which emulates the phys-
ical process of heating and controlled cooling of material to increase the regu-
larity of its crystals. Similar to this process, the simulated annealing method
(for an overview see �gure 2) attempts to �cool down� the instance in a con-
trolled way to �nd a good compromise of exploring both the objective function
landscape globally, and researching local optima. The method initializes with a
given starting temperature T0 and a valid, but randomly constructed solution
candidate a = aapprox , which assigns each student to a work group.

For each temperature level Ti an inner loop is executed: In each of its steps,
an elementary modi�cation is considered based on the current solution candidate
a, which consists of the exchange of two students' assignments. The resulting
new solution candidate an is either accepted as a := an or rejected. The can-
didate is accepted if either f (an)≤f (a), or with a probability corresponding to

the Metropolis rule (see [10]), i.e. if p < e
(
−(4E)

Ti
)
, with a random p ∈ [0, 1) and

∆E = f (an) − f (a). If an accepted candidate a has a lower objective function
value than aapprox , a is accepted as the new approximate solution aapprox := a.

This inner loop is executed until a maximum number of modi�cations is
conducted or a maximum number of acceptances is reached. Then, the temper-
ature level is lowered. The outer loop is executed until a minimum temperature
is reached or three succeeding temperature stages were executed without any
acceptances.

The set of necessary parameters consists of a starting temperature T0, the
maximum number of modi�cations on a temperature level, the law of tempera-
ture change between stages, and a condition for the algorithm's termination. [4]
recommends a set of parameters which is applied as a starting point for further
calibration.
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Figure 2: The simulated annealing meta heuristic (as described in [4])

4 Experiments

As described, the motivation for this work is to generate high quality solutions
for a real-world instance of TPAP, the students' assignment to work groups
for University of Cologne's programming class. To assess the behavior of the
proposed model and the heuristic solver, we begin by experimenting on randomly
generated instances from 100 to 1000 students. Following on that, the students'
assignment of the 2013/14 programming class is examined.

4.1 Random instances

Input data for test instance generation consist of the number n of students,
average team size z , and a maximum group size g . The maximum number of

teams is calculated as k =
⌈
n
z

⌉
, the number of groups as m =

⌈
n
g

⌉
. To construct

an instance n students are generated. For each student si an assignment ti to a
team is picked from an uniform distribution. To map the preferences of student
si , both the team priority pi ∈ [0, 1) and random assignment weights µi,j ∈ [0, 1)
for each group j are also picked from a uniform distribution.

For the experiments, instances from 100 up to 1000 students are generated;
the maximum group size is set to 20, the average team size is set to 3, which
�ts our observations concerning students' preferences for University of Cologne's
programming class (see section 4.2).

The parameter set for simulated annealing is constructed as suggested in
[4]: The initial temperature T0 is calculated as T0 = −∆E

ln 0.5 , with ∆E com-
puted by averaging the absolute change in the objective function in 100 random
perturbations ai (see equation 5).
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∆E =

∑100
i=1 |f (a)− f (ai)|

100
(5)

The change in temperature between stages is set to Ti+1 = 0.9 ∗ Ti . The
algorithm lowers the temperature when 12 ∗ N perturbations were accepted
or 100 ∗ N perturbations were attempted (where we set the chain length to
N = 100 ∗ n, which yields a better solution quality than setting N = n as
suggested in [4]). The algorithm is terminated if three succeeding stages without
any acceptance occur, or a minimum temperature of Tmin = 0.00001 is reached.
Thirty runs are executed for each measuring point.

4.2 The University of Cologne's programming class

The test instance consists of 755 students, 405 of which prefer to work in one of
127 teams, 350 students prefer to work alone. The average team size for teams
of more than one student is 3.19, with a minimum of two and a maximum of
13 students. The teams have to be assigned to 28 work groups, of which 13
groups have a maximum size of 33, and 15 have a maximum size of 22. The
combined capacity of these groups is 759, they thus include four spare slots. As
described, students were free to weight each prospective assignment and to set
a team priority pi . To accomplish an equal consideration of each student and
thus to discourage �cheating� by setting very high weights, the combined sum
of all weights for a student is set to 1000.

The parameter set for simulated annealing is again adapted following the
suggestions in [4], as described in section 4.1.

4.3 Results and discussion

The results of the computation of random instances are shown in table 2 and
�gure 3. As expected, team cost, group cost and combined cost rise linear with
the size of the instances. The algorithm's run time also rises as expected; the
rise corresponds to the rise of the possible number of perturbations (between
12∗N and 100∗N ) on each temperature level. At an instance size of 800 (which
is about the size of the real-world example), it amounts to 20.5 minutes. At
this size, 190 (23.8%) out of 800 students were assigned to their �rst priority
work group, 227 (28.4%) students to their second and third priority, and 383
(47.9%) students to a priority of four or more. Out of 222 teams of two or more
students, 108 (48.7%) were assigned to one single work group, 107 (48.2%) were
split up to two partial teams, 7 (3.2%) were split up to three parts. Only 73
students (9.1%) were assigned to a work group without any team mates.

The real-world instance is computed thirty times. The algorithm yields a
best solution with an overall cost of 1,757.9 (average: 2,196.9), group cost of
1,610 (average: 1,998.4), and team cost of 147.9 (average: 198.5). The standard
deviation of the thirty runs lies at 175.4 ( σ

avg. cost = 0.080). The average run

time for this instance is 1,211.6 seconds (20.2 minutes).
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Figure 3: Cost and run time for random instances

Out of these students, 620 (82.1%) were assigned to one of their �rst priority
work groups, 103 students (13.6%) to their second or third priority level, and
32 students (4.2%) to a group of priority level four or more. Out of 127 teams
of two or more students, 115 (90.6%) were assigned to one single work group,
8 (6.3%) were split up to two partial teams, 4 (3.1%) were split up to three or
more parts. Only 14 students were assigned to a work group without any team
mates.

The real-world instance shows a slightly di�erent internal structure than the
arti�cial instances of the same size: students comprising a team often arrange
to enter the same priority values, which is not mapped in the generation of
arti�cial instances. Many students also apply the same weights for the majority
of their priorities.

Students in the UoC's programming class of 2013/14 were assigned to their
work groups according to the generated solutions. After the inclusion of late-
comers and some manual last minute changes, instructors and students were
content with the assignments.

5 Conclusions and further research

This paper introduced the Team Priority Assignment Problem, a combinatorial
optimization problem related to GAP, and showed that TPAP is NP-hard. To
generate high-quality solutions in reasonable run time, the simulated annealing
heuristic was adapted and applied to both randomly constructed instances and
the real-world instance of the University of Cologne's 2013 programming class.
The method yielded a solution where 82.1% of students were assigned to their
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�rst priority level work group, 13.6% to their second or third priority level,
and 4.2% to a priority level of four or more. 90.6% of teams were assigned
to one single work group, 9.4% were split up to two or more partial teams.
The results show that the simulated annealing implementation of the described
model generates high-quality solutions in reasonable run time which are feasible
to apply to real-world instances.

Further steps might consist of the examination of di�erent objective func-
tions, because when applied to large teams, the power-of-four function does not
show the desired behavior of discouraging the splitting o� of single students.
We will also consider di�erent neighborhood relationships and extended sets of
elementary modi�cations. To reliably reach better solutions, the exchange of
whole or partial teams seems to be especially promising. Also, the formulation
of a linear objective function and its embedding in a linear integer model will
be considered.
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